From cbcc1bd183bd13ec7d692cb28ad99bbc72ea057f Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Tue, 30 May 2023 12:07:43 +0200 Subject: [PATCH 01/14] Updated colour --- snudda/__init__.py | 2 +- snudda/plotting/Blender/visualisation/visualise_network.py | 6 +++++- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/snudda/__init__.py b/snudda/__init__.py index b8415a474..66fdcf187 100644 --- a/snudda/__init__.py +++ b/snudda/__init__.py @@ -1,6 +1,6 @@ from .core import Snudda -__version__ = "1.4.7" +__version__ = "1.4.71" from .init import SnuddaInit from .place import SnuddaPlace diff --git a/snudda/plotting/Blender/visualisation/visualise_network.py b/snudda/plotting/Blender/visualisation/visualise_network.py index 17c3990f0..d4caf0d15 100644 --- a/snudda/plotting/Blender/visualisation/visualise_network.py +++ b/snudda/plotting/Blender/visualisation/visualise_network.py @@ -59,6 +59,7 @@ def visualise(self, blender_output_image=None, white_background=True, show_synapses=True, + synapse_colour=None, synapse_pair_filter=None, draw_meshes=True, full_meshes=None, @@ -75,6 +76,7 @@ def visualise(self, blender_output_image white_background show_synapses + synapse_colour: R,G,B,alpha (For values, range 0-1). Default None. synapse_pair_filter (list): List of pairs of neurons (tuples) to show synapses for, default None = no filtering camera_location camera_rotation @@ -184,7 +186,9 @@ def visualise(self, "synapse": mat_synapse, "other": mat_other} - if white_background: + if synapse_colour is not None: + mat_synapse.diffuse_color = synapse_colour + elif white_background: mat_synapse.diffuse_color = (0.8, 0.0, 0.0, 1.0) else: mat_synapse.diffuse_color = (1.0, 1.0, 0.9, 1.0) From 40a1a0de2c4bceaa48574d4dff87f70b96451f66 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Tue, 30 May 2023 16:00:24 +0200 Subject: [PATCH 02/14] Fixed synapse colour setting, thanks Scott for the tip --- snudda/plotting/Blender/visualisation/visualise_network.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/snudda/plotting/Blender/visualisation/visualise_network.py b/snudda/plotting/Blender/visualisation/visualise_network.py index d4caf0d15..7c5487b93 100644 --- a/snudda/plotting/Blender/visualisation/visualise_network.py +++ b/snudda/plotting/Blender/visualisation/visualise_network.py @@ -194,6 +194,11 @@ def visualise(self, mat_synapse.diffuse_color = (1.0, 1.0, 0.9, 1.0) # matSynapse.use_transparency = True + + """ + # We comment out these lines, to get the synapse colour to be set correctly (otherwise they are white) + # Thanks Scott for finding this fix. + mat_synapse.use_nodes = True if not white_background: @@ -205,6 +210,7 @@ def visualise(self, material_output = mat_synapse.node_tree.nodes.get('Material Output') mat_synapse.node_tree.links.new(material_output.inputs[0], emission.outputs[0]) + """ for neuron in neurons: From 7f034e32563bae2f0eac55fdcd06b302ba30b6ae Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Fri, 2 Jun 2023 17:01:36 +0200 Subject: [PATCH 03/14] Writing SONATA input spikes --- examples/notebooks/NEST/Snudda-in-NEST.ipynb | 715 ++----------------- snudda/utils/conv_hurt.py | 16 +- snudda/utils/export_sonata.py | 106 ++- 3 files changed, 158 insertions(+), 679 deletions(-) diff --git a/examples/notebooks/NEST/Snudda-in-NEST.ipynb b/examples/notebooks/NEST/Snudda-in-NEST.ipynb index fb7b1a222..91fbda012 100644 --- a/examples/notebooks/NEST/Snudda-in-NEST.ipynb +++ b/examples/notebooks/NEST/Snudda-in-NEST.ipynb @@ -43,6 +43,7 @@ "from snudda import SnuddaInit\n", "\n", "snudda_data = os.path.join(\"..\", \"..\", \"..\", \"..\", \"BasalGangliaData\", \"data\") # \"/home/hjorth/HBP/BasalGangliaData/data/\" \n", + "snudda_data = \"/home/hjorth/HBP/BasalGangliaData/data/\" \n", "si = SnuddaInit(network_path=network_path, random_seed=12345, snudda_data=snudda_data)\n", "si.define_striatum(num_dSPN=500, num_iSPN=500, num_FS=10, num_LTS=0, num_ChIN=0, neuron_density=80500,\n", " volume_type=\"cube\", neurons_dir=\"$DATA/neurons\")\n", @@ -167,644 +168,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "2e229380-8851-4383-ad7c-55c62386235e", "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - }, "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using input file: networks/snudda_in_nest/input-spikes.hdf5\n", - "Copying morphologies\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var7.swc\n", - "Copying mechanisms\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/can_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/Im_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kas_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/can_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caldyn_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal13_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/car_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/im_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/par_ggap.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cap_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut_double.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdb_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cat32_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal12_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/NO.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir23_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kv2_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir23_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/hcn12_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cadyn_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kas_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na2_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/car_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kv4_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cat33_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmgabaa.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir2_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caq_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cadyn_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caq_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/ca_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/vecevent.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdrb_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/hd_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kcnq_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut_M1RH_D1.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na3_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/it_lts.mod\n", - "Copying hoc files...\n", - "Creating nodes/FS\n", - "Creating nodes/dSPN\n", - "Creating nodes/iSPN\n", - "Missing hoc template: \n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using ../../../../BasalGangliaData/data/nest/models/iSPN.json\n", - "Writing networks/snudda_in_nest/SONATA/simulation_config.json\n", - "SONATA files exported to networks/snudda_in_nest/SONATA\n" - ] - } - ], + "outputs": [], "source": [ "from snudda.utils.export_sonata import ExportSonata\n", "se = ExportSonata(network_path=network_path)" @@ -836,7 +205,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "711e8a95-daf2-4766-aa78-b98351dac708", "metadata": { "tags": [] @@ -851,7 +220,7 @@ " Copyright (C) 2004 The NEST Initiative\n", "\n", " Version: 3.4.0-post0.dev0\n", - " Built: May 12 2023 11:42:17\n", + " Built: Jun 1 2023 12:32:32\n", "\n", " This program is provided AS IS and comes with\n", " NO WARRANTY. See the file LICENSE for details.\n", @@ -862,23 +231,9 @@ " Type 'nest.help()' to find out more about NEST.\n", "\n", "\n", - "May 16 09:11:56 SimulationManager::set_status [Info]: \n", + "Jun 02 16:58:00 SimulationManager::set_status [Info]: \n", " Temporal resolution changed from 0.1 to 0.1 ms.\n" ] - }, - { - "ename": "NESTErrors.map::at", - "evalue": "map::at in SLI function ConnectSonata_D: C++ exception: map::at", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNESTErrors.map::at\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[3], line 12\u001b[0m\n\u001b[1;32m 9\u001b[0m sonata_net \u001b[38;5;241m=\u001b[39m nest\u001b[38;5;241m.\u001b[39mSonataNetwork(net_config, sim_config)\n\u001b[1;32m 10\u001b[0m \u001b[38;5;66;03m# node_collections = sonata_net.Create()\u001b[39;00m\n\u001b[0;32m---> 12\u001b[0m node_collections \u001b[38;5;241m=\u001b[39m \u001b[43msonata_net\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBuildNetwork\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 14\u001b[0m s_rec_dspn \u001b[38;5;241m=\u001b[39m nest\u001b[38;5;241m.\u001b[39mCreate(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspike_recorder\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 15\u001b[0m s_rec_ispn \u001b[38;5;241m=\u001b[39m nest\u001b[38;5;241m.\u001b[39mCreate(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspike_recorder\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[0;32m~/NEST/nest-simulator/nest-install/lib/python3.9/site-packages/nest/lib/hl_api_sonata.py:671\u001b[0m, in \u001b[0;36mSonataNetwork.BuildNetwork\u001b[0;34m(self, hdf5_hyperslab_size)\u001b[0m\n\u001b[1;32m 668\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_verify_hyperslab_size(hdf5_hyperslab_size)\n\u001b[1;32m 670\u001b[0m node_collections \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mCreate()\n\u001b[0;32m--> 671\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhdf5_hyperslab_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhdf5_hyperslab_size\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m node_collections\n", - "File \u001b[0;32m~/NEST/nest-simulator/nest-install/lib/python3.9/site-packages/nest/lib/hl_api_sonata.py:485\u001b[0m, in \u001b[0;36mSonataNetwork.Connect\u001b[0;34m(self, hdf5_hyperslab_size)\u001b[0m\n\u001b[1;32m 483\u001b[0m sps(graph_specs)\n\u001b[1;32m 484\u001b[0m sps(hdf5_hyperslab_size)\n\u001b[0;32m--> 485\u001b[0m \u001b[43msr\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mConnectSonata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_network_built \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n", - "File \u001b[0;32m~/NEST/nest-simulator/nest-install/lib/python3.9/site-packages/nest/ll_api.py:104\u001b[0m, in \u001b[0;36mcatching_sli_run\u001b[0;34m(cmd)\u001b[0m\n\u001b[1;32m 101\u001b[0m engine\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mclear\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 103\u001b[0m exceptionCls \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(kernel\u001b[38;5;241m.\u001b[39mNESTErrors, errorname)\n\u001b[0;32m--> 104\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exceptionCls(commandname, message)\n", - "\u001b[0;31mNESTErrors.map::at\u001b[0m: map::at in SLI function ConnectSonata_D: C++ exception: map::at" - ] } ], "source": [ @@ -909,20 +264,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "d516b479-e2f4-4a6a-94e6-3881806b5875", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Jun 02 16:58:04 NodeManager::prepare_nodes [Info]: \n", + " Preparing 1013 nodes for simulation.\n", + "\n", + "Jun 02 16:58:04 SimulationManager::start_updating_ [Info]: \n", + " Number of local nodes: 1013\n", + " Simulation time (ms): 1000\n", + " Number of OpenMP threads: 1\n", + " Not using MPI\n", + "\n", + "Jun 02 16:58:07 SimulationManager::run [Info]: \n", + " Simulation finished.\n" + ] + } + ], "source": [ "sonata_net.Simulate()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "859267cf-8916-48b3-b3ec-31abd4e9a489", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NESTError", + "evalue": "No events recorded!", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNESTError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[4], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[43mnest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraster_plot\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_device\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms_rec_dspn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m nest\u001b[38;5;241m.\u001b[39mraster_plot\u001b[38;5;241m.\u001b[39mfrom_device(s_rec_ispn)\n\u001b[1;32m 4\u001b[0m nest\u001b[38;5;241m.\u001b[39mraster_plot\u001b[38;5;241m.\u001b[39mfrom_device(s_rec_fs)\n", + "File \u001b[0;32m~/NEST/nest-simulator/nest-install/lib/python3.9/site-packages/nest/raster_plot.py:191\u001b[0m, in \u001b[0;36mfrom_device\u001b[0;34m(detec, **kwargs)\u001b[0m\n\u001b[1;32m 188\u001b[0m ts, node_ids \u001b[38;5;241m=\u001b[39m _from_memory(detec)\n\u001b[1;32m 190\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(ts):\n\u001b[0;32m--> 191\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m nest\u001b[38;5;241m.\u001b[39mkernel\u001b[38;5;241m.\u001b[39mNESTError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo events recorded!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 193\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtitle\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[1;32m 194\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtitle\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRaster plot from device \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m%i\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m detec\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mglobal_id\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "\u001b[0;31mNESTError\u001b[0m: No events recorded!" + ] + } + ], "source": [ "import matplotlib.pyplot as plt\n", "nest.raster_plot.from_device(s_rec_dspn)\n", @@ -930,6 +317,24 @@ "nest.raster_plot.from_device(s_rec_fs)\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9422d804-ff98-4703-b5de-b36af887b8d8", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "121b8022-25cf-45fc-bdb3-5d77c89ccca5", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/snudda/utils/conv_hurt.py b/snudda/utils/conv_hurt.py index 4463030bf..8c89c28db 100644 --- a/snudda/utils/conv_hurt.py +++ b/snudda/utils/conv_hurt.py @@ -361,23 +361,23 @@ def write_edges_csv(self, ############################################################################ - def write_input(self, spike_file_name, spikes): - - if spikes is None: - print(f"No spikes specified, not writing {spike_file_name}") - print("Use python3 Network_input.py yourinput.json yournetwork.hdf5 input-spikes.hdf5") - return + def write_input(self, spike_file_name, spike_times, gids): f_name = os.path.join(self.base_dir, spike_file_name) + print(f"Writing spikes to {f_name}") + with h5py.File(f_name, 'w', libver=self.h5py_libver) as f: self.add_version(f) print(f"Writing file {f_name}") s_group = f.create_group("spikes") - s_group.create_dataset("gids", data=spikes[:, 1]) - s_group.create_dataset("timestamps", data=spikes[:, 0]) + s_group.attrs["sorting"] = "gid" + s_group.create_dataset("gids", data=gids) + s_group.create_dataset("timestamps", data=spike_times*1e3) # Convert to ms + + return f_name ############################################################################ diff --git a/snudda/utils/export_sonata.py b/snudda/utils/export_sonata.py index b4a5d4ca4..84ea8ce8d 100644 --- a/snudda/utils/export_sonata.py +++ b/snudda/utils/export_sonata.py @@ -59,7 +59,10 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di self.network_config = json.loads(self.snudda_load.data["config"]) - print(f"Using input file: {self.input_file}") + if self.input_file: + print(f"Using input file: {self.input_file}") + else: + print("No input file specified, and default file not found.") # This contains data for converting to Neurodamus secID and secX self.morph_cache = dict([]) @@ -201,19 +204,87 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di edge_type_id=edge_type_id, data=edge_data) - # !!! WE ALSO NEED TO ADD BACKGROUND INPUT TO THE NEURONS IN THE NETWORK + input_list = [] + + if self.input_file: + # We also need to add external input to the neurons + for nt in self.snudda_load.get_neuron_types(return_set=True): + n_spikes = self.write_input(neuron_type=nt, node_id_remap=node_id_remap, + input_hdf5=self.input_file, + sonata_input_hdf5=f"inputs/input_{nt}_{volume_name}.hdf5", + conv_hurt=ch, volume_name=volume_name) + + if n_spikes > 0: + # This currently assumes each neuron type only occur in one volume + input_list.append((nt, f"input_{nt}_{volume_name}.hdf5")) - self.write_simulation_config() + self.write_simulation_config(input_list=input_list) print(f"SONATA files exported to {self.out_dir}") ############################################################################ - def get_edge_type_lookup(self): + def write_input(self, neuron_type, node_id_remap, + input_hdf5, sonata_input_hdf5, + conv_hurt, + volume_name=None, + input_type=None): + + """ + Args: + neuron_type (str) : Neuron type to create SONATA input file for + volume_name (str) : Name of volume (default: None, assumes neuron type only in one volume) + input_type (str) : Input type to inlcude (default: None, all inputs to neuron) + node_id_remap : Numpy array mapping neuron_id to gid (which is population specific) + input_hdf5 : File to read data from + sonata_input_hdf5 : File to write data to + + """ + + if type(input_hdf5) != h5py._hl.files.File: + input_hdf5 = h5py.File(input_hdf5, "r") + + neuron_id_list = self.snudda_load.get_neuron_id_of_type(neuron_type=neuron_type, volume=volume_name) + + spike_list = [] + gid_list = [] + + for neuron_id in neuron_id_list: + neuron_spikes = [] + if input_type is not None: + input_types = [input_type] + else: + input_types = input_hdf5[f"input/{neuron_id}"].keys() + + for it in input_types: + spike_group = input_hdf5[f"input/{neuron_id}/{it}/spikes"] + n_spikes = spike_group.attrs["nSpikes"] - # Read the config file, to find out all possible types of connections + for idx, ns in enumerate(n_spikes): + neuron_spikes.append(spike_group[idx, :ns]) - pass + nrn_spikes = np.concatenate(neuron_spikes) + gid = np.full(shape=nrn_spikes.shape, fill_value=node_id_remap[neuron_id], dtype=int) + + spike_list.append(nrn_spikes) + gid_list.append(gid) + + input_hdf5.close() + + spikes = np.concatenate(spike_list) + gids = np.concatenate(gid_list) + + if len(spikes) == 0: + return None + + # We need to make sure the spikes are sorted by gid, then by time + idx = np.lexsort((spikes, gids)) + + f_name = conv_hurt.write_input(spike_file_name=sonata_input_hdf5, + spike_times=spikes[idx], + gids=gids[idx]) + + return len(spikes) ############################################################################ @@ -370,7 +441,6 @@ def allocate_groups_and_remap_nodeid(self): return node_group_id, group_idx, group_lookup, neuron_id_remap - def remap_nodes(self): n_neurons = self.snudda_load.data["nNeurons"] @@ -830,7 +900,7 @@ def plot_section_data(self, morph, swc_file): ############################################################################ - def write_simulation_config(self): + def write_simulation_config(self, input_list): sim_conf = dict([]) @@ -859,15 +929,17 @@ def write_simulation_config(self): # node_sets_file contains the reports we want written from the simulation # simConf["node_sets_file"] = None # !!! THIS NEEDS TO BE WRITTEN - cortex_input = {"input_type": "spikes", - "module": "h5", - "input_file": "$INPUT_DIR/cortexInput.hdf5"} + if input_list: + sim_conf["inputs"] = dict() - thalamus_input = {"input_type": "spikes", - "module": "h5", - "input_file": "$INPUT_DIR/thalamusInput.hdf5"} - sim_conf["inputs"] = {"cortexInput": cortex_input, - "thalamusInput": thalamus_input} + for neuron_type, input_file in input_list: + input_info = dict() + input_info["input_type"] = "spikes" + input_info["module"] = "h5" + input_info["input_file"] = f"$INPUT_DIR/{input_file}" + input_info["node_set"] = neuron_type + + sim_conf["inputs"][f"{neuron_type}_spikes"] = input_info out_conf_file = os.path.join(self.out_dir, "simulation_config.json") print(f"Writing {out_conf_file}") @@ -947,6 +1019,8 @@ def copy_mechanisms(self): def sort_input(self, nl, node_type_id_lookup, input_name=None): + raise DeprecationWarning("Code is deprecated") + if self.input_file is None or not os.path.isfile(self.input_file): print("No input file has been specified!") return None From c4081c7f5fd9d43d7f4f36f501acd38b25f05125 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Fri, 2 Jun 2023 18:15:40 +0200 Subject: [PATCH 04/14] Fixed unit test --- tests/test_sonata.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/tests/test_sonata.py b/tests/test_sonata.py index 9f5a28635..969426d4b 100644 --- a/tests/test_sonata.py +++ b/tests/test_sonata.py @@ -8,6 +8,7 @@ from snudda import SnuddaDetect from snudda import SnuddaPrune from snudda import SnuddaLoad +from snudda.input import SnuddaInput from snudda.utils.export_sonata import ExportSonata from sonata.circuit import File as SonataFile @@ -39,6 +40,10 @@ def setUp(self, create_network=True): sp = SnuddaPrune(network_path=self.network_path) sp.prune() + input_config_file = os.path.join("networks", "network_testing_input","input-test-1.json") + si = SnuddaInput(network_path=self.network_path, input_config_file=input_config_file) + si.generate() + def test_sonata_export(self): network_file = os.path.join(self.network_path, "network-synapses.hdf5") @@ -139,6 +144,7 @@ def test_sonata_export(self): self.assertEqual(edge_count, sl.data["nSynapses"]) self.assertTrue((con_mat == new_con_mat).all()) + # !!! TODO: Add test for input, also write dedicated input.json file for this test if __name__ == '__main__': unittest.main() From 1b1999a889943eea474c98dc8ec44b25f6ee6381 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Mon, 5 Jun 2023 09:53:01 +0200 Subject: [PATCH 05/14] Added ability to update colours for neurons --- .../visualisation/visualise_network.py | 22 ++++++++++++++++++- 1 file changed, 21 insertions(+), 1 deletion(-) diff --git a/snudda/plotting/Blender/visualisation/visualise_network.py b/snudda/plotting/Blender/visualisation/visualise_network.py index 7c5487b93..df3d7f67e 100644 --- a/snudda/plotting/Blender/visualisation/visualise_network.py +++ b/snudda/plotting/Blender/visualisation/visualise_network.py @@ -21,6 +21,7 @@ def __init__(self, network_path, blender_save_file=None, blender_output_image=No self.network_path = network_path self.snudda_data = get_snudda_data(network_path=network_path) self.scale_f = 1000 # factor to downscale the data + self.neuron_colour_lookup = dict() # Allow the user to override the neuron colours if network_json: self.network_json = network_json @@ -54,6 +55,16 @@ def __init__(self, network_path, blender_save_file=None, blender_output_image=No self.sl.import_json(self.network_json) self.data = self.sl.data + def set_neuron_colour(self, neuron_id, colour): + + if len(colour) != 4: + raise ValueError(f"Colour should be R,G,B,alpha (4 values)") + self.neuron_colour_lookup[neuron_id] = colour + + def clear_neuron_colours(self): + + self.neuron_colour_lookup = dict() + def visualise(self, neuron_id=None, blender_output_image=None, @@ -186,6 +197,11 @@ def visualise(self, "synapse": mat_synapse, "other": mat_other} + # Add the user requested custom colours + for nid in self.neuron_colour_lookup.keys(): + material_lookup[nid] = bpy.data.materials.new("PKHG") + material_lookup[nid].diffuse_color = self.neuron_colour_lookup[nid] + if synapse_colour is not None: mat_synapse.diffuse_color = synapse_colour elif white_background: @@ -243,7 +259,11 @@ def visualise(self, n_type = neuron["type"].lower() - if n_type in material_lookup: + if neuron['neuronID'] in material_lookup: + # Custom colour for neuron (priority) + mat = material_lookup[neuron['neuronID']] + elif n_type in material_lookup: + # Each neuron type has its own colour mat = material_lookup[n_type] else: mat = material_lookup["other"] From 37234c13b6fbbf21c77906b946b8200ede17eb22 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Mon, 5 Jun 2023 14:20:24 +0200 Subject: [PATCH 06/14] Updated scripts --- examples/parallel/KTH_PDC/Dardel_runSnudda.job | 2 +- examples/parallel/KTH_PDC/Dardel_simulate.job | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/parallel/KTH_PDC/Dardel_runSnudda.job b/examples/parallel/KTH_PDC/Dardel_runSnudda.job index a13cfc142..1a856b636 100644 --- a/examples/parallel/KTH_PDC/Dardel_runSnudda.job +++ b/examples/parallel/KTH_PDC/Dardel_runSnudda.job @@ -4,7 +4,7 @@ #SBATCH -e log/runSnudda-%j-error.txt #SBATCH -t 00:30:00 #SBATCH -J Snudda -#SBATCH -A snic2022-5-245 +#SBATCH -A naiss2023-5-231 #SBATCH --nodes=2 #SBATCH -n 256 #SBATCH --cpus-per-task=2 diff --git a/examples/parallel/KTH_PDC/Dardel_simulate.job b/examples/parallel/KTH_PDC/Dardel_simulate.job index 6eb859689..46a1fa5aa 100644 --- a/examples/parallel/KTH_PDC/Dardel_simulate.job +++ b/examples/parallel/KTH_PDC/Dardel_simulate.job @@ -5,7 +5,7 @@ #SBATCH -t 1:59:00 #SBATCH --time-min=1:59:00 #SBATCH -J Simulate -#SBATCH -A snic2022-5-245 +#SBATCH -A naiss2023-5-231 #SBATCH --nodes=1-10 #SBATCH --tasks-per-node=128 #SBATCH --mail-type=ALL From 8046a1b3cc78e193233691a275dab84f0efc26fe Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Wed, 7 Jun 2023 13:40:44 +0200 Subject: [PATCH 07/14] NEST SONATA --- examples/notebooks/NEST/Snudda-in-NEST.ipynb | 854 +++++++++++++++++- snudda/data/nest/synapses/excitatory.json | 3 + .../data/nest/synapses/excitatory_distal.json | 3 + .../nest/synapses/excitatory_proximal.json | 3 + .../data/nest/synapses/excitatory_soma.json | 3 + snudda/data/nest/synapses/inhibitory.json | 3 + .../data/nest/synapses/inhibitory_distal.json | 3 + .../nest/synapses/inhibitory_proximal.json | 3 + .../data/nest/synapses/inhibitory_soma.json | 3 + .../visualisation/visualise_network.py | 2 +- snudda/utils/conv_hurt.py | 62 -- snudda/utils/export_sonata.py | 52 +- 12 files changed, 896 insertions(+), 98 deletions(-) create mode 100644 snudda/data/nest/synapses/excitatory.json create mode 100644 snudda/data/nest/synapses/excitatory_distal.json create mode 100644 snudda/data/nest/synapses/excitatory_proximal.json create mode 100644 snudda/data/nest/synapses/excitatory_soma.json create mode 100644 snudda/data/nest/synapses/inhibitory.json create mode 100644 snudda/data/nest/synapses/inhibitory_distal.json create mode 100644 snudda/data/nest/synapses/inhibitory_proximal.json create mode 100644 snudda/data/nest/synapses/inhibitory_soma.json diff --git a/examples/notebooks/NEST/Snudda-in-NEST.ipynb b/examples/notebooks/NEST/Snudda-in-NEST.ipynb index 91fbda012..c37b3f4fd 100644 --- a/examples/notebooks/NEST/Snudda-in-NEST.ipynb +++ b/examples/notebooks/NEST/Snudda-in-NEST.ipynb @@ -33,12 +33,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "011ac1a8-eda9-40df-9232-2cd69fe31b0e", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using cube for striatum\n", + "Neurons for striatum read from /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum\n", + "Adding neurons: FS from dir /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs\n", + "Adding neurons: dSPN from dir /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn\n", + "Adding neurons: iSPN from dir /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn\n", + "Writing networks/snudda_in_nest/network-config.json\n" + ] + } + ], "source": [ "from snudda import SnuddaInit\n", "\n", @@ -52,12 +65,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "655ae722-5fbc-4611-8d60-e245e6f19a3d", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading SNUDDA_DATA=/home/hjorth/HBP/BasalGangliaData/data/ from networks/snudda_in_nest/network-config.json\n" + ] + } + ], "source": [ "from snudda import SnuddaPlace\n", "spl = SnuddaPlace(network_path=network_path)\n", @@ -66,12 +87,82 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "58bc5af7-4f9a-4aaf-a231-c33f105ebc5d", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading SNUDDA_DATA=/home/hjorth/HBP/BasalGangliaData/data/ from networks/snudda_in_nest/network-config.json\n", + "No d_view specified, running distribute neurons in serial\n", + "Processing hyper voxel : 62/150 (948 neurons)\n", + "Processing hyper voxel : 57/150 (947 neurons)\n", + "Processing hyper voxel : 61/150 (946 neurons)\n", + "Processing hyper voxel : 56/150 (935 neurons)\n", + "Processing hyper voxel : 37/150 (865 neurons)\n", + "Processing hyper voxel : 32/150 (861 neurons)\n", + "Processing hyper voxel : 31/150 (850 neurons)\n", + "Processing hyper voxel : 36/150 (846 neurons)\n", + "Processing hyper voxel : 87/150 (217 neurons)\n", + "Processing hyper voxel : 81/150 (211 neurons)\n", + "Processing hyper voxel : 86/150 (205 neurons)\n", + "Processing hyper voxel : 82/150 (203 neurons)\n", + "Processing hyper voxel : 58/150 (159 neurons)\n", + "Processing hyper voxel : 63/150 (142 neurons)\n", + "Processing hyper voxel : 55/150 (133 neurons)\n", + "Processing hyper voxel : 67/150 (131 neurons)\n", + "Processing hyper voxel : 52/150 (130 neurons)\n", + "Processing hyper voxel : 60/150 (128 neurons)\n", + "Processing hyper voxel : 51/150 (128 neurons)\n", + "Processing hyper voxel : 66/150 (123 neurons)\n", + "Processing hyper voxel : 38/150 (105 neurons)\n", + "Processing hyper voxel : 33/150 (104 neurons)\n", + "Processing hyper voxel : 27/150 (97 neurons)\n", + "Processing hyper voxel : 35/150 (94 neurons)\n", + "Processing hyper voxel : 42/150 (91 neurons)\n", + "Processing hyper voxel : 26/150 (90 neurons)\n", + "Processing hyper voxel : 41/150 (88 neurons)\n", + "Processing hyper voxel : 7/150 (82 neurons)\n", + "Processing hyper voxel : 30/150 (80 neurons)\n", + "Processing hyper voxel : 11/150 (70 neurons)\n", + "Processing hyper voxel : 12/150 (62 neurons)\n", + "Processing hyper voxel : 6/150 (59 neurons)\n", + "Processing hyper voxel : 83/150 (19 neurons)\n", + "Processing hyper voxel : 88/150 (18 neurons)\n", + "Processing hyper voxel : 91/150 (17 neurons)\n", + "Processing hyper voxel : 85/150 (15 neurons)\n", + "Processing hyper voxel : 92/150 (13 neurons)\n", + "Processing hyper voxel : 76/150 (12 neurons)\n", + "Processing hyper voxel : 80/150 (12 neurons)\n", + "Processing hyper voxel : 28/150 (10 neurons)\n", + "Processing hyper voxel : 40/150 (9 neurons)\n", + "Processing hyper voxel : 53/150 (9 neurons)\n", + "Processing hyper voxel : 50/150 (8 neurons)\n", + "Processing hyper voxel : 65/150 (8 neurons)\n", + "Processing hyper voxel : 68/150 (8 neurons)\n", + "Processing hyper voxel : 77/150 (7 neurons)\n", + "Processing hyper voxel : 43/150 (6 neurons)\n", + "Processing hyper voxel : 1/150 (5 neurons)\n", + "Processing hyper voxel : 5/150 (5 neurons)\n", + "Processing hyper voxel : 25/150 (4 neurons)\n", + "Processing hyper voxel : 16/150 (4 neurons)\n", + "Processing hyper voxel : 13/150 (4 neurons)\n", + "Processing hyper voxel : 8/150 (4 neurons)\n", + "Processing hyper voxel : 2/150 (4 neurons)\n", + "Processing hyper voxel : 17/150 (3 neurons)\n", + "Processing hyper voxel : 10/150 (2 neurons)\n", + "Processing hyper voxel : 93/150 (2 neurons)\n", + "Processing hyper voxel : 90/150 (1 neurons)\n", + "Processing hyper voxel : 106/150 (1 neurons)\n", + "Processing hyper voxel : 107/150 (1 neurons)\n", + "Processing hyper voxel : 112/150 (1 neurons)\n" + ] + } + ], "source": [ "from snudda import SnuddaDetect\n", "\n", @@ -81,12 +172,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "50c01a1a-2195-411f-9d67-103533574ffc", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No file networks/snudda_in_nest/pruning_merge_info.json\n", + "Worker synapses: 14/6281449 (heap size: 29)\n", + "Worker synapses: 4128319/6281449 (heap size: 24)\n", + "Worker synapses: 6281449/6281449 (heap size: 0)\n", + "Read 6281449 out of total 6281449 synapses\n", + "Read 75 out of total 75 gapJunctions\n" + ] + } + ], "source": [ "from snudda import SnuddaPrune\n", "\n", @@ -106,12 +210,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "81b6a6dc-98eb-46de-9c3c-7da9f1c293b0", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reading SNUDDA_DATA=/home/hjorth/HBP/BasalGangliaData/data/ from networks/snudda_in_nest/network-config.json\n", + "Writing spikes to networks/snudda_in_nest/input-spikes.hdf5\n" + ] + } + ], "source": [ "input_config = {\n", " \"dSPN\": {\n", @@ -168,12 +281,646 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "2e229380-8851-4383-ad7c-55c62386235e", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using input file: networks/snudda_in_nest/input-spikes.hdf5\n", + "Copying morphologies\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var8.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var8.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var8.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var8.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var3.swc\n", + "Copying mechanisms\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/can_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/Im_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kas_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/can_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caldyn_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal13_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/car_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/im_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/par_ggap.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cap_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut_double.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdb_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cat32_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal12_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/NO.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir23_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kv2_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir23_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/hcn12_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cadyn_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kas_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na2_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/car_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kv4_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cat33_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmgabaa.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir2_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caq_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cadyn_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caq_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/ca_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/vecevent.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdrb_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/hd_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kcnq_ch.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut_M1RH_D1.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na3_lts.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_fs.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir_ms.mod\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/it_lts.mod\n", + "Copying hoc files...\n", + "Creating nodes/iSPN\n", + "Creating nodes/FS\n", + "Creating nodes/dSPN\n", + "Missing hoc template: \n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", + "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", + "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", + "Writing file networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", + "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_FS_Striatum.hdf5\n", + "Writing file networks/snudda_in_nest/SONATA/inputs/input_FS_Striatum.hdf5\n", + "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_dSPN_Striatum.hdf5\n", + "Writing file networks/snudda_in_nest/SONATA/inputs/input_dSPN_Striatum.hdf5\n", + "Writing networks/snudda_in_nest/SONATA/simulation_config.json\n", + "SONATA files exported to networks/snudda_in_nest/SONATA\n" + ] + } + ], "source": [ "from snudda.utils.export_sonata import ExportSonata\n", "se = ExportSonata(network_path=network_path)" @@ -181,7 +928,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "70593a0b-24d8-46a3-851d-6c01ea425898", "metadata": { "tags": [] @@ -205,7 +952,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 9, "id": "711e8a95-daf2-4766-aa78-b98351dac708", "metadata": { "tags": [] @@ -231,7 +978,7 @@ " Type 'nest.help()' to find out more about NEST.\n", "\n", "\n", - "Jun 02 16:58:00 SimulationManager::set_status [Info]: \n", + "Jun 07 13:35:32 SimulationManager::set_status [Info]: \n", " Temporal resolution changed from 0.1 to 0.1 ms.\n" ] } @@ -264,7 +1011,32 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, + "id": "37ca25ad-6dd5-471e-84a4-a251a3bf49ee", + "metadata": {}, + "outputs": [], + "source": [ + "# If we need to add separate noise. \n", + "# Currently the SONATA specified inputs exist (but according to SONATA documentation it should target virtual neurons), but are not properly connected.\n", + "\n", + "exc_rate = 4.5\n", + "\n", + "exc_noise_fs = nest.Create('poisson_generator', 1300)\n", + "exc_noise_dspn = nest.Create('poisson_generator', 1500)\n", + "exc_noise_ispn = nest.Create('poisson_generator', 1050)\n", + "\n", + "exc_noise_fs.set(rate=exc_rate)\n", + "exc_noise_dspn.set(rate=exc_rate)\n", + "exc_noise_ispn.set(rate=exc_rate)\n", + "\n", + "nest.Connect(exc_noise_fs, node_collections[\"FS\"], 'all_to_all', {'weight': +0.5})\n", + "nest.Connect(exc_noise_dspn, node_collections[\"dSPN\"], 'all_to_all', {'weight': +0.5})\n", + "nest.Connect(exc_noise_ispn, node_collections[\"iSPN\"], 'all_to_all', {'weight': +0.5})" + ] + }, + { + "cell_type": "code", + "execution_count": 11, "id": "d516b479-e2f4-4a6a-94e6-3881806b5875", "metadata": {}, "outputs": [ @@ -273,16 +1045,16 @@ "output_type": "stream", "text": [ "\n", - "Jun 02 16:58:04 NodeManager::prepare_nodes [Info]: \n", - " Preparing 1013 nodes for simulation.\n", + "Jun 07 13:35:32 NodeManager::prepare_nodes [Info]: \n", + " Preparing 4863 nodes for simulation.\n", "\n", - "Jun 02 16:58:04 SimulationManager::start_updating_ [Info]: \n", - " Number of local nodes: 1013\n", + "Jun 07 13:35:32 SimulationManager::start_updating_ [Info]: \n", + " Number of local nodes: 4863\n", " Simulation time (ms): 1000\n", " Number of OpenMP threads: 1\n", " Not using MPI\n", "\n", - "Jun 02 16:58:07 SimulationManager::run [Info]: \n", + "Jun 07 13:37:49 SimulationManager::run [Info]: \n", " Simulation finished.\n" ] } @@ -293,21 +1065,39 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "id": "859267cf-8916-48b3-b3ec-31abd4e9a489", "metadata": {}, "outputs": [ { - "ename": "NESTError", - "evalue": "No events recorded!", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNESTError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[43mnest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraster_plot\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_device\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms_rec_dspn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m nest\u001b[38;5;241m.\u001b[39mraster_plot\u001b[38;5;241m.\u001b[39mfrom_device(s_rec_ispn)\n\u001b[1;32m 4\u001b[0m nest\u001b[38;5;241m.\u001b[39mraster_plot\u001b[38;5;241m.\u001b[39mfrom_device(s_rec_fs)\n", - "File \u001b[0;32m~/NEST/nest-simulator/nest-install/lib/python3.9/site-packages/nest/raster_plot.py:191\u001b[0m, in \u001b[0;36mfrom_device\u001b[0;34m(detec, **kwargs)\u001b[0m\n\u001b[1;32m 188\u001b[0m ts, node_ids \u001b[38;5;241m=\u001b[39m _from_memory(detec)\n\u001b[1;32m 190\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(ts):\n\u001b[0;32m--> 191\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m nest\u001b[38;5;241m.\u001b[39mkernel\u001b[38;5;241m.\u001b[39mNESTError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo events recorded!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 193\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtitle\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m kwargs:\n\u001b[1;32m 194\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtitle\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRaster plot from device \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m%i\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m detec\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mglobal_id\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "\u001b[0;31mNESTError\u001b[0m: No events recorded!" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjhElEQVR4nO3deVxUVf8H8M+w74PIniCIu+ESbriVxiO5lbnkluKSleJeFmQuLYra86SVa1Zqv9JMc0lNzdxN3MgFFU0NAZVFQgZkFTi/P4yJgQFmYJg7A5/36zUvmXPP3PO9987y9d57zpEJIQSIiIiIyCCZSB0AEREREZWPyRoRERGRAWOyRkRERGTAmKwRERERGTAma0REREQGjMkaERERkQFjskZERERkwJisERERERkwJmtEREREBozJGhHphY+PD8aOHauXts6dO4cuXbrA1tYWMpkMFy9e1Eu7urRgwQLIZLIabeO5557Dc889V6NtEFH1MVkj0rENGzZAJpMpH2ZmZnjqqacwduxY3Lt3r8bavXbtGhYsWIA7d+7UWBtSuH//PhYsWKBxwvX48WMMHToUaWlpWLZsGf7v//4PDRs2rNkgSWMLFiyAj4+PStmvv/6KCRMm4Omnn4apqWmZ5SUVFRVh6dKl8PX1hZWVFVq3bo3NmzeXqXf27FlMnjwZAQEBMDc3rzDxXb16NYYOHQpvb2/IZLJy/1OhLnYifTCTOgCi2urDDz+Er68vcnNzcfr0aWzYsAEnT57ElStXYGVlpfP2rl27hg8++ADPPfdcrfpBuX//Pj744AP4+Pigbdu2lda/ffs24uLisG7dOrz22ms1H6AR+/XXX6UOAQCwadMmbNmyBc888ww8PT0rrDtnzhwsXrwYEydORIcOHbBr1y6MHDkSMpkMw4cPV9b75Zdf8NVXX6F169Zo1KgR/vzzz3LXuWTJEmRmZqJjx45ITEzU2XYR6QrPrBHVkD59+uDVV1/Fa6+9hq+++gpvv/02bt++jZ9//lnq0LSSlZUldQhaSUlJAQA4OjpWWtfYtk3XLCwsYGFhIXUYWLRoETIyMvD777+jTZs25da7d+8e/ve//yE0NBRffvklJk6ciN27d6N79+6YPXs2CgsLlXUnTZoEhUKB8+fP4z//+U+F7R87dgypqanYt28fLC0tdbZdRLrCZI1IT7p37w7gyZmfYvn5+Zg3bx4CAgIgl8tha2uL7t2748iRI2Ve/8MPPyAgIAD29vZwcHCAv78/PvvsMwBPLr0OHToUANCzZ0/lJdijR48qX79v3z50794dtra2sLe3R79+/XD16lWVNsaOHQs7Ozvcvn0bffv2hb29PUaNGlXuNhXfV3X9+nW88sorcHBwQP369TF9+nTk5uZWuk/++usvDB06FE5OTrCxsUHnzp2xd+9e5fKjR4+iQ4cOAIBx48Ypt2vDhg1q1zd27Fg8++yzAIChQ4dCJpMp78mqaNuysrLw1ltvwcvLC5aWlmjWrBn++9//Qgihsn6ZTIYpU6Zg69ataNmyJaytrREYGIjo6GgAwNq1a9G4cWNYWVnhueee0/iS9MmTJ9GhQwdYWVnBz88Pa9euLbfud999h4CAAFhbW8PJyQnDhw9HQkKCcvmUKVNgZ2eH7OzsMq8dMWIE3N3dlUmNunvWcnNzsWDBAjRt2hRWVlbw8PDAoEGDVN63RUVFWL58OVq1agUrKyu4ubnhjTfewMOHDzXa3tI8PT1hbm5eab1du3bh8ePHmDx5srJMJpNh0qRJuHv3LiIjI5Xlbm5usLa21qj9hg0b1vj9gUTVwcugRHpS/MNdr149ZVlGRga++uorjBgxAhMnTkRmZia+/vprBAcH4+zZs8rLfgcPHsSIESPw/PPPY8mSJQCAmJgY/P7775g+fTp69OiBadOm4fPPP8d7772HFi1aAIDy3//7v/9DSEgIgoODsWTJEmRnZ2P16tXo1q0bLly4oHLZtKCgAMHBwejWrRv++9//wsbGptJte+WVV+Dj44OIiAicPn0an3/+OR4+fIhvv/223NckJyejS5cuyM7OxrRp01C/fn1s3LgRL774IrZt24aXX34ZLVq0wIcffoh58+bh9ddfVya8Xbp0UbvON954A0899RQWLVqEadOmoUOHDnBzc6tw24QQePHFF3HkyBFMmDABbdu2xYEDBzB79mzcu3cPy5YtU2njxIkT+PnnnxEaGgoAiIiIQP/+/fHOO+9g1apVmDx5Mh4+fIilS5di/PjxOHz4cIX7Ljo6Gr1794aLiwsWLFiAgoICzJ8/XyXuYgsXLsTcuXPxyiuv4LXXXsODBw/wxRdfoEePHrhw4QIcHR0xbNgwrFy5Env37lUm8ACQnZ2N3bt3Y+zYsTA1NVUbS2FhIfr3749Dhw5h+PDhmD59OjIzM3Hw4EFcuXIFfn5+yv28YcMGjBs3DtOmTUNsbCxWrFiBCxcu4Pfff9co8aqKCxcuwNbWVvm+LtaxY0fl8m7dutVI20SSEkSkU+vXrxcAxG+//SYePHggEhISxLZt24SLi4uwtLQUCQkJyroFBQUiLy9P5fUPHz4Ubm5uYvz48cqy6dOnCwcHB1FQUFBuu1u3bhUAxJEjR1TKMzMzhaOjo5g4caJKeVJSkpDL5SrlISEhAoAICwvTaFvnz58vAIgXX3xRpXzy5MkCgLh06ZKyrGHDhiIkJET5fMaMGQKAOHHihEqsvr6+wsfHRxQWFgohhDh37pwAINavX69RTEeOHBEAxNatW1XKy9u2nTt3CgDi448/VikfMmSIkMlk4tatW8oyAMLS0lLExsYqy9auXSsACHd3d5GRkaEsDw8PFwBU6qozcOBAYWVlJeLi4pRl165dE6ampqLkV/SdO3eEqampWLhwocrro6OjhZmZmbK8qKhIPPXUU2Lw4MEq9X788UcBQBw/flxZ9uyzz4pnn31W+fybb74RAMSnn35aJs6ioiIhhBAnTpwQAMT333+vsnz//v1qy7XVr18/0bBhw3KXNWrUqEx5VlZWhe/b0NBQoenPna2trcr7lMgQ8DIoUQ0JCgqCi4sLvLy8MGTIENja2uLnn39GgwYNlHVMTU2V9wwVFRUhLS0NBQUFaN++Pf744w9lPUdHR2RlZeHgwYNax3Hw4EGkp6djxIgRSE1NVT5MTU3RqVMntZdcJ02apFUbxWeZik2dOhXAk5u8y/PLL7+gY8eOKmdC7Ozs8Prrr+POnTu4du2aVjFoqvS2/fLLLzA1NcW0adNUyt966y0IIbBv3z6V8ueff17lTGSnTp0AAIMHD4a9vX2Z8r/++qvcWAoLC3HgwAEMHDgQ3t7eyvIWLVogODhYpe727dtRVFSEV155ReU4uru7o0mTJsrjKJPJMHToUPzyyy949OiR8vVbtmzBU089VeGZp59++gnOzs7K41dS8WXCrVu3Qi6X4z//+Y9KHAEBAbCzs1P7ftKVnJwctfeUFXfYycnJqbG2iaTEZI2ohqxcuRIHDx7Etm3b0LdvX6Smpqr9odm4cSNat24NKysr1K9fHy4uLti7dy8UCoWyzuTJk9G0aVP06dMHDRo0wPjx47F//36N4rh58yYAoFevXnBxcVF5/Prrr8ob8ouZmZmpJJSaaNKkicpzPz8/mJiYVHjPVlxcHJo1a1amvPgSV1xcnFYxaELdtsXFxcHT01Ml0aoojpJJFQDI5XIAgJeXl9ryiu7jevDgAXJycsrsPwBl9s3NmzchhECTJk3KHMeYmBiV4zhs2DDk5OQoO7M8evQIv/zyi/I+vvLcvn0bzZo1g5lZ+XfI3Lx5EwqFAq6urmXiePToUZn3ky5ZW1sjLy+vTHnx/ZGa3qNGZGx4zxpRDenYsSPat28PABg4cCC6deuGkSNH4saNG7CzswPw5GbxsWPHYuDAgZg9ezZcXV1hamqKiIgIlRu6XV1dcfHiRRw4cAD79u3Dvn37sH79eowZMwYbN26sMI6ioiIAT+5bc3d3L7O89A+zpaUlTEyq9/84Q71ZWxfbVt79XuWVi1KdFKqqqKgIMpkM+/btU9tW8XsKADp37gwfHx/8+OOPGDlyJHbv3o2cnBwMGzZMJ3G4urri+++/V7vcxcWl2m2Ux8PDA0eOHIEQQuU9VjzcRmXDfhAZKyZrRHpQnID17NkTK1asQFhYGABg27ZtaNSoEbZv367y4zN//vwy67CwsMCAAQMwYMAAFBUVYfLkyVi7di3mzp2Lxo0bl5sgFd8U7urqiqCgoBrYuidnW3x9fZXPb926haKiogrHe2vYsCFu3LhRpvz69evK5UDNJ34NGzbEb7/9hszMTJWza6XjqAkuLi6wtrZWnv0sqfS+8fPzgxACvr6+aNq0aaXrfuWVV/DZZ58hIyMDW7ZsgY+PDzp37lzha/z8/HDmzBk8fvy43E4Cfn5++O2339C1a1e9n8lq27YtvvrqK8TExKBly5bK8jNnziiXE9VGvAxKpCfPPfccOnbsiOXLlysv2xSfISl59uXMmTMqQxAAwN9//63y3MTEBK1btwYA5WUhW1tbAEB6erpK3eDgYDg4OGDRokV4/PhxmbgePHhQja16YuXKlSrPv/jiCwBPxporT9++fXH27FmVbc3KysKXX34JHx8f5Y9xedulK3379kVhYSFWrFihUr5s2TLIZLIKt6G6TE1NERwcjJ07dyI+Pl5ZHhMTgwMHDqjUHTRoEExNTfHBBx+UOVsnhCjzHhk2bBjy8vKwceNG7N+/H6+88kql8QwePBipqall9kVxG8CTJLCwsBAfffRRmToFBQU1dpwA4KWXXoK5uTlWrVqlEteaNWvw1FNPldtLmMjY8cwakR7Nnj0bQ4cOxYYNG/Dmm2+if//+2L59O15++WX069cPsbGxWLNmDVq2bKlyc/hrr72GtLQ09OrVCw0aNEBcXBy++OILtG3bVnlvVdu2bWFqaoolS5ZAoVDA0tISvXr1gqurK1avXo3Ro0fjmWeewfDhw+Hi4oL4+Hjs3bsXXbt2VfvjrI3Y2Fi8+OKLeOGFFxAZGYnvvvsOI0eOrHCA07CwMGzevBl9+vTBtGnT4OTkhI0bNyI2NhY//fST8nKln58fHB0dsWbNGtjb28PW1hadOnVSOZNXHQMGDEDPnj0xZ84c3LlzB23atMGvv/6KXbt2YcaMGcozkzXlgw8+wP79+9G9e3dMnjwZBQUF+OKLL9CqVStcvnxZWc/Pzw8ff/wxwsPDcefOHQwcOBD29vaIjY3Fjh078Prrr+Ptt99W1n/mmWfQuHFjzJkzB3l5eRpdAh0zZgy+/fZbzJo1C2fPnkX37t2RlZWF3377DZMnT8ZLL72EZ599Fm+88QYiIiJw8eJF9O7dG+bm5rh58ya2bt2Kzz77DEOGDNFqH1y+fFl5f92tW7egUCjw8ccfAwDatGmDAQMGAAAaNGiAGTNm4JNPPsHjx4/RoUMH7Ny5EydOnMD333+vcnk4Li4O//d//wcAOH/+PAAo19mwYUOMHj1aWXf37t24dOkSgCfTlV2+fFlZ98UXX1T+x4hIMlJ1QyWqrYqH7jh37lyZZYWFhcLPz0/4+fmJgoICUVRUJBYtWiQaNmwoLC0tRbt27cSePXtESEiIyvAF27ZtE7179xaurq7CwsJCeHt7izfeeEMkJiaqrH/dunWiUaNGymEfSg7jceTIEREcHCzkcrmwsrISfn5+YuzYseL8+fPKOiEhIcLW1lbjbS0euuPatWtiyJAhwt7eXtSrV09MmTJF5OTkqNQtPXSHEELcvn1bDBkyRDg6OgorKyvRsWNHsWfPnjLt7Nq1S7Rs2VKYmZlVOoxHRUN3lLdtmZmZYubMmcLT01OYm5uLJk2aiE8++UQ5XEUxACI0NFSlLDY2VgAQn3zyiUZxqHPs2DEREBAgLCwsRKNGjcSaNWuU+7a0n376SXTr1k3Y2toKW1tb0bx5cxEaGipu3LhRpu6cOXMEANG4cWO17ZYeukMIIbKzs8WcOXOEr6+vMDc3F+7u7mLIkCHi9u3bKvW+/PJLERAQIKytrYW9vb3w9/cX77zzjrh//36l21ta8WdG3aP0e6awsFD5mbGwsBCtWrUS3333XZl1Fu9/dY/S21w8rIu6h6ZDxhDVJJkQOrr7lYjqnAULFuCDDz7AgwcP4OzsLHU4RES1Eu9ZIyIiIjJgTNaIiIiIDBiTNSIiIiIDxnvWiIiIiAwYz6wRERERGTAma0REREQGjIPi4slcd/fv34e9vb3BzmlIREREtYsQApmZmfD09Kxw3mImawDu378PLy8vqcMgIiKiOighIQENGjQodzmTNUA5eXNCQgIcHBwkjoaIiIjqgoyMDHh5eSnzkPIwWQOUlz4dHByYrBEREZFeVXYLFjsYEBERERkwJmtEREREBozJGhEREZEBY7JGREREZMCYrBEREREZMCZrRERERAaMyRoRERGRAeM4axK6lPAQZ++koaOPE1wdrHD+ThrScx6jno0FvOpZIz4tGzKZDNbmJvgrNQsdfZwAAGfvpKGRsy2y8wshk8ngVc8aWfmFyMkvqLRefFq22jbU/V1ZLNWNuWQbAQ3rISUjV6uYy2vD2sIMthamksXC/aK7927O4yIIIeDtZKOXfa+Lz1HCwxytYjbUWKR4v3D/Gc73kLHvP13F0tHHCW286lXxV153mKxJZPL3UfglOknqMIiIiKgCg595Cv97pa2kMfAyqAQ+2X+diRoREZER+OmPe7iU8FDSGJis6VmiIgcrj96WOgwiIiLS0OeHb0navqTJ2oIFCyCTyVQezZs3Vy7Pzc1FaGgo6tevDzs7OwwePBjJyckq64iPj0e/fv1gY2MDV1dXzJ49GwUFBfreFI1FxUmbnRMREZF2DsWkIFGRI1n7kp9Za9WqFRITE5WPkydPKpfNnDkTu3fvxtatW3Hs2DHcv38fgwYNUi4vLCxEv379kJ+fj1OnTmHjxo3YsGED5s2bJ8WmaEQIIXUIREREpKU/JDzZInkHAzMzM7i7u5cpVygU+Prrr7Fp0yb06tULALB+/Xq0aNECp0+fRufOnfHrr7/i2rVr+O233+Dm5oa2bdvio48+wrvvvosFCxbAwsJC35tTqfb/9DIhIiIi4/EwO1+ytiU/s3bz5k14enqiUaNGGDVqFOLj4wEAUVFRePz4MYKCgpR1mzdvDm9vb0RGRgIAIiMj4e/vDzc3N2Wd4OBgZGRk4OrVq+W2mZeXh4yMDJUHERERUXmkvDAmabLWqVMnbNiwAfv378fq1asRGxuL7t27IzMzE0lJSbCwsICjo6PKa9zc3JCU9KQnZVJSkkqiVry8eFl5IiIiIJfLlQ8vLy/dblgFeM8aERGR8ZHJpGtb0sugffr0Uf7dunVrdOrUCQ0bNsSPP/4Ia2vrGms3PDwcs2bNUj7PyMjQW8LGe9aIiIhIG5JfBi3J0dERTZs2xa1bt+Du7o78/Hykp6er1ElOTlbe4+bu7l6md2jxc3X3wRWztLSEg4ODykNfeM8aERERacOgkrVHjx7h9u3b8PDwQEBAAMzNzXHo0CHl8hs3biA+Ph6BgYEAgMDAQERHRyMlJUVZ5+DBg3BwcEDLli31Hr8mPOTWeK6Zi9RhEBERkZGQ9DLo22+/jQEDBqBhw4a4f/8+5s+fD1NTU4wYMQJyuRwTJkzArFmz4OTkBAcHB0ydOhWBgYHo3LkzAKB3795o2bIlRo8ejaVLlyIpKQnvv/8+QkNDYWlpKeWmlStRkYOjNx5IHQYRERFpwdFauhEmJE3W7t69ixEjRuDvv/+Gi4sLunXrhtOnT8PF5cmZp2XLlsHExASDBw9GXl4egoODsWrVKuXrTU1NsWfPHkyaNAmBgYGwtbVFSEgIPvzwQ6k2qVLsYEBERGR8Anykm9BdJnjHOzIyMiCXy6FQKGr8/rX3tl/GprMJNdoGERER6VZkeC94yHXb+VHT/MOg7lmr7RIVOdjMRI2IiMjoSDmDAZM1PUlU5GDP5fuo86cxiYiIjJCU1yEln26qLthyLh7h26NRxEyNiIjI6Mgg7T1rPLNWwxIVOUzUiIiIjNhLbT11fr+aNpis1bDY1CwmakREREbsQWaepO0zWathvs62MJFwPjEiIiKqnt9v/41ERY5k7TNZq2EecmtEDPKHqZQzwBIREVG13EnNlqxtdjDQg2EdvNGjqQui7jzEw5x8zN15VeqQiIiISAs2FtKd32KypifH/3zAjgZERERG6u7DHLTxkqZHKC+D6gF7hBIRERk3KcdZY7KmB+wRSkREZNy8nDh0R63GHqFERETGLSGNvUFrNfYIJSIiMm5S/oSzg4GeFPcIvZOajez8x5iwMUrqkIiIiEhDVubSnd/imTU9SVTkIDY1Cz7ONrifnit1OERERKSF32/9LVnbPLOmB5zInYiIyLg9yi2QrG2eWathHLaDiIjI+DV0tpGsbSZrNYzDdhARERk/ubW5ZG0zWathHLaDiIjI+DlaW0jWNpO1GsZhO4iIiIxfgI80U00B7GCgF8M6eKO5uz0OxaTg88O3pA6HiIiItOApt4KHXLoZDJis6QF7gxIRERmv+4pcXEp4yIncayv2BiUiIjJ+h6+nSNY2k7Uaxt6gRERExs/ZzlKytpms1TD2BiUiIjJ+rRvIJWubyVoNY29QIiIi45edXyRZ2+xgoAclJ3HfceEufjx/V+qQiIiISEMyGeDDGQxqPw+5NQL96sNfwtOoREREpL3eLd0kHbqDyZqetX6KyRoREZExecpRukQNYLKmdwkPc6QOgYiIiLRQ3066qaYAJmt6JwTH8SAiIjImDlbSTeIOMFnTO28n6W5QJCIiIu1JPaADkzU9y8ovlDoEIiIi0oKjNS+D1im+zrZSh0BERERauJ6UIWn7TNaIiIiIKrDyyG0kKqTrIMhkTc9iU7OkDoGIiIi0IAD8EfdQsvaZrOmZrYWp1CEQERGRlqQczIHJmp6xgwEREZFxkQEI8KknWftM1vSMHQyIiIiMSyMXW043RURERGSobj/IwqUE3rNWZ7CDARERkfHZdfG+ZG0zWdMzXgYlIiIyPg8e5UrWtkEla4sXL4ZMJsOMGTOUZbm5uQgNDUX9+vVhZ2eHwYMHIzk5WeV18fHx6NevH2xsbODq6orZs2ejoKBAz9ETERFRbeViayVZ2waTrJ07dw5r165F69atVcpnzpyJ3bt3Y+vWrTh27Bju37+PQYMGKZcXFhaiX79+yM/Px6lTp7Bx40Zs2LAB8+bN0/cmaOT8nTSpQyAiIiIttfC0l6xtg0jWHj16hFGjRmHdunWoV+/frrEKhQJff/01Pv30U/Tq1QsBAQFYv349Tp06hdOnTwMAfv31V1y7dg3fffcd2rZtiz59+uCjjz7CypUrkZ+fL9UmlUsm9WywREREpLWMHOmu2BlEshYaGop+/fohKChIpTwqKgqPHz9WKW/evDm8vb0RGRkJAIiMjIS/vz/c3NyUdYKDg5GRkYGrV6+qbS8vLw8ZGRkqD32JuS/t/GJERESkPR9nG8naNpOs5X/88MMP+OOPP3Du3Lkyy5KSkmBhYQFHR0eVcjc3NyQlJSnrlEzUipcXL1MnIiICH3zwgQ6i106iIgerjt7We7tERERUPbmPiyRrW9IzawkJCZg+fTq+//57WFnp78a98PBwKBQK5SMhIUEv7camZkHC2SqIiIioih5mS3drlaTJWlRUFFJSUvDMM8/AzMwMZmZmOHbsGD7//HOYmZnBzc0N+fn5SE9PV3ldcnIy3N3dAQDu7u5leocWPy+uU5qlpSUcHBxUHvrg62wL3rFGRERE2pA0WXv++ecRHR2NixcvKh/t27fHqFGjlH+bm5vj0KFDytfcuHED8fHxCAwMBAAEBgYiOjoaKSkpyjoHDx6Eg4MDWrZsqfdtqkzP5i5Sh0BERERGRNJ71uzt7fH000+rlNna2qJ+/frK8gkTJmDWrFlwcnKCg4MDpk6disDAQHTu3BkA0Lt3b7Rs2RKjR4/G0qVLkZSUhPfffx+hoaGwtLTU+zaVZ+3x21i87zoEr4MSEREZHUdrC8nalryDQWWWLVsGExMTDB48GHl5eQgODsaqVauUy01NTbFnzx5MmjQJgYGBsLW1RUhICD788EMJo1a19thtROy7LnUYREREVEUBPvUqr1RDZELwXE9GRgbkcjkUCoXO719LVOSgS8RhdiwgIiIyYpHhveAht9bpOjXNPwxinLXajD1AiYiIjN+d1GzJ2mayVsN8nW1hwi6gRERERksGaQfFZbJWwzzk1ogY5M8hO4iIiIxUGy+5zi+BaoPJmh70aOoCTglKRERknC7dVSBRkSNZ+0zW9CA2NQtFvHGNiIjIKAnBe9ZqPd63RkREZLx4z1odUHzfmimvhRIRERkdPxdb3rNWFwzr4I2TYT0xrVdjqUMhIiIiLdx+kMV71uoKD7k1mrjZSR0GERERaUEA+CPuoWTtM1nTs/Y+TlKHQERERFqScr4nJmt65iG3Rp+n3aUOg4iIiLRgbSFdysRkTc8SFTnYfyVJ6jCIiIhICxy6ow7hXKFERETGp71PPcnaZrKmZ77OtlKHQERERFpydbCSrG0ma3rmIbeGi5251GEQERGRFtgbtA75ZP91PHj0WOowiIiISAvsDVpHJCpysPLobanDICIiIi15OXEGgzohNjVL6hCIiIioCrLziyRrm8maHtlamEodAhEREVWBDcdZqxuy8gulDoGIiIiqIPqeQrK2mazpEc+sERERGacHGXmStc1kTY94Zo2IiMg4tfaSS9Y2kzU98nW2hUzqIIiIiEhruY/ZwaBO8JBbI6xPc6nDICIiIi1xnLU65I1n/RDelwkbERGRMbFmb9C65cU2nlKHQERERFq4fJe9QeuUJftipA6BiIiItOBsZylZ20zW9GztsdvYeTFR6jCIiIhIC60bsDdonZCoyEHEvutSh0FERERa4nRTdUCiIgd7Lt+XOgwiIiKqAh9nG8naNpOs5Tpky7l4hG+PRpGE3X6JiIio6lIycuEht5akbZ5Zq2GJihwmakREREbu/J2HkrXNZK2GxaZmMVEjIiIycu196knWttaXQW/evIldu3bhzp07kMlk8PX1xcCBA9GoUaOaiM/oFU8xxXyNiIjIOLXydEAbLyNJ1iIiIjBv3jwUFRXB1dUVQgg8ePAAYWFhWLRoEd5+++2aitNoecitMbG7L748ESt1KERERFQFk571k7R9jS+DHjlyBO+//z7mzJmD1NRUJCYmIikpSZmshYWF4fjx4zUZq9Ea180XJpzBnYiIyCj9Ei3t+KgyITSbmnTYsGFwdHTE2rVr1S5//fXXkZmZic2bN+s0QH3IyMiAXC6HQqGAg4NDjbSx5Vw83tt+BYVSzgRLREREVbIrtIvOL4Vqmn9ofGbt7NmzGD16dLnLR48ejdOnT2sXZR0yrIM3Tob1xNu9m0odChEREWnJKHqDJicnw8fHp9zlvr6+SEpK0kVMtZaH3BqW5uyAS0REZGykHBRX48whNzcXFhYW5S43NzdHfn6+ToKqzTr6OEkdAhEREWkp97F0001p1Rv0q6++gp2dndplmZmZOgmotmvjVQ9tvOS4lKCQOhQiIiLSkJS3nGucrHl7e2PdunWV1tHG6tWrsXr1aty5cwcA0KpVK8ybNw99+vQB8ORs3ltvvYUffvgBeXl5CA4OxqpVq+Dm5qZcR3x8PCZNmoQjR47Azs4OISEhiIiIgJmZ4c6k9Z8WbkzWiIiIjIiXkzRTTQFaJGvFCZUuNWjQAIsXL0aTJk0ghMDGjRvx0ksv4cKFC2jVqhVmzpyJvXv3YuvWrZDL5ZgyZQoGDRqE33//HQBQWFiIfv36wd3dHadOnUJiYiLGjBkDc3NzLFq0SOfx6sqFeOluUiQiIiLtZedLdxlU46E79MXJyQmffPIJhgwZAhcXF2zatAlDhgwBAFy/fh0tWrRAZGQkOnfujH379qF///64f/++8mzbmjVr8O677+LBgwcV3mNXkj6G7iiWqMhBYMThGm2DiIiIdEvKoTs0PrP2+eefa1Rv2rRpmq5SRWFhIbZu3YqsrCwEBgYiKioKjx8/RlBQkLJO8+bN4e3trUzWIiMj4e/vr3JZNDg4GJMmTcLVq1fRrl07tW3l5eUhLy9P+TwjI6NKMVdFbGqW3toiIiIi3ZDyzJrGydqyZcsqrSOTybRO1qKjoxEYGIjc3FzY2dlhx44daNmyJS5evAgLCws4Ojqq1Hdzc1MOEZKUlKSSqBUvL15WnoiICHzwwQdaxakrthamkrRLREREVWdjId3QWxona7GxNTO3ZbNmzXDx4kUoFAps27YNISEhOHbsWI20VSw8PByzZs1SPs/IyICXl1eNtlksK79QL+0QERGR7tx9mCPZZO6Sd5m0sLBA48aNAQABAQE4d+4cPvvsMwwbNgz5+flIT09XObuWnJwMd3d3AIC7uzvOnj2rsr7k5GTlsvJYWlrC0tJSx1uimZz8AknaJSIioqqT8g5/gxtOv6ioCHl5eQgICIC5uTkOHTqkXHbjxg3Ex8cjMDAQABAYGIjo6GikpKQo6xw8eBAODg5o2bKl3mPXxImbqVKHQERERFoyiqE7akJ4eDj69OkDb29vZGZmYtOmTTh69CgOHDgAuVyOCRMmYNasWXBycoKDgwOmTp2KwMBAdO7cGQDQu3dvtGzZEqNHj8bSpUuRlJSE999/H6GhoZKdOatMdh4vgxIRERmbOnsZNCUlBWPGjEFiYiLkcjlat26NAwcO4D//+Q+AJ50aTExMMHjwYJVBcYuZmppiz549mDRpEgIDA2Fra4uQkBB8+OGHUm1SpbwlnFuMiIiIquZhtnRTahrcOGtS0Oc4a99GxmLerms12gYRERHp1ooR7dC/jadO16nzcdZKKioqwq1bt5CSkoKiItVxR3r06FGVVdYZTraGeXmWiIiIyhfgI80lUKAKydrp06cxcuRIxMXFofRJOZlMhsJC3pNVEa960t2gSERERNqTSdy+1snam2++ifbt22Pv3r3w8PCATCb1JhiXLecSpA6BiIiItCAA3EnNhodcmhMuWidrN2/exLZt25Rjo5HmEhU52HSWyRoREZExkQHwkbCDoNbjrHXq1Am3bt2qiVhqvai4h1KHQERERFqSuiem1mfWpk6dirfeegtJSUnw9/eHubm5yvLWrVvrLLjahh1viYiIjNMfcQ/Rr7WRXAYdPHgwAGD8+PHKMplMBiEEOxhUor2Pk9QhEBERURVIeb5F62StpiZ0rws85NYIfc4PK4/eljoUIiIi0oJRTTfVsGHDmoijzpj9QnMcuZGCa4mZUodCREREGoq+pzCu6aZu376N5cuXIyYmBgDQsmVLTJ8+HX5+fjoNrrZJVOQgNjULXvWsmawREREZkb8eZEnWttbJ2oEDB/Diiy+ibdu26Nq1KwDg999/R6tWrbB7927lvJ6kasu5eIRvj0YR+xgQEREZnfp2FpK1rXWyFhYWhpkzZ2Lx4sVlyt99910ma2okKnKYqBERERkxubV55ZVqiNbjrMXExGDChAllysePH49r1zhBuTqxqVlM1IiIiIyYo7V0Z9a0TtZcXFxw8eLFMuUXL16Eq6urLmKqdXydbWHCWbmIiIiMllH1Bp04cSJef/11/PXXX+jSpQuAJ/esLVmyBLNmzdJ5gLWBh9waEYP88d72KyjkwLhERERG5+7DHOPpDTp37lzY29vjf//7H8LDwwEAnp6eWLBgAaZNm6bzAGuLYR280aOpCzaficfnhzldFxERkTExmkFxCwoKsGnTJowcORIzZ85EZuaT4Sfs7e1rJLjaxkNujSZudlKHQURERFqS8jKoVvesmZmZ4c0330Rubi6AJ0kaEzXNJCpycOp2KrydbKQOhYiIiLSUnV8kWdtaXwbt2LEjLly4wJkMtFByjDX2MyAiIjI+NhZa98nUGa2TtcmTJ+Ott97C3bt3ERAQAFtbW5XlrVu31llwtUHpMdbYvYCIiMj4JKQZUQeD4cOHA4BKZwKZTAYhBGQyGQoLC3UXXS3AMdaIiIiMX3pOvmRta52sxcbG1kQctVbxGGtM2IiIiIyXlIPiap2s8V417XCMNSIiIuMX4CPNJVCgCsnat99+W+HyMWPGVDmY2qp4jLWoOw8x7YcLPMtGRERkZFIycuEhl2b4Dq2TtenTp6s8f/z4MbKzs2FhYQEbGxsma+XwkFujfxtrZOUXIPynaEjXAZiIiIi0df7OQ8k6GGjdD/Xhw4cqj0ePHuHGjRvo1q0bNm/eXBMx1irDOnhjR2gXqcMgIiIiLbSX8DKoTgYNadKkCRYvXlzmrBupt/dyotQhEBERkYbaesklO6sG6ChZA57MbnD//n1dra7WSlTkYN0J9qglIiIyFkMCGkjavtb3rP38888qz4UQSExMxIoVK9C1a1edBVbbJCpyEJuahdspjzgwLhERkRGRejAHrZO1gQMHqjyXyWRwcXFBr1698L///U9XcdUqJaebIiIiIuMik3iuSK2TtaIi9mPURunppoiIiMi4SH1mrcr3rOXn5+PGjRsoKCjQZTy1DqebIiIiMm5RcQ8lbV/rZC07Oxvjx4+HjY0NWrVqhfj4eADA1KlTsXjxYp0HaOyKp5siIiIi47Tz4n0kKnIka1/rZC08PByXL1/G0aNHYWVlpSwPCgrCli1bdBpcbVA83ZSp1Be8iYiIqMoOxSRL1rbW96zt3LkTW7ZsQefOnSErkYC0atUKt2/f1mlwtUXxdFN3UrMRFZeG//76p9QhERERkRb+epAlWdtan1l78OABXF1dy5RnZWWpJG+kykNujUC/+hgs8VgtREREpL36dhaSta11sta+fXvs3btX+bw4Qfvqq68QGBiou8hqqeN/PpA6BCIiItKS3Npcsra1vgy6aNEi9OnTB9euXUNBQQE+++wzXLt2DadOncKxY8dqIsZao3gYDyIiIjIujtZGdGatW7duuHjxIgoKCuDv749ff/0Vrq6uiIyMREBAQE3EWGtwGA8iIiLj5OVkLVnbWp9ZAwA/Pz+sW7dO17HUesXDeDBhIyIiMi7Z+dJNCqCzidypch5yawS3cpc6DCIiItKSjYV0KZPGZ9ZMTEwq7e0pk8k4o0EFEhU52HclSeowiIiISEtGcWZtx44d2L59u9rH7NmzYWlpCTMz7a6qRkREoEOHDrC3t4erqysGDhyIGzduqNTJzc1FaGgo6tevDzs7OwwePBjJyaoD08XHx6Nfv36wsbGBq6srZs+ebZBJY2yqdGO0EBERUdXIAPg420jWvsbZ1UsvvVSm7MaNGwgLC8Pu3bsxatQofPjhh1o1fuzYMYSGhqJDhw4oKCjAe++9h969e+PatWuwtbUFAMycORN79+7F1q1bIZfLMWXKFAwaNAi///47AKCwsBD9+vWDu7s7Tp06hcTERIwZMwbm5uZYtGiRVvHUNF9nW6lDICIiIi1Jfau5TAjt55K/f/8+5s+fj40bNyI4OBgRERF4+umnqx1M8YC7x44dQ48ePaBQKODi4oJNmzZhyJAhAIDr16+jRYsWiIyMROfOnbFv3z70798f9+/fh5ubGwBgzZo1ePfdd/HgwQNYWJTtapuXl4e8vDzl84yMDHh5eUGhUMDBwaHa21GeREUOAiMO19j6iYiIqGasHNkO/Vp76nSdGRkZkMvlleYfWt0tp1Ao8O6776Jx48a4evUqDh06hN27d+skUStePwA4OTkBAKKiovD48WMEBQUp6zRv3hze3t6IjIwEAERGRsLf31+ZqAFAcHAwMjIycPXqVbXtREREQC6XKx9eXl46ib8y5++k6aUdIiIi0i3tT23pjsbJ2tKlS9GoUSPs2bMHmzdvxqlTp9C9e3edBVJUVIQZM2aga9euyuQvKSkJFhYWcHR0VKnr5uaGpKQkZZ2SiVrx8uJl6oSHh0OhUCgfCQkJOtuOinA6LiIiIuNkFOOshYWFwdraGo0bN8bGjRuxceNGtfW2b99epUBCQ0Nx5coVnDx5skqv14alpSUsLS1rvJ3SvOpJd6CJiIio6qTsDapxsjZmzJgaOzM0ZcoU7NmzB8ePH0eDBv9OdO7u7o78/Hykp6ernF1LTk6Gu7u7ss7Zs2dV1lfcW7S4jqGIT8uWOgQiIiKqAqMYZ23Dhg06b1wIgalTp2LHjh04evQofH19VZYHBATA3Nwchw4dwuDBgwE86YEaHx+vnDQ+MDAQCxcuREpKClxdXQEABw8ehIODA1q2bKnzmKsjPfux1CEQERFRFdx9mIM2XvUkabtK003pSmhoKDZt2oRdu3bB3t5eeY+ZXC6HtbU15HI5JkyYgFmzZsHJyQkODg6YOnUqAgMD0blzZwBA79690bJlS4wePRpLly5FUlIS3n//fYSGhkpyqbMijjbmUodAREREVfAwO1+ytiVN1lavXg0AeO6551TK169fj7FjxwIAli1bBhMTEwwePBh5eXkIDg7GqlWrlHVNTU2xZ88eTJo0CYGBgbC1tUVISIjWY77pg7eTdAPqERERUdU5WpcdCkxfqjTOWm2j6Tgn1XXqdipGrjtTY+snIiKimhEZ3gsect12FKyRcdaoejiDARERkfHp0LCezhM1bTBZ0yMPuTUGtvWQOgwiIiLSwlMSD73FZE3Pgloa1nAiREREVLGfL91HoiJHsvaZrOlZQENpuv0SERFR1RQJ4E6qdGOlMlnTsw93X5M6BCIiItKSlIPiMlnTo0sJD7Hvivr5SomIiMhwRd9TSNY2kzU9OnQ9ReoQiIiIqAoeZORJ1jaTNT3Zci4enx+6JXUYREREVAWtveSStc1kTQ8SFTkI3x4tdRhERERURbmPiyRrm8maHsSmZqGozs8TQUREZLyknO+JyZoe+DrbwkQmdRRERERUVQE+0g29xWRNDzzk1ogY5A9TGTM2IiIi0g6TNT0Z1sEbJ8N64pWABlKHQkRERFr6I+6hZG0zWdMjD7k1/CXsTUJERERVw3vW6hAh5dEmIiKiKvFykm4ydyZreiYD71sjIiIyNtn5HLqjznC0MZc6BCIiItIS5watQ64nZkodAhEREWmJZ9bqiERFDlYdvS11GERERKQlnlmrI2JTs8DuBURERMaHZ9bqCFsLU6lDICIioirwcbaRrG0ma3qy5Vw8Bq48JXUYREREZGSYrOlBoiIH4dujeQmUiIjISEXd4QwGtVpsahaKmKkREREZrfScfMnaZrKmB9F3FVKHQERERNXgaG0hWdtM1mpYoiIHS/ZflzoMIiIiqgZON1WL8RIoERGR8ePQHbWYr7MtTDgdKBERkVHjoLi1mIfcGhGD/GEqY8ZGRERkrHhmrZYb1sEbJ8N6YlwXH6lDISIioirgoLh1wPE/H2D9qTtSh0FERERGhsmaHhQPiktERETG6VBMsmRtM1nTA/YIJSIiMm4PMvIka5vJmh6wRygREZFx69XCVbK2mazpAXuEEhERGTdXByvJ2maypic9mrpg+fA26NPKTepQiIiISEt/xEk3kbuZZC3XIVvOxSN8ezTvWyMiIjJSd/7OkqxtnlmrYcU9QZmoERERGa+/H+VL1jaTtRrGnqBERETGr76dhWRtM1mrYb7OtlKHQEREREaMyVoN85Bbo7+/u9RhEBERUTXkP66jc4MeP34cAwYMgKenJ2QyGXbu3KmyXAiBefPmwcPDA9bW1ggKCsLNmzdV6qSlpWHUqFFwcHCAo6MjJkyYgEePHulxKyo3sUcjqUMgIiKiaqiz46xlZWWhTZs2WLlypdrlS5cuxeeff441a9bgzJkzsLW1RXBwMHJzc5V1Ro0ahatXr+LgwYPYs2cPjh8/jtdff11fm6CRNl71MPiZp6QOg4iIiKqgrZccbbzqSda+TAhhELe/y2Qy7NixAwMHDgTw5Kyap6cn3nrrLbz99tsAAIVCATc3N2zYsAHDhw9HTEwMWrZsiXPnzqF9+/YAgP3796Nv3764e/cuPD09NWo7IyMDcrkcCoUCDg4ONbJ9APDutkvYcv5uja2fiIiIdC+4lRvWjm6v8/Vqmn8Y7D1rsbGxSEpKQlBQkLJMLpejU6dOiIyMBABERkbC0dFRmagBQFBQEExMTHDmzJly152Xl4eMjAyVhz442pjrpR0iIiLSnV+vJiNRkSNZ+wabrCUlJQEA3NxUR/x3c3NTLktKSoKrq+o1ZDMzMzg5OSnrqBMREQG5XK58eHl56Th69SzMDHZ3ExERUTkEgDup2ZK1Xyezh/DwcCgUCuUjISFBL+0GteBUU0RERMbIxkK6lMlgkzV39yfDXSQnJ6uUJycnK5e5u7sjJSVFZXlBQQHS0tKUddSxtLSEg4ODykMf2njVw9Oe+mmLiIiIdCf6nkKytg02WfP19YW7uzsOHTqkLMvIyMCZM2cQGBgIAAgMDER6ejqioqKUdQ4fPoyioiJ06tRJ7zFXJlGRgyv39XN/HBEREelOSkaeZG1LOpH7o0ePcOvWLeXz2NhYXLx4EU5OTvD29saMGTPw8ccfo0mTJvD19cXcuXPh6emp7DHaokULvPDCC5g4cSLWrFmDx48fY8qUKRg+fLjGPUH1KTZVuklgiYiIqOraeMkla1vSZO38+fPo2bOn8vmsWbMAACEhIdiwYQPeeecdZGVl4fXXX0d6ejq6deuG/fv3w8rKSvma77//HlOmTMHzzz8PExMTDB48GJ9//rnet0UTnHqKiIjIONlYSDeig8GMsyYlfY2zBgCL9l7Dlydia7QNIiIi0q1doV10PjCu0Y+zVluZm3KXExERGZu7DznOWp2QqMjBqqO3pQ6DiIiItPQwO1+ytpms6VFsahbq/DVnIiIi0gqTNT3KyS+QOgQiIiKqgvTsx5K1zWRNj/7i0B1ERERGKS2Ll0HrhEYcuoOIiMgo1bezkKxtJmt6ZG0h6bB2REREVEUNnaQ74cJkTY84KC4REZFx8nKylqxtJmt65CG3RnN3O6nDICIiIi1l5xdJ1jaTNT1KVOTgetIjqcMgIiIiLfk420jWNpM1PeJE7kRERKQtJmt6xHvWiIiIjNOd1GzJ2maypkcecmt0buQkdRhERESkBRmkvQzKsST0JFGRg/N30nD6rzSpQyEiIiIttPR0gIdcut6gTNb0YMu5eIRvj0YRJwYlIiIyOtfuZyBRkSNZwsbLoDUsUZHDRI2IiMiICQB/xD2UrH0mazUsNjWLiRoREZGRExL+ljNZq2G+zrYwkUkdBREREVUHZzCoxTzk1ogY5A/ma0RERMaLMxjUcj2aukDGbI2IiMhocQaDWo73rREREVFVMVnTA963RkREZNw4g0EtV3zfmimvhRIRERklGwvpUiYma3oyrIM3Tob1xPPNXaUOhYiIiLR092GOZG0zWdOjlIxcHLqeInUYREREpKWH2fmStc1kTU+2nIvHwJWnpA6DiIiIqsDR2kKytpms6UHxlFPsEEpERGScOChuLcehO4iIiIwbB8Wt5Th0BxERkXHjoLi1HKecIiIioqpisqYnwzp4463eTaUOg4iIiKrgj7iHkrXNZE2P5DbmUodAREREVSAkvPecyRoRERFRJQJ86knWNpM1IiIiIgPGZE2PHK15GZSIiMgY8Z61OsLbSbpuv0RERFR1vGetjsjKL5Q6BCIiIqoCzmBQR/g623KsNSIiIiN092GOZG0zWdMjD7k1wvo0lzoMIiIi0lJaVr5kbTNZ07M3nvVDVz8nqcMgIiIiLTjZWkjWNpM1CbzzAs+uERERGQsZgGcacpy1OqWNVz30edpd6jCIiIioEjIAiwf7w0PODgbVtnLlSvj4+MDKygqdOnXC2bNnpQ6pQqtfDcCUnn6Q/dPjQAagdQMHmJTTA6FkcSffeuV2VChZXt76ZAB6NnNRqVvy77ZecpXXyTR8XXn1ZBXELAPQpZGTcj9UtM7ScWmyPcX7tbyYS8dV3f1Q0baqq6duWUXrU9d2ydcENnLS6Ph0KVWvZJ2KjnFF76mK2i5Z1sm3Xrn7tXRcmhyr0vtSuQ3ltNHWS15hbJrsv9LvqZJKb1/p9Wu77drEVfrYVfSdUjrmqnynlBd/ZZ+Dmn4flbcObb8PUGqZpu2VjlPb9jR5D+vyu7Ci72F17WnyXYgK2iu9jvK+C7X9zJS3joq2raL9NbKTF1aObIdT4b0wrIN3OS3ph0wIKUcO0Y0tW7ZgzJgxWLNmDTp16oTly5dj69atuHHjBlxdXSt9fUZGBuRyORQKBRwcHPQQ8b8SFTm4k5oNH2cbeMitVZ4DUPu3LurVxLKK6tXEOo1xWV3dl/puuzZsQ02/V2p6u+vSMeAywzuWulp/TdM0/6gVyVqnTp3QoUMHrFixAgBQVFQELy8vTJ06FWFhYWXq5+XlIS8vT/k8IyMDXl5ekiRrREREVDdpmqwZ/WXQ/Px8REVFISgoSFlmYmKCoKAgREZGqn1NREQE5HK58uHl5aWvcImIiIi0YvTJWmpqKgoLC+Hm5qZS7ubmhqSkJLWvCQ8Ph0KhUD4SEhL0ESoRERGR1sykDkAKlpaWsLS0lDoMIiIiokoZ/Zk1Z2dnmJqaIjk5WaU8OTkZ7u4cHoOIiIiMm9EnaxYWFggICMChQ4eUZUVFRTh06BACAwMljIyIiIio+mrFZdBZs2YhJCQE7du3R8eOHbF8+XJkZWVh3LhxUodGREREVC21IlkbNmwYHjx4gHnz5iEpKQlt27bF/v37y3Q6ICIiIjI2tWKctepSKBRwdHREQkICx1kjIiIivSge5zU9PR1yubzcerXizFp1ZWZmAgDHWyMiIiK9y8zMrDBZ45k1POmQcP/+fdjb20MmK2+mMSIiIiLdEUIgMzMTnp6eMDEpv88nkzUiIiIiA2b0Q3cQERER1WZM1oiIiIgMGJM1IiIiIgPGZI2IiIjIgDFZIyIiIjJgTNaIiIiIDBiTNSIiIiIDJmmyFhERgQ4dOsDe3h6urq4YOHAgbty4obauEAJ9+vSBTCbDzp07VZYdOnQIXbp0gb29Pdzd3fHuu++ioKBAD1tAREREVLMkTdaOHTuG0NBQnD59GgcPHsTjx4/Ru3dvZGVllam7fPlytbMLXLp0CX379sULL7yACxcuYMuWLfj5558RFhamj00gIiIiqlEGNYPBgwcP4OrqimPHjqFHjx7K8osXL6J///44f/48PDw8sGPHDgwcOBAA8N577+HgwYM4d+6csv7u3bvxyiuvICUlBfb29vreDCIiIiKdMaiJ3BUKBQDAyclJWZadnY2RI0di5cqVcHd3L/OavLw8WFlZqZRZW1sjNzcXUVFReO6559S+Ji8vT/m8qKgIaWlpqF+/PucGJSIiIr3QdG5QCANRWFgo+vXrJ7p27apS/vrrr4sJEyYonwMQO3bsUD4/cOCAMDExEZs2bRIFBQXi7t27onv37gKA2LRpk9q25s+fLwDwwQcffPDBBx98SP5ISEioMEcymDNroaGhuHLlCk6ePKks+/nnn3H48GFcuHCh3Nf17t0bn3zyCd58802MHj0alpaWmDt3Lk6cOFFulhoeHo5Zs2YpnysUCnh7eyMhIQEODg662ygiIiKicmRkZMDLy6vSW7YM4p61KVOmYNeuXTh+/Dh8fX2V5TNmzMDnn3+uknQVFhbCxMQE3bt3x9GjR5XlQggkJiaiXr16uHPnDlq2bImzZ8+iQ4cOlbafkZEBuVwOhULBZI2IiIj0QtP8Q9Iza0IITJ06FTt27MDRo0dVEjUACAsLw2uvvaZS5u/vj2XLlmHAgAEq5TKZDJ6engCAzZs3w8vLC88880zNbgARERFRDZM0WQsNDcWmTZuwa9cu2NvbIykpCQAgl8thbW0Nd3d3tZ0KvL29VRK7Tz75BC+88AJMTEywfft2LF68GD/++CNMTU31ti1ERERENUHSZG316tUAUKbH5vr16zF27FiN17Nv3z4sXLgQeXl5aNOmDXbt2oU+ffroMFIiIiIiaUh+GVQXrzl8+LAuwiEiIiIyOJwblIiIiMiAGczQHURVFR8fj9TUVDg7O8Pb21vS9ek6lrqqeD8C4L40cjyWulPR9wv3s6ra9l3MZM1AFb/R8vLyYGlpCQDKv0u++aR6Q+qi3cq+XDRpIz4+Hs2atUBubjasrGxw40ZMhXV1uT5dxFLy+OriGJbcp7p+v+j6h6K89ZXcjwCqdByq+qOl7rXVKatOu8ao9HYAqNKx1PZ9Wp3vEkPY99X9bqqJz0x13uNS79Py9pWhvw8qwmTNAKl+8EwBFP6z5MnflpZW+OmnbQCAwYOHIi8vR1nm4eGh/JFWl+ipSw7U/cBXlCSWjK9ku5quT5Mv8craKJaamvrPOt5Hbu7HOHHiBFq0aFEmlsTEROW+UvdFVlwvJiZGZX2pqakaf2hLx1L82tKJWclYSh7f4riK11XyGJV+f2iS5BSvu+R6Nf0CK12mqx+Kyo5HfHw8Tpw48c+6vgMA5Oa+WuY4lJfsltxGAMr3jr+/f5ltK/0eT0tLK3FcnmzH4cO/oVevIJVt07SsvPdYZcetopjVHaPKPufqkvbSMZX3Wm1+tNS9D7Zt+1HjY1nZe03TY17R+7Oy966u970mSY6m36elv5tKftf9+92jup8BlDm+pbcjOjq6Su/74lidnJw0Oh6VxVL6/aBNPU1+FxwdHcv9zlG3D7RJdvVB62QtPT0dO3bswIkTJxAXF4fs7Gy4uLigXbt2CA4ORpcuXWoizjqh7IdyAoCv8eQDGAtgLoCpyMtbif79+5d4Zemy4gSgbKJXsszS0gqrV6/CpEmhyjdpRa8t/nCmp6f/E59qu+o+0OW1u2TJ4jJfLidOnED37t3h7e1d4sOm2oa6L9Mn7ACY4NVXX61g24DSX3TqfqSfaAgAiIl58iWjSQJcXLfka8tLzJ4oeXyf7IPo6GgMGfJKuV+IJddXOkH/66+/SuzT4vfLv9v7pI3yv8DU/Seg+EurvKS4bLv/HstGjRpVmAyVPh4lY3miBUpSl+iVTnZVk4NU5OXNQv/+/dVum/rPB1S249ChQ2W2TV1ZZftA8+S04pg1346yZZX9QJX3WS39g1zeZ0HdPvh39pl/j2VMTIza/7iU/X759z89ANT+B1a775LK3ru63/fqvodKJwIVfdep/w4r+123ZMniMvs5MTERXbt2L/NdrH47gMrez6rv+3/3lSbHo/T3WulYir/Dyn5HaFZP09+FJ8p7X6nuA23+o64Xms7dee/ePTFhwgRhZWUlGjVqJIYPHy5mzZol5syZIyZNmiS6d+8ubGxsRIsWLcQPP/yg6WoNgkKhEACEQqGQLIa4uDhhZWVTar6w9//5N0oA35Uq+04AH1VQNqGSsuUCMCnRVmWvnVqqful2n8T30UcfadlulAD2KMssLa3Enj17xHffqdve5VrXKxvL4lLLTLWsZ1pJmbrXlrdPSx7fKDX7r+R2lG6j9PEoubzk+0VdLOrKyj++3333XYn9XNH+Uz2W6vdVZfu55L76d78sX75cWFpaV7BPS7//Su4DddtW0eej9HZUVFb6uFW0D1T36Z49e0ptU2Uxa7sdZd9r6tvV5LNa2fu+oveBJvtF3batU8b87/uvOt8llb13db3vS8f37/s0KipKxMXFiaioqCp8h1VUr7zvkoq+x8t+3sp/P5feV5UdD21iKe87orJ6/7Zb8e9C8frWKY9BVFRUufsgKipKL7/9muYfGvcGbdeuHZycnBAVFYXbt29j8+bN+N///oePP/4Yq1atwvHjx5Gamoq5c+di+fLl+O9//6vpqgkodRr7Iw1e0QKAbwVlHpWUOQMowpOzO5q8Vv5PfXXxtQDgCMAEc+fO1bJdAEj/p2wq8vLy0b9//1L/Eyr9Wk3rqdu2R6W2o1DLeoWVlKl7bel9UPq4AUAiyu6/kttRuo3Sx6PkdpSkLhZ1ZeqO77//K/13P1e0/4B/j2V5+6r0PqhoX/27X2bMmPHP/6LL26eOUN1/Janbtoo+H6W3o6Ky0setdL3Sx+3ffdq/f/9/tkndcVMXs7bbUbKsonY1+axW9r6v6H2gyX5Rt21/o+z7rzrfJZW9d4vpat+r+x56cubrxIkTaNq0OQICAqrwHVZRPUD9d0lF3+NlP2/lv59Lq+x4aBNLed8RldXT9HdBdf/FxMSUuBrigdJiYmIQHx+vZpulofFl0GvXrqF+/foV1rG2tsaIESMwYsQI/P3339UOrm5qUXkVnSr7Jq1YefGl498P6tdVbLfkhzIWTy7jqaNpvYq2reR2aFuvsjJ1r61MOsrff5q2oel2aFpW8set9H6urN2K9pWm8QFl90t13n9V+WxVtG2VtatuH6jbp7o4bpXRtt2SNH3fV7avKnot1JRV9P6rrI2KviN0/ZmpjPr/fDxRne+w8uqlo+qfhYpeq49YqvOdrenvwr//CVAvUbnckO5d0/jMWmWJWnXrU22hbfKnTnlnn6paz5joYv/pmiHs56r8UOhTVf7TI8U+NYRjqa3qxGxo25uOys+Y6Up1Pgu6/hzp83NZ2T5Vdza/pPR/lr+P3Nxs5b1tUqvSoLimpqbo2bMn0tLSVMqTk5M5H2cVxMfHlzgdS0REtZsh/qesrqksqWuor0A0UqWhO4QQyMvLQ/v27bF79260atVKZRlpruxwC0RERET/qtKZNZlMhp9++gkDBgxAYGAgdu3apbKMNPdvxwJ1N28SERFRXVelZE0IAVNTU3z22Wf473//i2HDhuHjjz/mWbVq4WlxIiIiKqvaMxi8/vrraNKkCYYOHYrjx4/rIiYiIiIi+keVzqw1bNhQpSNBz549cfr0aSQkJOgsMCIiIiKq4pm12NjYMmWNGzfGhQsXkJycXO2giIiIiOiJKp1ZK4+VlRUaNtS8u+vx48cxYMAAeHp6QiaTYefOnWXqxMTE4MUXX4RcLoetrS06dOhQZlThyMhI9OrVC7a2tnBwcECPHj2Qk5NTZl1ERERExkarM2v16tXTqLdn6fHXypOVlYU2bdpg/PjxGDRoUJnlt2/fRrdu3TBhwgR88MEHcHBwwNWrV2FlZaWsExkZiRdeeAHh4eH44osvYGZmhkuXLsHERKd5KBEREZEktErWli9frvxbCIFJkybhww8/hKura5Ua79OnD/r06VPu8jlz5qBv375YunSpsszPz0+lzsyZMzFt2jSEhYUpy5o1a1aleIiIiIgMjVbJWkhIiMrzqVOnYvDgwWjUqJFOgwKAoqIi7N27F++88w6Cg4Nx4cIF+Pr6Ijw8HAMHDgQApKSk4MyZMxg1ahS6dOmC27dvo3nz5li4cCG6detW7rrz8vKQl5enfJ6RkaHz+CsTHx+P1NRUzlxAREREFTLYa4UpKSl49OgRFi9ejBdeeAG//vorXn75ZQwaNAjHjh0DAPz1118AgAULFmDixInYv38/nnnmGTz//PO4efNmueuOiIiAXC5XPry8vPSyTcWKZy0ICAioYDJZIiIiIgNO1oqKigAAL730EmbOnIm2bdsiLCwM/fv3x5o1a1TqvPHGGxg3bhzatWuHZcuWoVmzZvjmm2/KXXd4eDgUCoXyoe8hR/6dtaC8iWSJiIiInqj2oLg1xdnZGWZmZmjZsqVKeYsWLXDy5EkAgIfHk1H/1dUp3WO0JEtLS1haWuo44qpoIXUAREREZOC0StZmzZql8jw/Px8LFy6EXC5XKf/000+rHZiFhQU6dOiAGzduqJT/+eefyuFBfHx84OnpqbZORR0XiIiIiIyFVsnahQsXVJ536dJFed9YMW0mcn/06BFu3bqlfB4bG4uLFy/CyckJ3t7emD17NoYNG4YePXqgZ8+e2L9/P3bv3o2jR48q25o9ezbmz5+PNm3aoG3btti4cSOuX7+Obdu2abNpRERERAZJq2TtyJEjOm38/Pnz6Nmzp/J58Zm7kJAQbNiwAS+//DLWrFmDiIgITJs2Dc2aNcNPP/2k0tNzxowZyM3NxcyZM5GWloY2bdrg4MGDZYb4ICIiIjJGkt6z9txzz0EIUWGd8ePHY/z48RXWCQsLUxlnjYiIiKi20Lg36OLFi5Gdna1R3TNnzmDv3r1VDoqIiIiIntA4Wbt27RoaNmyIyZMnY9++fXjw4IFyWUFBAS5fvoxVq1ahS5cuGDZsGOzt7WskYCIiIqK6ROPLoN9++y0uXbqEFStWYOTIkcjIyICpqSksLS2VZ9zatWuH1157DWPHjlWZv5OIiIiIqkare9batGmDdevWYe3atbh8+TLi4uKQk5MDZ2dntG3bFs7OzjUVJxEREVGdVKUOBiYmJmjbti3atm2r43CIiIiIqCSDnW6KiIiIiJisERERERk0JmtEREREBozJGhEREZEBq1ayduvWLRw4cAA5OTkAUOlsBERERESknSola3///TeCgoLQtGlT9O3bF4mJiQCACRMm4K233tJpgERERER1WZWStZkzZ8LMzAzx8fGwsbFRlg8bNgz79+/XWXBEREREdV2Vxln79ddfceDAATRo0EClvEmTJoiLi9NJYERERERUxTNrWVlZKmfUiqWlpcHS0rLaQRERERHRE1VK1rp3745vv/1W+Vwmk6GoqAhLly5Fz549dRYcERERUV1XpcugS5cuxfPPP4/z588jPz8f77zzDq5evYq0tDT8/vvvuo6RiIiIqM6q0pm1p59+Gn/++Se6deuGl156CVlZWRg0aBAuXLgAPz8/XcdIREREVGdVKVmLj4+Hg4MD5syZgx9//BG//PILPv74Y3h4eCA+Pl6nARYWFmLu3Lnw9fWFtbU1/Pz88NFHH6mM6bZgwQI0b94ctra2qFevHoKCgnDmzBmdxkFEREQkhSola76+vnjw4EGZ8r///hu+vr7VDqqkJUuWYPXq1VixYgViYmKwZMkSLF26FF988YWyTtOmTbFixQpER0fj5MmT8PHxQe/evdXGSERERGRMqnTPmhACMpmsTPmjR49gZWVV7aBKOnXqFF566SX069cPAODj44PNmzfj7NmzyjojR45Uec2nn36Kr7/+GpcvX8bzzz+v03iIiIiI9EmrZG3WrFkAnvT+nDt3rsrwHYWFhThz5gzatm2r0wC7dOmCL7/8En/++SeaNm2KS5cu4eTJk/j000/V1s/Pz8eXX34JuVyONm3aqK2Tl5eHvLw85fOMjAydxkxERESkK1olaxcuXADw5MxadHQ0LCwslMssLCzQpk0bvP322zoNMCwsDBkZGWjevDlMTU1RWFiIhQsXYtSoUSr19uzZg+HDhyM7OxseHh44ePAgnJ2d1a4zIiICH3zwgU7j1FR8fDxiYmIkaZuIiIiMj1bJ2pEjRwAA48aNw2effQYHB4caCaqkH3/8Ed9//z02bdqEVq1a4eLFi5gxYwY8PT0REhKirNezZ09cvHgRqampWLduHV555RWcOXMGrq6uZdYZHh6uPEsIPDmz5uXlVePbEh8fj2bNWiA3N7vG2yIiIqLaoUr3rK1fv17XcZRr9uzZCAsLw/DhwwEA/v7+iIuLQ0REhEqyZmtri8aNG6Nx48bo3LkzmjRpgq+//hrh4eFl1mlpaSnJTAupqan/JGoTAHyt9/aJiIjI+FQpWQOA8+fP48cff0R8fDzy8/NVlm3fvr3agRXLzs6GiYlqp1VTU1MUFRVV+LqioiKV+9IMi4fUARAREZGRqNLQHT/88AO6dOmCmJgY7NixA48fP8bVq1dx+PBhyOVynQY4YMAALFy4EHv37sWdO3ewY8cOfPrpp3j55ZcBPJmn9L333sPp06cRFxeHqKgojB8/Hvfu3cPQoUN1GgsRERGRvlXpzNqiRYuwbNkyhIaGwt7eHp999hl8fX3xxhtvwMNDt2eNvvjiC8ydOxeTJ09GSkoKPD098cYbb2DevHkAnpxlu379OjZu3IjU1FTUr18fHTp0wIkTJ9CqVSudxkJERESkb1VK1m7fvq0c98zCwgJZWVmQyWSYOXMmevXqpdOelvb29li+fDmWL1+udrmVlZVOL7sSERERGZIqXQatV68eMjMzAQBPPfUUrly5AgBIT09HdjZ7OhIRERHpSpXOrPXo0QMHDx6Ev78/hg4diunTp+Pw4cM4ePAgZwwgIiIi0qEqJWsrVqxAbm4uAGDOnDkwNzfHqVOnMHjwYLz//vs6DZCIiIioLqtSsubk5KT828TEBGFhYcrnOTk51Y+KiIiIiABU8Z41dfLy8vDpp5/C19dXV6skIiIiqvO0Stby8vIQHh6O9u3bo0uXLti5cyeAJzMa+Pr6YtmyZZg5c2ZNxElERERUJ2l1GXTevHlYu3YtgoKCcOrUKQwdOhTjxo3D6dOn8emnn2Lo0KEwNTWtqViJiIiI6hytkrWtW7fi22+/xYsvvogrV66gdevWKCgowKVLlyCTyWoqRiIiIqI6S6vLoHfv3kVAQAAA4Omnn4alpSVmzpzJRI2IiIiohmiVrBUWFsLCwkL53MzMDHZ2djoPioiIiIie0OoyqBACY8eOhaWlJQAgNzcXb775JmxtbVXqcfonIiIiIt3QKlkLCQlRef7qq6/qNBgiIiIiUqVVsrZ+/fqaioOIiIiI1NDZoLhEREREpHtM1oiIiIgMGJM1IiIiIgNWa5K1lStXwsfHB1ZWVujUqRPOnj0rdUhK8fHx+OOPPxATEyN1KERERGRktOpgYKi2bNmCWbNmYc2aNejUqROWL1+O4OBg3LhxA66urpLGFh8fj2bNWiA3N1vSOIiIiMg41Yoza59++ikmTpyIcePGoWXLllizZg1sbGzwzTffSB0aUlNT/0nUvgPwkdThEBERkZEx+jNr+fn5iIqKQnh4uLLMxMQEQUFBiIyMVPuavLw85OXlKZ8rFAoAQEZGhs7je/To0T9/ZQPI/efvuH/+jSrxN8tYxjKWsYxlLDOMsj8BPPkNr4ncoFjxuoUQFVcURu7evXsCgDh16pRK+ezZs0XHjh3Vvmb+/PkCAB988MEHH3zwwYfkj4SEhApzHaM/s1YV4eHhmDVrlvJ5UVER0tLSUL9+/WpPSp+RkQEvLy8kJCTAwcGhuqFSNfF4GBYeD8PC42FYeDwMiz6OhxACmZmZ8PT0rLCe0Sdrzs7OMDU1RXJyskp5cnIy3N3d1b7G0tJSOb9pMUdHR53G5eDgwA+bAeHxMCw8HoaFx8Ow8HgYlpo+HnK5vNI6Rt/BwMLCAgEBATh06JCyrKioCIcOHUJgYKCEkRERERFVn9GfWQOAWbNmISQkBO3bt0fHjh2xfPlyZGVlYdy4cVKHRkRERFQttSJZGzZsGB48eIB58+YhKSkJbdu2xf79++Hm5qb3WCwtLTF//vwyl1lJGjwehoXHw7DweBgWHg/DYkjHQyZEZf1FiYiIiEgqRn/PGhEREVFtxmSNiIiIyIAxWSMiIiIyYEzWiIiIiAwYkzUdW7lyJXx8fGBlZYVOnTrh7NmzUodU60RERKBDhw6wt7eHq6srBg4ciBs3bqjUyc3NRWhoKOrXrw87OzsMHjy4zMDJ8fHx6NevH2xsbODq6orZs2ejoKBAn5tSKy1evBgymQwzZsxQlvF46Ne9e/fw6quvon79+rC2toa/vz/Onz+vXC6EwLx58+Dh4QFra2sEBQXh5s2bKutIS0vDqFGj4ODgAEdHR0yYMKHEXMekqcLCQsydOxe+vr6wtraGn58fPvroI5W5IHk8as7x48cxYMAAeHp6QiaTYefOnSrLdbXvL1++jO7du8PKygpeXl5YunSpbjek+rNzUrEffvhBWFhYiG+++UZcvXpVTJw4UTg6Oork5GSpQ6tVgoODxfr168WVK1fExYsXRd++fYW3t7d49OiRss6bb74pvLy8xKFDh8T58+dF586dRZcuXZTLCwoKxNNPPy2CgoLEhQsXxC+//CKcnZ1FeHi4FJtUa5w9e1b4+PiI1q1bi+nTpyvLeTz0Jy0tTTRs2FCMHTtWnDlzRvz111/iwIED4tatW8o6ixcvFnK5XOzcuVNcunRJvPjii8LX11fk5OQo67zwwguiTZs24vTp0+LEiROicePGYsSIEVJsklFbuHChqF+/vtizZ4+IjY0VW7duFXZ2duKzzz5T1uHxqDm//PKLmDNnjti+fbsAIHbs2KGyXBf7XqFQCDc3NzFq1Chx5coVsXnzZmFtbS3Wrl2rs+1gsqZDHTt2FKGhocrnhYWFwtPTU0REREgYVe2XkpIiAIhjx44JIYRIT08X5ubmYuvWrco6MTExAoCIjIwUQjz5AJuYmIikpCRlndWrVwsHBweRl5en3w2oJTIzM0WTJk3EwYMHxbPPPqtM1ng89Ovdd98V3bp1K3d5UVGRcHd3F5988omyLD09XVhaWorNmzcLIYS4du2aACDOnTunrLNv3z4hk8nEvXv3ai74Wqhfv35i/PjxKmWDBg0So0aNEkLweOhT6WRNV/t+1apVol69eirfVe+++65o1qyZzmLnZVAdyc/PR1RUFIKCgpRlJiYmCAoKQmRkpISR1X4KhQIA4OTkBACIiorC48ePVY5F8+bN4e3trTwWkZGR8Pf3Vxk4OTg4GBkZGbh69aoeo689QkND0a9fP5X9DvB46NvPP/+M9u3bY+jQoXB1dUW7du2wbt065fLY2FgkJSWpHA+5XI5OnTqpHA9HR0e0b99eWScoKAgmJiY4c+aM/jamFujSpQsOHTqEP//8EwBw6dIlnDx5En369AHA4yElXe37yMhI9OjRAxYWFso6wcHBuHHjBh4+fKiTWGvFDAaGIDU1FYWFhWVmTXBzc8P169cliqr2KyoqwowZM9C1a1c8/fTTAICkpCRYWFjA0dFRpa6bmxuSkpKUddQdq+JlpJ0ffvgBf/zxB86dO1dmGY+Hfv31119YvXo1Zs2ahffeew/nzp3DtGnTYGFhgZCQEOX+VLe/Sx4PV1dXleVmZmZwcnLi8dBSWFgYMjIy0Lx5c5iamqKwsBALFy7EqFGjAIDHQ0K62vdJSUnw9fUts47iZfXq1at2rEzWyKiFhobiypUrOHnypNSh1FkJCQmYPn06Dh48CCsrK6nDqfOKiorQvn17LFq0CADQrl07XLlyBWvWrEFISIjE0dU9P/74I77//nts2rQJrVq1wsWLFzFjxgx4enryeJDGeBlUR5ydnWFqalqmh1tycjLc3d0liqp2mzJlCvbs2YMjR46gQYMGynJ3d3fk5+cjPT1dpX7JY+Hu7q72WBUvI81FRUUhJSUFzzzzDMzMzGBmZoZjx47h888/h5mZGdzc3Hg89MjDwwMtW7ZUKWvRogXi4+MB/Ls/K/qucnd3R0pKisrygoICpKWl8Xhoafbs2QgLC8Pw4cPh7++P0aNHY+bMmYiIiADA4yElXe17fXx/MVnTEQsLCwQEBODQoUPKsqKiIhw6dAiBgYESRlb7CCEwZcoU7NixA4cPHy5z+jkgIADm5uYqx+LGjRuIj49XHovAwEBER0erfAgPHjwIBweHMj90VLHnn38e0dHRuHjxovLRvn17jBo1Svk3j4f+dO3atcxQNn/++ScaNmwIAPD19YW7u7vK8cjIyMCZM2dUjkd6ejqioqKUdQ4fPoyioiJ06tRJD1tRe2RnZ8PERPWn1tTUFEVFRQB4PKSkq30fGBiI48eP4/Hjx8o6Bw8eRLNmzXRyCRQAh+7QpR9++EFYWlqKDRs2iGvXronXX39dODo6qvRwo+qbNGmSkMvl4ujRoyIxMVH5yM7OVtZ58803hbe3tzh8+LA4f/68CAwMFIGBgcrlxUNF9O7dW1y8eFHs379fuLi4cKgIHSnZG1QIHg99Onv2rDAzMxMLFy4UN2/eFN9//72wsbER3333nbLO4sWLhaOjo9i1a5e4fPmyeOmll9QOV9CuXTtx5swZcfLkSdGkSRMOFVEFISEh4qmnnlIO3bF9+3bh7Ows3nnnHWUdHo+ak5mZKS5cuCAuXLggAIhPP/1UXLhwQcTFxQkhdLPv09PThZubmxg9erS4cuWK+OGHH4SNjQ2H7jBkX3zxhfD29hYWFhaiY8eO4vTp01KHVOsAUPtYv369sk5OTo6YPHmyqFevnrCxsREvv/yySExMVFnPnTt3RJ8+fYS1tbVwdnYWb731lnj8+LGet6Z2Kp2s8Xjo1+7du8XTTz8tLC0tRfPmzcWXX36psryoqEjMnTtXuLm5CUtLS/H888+LGzduqNT5+++/xYgRI4SdnZ1wcHAQ48aNE5mZmfrcjFohIyNDTJ8+XXh7ewsrKyvRqFEjMWfOHJVhHng8as6RI0fU/l6EhIQIIXS37y9duiS6desmLC0txVNPPSUWL16s0+2QCVFiGGUiIiIiMii8Z42IiIjIgDFZIyIiIjJgTNaIiIiIDBiTNSIiIiIDxmSNiIiIyIAxWSMiIiIyYEzWiIiIiAwYkzUiIiIiA8ZkjYhqrbFjx2LgwIGStT969GgsWrSoxtZ/7do1NGjQAFlZWTXWBhFJjzMYEJFRkslkFS6fP38+Zs6cCSEEHB0d9RNUCZcuXUKvXr0QFxcHOzu7GmtnyJAhaNOmDebOnVtjbRCRtJisEZFRSkpKUv69ZcsWzJs3Dzdu3FCW2dnZ1WiSVJnXXnsNZmZmWLNmTY22s3fvXkycOBHx8fEwMzOr0baISBq8DEpERsnd3V35kMvlkMlkKmV2dnZlLoM+99xzmDp1KmbMmIF69erBzc0N69atQ1ZWFsaNGwd7e3s0btwY+/btU2nrypUr6NOnD+zs7ODm5obRo0cjNTW13NgKCwuxbds2DBgwQKXcx8cHH3/8McaMGQM7Ozs0bNgQP//8Mx48eICXXnoJdnZ2aN26Nc6fP698TVxcHAYMGIB69erB1tYWrVq1wi+//KJc/p///AdpaWk4duxYNfcoERkqJmtEVKds3LgRzs7OOHv2LKZOnYpJkyZh6NCh6NKlC/744w/07t0bo0ePRnZ2NgAgPT0dvXr1Qrt27XD+/Hns378fycnJeOWVV8pt4/Lly1AoFGjfvn2ZZcuWLUPXrl1x4cIF9OvXD6NHj8aYMWPw6quv4o8//oCfnx/GjBmD4oseoaGhyMvLw/HjxxEdHY0lS5aonDG0sLBA27ZtceLECR3vKSIyFEzWiKhOadOmDd5//300adIE4eHhsLKygrOzMyZOnIgmTZpg3rx5+Pvvv3H58mUAwIoVK9CuXTssWrQIzZs3R7t27fDNN9/gyJEj+PPPP9W2ERcXB1NTU7i6upZZ1rdvX7zxxhvKtjIyMtChQwcMHToUTZs2xbvvvouYmBgkJycDAOLj49G1a1f4+/ujUaNG6N+/P3r06KGyTk9PT8TFxel4TxGRoWCyRkR1SuvWrZV/m5qaon79+vD391eWubm5AQBSUlIAPOkocOTIEeU9cHZ2dmjevDkA4Pbt22rbyMnJgaWlpdpOECXbL26rovanTZuGjz/+GF27dsX8+fOVSWRJ1tbWyjOBRFT7MFkjojrF3Nxc5blMJlMpK06wioqKAACPHj3CgAEDcPHiRZXHzZs3y5zhKubs7Izs7Gzk5+dX2H5xWxW1/9prr+Gvv/7C6NGjER0djfbt2+OLL75QWWdaWhpcXFw02wFEZHSYrBERVeCZZ57B1atX4ePjg8aNG6s8bG1t1b6mbdu2AJ6Mg6YLXl5eePPNN7F9+3a89dZbWLduncryK1euoF27djppi4gMD5M1IqIKhIaGIi0tDSNGjMC5c+dw+/ZtHDhwAOPGjUNhYaHa17i4uOCZZ57ByZMnq93+jBkzcODAAcTGxuKPP/7AkSNH0KJFC+XyO3fu4N69ewgKCqp2W0RkmJisERFVwNPTE7///jsKCwvRu3dv+Pv7Y8aMGXB0dISJSflfoa+99hq+//77ardfWFiI0NBQtGjRAi+88AKaNm2KVatWKZdv3rwZvXv3RsOGDavdFhEZJg6KS0RUA3JyctCsWTNs2bIFgYGBNdJGfn4+mjRpgk2bNqFr16410gYRSY9n1oiIaoC1tTW+/fbbCgfPra74+Hi89957TNSIajmeWSMiIiIyYDyzRkRERGTAmKwRERERGTAma0REREQGjMkaERERkQFjskZERERkwJisERERERkwJmtEREREBozJGhEREZEBY7JGREREZMD+HxODNDjvaQ3HAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHVCAYAAAB4wWYZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABodUlEQVR4nO3deVhUVR8H8O+wDwiDyJ5s4m64hBtupZKkZvpm5pbiXol7WZJrm5r1llqWZeXyqmWWW5qaW7khKoormQtbCighMwgIwpz3D2NkYIAZneHOxPfzPPPo3Hvmnt+5y8yPc+89VyaEECAiIiIii2UldQBERERE9GiY0BERERFZOCZ0RERERBaOCR0RERGRhWNCR0RERGThmNARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4ZjQEZHZCAwMxIgRI6qlrhMnTqBDhw5wcnKCTCZDfHx8tdRrTPPmzYNMJjNpHU899RSeeuopk9ZBRI+OCR2RBFatWgWZTKZ52djY4LHHHsOIESNw/fp1k9V78eJFzJs3D0lJSSarQwo3btzAvHnz9E7K7t27hwEDBiArKwuffPIJ/ve//yEgIMC0QZLe5s2bh8DAQK1pv/76K0aPHo3HH38c1tbW5eaXplarsWjRIgQFBcHBwQHNmzfHd999V67c8ePHMX78eISGhsLW1rbC5Dg1NRVvv/022rZti9q1a8Pd3R1PPfUU9u7dq1fsRNXBRuoAiGqyd955B0FBQbh79y6OHTuGVatW4fDhwzh//jwcHByMXt/Fixfx9ttv46mnnvpX/ejcuHEDb7/9NgIDA9GyZcsqy1+9ehXJyclYsWIFxowZY/oALdivv/4qdQgAgPXr12PDhg144okn4OvrW2nZmTNnYuHChRg7dizatGmDrVu3YsiQIZDJZBg0aJCm3C+//IKvv/4azZs3R7169fDnn3/qXN7WrVvxwQcfoF+/foiMjERRURHWrFmDp59+Gt9++y1Gjhxp1LYSPQz20BFJqGfPnnjppZcwZswYfP3113j99ddx9epVbNu2TerQDJKbmyt1CAa5efMmAMDV1bXKspbWNmOzs7ODnZ2d1GFg/vz5UKlUOHLkCFq0aFFhuevXr+O///0voqKi8NVXX2Hs2LH4+eef0blzZ0yfPh3FxcWasq+++iqUSiVOnjyJp59+usJldu3aFSkpKVi/fj2ioqIwefJkHD16FI0bN8acOXOM2k6ih8WEjsiMdO7cGcD9HqQShYWFmDNnDkJDQ6FQKODk5ITOnTvjwIED5T7//fffIzQ0FM7OznBxcUFISAiWLFkC4P5p3gEDBgC4/wNVcrr3t99+03x+586d6Ny5M5ycnODs7IzevXvjwoULWnWMGDECtWrVwtWrV9GrVy84Oztj6NChFbap5DqvP/74Ay+++CJcXFxQp04dTJ48GXfv3q1ynVy7dg0DBgyAm5sbHB0d0b59e+zYsUMz/7fffkObNm0AACNHjtS0a9WqVTqXN2LECDz55JMAgAEDBkAmk2muEausbbm5uXjttdfg5+cHe3t7NGrUCB999BGEEFrLl8lkmDBhAjZu3IimTZtCLpcjLCwM586dAwB8+eWXqF+/PhwcHPDUU0/pffr78OHDaNOmDRwcHBAcHIwvv/yywrJr165FaGgo5HI53NzcMGjQIKSmpmrmT5gwAbVq1UJeXl65zw4ePBje3t6axEfXNXR3797FvHnz0LBhQzg4OMDHxwfPP/+81n6rVquxePFiNGvWDA4ODvDy8sLLL7+M27dv69Xesnx9fWFra1tlua1bt+LevXsYP368ZppMJsOrr76Kv/76CzExMZrpXl5ekMvlVS6zWbNmcHd315pmb2+PXr164a+//kJOTo4BLSEyDZ5yJTIjJT/utWvX1kxTqVT4+uuvMXjwYIwdOxY5OTn45ptvEBERgePHj2tOMe7ZsweDBw9G9+7d8cEHHwAAEhIScOTIEUyePBldunTBpEmTsHTpUrz11lto0qQJAGj+/d///ofIyEhERETggw8+QF5eHr744gt06tQJp0+f1jpFW1RUhIiICHTq1AkfffQRHB0dq2zbiy++iMDAQCxYsADHjh3D0qVLcfv2baxZs6bCz2RkZKBDhw7Iy8vDpEmTUKdOHaxevRrPPfccfvzxR/znP/9BkyZN8M4772DOnDkYN26cJinu0KGDzmW+/PLLeOyxxzB//nxMmjQJbdq0gZeXV6VtE0Lgueeew4EDBzB69Gi0bNkSu3fvxvTp03H9+nV88sknWnUcOnQI27ZtQ1RUFABgwYIFePbZZ/HGG2/g888/x/jx43H79m0sWrQIo0aNwv79+ytdd+fOnUOPHj3g4eGBefPmoaioCHPnztWKu8T777+P2bNn48UXX8SYMWNw69YtfPrpp+jSpQtOnz4NV1dXDBw4EMuWLcOOHTs0ST4A5OXl4eeff8aIESNgbW2tM5bi4mI8++yz2LdvHwYNGoTJkycjJycHe/bswfnz5xEcHKxZz6tWrcLIkSMxadIkJCYm4rPPPsPp06dx5MgRvZKzh3H69Gk4OTlp9usSbdu21czv1KmTUepKT0+Ho6OjXvs/kckJIqp2K1euFADE3r17xa1bt0Rqaqr48ccfhYeHh7C3txepqamaskVFRaKgoEDr87dv3xZeXl5i1KhRmmmTJ08WLi4uoqioqMJ6N27cKACIAwcOaE3PyckRrq6uYuzYsVrT09PThUKh0JoeGRkpAIgZM2bo1da5c+cKAOK5557Tmj5+/HgBQJw5c0YzLSAgQERGRmreT5kyRQAQhw4d0oo1KChIBAYGiuLiYiGEECdOnBAAxMqVK/WK6cCBAwKA2Lhxo9b0itq2ZcsWAUC89957WtNfeOEFIZPJxJUrVzTTAAh7e3uRmJiomfbll18KAMLb21uoVCrN9OjoaAFAq6wu/fr1Ew4ODiI5OVkz7eLFi8La2lqU/hpPSkoS1tbW4v3339f6/Llz54SNjY1mulqtFo899pjo37+/VrkffvhBABAHDx7UTHvyySfFk08+qXn/7bffCgDi448/LhenWq0WQghx6NAhAUCsW7dOa/6uXbt0TjdU7969RUBAQIXz6tWrV256bm5upfttVFSUMOQn8fLly8LBwUEMGzZM788QmRJPuRJJKDw8HB4eHvDz88MLL7wAJycnbNu2DXXr1tWUsba21lzDpFarkZWVhaKiIrRu3RqnTp3SlHN1dUVubi727NljcBx79uxBdnY2Bg8ejMzMTM3L2toa7dq103l699VXXzWojpLeqhITJ04EcP/C9Ir88ssvaNu2rVaPSq1atTBu3DgkJSXh4sWLBsWgr7Jt++WXX2BtbY1JkyZpTX/ttdcghMDOnTu1pnfv3l2rR7Ndu3YAgP79+8PZ2bnc9GvXrlUYS3FxMXbv3o1+/frB399fM71JkyaIiIjQKrtp0yao1Wq8+OKLWtvR29sbDRo00GxHmUyGAQMG4JdffsGdO3c0n9+wYQMee+yxSnuwfvrpJ7i7u2u2X2kld4lu3LgRCoUCTz/9tFYcoaGhqFWrls79yVjy8/Nhb29fbnrJTUb5+fmPXEdeXh4GDBgAuVyOhQsXPvLyiIyBCR2RhJYtW4Y9e/bgxx9/RK9evZCZmanzx2j16tVo3rw5HBwcUKdOHXh4eGDHjh1QKpWaMuPHj0fDhg3Rs2dP1K1bF6NGjcKuXbv0iuPy5csAgG7dusHDw0Pr9euvv2puIihhY2OjlXTqo0GDBlrvg4ODYWVlVek1ZMnJyWjUqFG56SWn05KTkw2KQR+62pacnAxfX1+tZKyyOEonXgCgUCgAAH5+fjqnV3Zd2a1bt5Cfn19u/QEot24uX74MIQQaNGhQbjsmJCRobceBAwciPz9fcwPOnTt38Msvv2iuK6zI1atX0ahRI9jYVHzFzuXLl6FUKuHp6Vkujjt37pTbn4xJLpejoKCg3PSS6zX1uWauMsXFxRg0aBAuXryIH3/8sco7bomqC6+hI5JQ27Zt0bp1awBAv3790KlTJwwZMgSXLl1CrVq1ANy/wH3EiBHo168fpk+fDk9PT1hbW2PBggVaF6F7enoiPj4eu3fvxs6dO7Fz506sXLkSw4cPx+rVqyuNQ61WA7h/HZ23t3e5+WV/vO3t7WFl9Wh/D5p6QNyHZYy2VXT9WUXTRZkbKx6WWq2GTCbDzp07ddZVsk8BQPv27REYGIgffvgBQ4YMwc8//4z8/HwMHDjQKHF4enpi3bp1Oud7eHg8ch0V8fHxwYEDByCE0NrH0tLSAOCRE7CxY8di+/btWLduHbp16/ZIyyIyJiZ0RGaiJEnr2rUrPvvsM8yYMQMA8OOPP6JevXrYtGmT1g/U3Llzyy3Dzs4Offr0QZ8+faBWqzF+/Hh8+eWXmD17NurXr19hElVyIbunpyfCw8NN0Lr7vTZBQUGa91euXIFara50PLyAgABcunSp3PQ//vhDMx8wfXIYEBCAvXv3IicnR6uXrmwcpuDh4QG5XK7pRS2t7LoJDg6GEAJBQUFo2LBhlct+8cUXsWTJEqhUKmzYsAGBgYFo3759pZ8JDg5GbGws7t27V+GNDcHBwdi7dy86duz4yD1ihmrZsiW+/vprJCQkoGnTpprpsbGxmvkPa/r06Vi5ciUWL16MwYMHP2qoREbFU65EZuSpp55C27ZtsXjxYs0popKeltK9OLGxsVrDLwDA33//rfXeysoKzZs3BwDNKSgnJycAQHZ2tlbZiIgIuLi4YP78+bh37165uG7duvUIrbpv2bJlWu8//fRTAPfH4qtIr169cPz4ca225ubm4quvvkJgYKDmB7uidhlLr169UFxcjM8++0xr+ieffAKZTFZpGx6VtbU1IiIisGXLFqSkpGimJyQkYPfu3Vpln3/+eVhbW+Ptt98u1+snhCi3jwwcOBAFBQVYvXo1du3ahRdffLHKePr374/MzMxy66KkDuB+olhcXIx33323XJmioiKTbScA6Nu3L2xtbfH5559rxbV8+XI89thjFd79XJUPP/wQH330Ed566y1MnjzZWOESGQ176IjMzPTp0zFgwACsWrUKr7zyCp599lls2rQJ//nPf9C7d28kJiZi+fLlaNq0qdYF7WPGjEFWVha6deuGunXrIjk5GZ9++ilatmypudarZcuWsLa2xgcffAClUgl7e3t069YNnp6e+OKLLzBs2DA88cQTGDRoEDw8PJCSkoIdO3agY8eOOn/ADZGYmIjnnnsOzzzzDGJiYrB27VoMGTKk0kFiZ8yYge+++w49e/bEpEmT4ObmhtWrVyMxMRE//fST5tRocHAwXF1dsXz5cjg7O8PJyQnt2rXT6hF8FH369EHXrl0xc+ZMJCUloUWLFvj111+xdetWTJkyRdPDaSpvv/02du3ahc6dO2P8+PEoKirCp59+imbNmuHs2bOacsHBwXjvvfcQHR2NpKQk9OvXD87OzkhMTMTmzZsxbtw4vP7665ryTzzxBOrXr4+ZM2eioKBAr9Otw4cPx5o1azBt2jQcP34cnTt3Rm5uLvbu3Yvx48ejb9++ePLJJ/Hyyy9jwYIFiI+PR48ePWBra4vLly9j48aNWLJkCV544QWD1sHZs2c11/tduXIFSqUS7733HgCgRYsW6NOnDwCgbt26mDJlCj788EPcu3cPbdq0wZYtW3Do0CGsW7dO61R0cnIy/ve//wEATp48CQCaZQYEBGDYsGEAgM2bN+ONN95AgwYN0KRJE6xdu1YrtqefflrnEDJE1Uqq22uJarKSYUtOnDhRbl5xcbEIDg4WwcHBoqioSKjVajF//nwREBAg7O3tRatWrcT27dtFZGSk1tANP/74o+jRo4fw9PQUdnZ2wt/fX7z88ssiLS1Na/krVqwQ9erV0wx5UXoIkwMHDoiIiAihUCiEg4ODCA4OFiNGjBAnT57UlImMjBROTk56t7Vk2JKLFy+KF154QTg7O4vatWuLCRMmiPz8fK2yZYctEUKIq1evihdeeEG4uroKBwcH0bZtW7F9+/Zy9WzdulU0bdpU2NjYVDmESWXDllTUtpycHDF16lTh6+srbG1tRYMGDcSHH36oGaqjBAARFRWlNS0xMVEAEB9++KFecejy+++/i9DQUGFnZyfq1asnli9frlm3Zf3000+iU6dOwsnJSTg5OYnGjRuLqKgocenSpXJlZ86cKQCI+vXr66y37LAlQgiRl5cnZs6cKYKCgoStra3w9vYWL7zwgrh69apWua+++kqEhoYKuVwunJ2dRUhIiHjjjTfEjRs3qmxvWSXHjK5X2X2muLhYc8zY2dmJZs2aibVr15ZbZsn61/Uq3eaS9VzRq+wwQERSkAlhpKtxiYh0mDdvHt5++23cunWr3Gj7RERkHLyGjoiIiMjCMaEjIiIisnBM6IiIiIgsHK+hIyIiIrJw7KEjIiIisnBM6IiIiIgsHAcW1oNarcaNGzfg7Oxsts+fJCIion8XIQRycnLg6+tb5TOmmdDp4caNG/Dz85M6DCIiIqqBUlNTUbdu3UrLMKHTQ8nDuFNTU+Hi4iJxNERERFQTqFQq+Pn5afKQyjCh00PJaVYXFxcmdERERFSt9LncizdFEBEREVk4JnREREREFo4JHREREZGFY0JHREREZOGY0BERERFZOCZ0RERERBaOCR0RERGRheM4dBYiTZmPk0lZkMlk8KstR25hMZzsrJGSlYfs/Huo7WiH0IDauKm6i+NJWajn7gS5nY2mTFWfA4CTSVmVTiv7+dLLzC8swrXMXLQNdIOniwMSM3MrnVYSX5C7U7mYg9yddNZdUTsetm36xlNZPaZer6Ze14/SNl3L0rcdVa2nyj5n6DqvrvXrZGeN1Nv5EELA382xymUZug3KLsuQ/apsXIa2u7JYdX3uYfchUx9/ptgXTiZlITvvHlwdbTXrtzraUR3fh8Y+Zh71N8vUbXvYYyzI3Qk+CrmRf/UNx4TOAnx58CoW/PKH1GEQERFRGVYyYMHzIRjYxl/aOCStnar04e4/mMwRERGZKbUAZmw6hzRlvqRxMKEzY1/+fhXLDlyVOgwiIiKqhBDAqeTbksYgaUJ38OBB9OnTB76+vpDJZNiyZYvWfCEE5syZAx8fH8jlcoSHh+Py5ctaZbKysjB06FC4uLjA1dUVo0ePxp07d7TKnD17Fp07d4aDgwP8/PywaNEiUzftkaUp87FwJ3vmiIiILMHtvEJJ65c0ocvNzUWLFi2wbNkynfMXLVqEpUuXYvny5YiNjYWTkxMiIiJw9+5dTZmhQ4fiwoUL2LNnD7Zv346DBw9i3LhxmvkqlQo9evRAQEAA4uLi8OGHH2LevHn46quvTN6+R5GYmQshdRBERERkESS9KaJnz57o2bOnznlCCCxevBizZs1C3759AQBr1qyBl5cXtmzZgkGDBiEhIQG7du3CiRMn0Lp1awDAp59+il69euGjjz6Cr68v1q1bh8LCQnz77bews7NDs2bNEB8fj48//lgr8TM3Qe5OsJLdPzdPREREVBmzvYYuMTER6enpCA8P10xTKBRo164dYmJiAAAxMTFwdXXVJHMAEB4eDisrK8TGxmrKdOnSBXZ2dpoyERERuHTpEm7f1n2+u6CgACqVSutV3XwUcrz6VHC110tERESGc5XbVV3IhMw2oUtPTwcAeHl5aU338vLSzEtPT4enp6fWfBsbG7i5uWmV0bWM0nWUtWDBAigUCs3Lz8/v0RtkoA0nUnhDBBERkYUIDawtaf1mm9BJKTo6GkqlUvNKTU2t1vrTlPmY8dO5aq2TiIiILJfZJnTe3t4AgIyMDK3pGRkZmnne3t64efOm1vyioiJkZWVpldG1jNJ1lGVvbw8XFxetV3VIU+bj6NVMxCXf5g0RREREFqRGD1tSmaCgIHh7e2Pfvn2aaSqVCrGxsQgLCwMAhIWFITs7G3FxcZoy+/fvh1qtRrt27TRlDh48iHv37mnK7NmzB40aNULt2tJ2j5a24UQKOi7cjyErYjFx/WmpwyEiIiIDZOXW4GFL7ty5g/j4eMTHxwO4fyNEfHw8UlJSIJPJMGXKFLz33nvYtm0bzp07h+HDh8PX1xf9+vUDADRp0gTPPPMMxo4di+PHj+PIkSOYMGECBg0aBF9fXwDAkCFDYGdnh9GjR+PChQvYsGEDlixZgmnTpknU6vLSlPmI3nROc0cre+eIiIgsi0wmbf2SDlty8uRJdO3aVfO+JMmKjIzEqlWr8MYbbyA3Nxfjxo1DdnY2OnXqhF27dsHBwUHzmXXr1mHChAno3r07rKys0L9/fyxdulQzX6FQ4Ndff0VUVBRCQ0Ph7u6OOXPmmNWQJYmZuRyehIiIyIJJfZerTAjBVKIKKpUKCoUCSqXSJNfTpSnz0XHhfiZ1REREFmpC12C8HtHYqMs0JP8w22voahIfhRwLng+B9T/9tdYyGfo/8ZjEUREREZG+Pv/tKtKU+ZLVL+kpV3pgYBt/dGnogaTMPAS6O8JHIUeQuxM++vVPqUMjIiKiKqgFkJSZBx+FXJL62UNnRnwUcoQF19HsDP1D60ocEREREenDSgYEujtKV79kNVOVbqruSh0CERER6eG5Fr6S9c4BTOjM2tJ9l6UOgYiIiPQQ3sSr6kImxITOTKUp87Hvj1tSh0FERER68HOTrncOYEJnthIzc6UOgYiIiPSUV6iWtH4mdGYqyN1J6hCIiIhIT0euSHtWjQmdmfJRyDGkrZ/UYRAREZEepB6HjgmdGZvYvYHUIRAREZEeSsahkwoTOjO2NiZZ6hCIiIhIDxyHjnRKU+Zj2W9XpQ6DiIiI9DD+qWBJx6Hjo7/MRJoyH4mZuZqbIdbHsneOiIjIUnSs7yFp/UzozMCGEymI3nQOagHIAAipAyIiIiKDSHm6FeApV8mlKfM1yRzAZI6IiMgSXbyhlLR+JnQSS8zM1SRzREREZJl2nE2TtH4mdBILcneClUzqKIiIiOhRBHvWkrR+JnQS81HIseD5EFjL7md1zO2IiIgsj421tCmVTAjBE35VUKlUUCgUUCqVcHFxMUkdacp8JGXmaS6qjEu6jUW7/kDKbelGnSYiIiL9WMtkODyjq1GHLjEk/+BdrmbCRyHX2glCA8FkjoiIyEIUC4GkzDzJxqLjKVczlZiZK3UIREREpCc+KYJ0yi8skjoEIiIi0tNzLXwlfVIEEzozdY09dERERBajgRfvciUd2ga6SR0CERER6envO4WS1s+Ezky18KuNJ/xdpQ6DiIiI9JCVy4SOdDiTehunUrKlDoOIiIj0sDX+BtKU0o1OwYTODG04kYK+y45KHQYRERHpSQA4lXxbsvqZ0JmZNGU+ojedkzoMIiIiMpCUj2pgQmdmEjNzoeazO4iIiCyKDEBoYG3J6mdCZ2aC3J1gxQe6EhERWZQZvRpzHDp6wEchx4LnQ2AtY1ZHRERkKeq6SpfMAUzozNLANv44PKMrnmroLnUoREREpIekv6V9IAATOjPlo5AjyN1J6jCIiIhID5k5HIeOKuBoZyN1CERERKQHd2c7SetnQmem0pT5+OL3q1KHQURERHq4fvuupPUzoTNTHL6EiIjIcnx/IoVPiqDyOHwJERGR5VALICkzT7L6mdCZkTRlPo5ezdRk+KM7BUkcEREREelDJgMC3R0lq59X3ZuJDSdSEL3pHNTi/mjTwP3nwhEREZH5iwwLkHRgYSZ0ZqDk+a0l18wxkSMiIrIs9T1rSVo/T7maAd4AQUREZNmu3eLAwjUeb4AgIiKybHVqcRy6SuXk5GDKlCkICAiAXC5Hhw4dcOLECc18IQTmzJkDHx8fyOVyhIeH4/Lly1rLyMrKwtChQ+Hi4gJXV1eMHj0ad+7cqe6mVKjs81tluH9xJREREVkGFwdbSes3+4RuzJgx2LNnD/73v//h3Llz6NGjB8LDw3H9+nUAwKJFi7B06VIsX74csbGxcHJyQkREBO7efTDA39ChQ3HhwgXs2bMH27dvx8GDBzFu3DipmqRTyfNbvxvbHkeju+HojG4Y2SFQ6rCIiIhIDwnpKknrlwkhzPbqrfz8fDg7O2Pr1q3o3bu3ZnpoaCh69uyJd999F76+vnjttdfw+uuvAwCUSiW8vLywatUqDBo0CAkJCWjatClOnDiB1q1bAwB27dqFXr164a+//oKvr2+VcahUKigUCiiVSri4uJimsTpM+f4UtsSnVVt9RERE9HCsAByJ7mbUO10NyT/MuoeuqKgIxcXFcHBw0Joul8tx+PBhJCYmIj09HeHh4Zp5CoUC7dq1Q0xMDAAgJiYGrq6ummQOAMLDw2FlZYXY2Fid9RYUFEClUmm9qtuXv19lMkdERGQh1ODAwhVydnZGWFgY3n33Xdy4cQPFxcVYu3YtYmJikJaWhvT0dACAl5eX1ue8vLw089LT0+Hp6ak138bGBm5ubpoyZS1YsAAKhULz8vPzM0HrKpamzMeCnX9Ua51ERET08GSQdmBhs07oAOB///sfhBB47LHHYG9vj6VLl2Lw4MGwsjJd6NHR0VAqlZpXamqqyerSJTFT2lufiYiIyDAd69eRdGBhs0/ogoOD8fvvv+POnTtITU3F8ePHce/ePdSrVw/e3t4AgIyMDK3PZGRkaOZ5e3vj5s2bWvOLioqQlZWlKVOWvb09XFxctF7VKcjdCbzJlYiIyHKM7Bgoaf1mn9CVcHJygo+PD27fvo3du3ejb9++CAoKgre3N/bt26cpp1KpEBsbi7CwMABAWFgYsrOzERcXpymzf/9+qNVqtGvXrtrboY+Df96SOgQiIiIygKOdtMOWmP2jv3bv3g0hBBo1aoQrV65g+vTpaNy4MUaOHAmZTIYpU6bgvffeQ4MGDRAUFITZs2fD19cX/fr1AwA0adIEzzzzDMaOHYvly5fj3r17mDBhAgYNGqTXHa7VreQxYGZ76zERERGV42gnbR+Z2ffQKZVKREVFoXHjxhg+fDg6deqE3bt3w9b2fib8xhtvYOLEiRg3bhzatGmDO3fuYNeuXVp3xq5btw6NGzdG9+7d0atXL3Tq1AlfffWVVE2qFB8DRkREZHlWHUmStH6zHofOXFTnOHRpynx0XLifSR0REZEFkQE4ynHoqETZx4ARERGR+RPgOHRURsljwN7t20zqUIiIiEgPMhnHoSMdfBRy3C0qljoMIiIi0kPUU8GSjkNn9ne51iRpynwkZuYiyN0JAGBvw3ybiIjI3PkoHPB6RGNJY2BCZyY2nEhB9KZzUAtoBhXmfRFERETmL115F2nKfD4poqYrGXuu5M5WASZzRERElkIAOJV8W9IYmNCZAY49R0REZNmkHgSOCZ0ZCHJ3ghVHKSEiIrJYoYG1Ja2fCZ0ZKDv2HHM7IiIiyxHk7iTp9XMAEzqzUTL23LjO9cAxhYmIiCxHYmYuzqTyGjoq5evD13g9HRERkYU5mcSEjv7BmyOIiIgsk5RPiQCY0JkV3hxBRERkmRztbCWtnwmdGSl7cwQRERGZPxmk76HjkyLMTJeGHlg8qAWsZDIcuZqJ9bGpUodERERElTCHq6WY0JmR0o//spIBEc28pQ6JiIiI9JCUmcdHf1H5x3+pBbDzfLq0QREREZFezl7PlrR+JnRmgne4EhERWa5FOy8hTZkvWf1M6MwE73AlIiKyXMVCICkzT7L6mdCZCT7+i4iIyHJZyaS905U3RZiRgW380aWhB+KSbmPid6elDoeIiIj0NP6pYN4UQQ/4KORwq2VnFrdAExERkX68FQ6S1s+EzgwFuTtJHQIREREZ4JaqQNL6mdCZoYN/3pI6BCIiIjJAtyaektbPhM7MlIxHR0RERJahmY8LWvjVljQGJnRmhuPRERERWZYGXrWkDoEJnbnheHRERESWZWv8DUkHFQaY0JmdkvHomNMRERFZBgHgVPJtSWNgQmeGBrbxx+s9GkodBhEREelJSHy5FBM6M3W3qFjqEIiIiEhPoYG8KYJ0CG/iJXUIREREZCGY0JmpFn61EVhHumfCERERkf6SMvMkrZ8JnZlKU+Yj6W9pdw4iIiLSj6OdtCmVjaEfuHz5MrZu3YqkpCTIZDIEBQWhX79+qFevniniq7HiJL5bhoiIiPSXV6iWtH6DEroFCxZgzpw5UKvV8PT0hBACt27dwowZMzB//ny8/vrrpoqzxrmdVyh1CERERKQnqXvo9K79wIEDmDVrFmbOnInMzEykpaUhPT1dk9DNmDEDBw8eNGWsNYqQ+v5nIiIi0ttft6UdWFjvHrrly5djzJgxmDdvntZ0Nzc3vPPOO0hPT8cXX3yBLl26GDvGGsnNyV7qEIiIiEhPWbnSnlnTu4fu+PHjGDZsWIXzhw0bhmPHjhklKAJCA2rzaRFEREQWQibxj7beCV1GRgYCAwMrnB8UFIT09HRjxES4/wiwGT0bSx0GERER6cFVbidp/XondHfv3oWdXcXB2traorCQF/Ibk6OdtdQhEBERkR6kflKEQXe5fv3116hVq5bOeTk5OUYJiO7bcCIFs7dekDoMIiIisgB6J3T+/v5YsWJFlWWMqbi4GPPmzcPatWuRnp4OX19fjBgxArNmzYLsn5PVQgjMnTsXK1asQHZ2Njp27IgvvvgCDRo00CwnKysLEydOxM8//wwrKyv0798fS5YsqTA5lVqaMh8zfjondRhERESkp7ik23i2hVyy+vVO6JKSkkwYhm4ffPABvvjiC6xevRrNmjXDyZMnMXLkSCgUCkyaNAkAsGjRIixduhSrV69GUFAQZs+ejYiICFy8eBEODg4AgKFDhyItLQ179uzBvXv3MHLkSIwbNw7r16+v9jbpIy75NjhoCRERkeXIzpf2sjODnxRRnY4ePYq+ffuid+/eAIDAwEB89913OH78OID7vXOLFy/GrFmz0LdvXwDAmjVr4OXlhS1btmDQoEFISEjArl27cOLECbRu3RoA8Omnn6JXr1746KOP4OvrK03jKsEx6IiIiCyL1D/deid0S5cu1atcSc+ZMXTo0AFfffUV/vzzTzRs2BBnzpzB4cOH8fHHHwMAEhMTkZ6ejvDwcM1nFAoF2rVrh5iYGAwaNAgxMTFwdXXVJHMAEB4eDisrK8TGxuI///lPuXoLCgpQUFCgea9SqYzWJn20DnSr1vqIiIjo0bg5SXuXq94J3SeffFJlGZlMZtSEbsaMGVCpVGjcuDGsra1RXFyM999/H0OHDgUAzTApXl5eWp/z8vLSzEtPT4enp6fWfBsbG7i5uVU4zMqCBQvw9ttvG60dhvJRyDGknR/Wx6ZKFgMRERHp70RiFno3l+6sn94JXWJioinj0OmHH37AunXrsH79ejRr1gzx8fGYMmUKfH19ERkZabJ6o6OjMW3aNM17lUoFPz8/k9VX1oYTKUzmiIiILMjqY8l4+alg+CikuTHCrK+hmz59OmbMmIFBgwYBAEJCQpCcnIwFCxYgMjIS3t7eAO4Peuzj46P5XEZGBlq2bAkA8Pb2xs2bN7WWW1RUhKysLM3ny7K3t4e9vTSP3uIdrkRERJZHCCApM0+yhE7vgYWlkJeXBysr7RCtra2hVqsB3H86hbe3N/bt26eZr1KpEBsbi7CwMABAWFgYsrOzERcXpymzf/9+qNVqtGvXrhpaYZjEzFze4UpERGRhrGRAoLujZPWbdQ9dnz598P7778Pf3x/NmjXD6dOn8fHHH2PUqFEA7l+zN2XKFLz33nto0KCBZtgSX19f9OvXDwDQpEkTPPPMMxg7diyWL1+Oe/fuYcKECRg0aJBZ3uEa5O4EGcCkjoiIyIK0CXSTrHcOAGTCjMfIyMnJwezZs7F582bcvHkTvr6+GDx4MObMmaN5DFnJwMJfffUVsrOz0alTJ3z++edo2LChZjlZWVmYMGGC1sDCS5cu1XtgYZVKBYVCAaVSCRcXF5O0tbQNJ1LwJk+7EhERWQwrGXBkRjejJnWG5B9mndCZi+pO6ADgTOpt9F12tFrqIiIiokf33dj2CAuuY7TlGZJ/PNQpV7VajStXruDmzZua69lKdOnS5WEWSWXsOJsmdQhERESkJ4u7hu7YsWMYMmQIkpOTyz3RQCaTobi42GjB1VRpynx8daj6h4khIiKihzO4rb+k19AZnNC98soraN26NXbs2AEfHx/IZDJTxFWjnUzKkjoEIiIiMkATH2dJ6zc4obt8+TJ+/PFH1K9f3xTxEMAkmYiIiAxi8Dh07dq1w5UrV0wRC/0jNKC21CEQERGRAU4m3Za0foN76CZOnIjXXnsN6enpCAkJga2trdb85s2bGy24mspHIceQtn5Yf5yP/yIiIrIEW+Nv4M2ejS3n0V/9+/cHAM3gvsD9U4RCCN4UYURNfKpneBQiIiJ6dALAqeTb6N3cQhK6xETefVkdBJ8VQUREZFGkHNnX4IQuICDAFHFQGW5O9lKHQERERAYIDZTuGviHGlj46tWrWLx4MRISEgAATZs2xeTJkxEcHGzU4Goy3hhBRERkOaQen8Lgu1x3796Npk2b4vjx42jevDmaN2+O2NhYNGvWDHv27DFFjDWSj0KOxl76PWuWiIiIpCUAJGXmSVa/wT10M2bMwNSpU7Fw4cJy09988008/fTTRguuJktT5uOPjDtSh0FERER6kEHaR38Z3EOXkJCA0aNHl5s+atQoXLx40ShBEZCYmSt1CERERGQhDE7oPDw8EB8fX256fHw8PD09jRETAQhyd5L8fDwRERHpx+JOuY4dOxbjxo3DtWvX0KFDBwDAkSNH8MEHH2DatGlGD7Cm8lHI0TawNmIlHnmaiIiIqib1KVeDE7rZs2fD2dkZ//3vfxEdHQ0A8PX1xbx58zBp0iSjB1hTpSnzmcwRERFZCKlHjzUooSsqKsL69esxZMgQTJ06FTk5OQAAZ2dnkwRXk32677LUIRAREZEBkjLzJHv0l0HX0NnY2OCVV17B3bt3AdxP5JjMGV+aMp/PcSUiIrIgVjILu8u1bdu2OH36tClioX/wDlciIiLL8mbPxpL1zgEPcQ3d+PHj8dprr+Gvv/5CaGgonJyctOY3b97caMHVVCV3uEp9Pp6IiIj0U9dVumQOeIiEbtCgQQCgdQOETCaDEAIymQzFxcXGi66G8lHIsbB/CN786ZzUoRAREZEepD67ZnBCl5iYaIo4qIyBbfyxL+Emfr2YIXUoREREVIWs3EJJ6zc4oQsICDBFHFRGmjKfyRwREZGFcHOyk7R+gxO6NWvWVDp/+PDhDx0MPbCXyRwREZHFcHW0lbR+gxO6yZMna72/d+8e8vLyYGdnB0dHRyZ0RnIz567UIRAREZGeXOXS9tAZPGzJ7du3tV537tzBpUuX0KlTJ3z33XemiLFGCm/iJXUIREREpKfQwNqS1m9wQqdLgwYNsHDhwnK9d/TwWvjVRtfGHlKHQURERFWQSR0AjJTQAfefInHjxg1jLa7G23AiBQf+uCV1GERERFQFgfuP/ZKSwdfQbdu2Teu9EAJpaWn47LPP0LFjR6MFVpOlKfMxg2PQERERWQxHO6P1kT0UgxO6fv36ab2XyWTw8PBAt27d8N///tdYcdVoiZm5fEoEERGRBfnrdj5a+El3HZ3BCZ1arTZFHFSKk5211CEQERGRAbbF30Dv5r6S1f/Q/YOFhYW4dOkSioqKjBkPAUjJkvY8PBERERnm14sZSFPmS1a/wQldXl4eRo0aBUdHRzRr1gwpKSkAgIkTJ2LhwoVGD7Amys67J3UIREREZACpb4wwOKGLjo7G2bNn8dtvv8HBwUEzPTw8HBs2bDBqcDWV1KNNExERkWGsZECgu6Nk9Rt8Dd2WLVuwYcMGtG/fHjLZg5FXmjVrhqtXrxo1uJrK3026HYKIiIgM91wLX/go5JLVb3AP3a1bt+Dp6Vluem5urlaCRw8vt7BY6hCIiIjIAFI/4cnghK5169bYsWOH5n1JEvf1118jLCzMeJHVYEHuTrBibkxERGQxpH70l8GnXOfPn4+ePXvi4sWLKCoqwpIlS3Dx4kUcPXoUv//+uylirHF8FHJ0aeiB3y7xSRFERESW4KbqrmWdcu3UqRPi4+NRVFSEkJAQ/Prrr/D09ERMTAxCQ0NNEWONk6bMZzJHRERkQfYn3JS0foN76AAgODgYK1asMHYs9I+45NtSh0BEREQGsLOV9tFf0tZOOgnBB38RERFZEhcHaYcc07uHzsrKqsq7WGUyGZ8cYQStA92kDoGIiIgMIPVAH3r30G3evBmbNm3S+Zo+fTrs7e1hY/NQZ3ArFRgYCJlMVu4VFRUFALh79y6ioqJQp04d1KpVC/3790dGRobWMlJSUtC7d284OjrC09MT06dPZ+JJRERERnP4z0xJ69c7A+vbt2+5aZcuXcKMGTPw888/Y+jQoXjnnXeMGhwAnDhxAsXFD8ZlO3/+PJ5++mkMGDAAADB16lTs2LEDGzduhEKhwIQJE/D888/jyJEjAIDi4mL07t0b3t7eOHr0KNLS0jB8+HDY2tpi/vz5Ro/XGBIzc6UOgYiIiAyw+59nuUp1p+tDXUN348YNjB07FiEhISgqKkJ8fDxWr16NgIAAY8cHDw8PeHt7a17bt29HcHAwnnzySSiVSnzzzTf4+OOP0a1bN4SGhmLlypU4evQojh07BgD49ddfcfHiRaxduxYtW7ZEz5498e6772LZsmUoLCzUWWdBQQFUKpXWqzoFuTtVa31ERET0aCzqWa5KpRJvvvkm6tevjwsXLmDfvn34+eef8fjjj5sqPi2FhYVYu3YtRo0aBZlMhri4ONy7dw/h4eGaMo0bN4a/vz9iYmIAADExMQgJCYGX14MRnCMiIqBSqXDhwgWd9SxYsAAKhULz8vPzM23DiIiIyKLJIO2zXPVO6BYtWoR69eph+/bt+O6773D06FF07tzZlLGVs2XLFmRnZ2PEiBEAgPT0dNjZ2cHV1VWrnJeXF9LT0zVlSidzJfNL5ukSHR0NpVKpeaWmphq3IVXgKVciIiIyhN7X0M2YMQNyuRz169fH6tWrsXr1ap3lNm3aZLTgyvrmm2/Qs2dP+Pr6mqwOALC3t4e9vb1J66gMT7kSERFZlpJTrlJdQ6d3Qjd8+PAqhy0xpeTkZOzdu1crYfT29kZhYSGys7O1eukyMjLg7e2tKXP8+HGtZZXcBVtSxpykKfORmJmLJxu44/fL0t4xQ0RERPqxkkl7ylXvhG7VqlUmDKNqK1euhKenJ3r37q2ZFhoaCltbW+zbtw/9+/cHcP/O25SUFISFhQEAwsLC8P777+PmzZvw9PQEAOzZswcuLi5o2rRp9TekEhtOpCB60zmoOa4wERGRRWleVyHps1yNP3CcCajVaqxcuRKRkZFaY90pFAqMHj0a06ZNg5ubG1xcXDBx4kSEhYWhffv2AIAePXqgadOmGDZsGBYtWoT09HTMmjULUVFRkp5WLStNmc9kjoiIyELFpyotb9iS6rZ3716kpKRg1KhR5eZ98sknePbZZ9G/f3906dIF3t7eWqdlra2tsX37dlhbWyMsLAwvvfQShg8fbpIx8x5FYmYukzkiIiILdkrCZ7HLBB8cWiWVSgWFQgGlUgkXFxeT1JGmzEfHhfuZ1BEREVmozwa3wrMtjHfjpiH5h0X00NUEPgo5Fjwfwg1CRERkoUIDa0tWN/MHMzKwjT+WDmkldRhERERkoAldgyW9KYIJnZkJDagNK+lGhyEiIqKHMLS98R9/aggmdGakZAy6N3s2ZlJHRERkQaR8jitgIcOW1AQcg46IiMhyOdpJ20fGHjozkKbMx4yfmMwRERFZqnPXlZLWz4TODMQl3wZzOSIiIst17VaupPUzoTMDHAqQiIjIsl3Pzpe0fiZ0ZqB1oBt4DwQREZHl+vVCBtKU0iV1TOjMgI9CjoX9OagwERGRpRKQ9tFfvMvVTAxs448uDT2QlJmHKzdzMHvrBalDIiIiIgNIeQUVO4XMiI9CjrDgOghv6iV1KERERGQgPvqLiIiIyII183Xho79IW2KmtLc+ExERkWEu3lDxpgjSFuTuxEd/ERERWRCpb4pgQmeGfBRyvPpksNRhEBERkQF4UwSVk/w3T7sSERFZChl4UwSVkabMx/Zz6VKHQURERHqa0asxb4ogbbwpgoiIyLI42lpLWj8TOjPkZCftTkFERESGybxTIGn9TOjMUG5hsdQhEBERkQFuZEs3ZAnAhM4sBbk7gaOWEBERWY4f465zHDrS5qOQ48lGHlKHQURERHoSAJIy8ySrnwmdGUpT5uO3S7ekDoOIiIj0ZCUDAt0dpatfspqpQieTsqQOgYiIiAzwZk8OW0JlyGS8go6IiMhSNPVxxstdpH3CExM6MxQaIN1I00RERGSYhLQcSW+IAJjQmSUfhRxD2vpJHQYRERHpQQA4lXxb0hiY0JmpJr4uUodAREREejpy5W9J62dCZ6bieGMEERGRxfj+RArHoSNtacp8bIlPkzoMIiIi0pNacBw6KiMxM1fqEIiIiMgAHIeOyglyd5I6BCIiIjIAx6GjcniXKxERkeXgOHRUodqOdlKHQERERHpISOc4dKRDmjIfy367KnUYREREpAch8Q0RABM6s8RnuRIREVkWRztpUyomdGYoO++e1CEQERGRAfIK1ZLWz4TODLk62kodAhERERng8OVbktbPhM4MtQ50g0zqIIiIiEhvX/x2lU+KIG0+Cjmef+IxqcMgIiIiPanBJ0VU6vr163jppZdQp04dyOVyhISE4OTJk5r5QgjMmTMHPj4+kMvlCA8Px+XLl7WWkZWVhaFDh8LFxQWurq4YPXo07ty5U91N0VuaMh+bTl2XOgwiIiLSkwx8UkSFbt++jY4dO8LW1hY7d+7ExYsX8d///he1a9fWlFm0aBGWLl2K5cuXIzY2Fk5OToiIiMDdu3c1ZYYOHYoLFy5gz5492L59Ow4ePIhx48ZJ0SS9nEzKgpA6CCIiIrIYNlIHUJkPPvgAfn5+WLlypWZaUFCQ5v9CCCxevBizZs1C3759AQBr1qyBl5cXtmzZgkGDBiEhIQG7du3CiRMn0Lp1awDAp59+il69euGjjz6Cr69v9TZKDzIZr6AjIiKyJAL3T7lK9fgvs+6h27ZtG1q3bo0BAwbA09MTrVq1wooVKzTzExMTkZ6ejvDwcM00hUKBdu3aISYmBgAQExMDV1dXTTIHAOHh4bCyskJsbKzOegsKCqBSqbRe1Sk0oHbVhYiIiMhsWMl4yrVC165dwxdffIEGDRpg9+7dePXVVzFp0iSsXr0aAJCeng4A8PLy0vqcl5eXZl56ejo8PT215tvY2MDNzU1TpqwFCxZAoVBoXn5+1ftcVR+FHP1a+lRrnURERPTwxj8VLFnvHGDmCZ1arcYTTzyB+fPno1WrVhg3bhzGjh2L5cuXm7Te6OhoKJVKzSs1NdWk9enSwNO52uskIiKih9Oxvoek9Zt1Qufj44OmTZtqTWvSpAlSUlIAAN7e3gCAjIwMrTIZGRmaed7e3rh586bW/KKiImRlZWnKlGVvbw8XFxetV3W7W1Rc7XUSERHRw5HydCtg5gldx44dcenSJa1pf/75JwICAgDcv0HC29sb+/bt08xXqVSIjY1FWFgYACAsLAzZ2dmIi4vTlNm/fz/UajXatWtXDa14OC39XKUOgYiIiPS07liypPWbdUI3depUHDt2DPPnz8eVK1ewfv16fPXVV4iKigJw/27QKVOm4L333sO2bdtw7tw5DB8+HL6+vujXrx+A+z16zzzzDMaOHYvjx4/jyJEjmDBhAgYNGmSWd7iWyL8n7TPhiIiISH+fHZD2SRFmPWxJmzZtsHnzZkRHR+Odd95BUFAQFi9ejKFDh2rKvPHGG8jNzcW4ceOQnZ2NTp06YdeuXXBwcNCUWbduHSZMmIDu3bvDysoK/fv3x9KlS6Vokt6E4Eh0RERElkTKYUtkgplDlVQqFRQKBZRKZbVdT3cm9Tb6LjtaLXURERHRo4uJ7mbUhM6Q/MOsT7nWZDvOpkkdAhEREenJy8Wew5aQtjRlPr46lCh1GERERKSnDFUBzqTelqx+JnRmKDEzV+oQiIiIyEAnk5jQUSlB7k7g01yJiIgsi4tcuntNmdCZIR+FHAv7h0gdBhERERlAlV8kWd1M6MxUl4bSPkKEiIiIDNM6sLZkdTOhM1Of7rssdQhERESkp14h3mjhx4SOSklT5mP98VSpwyAiIiI9hPq74vOhoZLGwITODJ1MypI6BCIiItLTqZRsSR/7BTChM0syGe9xJSIishQCwKlk6YYsAZjQmaXQAOnOwRMREZHhkv6WdgxZJnRmyEchx5C2flKHQURERHpKycqTtH4mdGZqYBsmdERERJbCyVa6QYUBJnRma8MJ3uVKRERkKZr4OktaPxM6M8RhS4iIiCzLX7d5lyuVkZgp7YWVREREZBj3WvaS1s+EzgwFuTtJHQIREREZoHldhaT1M6EzQz4KOcZ1DpI6DCIiItJTXqFa0vqZ0Jmp3s19pA6BiIiI9JRXeE/S+pnQmancwmKpQyAiIiI9JWVyHDrSwcnOWuoQiIiISE+B7o6S1s+EzgylKfNxPClL6jCIiIhIT3fvSXsNnbTDGlM5G06kIHrTOaiF1JEQERGRvrJyCyWtnz10ZiRNmc9kjoiIyALFJd+WtH4mdGYkMTOXyRwREZEF2hp/A2lK6Z4WwYTOjAS5O8FKJnUUREREZCgBae90ZUJnRnwUcix4PoQbhYiIyMJYyaS905W5g5kZ2MYfKyJDpQ6DiIiIDNC1sSd8FHLJ6mdCZ4bkdrz5mIiIyJK08nOVtH4mdGYoyN1J6hCIiIjIADKJr4FnQmeGfBRyRPdsLHUYREREpKeUv/noL9Lh5SeD0belr9RhEBERkQVgQmfG6rpKd3ElERER6a+2k62k9TOhM1Npynws++2q1GEQERGRHuytrSWtnwmdmUrMzJU6BCIiItJTcz+FpPUzoTNTvNOViIjIcqQp70paPxM6M+WjkGNIWz+pwyAiIiI9XL0p7Zk1JnRmzNaKm4eIiMgS2NtIOxAdMwYzlabMx+pjyVKHQURERHooKBKS1s+EzkzxpggiIiLL4e5sJ2n9TOjMVJC7EyR+iggRERHpKcBN2psZmdCZKR+FHAv7h0gdBhEREVVBBiA0sLakMZh1Qjdv3jzIZDKtV+PGD55xevfuXURFRaFOnTqoVasW+vfvj4yMDK1lpKSkoHfv3nB0dISnpyemT5+OoqKi6m7KQxnYxh8x0d0wpK2/1kN/m9d1gVUF3XeyCv5felq7oNoVzuvayKPCBwzrWnbJZ0rHU3ZeRTGVjaOi5Xeo56YVU2XLq2i96LvOmtd1qTCOlmXGGKo0Xt1V6R1T6eVWtJ5K5lUVU9n5ZbdJRZ8vuy5K03fbVbb9y67bisq19FNUuH+F+rvqvW/o0+bKtndFKtvvyparLL6qYtIV36MeM2XXbWlVbf+qjid9j5mKPl8SX0WfaV7XpcJ6H+aYkaHiNle2TOhYZkXLr2h9V7XNSk972OO37Dp4lO+esssr+52nzzaUAXjC31WvfULf47fsPlFRucq+UzrUc6twXtm2lLACsLB/CHwU0j7dyUbS2vXQrFkz7N27V/PexuZByFOnTsWOHTuwceNGKBQKTJgwAc8//zyOHDkCACguLkbv3r3h7e2No0ePIi0tDcOHD4etrS3mz59f7W15GD4KOeY/H4KJ3esjKTMPge6O8FHIkabM17wHYND/K/v8wyz7YZenb13GKGcuy5AqJkteF9UZhzm20Rz3d1Oud1PHV93zLO2YsuT9SMp4pU7mAEAmhJD2toxKzJs3D1u2bEF8fHy5eUqlEh4eHli/fj1eeOEFAMAff/yBJk2aICYmBu3bt8fOnTvx7LPP4saNG/Dy8gIALF++HG+++SZu3boFOzvdFzAWFBSgoKBA816lUsHPzw9KpRIuLhX/BUBERERkLCqVCgqFQq/8w6xPuQLA5cuX4evri3r16mHo0KFISUkBAMTFxeHevXsIDw/XlG3cuDH8/f0RExMDAIiJiUFISIgmmQOAiIgIqFQqXLhwocI6FyxYAIVCoXn5+XGAXyIiIjJfZp3QtWvXDqtWrcKuXbvwxRdfIDExEZ07d0ZOTg7S09NhZ2cHV1dXrc94eXkhPT0dAJCenq6VzJXML5lXkejoaCiVSs0rNTXVuA0jIiIiMiKzvoauZ8+emv83b94c7dq1Q0BAAH744QfI5aY7X21vbw97e3uTLZ+IiIjImMy6h64sV1dXNGzYEFeuXIG3tzcKCwuRnZ2tVSYjIwPe3t4AAG9v73J3vZa8LylDREREZOksKqG7c+cOrl69Ch8fH4SGhsLW1hb79u3TzL906RJSUlIQFhYGAAgLC8O5c+dw8+ZNTZk9e/bAxcUFTZs2rfb4iYiIiEzBrE+5vv766+jTpw8CAgJw48YNzJ07F9bW1hg8eDAUCgVGjx6NadOmwc3NDS4uLpg4cSLCwsLQvn17AECPHj3QtGlTDBs2DIsWLUJ6ejpmzZqFqKgonlIlIiKifw2zTuj++usvDB48GH///Tc8PDzQqVMnHDt2DB4eHgCATz75BFZWVujfvz8KCgoQERGBzz//XPN5a2trbN++Ha+++irCwsLg5OSEyMhIvPPOO1I1iYiIiMjozHocOnOhVCrh6uqK1NRUjkNHRERE1aJkHNzs7GwoFJU/vcase+jMRU5ODgBwPDoiIiKqdjk5OVUmdOyh04NarcaNGzfg7OwMWUUPOiUiIiIyIiEEcnJy4OvrCyuryu9jZUJHREREZOEsatgSIiIiIiqPCR0RERGRhWNCR0RERGThmNARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4cw6oVuwYAHatGkDZ2dneHp6ol+/frh06ZJmflZWFiZOnIhGjRpBLpfD398fkyZNglKp1JQ5c+YMBg8eDD8/P8jlcjRp0gRLliyRojlEREREJmHWj/76/fffERUVhTZt2qCoqAhvvfUWevTogYsXL8LJyQk3btzAjRs38NFHH6Fp06ZITk7GK6+8ghs3buDHH38EAMTFxcHT0xNr166Fn58fjh49inHjxsHa2hoTJkyQuIVEREREj86inhRx69YteHp64vfff0eXLl10ltm4cSNeeukl5ObmwsZGd74aFRWFhIQE7N+/35ThEhEREVULs+6hK6vkVKqbm1ulZVxcXCpM5krKVLaMgoICFBQUaN6r1WpkZWWhTp06fJYrERERVQtDnuUKYSGKi4tF7969RceOHSssc+vWLeHv7y/eeuutCsscOXJE2NjYiN27d1dYZu7cuQIAX3zxxRdffPHFl+Sv1NTUKvMkiznl+uqrr2Lnzp04fPgw6tatW26+SqXC008/DTc3N2zbtg22trblypw/fx5du3bF5MmTMWvWrArrKttDp1Qq4e/vj9TUVLi4uBinQURERESVUKlU8PPzQ3Z2NhQKRaVlLeKU64QJE7B9+3YcPHhQZzKXk5ODZ555Bs7Ozti8ebPOZO7ixYvo3r07xo0bV2kyBwD29vawt7cvN93FxYUJHREREVUrfS73MuthS4QQmDBhAjZv3oz9+/cjKCioXBmVSoUePXrAzs4O27Ztg4ODQ7kyFy5cQNeuXREZGYn333+/OkInIiIiqjZm3UMXFRWF9evXY+vWrXB2dkZ6ejoAQKFQQC6Xa5K5vLw8rF27FiqVCiqVCgDg4eEBa2trnD9/Ht26dUNERASmTZumWYa1tTU8PDwkaxsRERGRsZj1NXQVdTGuXLkSI0aMwG+//YauXbvqLJOYmIjAwEDMmzcPb7/9drn5AQEBSEpK0isOlUoFhUKhuYOWiIiIyNQMyT/MOqEzF0zoiIiIqLoZkn+Y9TV0RERERFQ1s76GjoiIiMxDSkoKMjMz4e7uDn9/f6nDoTKY0FmYkgOqoKBAM7SKroNL14FnjIOxZBkV1WtouUf9THWw5C8xc12nplJVex9lWxr6WXNd95a8PwPVuw0tkan2u5SUFDRq1AR37+bBwcERly4lmN061Hf7GrucuWBCZ0FKH1CANYBiAIC9vQN++ulHuLm5wd7eHmlpaejffwAKCvI18wBoppU+GCtLEMt+MQAoVT8qPKi146y43MN+5mF+tB/2wHzULzF9YzFGzFVtr5J9ISQkxODllewfpo75Uf5AqGofKj2/ZF34+PjoFWtF+0FF7X2YY6B0O031g2TIOqisjkdNGh72D9OqjsfK4jJkG1bnH8T6fp89zHd02d+Gij6rz/GdmZn5z3Jn4e7d95CZman3/lxVvaXbpisWfdetPt/VD1PO0O8LyVT5LAkD3b59W3z77bdi5MiRolu3bqJ9+/aiT58+Ys6cOeLIkSPGrq5aKJVKAUAolUpJ44iLi/vnMSCj//l3rQAWC8Dqn/fWZR4XMrHUvJLXLAFAxMXFieTkZOHg4Fjusw4OjuLo0aOl5t2ftn379lL1rhUAxNq1a8XRo0dFXFycZpkP4tQul5ycrLNdycnJYu3atVV+Jjk5WWzfvl3Y28s1cdnbO4jt27drYig938HBUSQnJ2u1s2RayfLi4uK04i/5f0mZB22ZpYlJV7mK2lW23qqmlbRHVztKx6zPelm8eLHO/aSkjoraoWt5JfuHoe0oveyS2EvqrWhbll2n2vup7nL67EMPtqX2cVE6/tL7cemYHyxb9/FTdhvpiiUuLq5cu0pvg9Lro7L1V1W5yva/qtZBZZ+t6his7FioeHtal1tOZcdy2eOx9Dqtaj/R9dlHOUYrO370OaZ0fc+WjdmQ7+jKjvmy6/nbb781+Ph+sP5WVLo/V3R864r5QVzWFcZS2To15Lu65F9dx7Iu+h4rpmZI/mG0HrobN25gzpw5WLduHXx9fdG2bVu0bNkScrkcWVlZOHDgAD766CMEBARg7ty5GDhwoLGqroF8/vm3CYAEAGoAowF8A2AtgEQAswEo/plXeloAACAhIQEA/vmLq/Rngbt3X8K+ffv+mfdgWnZ2dql60wBY4aWXXkLp3kIHB0f8+OMPOsvp+iunbE9GRZ8BHvQw3rcWQCYKCqbh2Wef1Yrhvvt/RR46dKhUOx9Mc3V1LbW80p+9//+Seh+0uVap9pYv5+PjU+6vzYSEhHL16orlwbSJKChY9k97yrejdMz6rJcpU6aUWqcl+0nZOrTboXt5JfvOg7/My7ZDe5p2Hfb2Dvjii8/x6qtRpZZbep1rb8uyvSeHDh0qtS8+KFdxzLr3oQfbsvRxcX/f3rx5M958M1qzDN0xAyXHD4ByPRbl96uSWO5LSEjQ7Bule9HL77v6rL/y5UrWW0lsFe1/Fa2DQ4cOoV69ejr33ZLtq32s6t4epY8FoHwvzINll/7e0f9YLrsdAOi1nzzY/pVvw/vrQ99jtOLjp/Jj6v46v3btWpUxV/Qdreuzuo/58ut51KhRpWLRPr51rYOS7V9ayW+Irp7B8se3rphL6tX126V7v6tsPVf1XV1+v9L+Lay4Z7D8saJP76QkjJVFenp6iunTp4sLFy5UWCYvL0+sX79etG/fXnz44YfGqtrkpO6hq6iXAIjT/PWv/7SFoqJeu/vltpeZH/fPC+Ldd9/VsbzSvYUPekXKl9P+K6fkL9EHZUdX+ZmKy5WOoSRGXe3UNU3XZyvu2ay8nK6/Ng2JRVcdusoZul507RNVtVfXZx/8ZV72r/W1a9fq2D/L9hKUrbfi+NauXaujl/Bh9o3KtqWu/b2qmHWtg8r2q7J1lN03dO1/+q6/0uXut3fx4sVl1pmhx3zZ+HRtX33Wc/kel/LL1vX9pO+x/CAuw/cTXW16lGNUVx1V7Z+VfadWtc/GaeI37JivqlzF67my/b18z6Cu47uy9uqKT9c20nc969pG+uxX1pr2aP826V731dVLJ0kP3cWLF1GnTp1Ky8jlcgwePBiDBw/G33//bayq/9XK92A9qjso32tXWja0/6oDSno7Zs8uWxbQ7i28LzExUUc5Ral6S/81XnY5FX2mJFZd5crHoLuduqbp+qyueqFnOV1/beobi646dJUzdL3oUlU7Kv5syV+09/0N7b+Gy9ZRtpegdL266ij71zWgvS8aGnNl2xIov79XFfN92uugsv1KVx1V7X8oNa3qWEr3SD7oodF3X6sqPl3bV9/1XNVxoYu+x7KuuPTdT3R99lGOUV11VLV/VvadWtU+e5/u79nKjvmqylXc3or3d109g7rqqKy9uujaRvqu5xK6Yqlqv9J1lqS0Bz3/5nhjiNESuqqSuUctX1M9OCVQ1RehoXT9MJRW2Q9SRfQ5aEv/SOnbpqpiNfSz+i7vYcpV9QNtzFgeZb3oW0dp+v4Q6qLvD01VyVFZxtqW+ibEVSWw+tTxMNutqvWXDf0SP33qqOpHrzJNKvj/o7Rd1/IeZT/RN1GrbFpVdVT12WxU/Z1a0WcNTY4MVbpeQ/9gq0i2nuVKmGob6aLvH/PAg3bof2NIdTLJwMLW1tbo2rUrsrKytKZnZGTA2traFFXWAE0ABEkcgyE/KvowhzaR/kp/yb5bZp6xt6W57huVrQNzoG/ibChz3R6PEpc5tOlhtlc2DPuefRT67u+P0jNYGam2UVX1BlRXIAYxSUInhEBBQQFat26NCxculJtH/3am+lEh82AOP4RS4zogqVXn9yz3d0tgkoROJpPhp59+Qp8+fRAWFoatW7dqzSMiIiIi4zFZD521tTWWLFmCjz76CAMHDsR7773H3jkiIiIiEzD5kyLGjRuHBg0aYMCAATh48KCpqyMiIiKqcUzSQxcQEKB180PXrl1x7NgxpKammqI6IiIiohrNJD10usbHqV+/Pk6fPo2MjAxTVElERERUY5mkh64iDg4OCAgw7HbfgwcPok+fPvD19YVMJsOWLVsqLPvKK69AJpNh8eLFWtP//PNP9O3bF+7u7nBxcUGnTp1w4MCBh2gBERERkfkxakJXu3ZtuLm5VfkyRG5uLlq0aIFly5ZVWm7z5s04duwYfH19y8179tlnUVRUhP379yMuLg4tWrTAs88+i/T0dINiISIiIjJHRj3lWrpnTAiBV199Fe+88w48PT0fepk9e/ZEz549Ky1z/fp1TJw4Ebt370bv3r215mVmZuLy5cv45ptv0Lx5cwDAwoUL8fnnn+P8+fPw9vZ+6NiIiIiIzIFRE7rIyEit9xMnTkT//v1Rr149Y1ajRa1WY9iwYZg+fTqaNWtWbn6dOnXQqFEjrFmzBk888QTs7e3x5ZdfwtPTE6GhoTqXWVBQgIKCAs17lUplsviJiIiIHpXJhy0xtQ8++AA2NjaYNGmSzvkymQx79+5Fv3794OzsDCsrK3h6emLXrl2oXbu2zs8sWLAAb7/9tinDJiIiIjKaar0pwtji4uKwZMkSrFq1qsInUAghEBUVBU9PTxw6dAjHjx9Hv3790KdPH6Slpen8THR0NJRKpebF4VaIiIjInFl0Qnfo0CHcvHkT/v7+sLGxgY2NDZKTk/Haa68hMDAQALB//35s374d33//PTp27IgnnngCn3/+OeRyOVavXq1zufb29nBxcdF6EREREZkro55ynTZtmtb7wsJCvP/++1AoFFrTP/74Y6PUN2zYMISHh2tNi4iIwLBhwzBy5EgAQF5eHgDAyko7d7WysoJarTZKHERERERSMmpCd/r0aa33HTp0wLVr17SmVXRqtCJ37tzBlStXNO8TExMRHx8PNzc3+Pv7o06dOlrlbW1t4e3tjUaNGgEAwsLCULt2bURGRmLOnDmQy+VYsWIFEhMTy90RS0RERGSJjJrQmWKw3pMnT6Jr166a9yW9gJGRkVi1alWVn3d3d8euXbswc+ZMdOvWDffu3UOzZs2wdetWtGjRwujxEhEREVU3s7/L9amnnoIQQu/ySUlJ5aa1bt0au3fvNmJURERERObDaDdFLFy4UHO9WlViY2OxY8cOY1VNREREVKMZLaG7ePEiAgICMH78eOzcuRO3bt3SzCsqKsLZs2fx+eefo0OHDhg4cCCcnZ2NVfW/VkpKChISEqQOg4iIiMyc0U65rlmzBmfOnMFnn32GIUOGQKVSwdraGvb29pqeu1atWmHMmDEYMWIEHBwcjFX1v1JKSgoaNWqCu3f16/UkIiKimsuo19C1aNECK1aswJdffomzZ88iOTkZ+fn5cHd3R8uWLeHu7m7M6v7VMjMz/0nmRgP4RupwiIiIyIyZ5KYIKysrtGzZEi1btjTF4msYH6kDICIiIjNn0U+KICIiIiImdEREREQWjwkdERERkYVjQkdERERk4Uya0F25cgW7d+9Gfn4+ABj0xAciIiIi0o9JErq///4b4eHhaNiwIXr16oW0tDQAwOjRo/Haa6+ZokoiIiKiGsskCd3UqVNhY2ODlJQUODo6aqYPHDgQu3btMkWVRERERDWWScah+/XXX7F7927UrVtXa3qDBg2QnJxsiiqJiIiIaiyT9NDl5uZq9cyVyMrKgr29vSmqJCIiIqqxTJLQde7cGWvWrNG8l8lkUKvVWLRoEbp27WqKKomIiIhqLJOccl20aBG6d++OkydPorCwEG+88QYuXLiArKwsHDlyxBRVEhEREdVYJumhe/zxx/Hnn3+iU6dO6Nu3L3Jzc/H888/j9OnTCA4ONkWVRERERNUmISEBp06dQkpKitShADBRD11KSgr8/Pwwc+ZMnfP8/f2NVldgYKDOGy3Gjx+PZcuWad4LIdCrVy/s2rULmzdvRr9+/YwWAxEREdUUfwOwwksvvQQAcHBwxKVLCUbNbR6GSXrogoKCcOvWrXLT//77bwQFBRm1rhMnTiAtLU3z2rNnDwBgwIABWuUWL14MmUxm1LqJiIioprkDQA1gLYC1uHs3D5mZmRLHZKIeOiGEzuTpzp07cHBwMGpdHh4eWu8XLlyI4OBgPPnkk5pp8fHx+O9//4uTJ0/Cx8fHqPUTERFRTdRE6gC0GDWhmzZtGoD7d7XOnj1ba+iS4uJixMbGomXLlsasUkthYSHWrl2LadOmaRLKvLw8DBkyBMuWLYO3t7deyykoKEBBQYHmvUqlMkm8RERERMZg1ITu9OnTAO730J07dw52dnaaeXZ2dmjRogVef/11Y1apZcuWLcjOzsaIESM006ZOnYoOHTqgb9++ei9nwYIFePvtt00QIREREZHxGTWhO3DgAABg5MiRWLJkCVxcXIy5+Cp988036NmzJ3x9fQEA27Ztw/79+zWJpr6io6M1vY3A/R46Pz8/o8ZKREREZCwmuYZu5cqVplhspZKTk7F3715s2rRJM23//v24evUqXF1dtcr2798fnTt3xm+//aZzWfb29nyiBREREVkMkyR0AHDy5En88MMPSElJQWFhoda80kmXsaxcuRKenp7o3bu3ZtqMGTMwZswYrXIhISH45JNP0KdPH6PHQERERCQFkyR033//PYYPH46IiAj8+uuv6NGjB/78809kZGTgP//5j9HrU6vVWLlyJSIjI2Fj86BJ3t7eOm+E8Pf3N/rwKURERERSMck4dPPnz8cnn3yCn3/+GXZ2dliyZAn++OMPvPjiiyYZeG/v3r1ISUnBqFGjjL5sIiIiInNnkh66q1evak592tnZITc3FzKZDFOnTkW3bt2Mfgdpjx49IITQq6y+5YiIiIgshUl66GrXro2cnBwAwGOPPYbz588DALKzs5GXl2eKKomIiIhqLJP00HXp0gV79uxBSEgIBgwYgMmTJ2P//v3Ys2cPunfvbooqiYiIiGoskyR0n332Ge7evQsAmDlzJmxtbXH06FH0798fs2bNMkWVRERERDWWSRI6Nzc3zf+trKwwY8YMzfv8/HxTVElERERUY5nkGjpdCgoK8PHHH3O4ECIiIiIjM2pCV1BQgOjoaLRu3RodOnTAli1bANwf9DcoKAiffPIJpk6daswqiYiIiGo8o55ynTNnDr788kuEh4fj6NGjGDBgAEaOHIljx47h448/xoABA2BtbW3MKomIiIhqPKMmdBs3bsSaNWvw3HPP4fz582jevDmKiopw5swZyGQyY1ZFRERERP8w6inXv/76C6GhoQCAxx9/HPb29pg6dSqTOSIiIiITMmpCV1xcDDs7O817Gxsb1KpVy5hVEBEREVEZRj3lKoTAiBEjYG9vDwC4e/cuXnnlFTg5OWmV27RpkzGrJSIiIqrRjJrQRUZGar1/6aWXjLl4IiIiItLBqAndypUrjbk4IiIiItJDtQ0sTERERESmYZJHf9HDS0lJQWZmJhISEqQOhYiIiCwEEzozkpKSgkaNmuDu3TypQyEiIiILUqNOuS5btgyBgYFwcHBAu3btcPz4calD0pKZmflPMrcWwLtSh0NEREQWosYkdBs2bMC0adMwd+5cnDp1Ci1atEBERARu3rwpdWg6NAEQJHUQREREZCFqTEL38ccfY+zYsRg5ciSaNm2K5cuXw9HREd9++63UoQG4f7qV180RERHRw6gR19AVFhYiLi4O0dHRmmlWVlYIDw9HTExMufIFBQUoKCjQvFcqlQAAlUplkvhSU1MRGtoGBQX5/0yJA5D8z/+T/8XTzCEGTuM0TjPNNHOIgdM4zdTT7rtz545JcoSSZQohqi4saoDr168LAOLo0aNa06dPny7atm1brvzcuXMFAL744osvvvjiiy/JX6mpqVXmOjWih85Q0dHRmDZtmua9Wq1GVlYW6tSpA5lM9kjLVqlU8PPzQ2pqKlxcXB41VHpE3B7mhdvDvHB7mBduD/Nj6m0ihEBOTg58fX2rLFsjEjp3d3dYW1sjIyNDa3pGRga8vb3Llbe3t9c8j7aEq6urUWNycXHhAWlGuD3MC7eHeeH2MC/cHubHlNtEoVDoVa5G3BRhZ2eH0NBQ7Nu3TzNNrVZj3759CAsLkzAyIiIiokdXI3roAGDatGmIjIxE69at0bZtWyxevBi5ubkYOXKk1KERERERPZIak9ANHDgQt27dwpw5c5Ceno6WLVti165d8PLyqtY47O3tMXfu3HKndEka3B7mhdvDvHB7mBduD/NjTttEJoQ+98ISERERkbmqEdfQEREREf2bMaEjIiIisnBM6IiIiIgsHBM6IiIiIgvHhK4aLVu2DIGBgXBwcEC7du1w/PhxqUP6V1qwYAHatGkDZ2dneHp6ol+/frh06ZJWmbt37yIqKgp16tRBrVq10L9//3IDT6ekpKB3795wdHSEp6cnpk+fjqKioupsyr/SwoULIZPJMGXKFM00bo/qdf36dbz00kuoU6cO5HI5QkJCcPLkSc18IQTmzJkDHx8fyOVyhIeH4/Lly1rLyMrKwtChQ+Hi4gJXV1eMHj0ad+7cqe6mWLzi4mLMnj0bQUFBkMvlCA4Oxrvvvqv17E5uD9M6ePAg+vTpA19fX8hkMmzZskVrvrHW/9mzZ9G5c2c4ODjAz88PixYtMm5DHv1JqaSP77//XtjZ2Ylvv/1WXLhwQYwdO1a4urqKjIwMqUP714mIiBArV64U58+fF/Hx8aJXr17C399f3LlzR1PmlVdeEX5+fmLfvn3i5MmTon379qJDhw6a+UVFReLxxx8X4eHh4vTp0+KXX34R7u7uIjo6Woom/WscP35cBAYGiubNm4vJkydrpnN7VJ+srCwREBAgRowYIWJjY8W1a9fE7t27xZUrVzRlFi5cKBQKhdiyZYs4c+aMeO6550RQUJDIz8/XlHnmmWdEixYtxLFjx8ShQ4dE/fr1xeDBg6VokkV7//33RZ06dcT27dtFYmKi2Lhxo6hVq5ZYsmSJpgy3h2n98ssvYubMmWLTpk0CgNi8ebPWfGOsf6VSKby8vMTQoUPF+fPnxXfffSfkcrn48ssvjdYOJnTVpG3btiIqKkrzvri4WPj6+ooFCxZIGFXNcPPmTQFA/P7770IIIbKzs4Wtra3YuHGjpkxCQoIAIGJiYoQQ9w9wKysrkZ6erinzxRdfCBcXF1FQUFC9DfiXyMnJEQ0aNBB79uwRTz75pCah4/aoXm+++abo1KlThfPVarXw9vYWH374oWZadna2sLe3F999950QQoiLFy8KAOLEiROaMjt37hQymUxcv37ddMH/C/Xu3VuMGjVKa9rzzz8vhg4dKoTg9qhuZRM6Y63/zz//XNSuXVvr++rNN98UjRo1MlrsPOVaDQoLCxEXF4fw8HDNNCsrK4SHhyMmJkbCyGoGpVIJAHBzcwMAxMXF4d69e1rbo3HjxvD399dsj5iYGISEhGgNPB0REQGVSoULFy5UY/T/HlFRUejdu7fWege4Parbtm3b0Lp1awwYMACenp5o1aoVVqxYoZmfmJiI9PR0re2hUCjQrl07re3h6uqK1q1ba8qEh4fDysoKsbGx1deYf4EOHTpg3759+PPPPwEAZ86cweHDh9GzZ08A3B5SM9b6j4mJQZcuXWBnZ6cpExERgUuXLuH27dtGibXGPClCSpmZmSguLi73VAovLy/88ccfEkVVM6jVakyZMgUdO3bE448/DgBIT0+HnZ0dXF1dtcp6eXkhPT1dU0bX9iqZR4b5/vvvcerUKZw4caLcPG6P6nXt2jV88cUXmDZtGt566y2cOHECkyZNgp2dHSIjIzXrU9f6Lr09PD09tebb2NjAzc2N28NAM2bMgEqlQuPGjWFtbY3i4mK8//77GDp0KABwe0jMWOs/PT0dQUFB5ZZRMq927dqPHCsTOvpXi4qKwvnz53H48GGpQ6mxUlNTMXnyZOzZswcODg5Sh1PjqdVqtG7dGvPnzwcAtGrVCufPn8fy5csRGRkpcXQ1zw8//IB169Zh/fr1aNasGeLj4zFlyhT4+vpye5BBeMq1Gri7u8Pa2rrcXXsZGRnw9vaWKKp/vwkTJmD79u04cOAA6tatq5nu7e2NwsJCZGdna5UvvT28vb11bq+SeaS/uLg43Lx5E0888QRsbGxgY2OD33//HUuXLoWNjQ28vLy4PaqRj48PmjZtqjWtSZMmSElJAfBgfVb2feXt7Y2bN29qzS8qKkJWVha3h4GmT5+OGTNmYNCgQQgJCcGwYcMwdepULFiwAAC3h9SMtf6r4zuMCV01sLOzQ2hoKPbt26eZplarsW/fPoSFhUkY2b+TEAITJkzA5s2bsX///nLd3KGhobC1tdXaHpcuXUJKSopme4SFheHcuXNaB+mePXvg4uJS7seQKte9e3ecO3cO8fHxmlfr1q0xdOhQzf+5PapPx44dyw3j8+effyIgIAAAEBQUBG9vb63toVKpEBsbq7U9srOzERcXpymzf/9+qNVqtGvXrhpa8e+Rl5cHKyvtn2Jra2uo1WoA3B5SM9b6DwsLw8GDB3Hv3j1NmT179qBRo0ZGOd0KgMOWVJfvv/9e2Nvbi1WrVomLFy+KcePGCVdXV6279sg4Xn31VaFQKMRvv/0m0tLSNK+8vDxNmVdeeUX4+/uL/fv3i5MnT4qwsDARFhammV8yTEaPHj1EfHy82LVrl/Dw8OAwGUZS+i5XIbg9qtPx48eFjY2NeP/998Xly5fFunXrhKOjo1i7dq2mzMKFC4Wrq6vYunWrOHv2rOjbt6/OYRpatWolYmNjxeHDh0WDBg04TMZDiIyMFI899phm2JJNmzYJd3d38cYbb2jKcHuYVk5Ojjh9+rQ4ffq0ACA+/vhjcfr0aZGcnCyEMM76z87OFl5eXmLYsGHi/Pnz4vvvvxeOjo4ctsRSffrpp8Lf31/Y2dmJtm3bimPHjkkd0r8SAJ2vlStXasrk5+eL8ePHi9q1awtHR0fxn//8R6SlpWktJykpSfTs2VPI5XLh7u4uXnvtNXHv3r1qbs2/U9mEjtujev3888/i8ccfF/b29qJx48biq6++0pqvVqvF7NmzhZeXl7C3txfdu3cXly5d0irz999/i8GDB4tatWoJFxcXMXLkSJGTk1OdzfhXUKlUYvLkycLf3184ODiIevXqiZkzZ2oNb8HtYVoHDhzQ+ZsRGRkphDDe+j9z5ozo1KmTsLe3F4899phYuHChUdshE6LUcNREREREZHF4DR0RERGRhWNCR0RERGThmNARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4ZjQEREREVk4JnREREREFo4JHRHVWCNGjEC/fv0kq3/YsGGYP3++yZZ/8eJF1K1bF7m5uSarg4jMA58UQUT/SjKZrNL5c+fOxdSpUyGEgKura/UEVcqZM2fQrVs3JCcno1atWiar54UXXkCLFi0we/Zsk9VBRNJjQkdE/0rp6ema/2/YsAFz5szBpUuXNNNq1apl0kSqKmPGjIGNjQ2WL19u0np27NiBsWPHIiUlBTY2Niati4ikw1OuRPSv5O3trXkpFArIZDKtabVq1Sp3yvWpp57CxIkTMWXKFNSuXRteXl5YsWIFcnNzMXLkSDg7O6N+/frYuXOnVl3nz59Hz549UatWLXh5eWHYsGHIzMysMLbi4mL8+OOP6NOnj9b0wMBAvPfeexg+fDhq1aqFgIAAbNu2Dbdu3ULfvn1Rq1YtNG/eHCdPntR8Jjk5GX369EHt2rXh5OSEZs2a4ZdfftHMf/rpp5GVlYXff//9EdcoEZkzJnRERKWsXr0a7u7uOH78OCZOnIhXX30VAwYMQIcOHXDq1Cn06NEDw4YNQ15eHgAgOzsb3bp1Q6tWrXDy5Ens2rULGRkZePHFFyus4+zZs1AqlWjdunW5eZ988gk6duyI06dPo3fv3hg2bBiGDx+Ol156CadOnUJwcDCGDx+OkpMrUVFRKCgowMGDB3Hu3Dl88MEHWj2PdnZ2aNmyJQ4dOmTkNUVE5oQJHRFRKS1atMCsWbPQoEEDREdHw8HBAe7u7hg7diwaNGiAOXPm4O+//8bZs2cBAJ999hlatWqF+fPno3HjxmjVqhW+/fZbHDhwAH/++afOOpKTk2FtbQ1PT89y83r16oWXX35ZU5dKpUKbNm0wYMAANGzYEG+++SYSEhKQkZEBAEhJSUHHjh0REhKCevXq4dlnn0WXLl20lunr64vk5GQjrykiMidM6IiISmnevLnm/9bW1qhTpw5CQkI007y8vAAAN2/eBHD/5oYDBw5orsmrVasWGjduDAC4evWqzjry8/Nhb2+v88aN0vWX1FVZ/ZMmTcJ7772Hjh07Yu7cuZpEszS5XK7pUSSifycmdEREpdja2mq9l8lkWtNKkjC1Wg0AuHPnDvr06YP4+Hit1+XLl8v1lJVwd3dHXl4eCgsLK62/pK7K6h8zZgyuXbuGYcOG4dy5c2jdujU+/fRTrWVmZWXBw8NDvxVARBaJCR0R0SN44okncOHCBQQGBqJ+/fpaLycnJ52fadmyJYD748QZg5+fH1555RVs2rQJr732GlasWKE1//z582jVqpVR6iIi88SEjojoEURFRSErKwuDBw/GiRMncPXqVezevRsjR45EcXGxzs94eHjgiSeewOHDhx+5/ilTpmD37t1ITEzEqVOncODAATRp0kQzPykpCdevX0d4ePgj10VE5osJHRHRI/D19cWRI0dQXFyMHj16ICQkBFOmTIGrqyusrCr+ih0zZgzWrVv3yPUXFxcjKioKTZo0wTPPPIOGDRvi888/18z/7rvv0KNHDwQEBDxyXURkvjiwMBGRBPLz89GoUSNs2LABYWFhJqmjsLAQDRo0wPr169GxY0eT1EFE5oE9dEREEpDL5VizZk2lAxA/qpSUFLz11ltM5ohqAPbQEREREVk49tARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4ZjQEREREVk4JnREREREFo4JHREREZGFY0JHREREZOGY0BERERFZuP8DkYHjeI7VTFoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpO0lEQVR4nO3deXxMV/8H8M8kkUVIhAgJIRGqVBBrLVVKqarWUlVVRYvaauvG46HVquDpQlddfqV9iqo+ti6ollK1F0Wp2iJKLClZJBFkzu8PzTSTzGTunXvukvi8X6+8Kueee873LPfmdGbuGZsQQoCIiIiILMnH7ACIiIiIyD0u1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiMgQMTExGDRokCF17dy5E61bt0ZwcDBsNhv27t1rSL0yvfjii7DZbLrW0b59e7Rv317XOohIOy7WiCRbsGABbDab48fPzw/VqlXDoEGDcPr0ad3qPXjwIF588UUkJSXpVocZzpw5gxdffFHxguvatWvo06cPLl68iDfeeAP//e9/UbNmTX2DJMVefPFFxMTEOKV99913eOKJJ9CgQQP4+voWOV6Q3W7H7NmzERsbi8DAQDRs2BCLFy8ukm/Hjh0YOXIkmjZtijJlyrhd+Obk5DjqDg0NRbly5dCoUSPMnTsX165d8xg7kRH8zA6AqLR66aWXEBsbiytXrmDbtm1YsGABNm/ejAMHDiAwMFB6fQcPHsS0adPQvn37UvUH5cyZM5g2bRpiYmLQuHFjj/mPHTuGkydP4sMPP8SQIUP0D7AE++6778wOAQCwaNEiLFmyBE2aNEFUVFSxeSdPnoyZM2di6NChaN68OVauXIlHHnkENpsNDz/8sCPft99+i48++ggNGzZErVq18Mcff7gsLycnB7/99hvuvfdexMTEwMfHB1u2bMH48eOxfft2LFq0SGpbibzBxRqRTrp27YpmzZoBAIYMGYLw8HDMmjULq1atwkMPPWRydMplZWUhODjY7DAUO3/+PACgQoUKHvOWtLbJ5u/vb3YIAIAZM2bgww8/RJkyZXDffffhwIEDLvOdPn0ar732GkaNGoW3334bwI1r684778Szzz6LPn36wNfXFwAwYsQIPP/88wgKCsLo0aPdLtYqVqyIbdu2OaUNHz4coaGhePvtt/H666+jatWqEltLpB7fBiUyyB133AHgxis/+a5evYqpU6eiadOmCA0NRXBwMO644w5s2LChyPmff/45mjZtivLlyyMkJATx8fGYO3cugBtvvfbp0wcA0KFDB8dbsD/++KPj/NWrV+OOO+5AcHAwypcvj27duuG3335zqmPQoEEoV64cjh07hnvvvRfly5dH//793bYp/3NVv//+Ox566CGEhISgUqVKGDt2LK5cueKxT44fP44+ffqgYsWKKFu2LG6//XZ88803juM//vgjmjdvDgAYPHiwo10LFixwWd6gQYNw5513AgD69OkDm83m+ExWcW3LysrC008/jejoaAQEBKBu3bp49dVXIYRwKt9ms2H06NFYunQp6tevj6CgILRq1Qr79+8HALz//vuoXbs2AgMD0b59e8VvSW/evBnNmzdHYGAg4uLi8P7777vN+9lnn6Fp06YICgpCxYoV8fDDD+PUqVOO46NHj0a5cuWQnZ1d5Nx+/fqhatWqyMvLA+D6M2tXrlzBiy++iFtuuQWBgYGIjIxEr169nOat3W7HnDlzcNtttyEwMBBVqlTBk08+iUuXLilqb2FRUVEoU6aMx3wrV67EtWvXMHLkSEeazWbDiBEj8Oeff2Lr1q2O9CpVqiAoKMireAA4Xp1OS0vzugwiWfjKGpFB8v9wh4WFOdIyMjLw0UcfoV+/fhg6dCgyMzPxf//3f+jSpQt27NjheNtv3bp16NevHzp27IhZs2YBAA4dOoSff/4ZY8eORbt27TBmzBi8+eab+Ne//oV69eoBgOO///3vfzFw4EB06dIFs2bNQnZ2Nt577z20bdsWe/bscXrb9Pr16+jSpQvatm2LV199FWXLlvXYtoceeggxMTFITEzEtm3b8Oabb+LSpUv49NNP3Z5z7tw5tG7dGtnZ2RgzZgwqVaqETz75BPfffz++/PJL9OzZE/Xq1cNLL72EqVOnYtiwYY4Fb+vWrV2W+eSTT6JatWqYMWMGxowZg+bNm6NKlSrFtk0Igfvvvx8bNmzAE088gcaNG2Pt2rV49tlncfr0abzxxhtOdfz0009YtWoVRo0aBQBITEzEfffdh+eeew7vvvsuRo4ciUuXLmH27Nl4/PHHsX79+mL7bv/+/ejcuTMqV66MF198EdevX8cLL7zgFHe+V155BVOmTMFDDz2EIUOG4MKFC3jrrbfQrl077NmzBxUqVEDfvn3xzjvv4JtvvnEs4AEgOzsbX331FQYNGuR49amwvLw83Hffffjhhx/w8MMPY+zYscjMzMS6detw4MABxMXFOfp5wYIFGDx4MMaMGYMTJ07g7bffxp49e/Dzzz8rWnh5Y8+ePQgODnbM63wtWrRwHG/btq1XZV+9ehUZGRnIycnBrl278Oqrr6JmzZqoXbu25riJNBNEJNX8+fMFAPH999+LCxcuiFOnTokvv/xSVK5cWQQEBIhTp0458l6/fl3k5uY6nX/p0iVRpUoV8fjjjzvSxo4dK0JCQsT169fd1rt06VIBQGzYsMEpPTMzU1SoUEEMHTrUKf3s2bMiNDTUKX3gwIECgJg4caKitr7wwgsCgLj//vud0keOHCkAiF9//dWRVrNmTTFw4EDH7+PGjRMAxE8//eQUa2xsrIiJiRF5eXlCCCF27twpAIj58+crimnDhg0CgFi6dKlTuru2rVixQgAQ06dPd0p/8MEHhc1mE0ePHnWkARABAQHixIkTjrT3339fABBVq1YVGRkZjvRJkyYJAE55XenRo4cIDAwUJ0+edKQdPHhQ+Pr6ioK36KSkJOHr6yteeeUVp/P3798v/Pz8HOl2u11Uq1ZN9O7d2ynfF198IQCITZs2OdLuvPNOceeddzp+//jjjwUA8frrrxeJ0263CyGE+OmnnwQAsXDhQqfja9ascZmuVrdu3UTNmjXdHqtVq1aR9KysrGLn7ahRo4SnP3eLFy8WABw/zZo1E/v27VMdP5Ee+DYokU46deqEypUrIzo6Gg8++CCCg4OxatUqVK9e3ZHH19fX8bkhu92Oixcv4vr162jWrBl2797tyFehQgVkZWVh3bp1quNYt24d0tLS0K9fP6Smpjp+fH190bJlS5dvuY4YMUJVHfmvMuV76qmnANz4kLc73377LVq0aOH0Ski5cuUwbNgwJCUl4eDBg6piUKpw27799lv4+vpizJgxTulPP/00hBBYvXq1U3rHjh2dXols2bIlAKB3794oX758kfTjx4+7jSUvLw9r165Fjx49UKNGDUd6vXr10KVLF6e8y5Ytg91ux0MPPeQ0jlWrVkWdOnUc42iz2dCnTx98++23uHz5suP8JUuWoFq1asW+8vS///0P4eHhjvErKP9pyqVLlyI0NBR33323UxxNmzZFuXLlXM4nWXJychAQEFAkPf+BnZycHK/L7tChA9atW4elS5di+PDhKFOmDLKysrwuj0gmvg1KpJN33nkHt9xyC9LT0/Hxxx9j06ZNLv/QfPLJJ3jttdfw+++/O20VEBsb6/j3yJEj8cUXX6Br166oVq0aOnfujIceegj33HOPxziOHDkCALjrrrtcHg8JCXH63c/Pz2lBqUSdOnWcfo+Li4OPj0+xn9k6efKkY0FTUP5bXCdPnkSDBg1UxeGJq7adPHkSUVFRTgutwnEUVHBRBQChoaEAgOjoaJfpxX2O68KFC8jJySnSfwBQt25dp8XukSNHIIRwmReA01uPffv2xZw5c7Bq1So88sgjuHz5Mr799ls8+eSTxe7dduzYMdStWxd+fu7/NBw5cgTp6emIiIhweTz/AQ89BAUFITc3t0h6/ucjtXxGrUqVKo63nh988EHMmDEDd999N44cOcIHDMh0XKwR6aRFixaOp0F79OiBtm3b4pFHHsHhw4dRrlw5ADc+LD5o0CD06NEDzz77LCIiIuDr64vExESnD3RHRERg7969WLt2LVavXo3Vq1dj/vz5eOyxx/DJJ58UG4fdbgdw43Nrrv7oFP7DHBAQAB8fbS+6672Zq7dktM3d573cpYtCDyl4y263w2azYfXq1S7ryp9TAHD77bcjJiYGX3zxBR555BF89dVXyMnJQd++faXEERERgYULF7o8XrlyZc11uBMZGYkNGzZACOE0x1JSUgDA47Yfajz44IOYPHkyVq5ciSeffFJauUTe4GKNyAD5C7AOHTrg7bffxsSJEwEAX375JWrVqoVly5Y5/fF54YUXipTh7++P7t27o3v37rDb7Rg5ciTef/99TJkyBbVr13a7QMr/UHhERAQ6deqkQ+tuvNpS8JXAo0ePwm63F7vfW82aNXH48OEi6b///rvjOKD/wq9mzZr4/vvvkZmZ6fTqWuE49FC5cmUEBQU5Xv0sqHDfxMXFQQiB2NhY3HLLLR7LfuihhzB37lxkZGRgyZIliImJwe23317sOXFxcdi+fTuuXbvm9iGBuLg4fP/992jTpo2mV7K80bhxY3z00Uc4dOgQ6tev70jfvn2747gs+W+ppqenSyuTyFv8zBqRQdq3b48WLVpgzpw5jrdt8l8hKfjqy/bt2522IACAv/76y+l3Hx8fNGzYEAAcbwvl7xdWeKuBLl26ICQkBDNmzCiyIztw4604rd555x2n39966y0AN/aac+fee+/Fjh07nNqalZWFDz74ADExMY4/xu7aJcu9996LvLw8x75d+d544w3YbLZi26CVr68vunTpghUrViA5OdmRfujQIaxdu9Ypb69eveDr64tp06YVebVOCFFkjvTt2xe5ubn45JNPsGbNGkV7+/Xu3RupqalF+iK/DuDGIjAvLw8vv/xykTzXr1/XdauLBx54AGXKlMG7777rFNe8efNQrVo1t08JFyc1NdXlq58fffQRADheHScyE19ZIzJQ/sadCxYswPDhw3Hfffdh2bJl6NmzJ7p164YTJ05g3rx5qF+/vtOHw4cMGYKLFy/irrvuQvXq1XHy5Em89dZbaNy4seOzVY0bN4avry9mzZqF9PR0BAQE4K677kJERATee+89DBgwAE2aNMHDDz+MypUrIzk5Gd988w3atGnj8o+zGidOnMD999+Pe+65B1u3bsVnn32GRx55BI0aNXJ7zsSJE7F48WJ07doVY8aMQcWKFfHJJ5/gxIkT+N///ud4uzIuLg4VKlTAvHnzUL58eQQHB6Nly5ZOr+Rp0b17d3To0AGTJ09GUlISGjVqhO+++w4rV67EuHHjHK9M6mXatGlYs2YN7rjjDowcORLXr1/HW2+9hdtuuw379u1z5IuLi8P06dMxadIkJCUloUePHihfvjxOnDiB5cuXY9iwYXjmmWcc+Zs0aYLatWtj8uTJyM3NVfQW6GOPPYZPP/0UEyZMwI4dO3DHHXcgKysL33//PUaOHIkHHngAd955J5588kkkJiZi79696Ny5M8qUKYMjR45g6dKlmDt3Lh588EFVfbBv3z6sWrUKwI1XZdPT0zF9+nQAQKNGjdC9e3cAQPXq1TFu3Dj85z//wbVr19C8eXOsWLECP/30ExYuXOj09vDJkyfx3//+FwCwa9cuAHCUWbNmTQwYMADAjY8izJs3Dz169ECtWrWQmZmJtWvXYt26dejevbvbz3oSGcqkp1CJSq38rTt27txZ5FheXp6Ii4sTcXFx4vr168Jut4sZM2aImjVrioCAAJGQkCC+/vprMXDgQKftC7788kvRuXNnERERIfz9/UWNGjXEk08+KVJSUpzK//DDD0WtWrUc2z4U3MZjw4YNokuXLiI0NFQEBgaKuLg4MWjQILFr1y5HnoEDB4rg4GDFbc3fuuPgwYPiwQcfFOXLlxdhYWFi9OjRIicnxylv4a07hBDi2LFj4sEHHxQVKlQQgYGBokWLFuLrr78uUs/KlStF/fr1hZ+fn8dtPIrbusNd2zIzM8X48eNFVFSUKFOmjKhTp474z3/+49iuIh8AMWrUKKe0EydOCADiP//5j6I4XNm4caNo2rSp8Pf3F7Vq1RLz5s1z9G1h//vf/0Tbtm1FcHCwCA4OFrfeeqsYNWqUOHz4cJG8kydPFgBE7dq1XdZbeOsOIYTIzs4WkydPFrGxsaJMmTKiatWq4sEHHxTHjh1zyvfBBx+Ipk2biqCgIFG+fHkRHx8vnnvuOXHmzBmP7S0s/5px9VN4zuTl5TmuGX9/f3HbbbeJzz77rEiZ+f3v6qdgm3fu3Cn69OkjatSoIQICAkRwcLBo0qSJeP3118W1a9dUt4VIDzYhJH36lYhuOi+++CKmTZuGCxcuIDw83OxwiIhKJX5mjYiIiMjCuFgjIiIisjAu1oiIiIgsjJ9ZIyIiIrIwvrJGREREZGFcrBERERFZGDfFxY3vujtz5gzKly9v2e80JCIiotJFCIHMzExERUUV+73FXKwBOHPmDKKjo80Og4iIiG5Cp06dQvXq1d0e52INcHx586lTpxASEmJyNERERHQzyMjIQHR0tGMd4g4Xa4Djrc+QkBAu1oiIiMhQnj6CxQcMiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIguz/GJt06ZN6N69O6KiomCz2bBixQqn40IITJ06FZGRkQgKCkKnTp1w5MgRc4IlIiIikszyi7WsrCw0atQI77zzjsvjs2fPxptvvol58+Zh+/btCA4ORpcuXXDlyhWDI1UnJT0HW46lIiU9x9A0NfnVlGlWe7yN2ay2GRGfEeNuRMxW6WMrtdXq7dW7rVrzGnV/UFq37Jisen1YfS6rzWsGy2+K27VrV3Tt2tXlMSEE5syZg3//+9944IEHAACffvopqlSpghUrVuDhhx82MlTFluxMxqRl+2EXgI8NSOwVDwC6p/VtXkNx/T0TqmH5ntOKyjSrPd7GrKa/ZLbNiPhc1SF73LW0Q2nMVuljI8bHKn1npetRzbWnNK9R9wc116XR9xcz5ovStps1l9XONbPYhBDCtNpVstlsWL58OXr06AEAOH78OOLi4rBnzx40btzYke/OO+9E48aNMXfuXJfl5ObmIjc31/F7/tc9pKen6/4NBinpOWgzcz3sBXrdBwBs0DXN12bD5okdAEBR/YW5K3PZyFbo+e4Ww9vjbcxq+kt224yIrzA9xt3bdiiN2Sp9bMT4WKnvrHI9qrn21OT1Nh419aq5Ls24vyjJo/c8sNJcVjvXNk/sgMjQIPdBeyEjIwOhoaEe1x+Wf2WtOGfPngUAVKlSxSm9SpUqjmOuJCYmYtq0abrG5s6J1KwiE9QOADqn5QmBpNRsCAhF9RfmrsydSZdMaY+3MavpL9ltMyK+wvQYdyV5tMRslT42Ynys1HdWuR7VXHtq8nobj5p61VyXZtxflOTRex5YaS6rnWtJqdnSF2tKWf4za3qYNGkS0tPTHT+nTp0yrO7Y8GD42JzTfADd03xtNsSEl1Vcf2HuymweE2ZKe7yNWU1/yW6bEfEVpse4K8mjJWar9LER42OlvrPK9ajm2lOT19t41NSr5ro04/6iJI/e88BKc1ntXIsJL1t80Doq0Yu1qlWrAgDOnTvnlH7u3DnHMVcCAgIcX9pu9Je3R4YGIbFXPHz//tJWX5sNib3jdU+b0asBIkODFNffu0k1RWU2ig4zpT3exqymv2S3zYj4Ctehx7h72w6lMVulj40YHyv1nVWuRzXXnpq8Rlx/aq5LM+4vZswXpW03Iza1c82sV9WAEv6ZNSEEoqKi8Mwzz+Dpp58GcOP934iICCxYsEDxAwZK3zOWKSU9B0mp2YgJL+uYAEakqalfTZlmtcfbmM1qmxHxGTHuRsRslT62Ulut3l6926o1r1H3B6V1m9HfVpkHVonNm7kmk9L1h+UXa5cvX8bRo0cBAAkJCXj99dfRoUMHVKxYETVq1MCsWbMwc+ZMfPLJJ4iNjcWUKVOwb98+HDx4EIGBgYrqMGOxRkRERDe3UvOAwa5du9ChQwfH7xMmTAAADBw4EAsWLMBzzz2HrKwsDBs2DGlpaWjbti3WrFmjeKFGREREZGWWf2XNCHxljYiIiIymdP1Roh8wICIiIirtuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNQtISc/BlmOpSEnP0ZTu7pje5Xh7zKjy9O4vme1Tky6jXTLqKy4OWWXJnit61OXquN5zSeaYqInf3TG955O37TIzNrNiMiJWve+t3pxn1DVkND+zA7jZLdmZjEnL9sMuAB8bkNgrHn2b11Cd7q4sALqWU1wbvGmf7PL07i+Z7VOTrnY8XOVX01Zv5pHefeztXNFjXro63jOhGpbvOa3bXPKmDWra7i5+GeMq676kpF1qx1tmbGbFZESsMu5BMuerUfdvs9iEEMLUCCwgIyMDoaGhSE9PR0hIiGH1pqTnoM3M9bAXGAFfmw3LRrZCz3e3KE7fPLEDABQpywcAbNCtHHf5PR1TW7+35endX7LqVVuW2vFwlV9NW72ZR5GhQS7nt6w+9nau6DEv3bW1MJlzyZv+chenu/NcxS/j2pF1X1LSLrXjLTM2WecYcc3o/TdB5j1E737yFJNsStcffGXNRCdSs4rcHPOEwM6kS6rSk1KzISCKHLMDgI7luMvv6Zja+r0tT+/+klWv2rLUjoer/Gra6s08igwNcjm/ZfWxt3NFj3nprq2FyZxL3vSXuzjdnecqfhnXjqz7kpJ2qR1vmbHJOseIa0bvvwky7yF695OnmMzCxZqJYsOD4ePi/wSax4SpSo8JLwsARY65+z8NWeW4y+/pmNr6vS1P7/6SVa/astSOh5pX1tTU56mdrua3rD72dq7oNS9dtbUwmXPJ2/5Sc89xFb+Ma0fWfUlJu9SOt8zYZJ1jxDWj998EmfcQvfvJU0xm4QMGJooMDUJir3j42mwAbkyIGb0aoFF0mKr0yNAgl2Ul9o7XtRx3+T0dU1u/t+Xp3V+y6lVbltrxcJVfTVu9mUfu5resPvZ2rugxL921tXeTarrNJW/6y12c7s5zFb+Ma0fWfUlJu9SOt8zYZJ1jxDWj998EmfcQvfvJU0xm4WfWYN5n1vKlpOcgKTUbMeFlnSaE2nR3x/Qux9tjRpWnd3/JbJ+adBntklFfcXHo3cd6HPO2PFfH9Z5LMsdETfzuytB7PnnbLjNjMysmI2I14m+RWf3kKSZZlK4/uFiD+Ys1IiIiuvkoXX/wbVAiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILKzEL9by8vIwZcoUxMbGIigoCHFxcXj55ZchhDA7NCIiIiLNSvxibdasWXjvvffw9ttv49ChQ5g1axZmz56Nt956y+zQvJaSnoMtx1KRkp6jWx5P58uIQUYdRpVjRBl69qmecek912SWoaUcrfXr3Qdaj8uKwah49Ypbz3GWGa+WWPQ+V0lemeNm1bKM5Gd2AFpt2bIFDzzwALp16wYAiImJweLFi7Fjxw6TI/POkp3JmLRsP+wC8LEBib3i0bd5Dal5PJ0vIwYZdRhVjhFl6Nmnesal91yTWYaWcrTWr3cfaD0uKwaj4lUbj1HzzEr3NW/uBzLOldWXsvrcrLKMZhMl/P3CGTNm4IMPPsB3332HW265Bb/++is6d+6M119/Hf3793d5Tm5uLnJzcx2/Z2RkIDo6Gunp6QgJCTEq9CJS0nPQZuZ62AuMiK/Nhs0TOyAyNEhKHgDFni8jBq3HlfaHjHI89YeMMvTs02UjW6Hnu1t0iUvvuSajbwvythxvjxnVB1rHSlYMBRlxD5B1n1CST0kfWem+5s39QMa5svpSST8ozWNGWTJlZGQgNDTU4/qjxL8NOnHiRDz88MO49dZbUaZMGSQkJGDcuHFuF2oAkJiYiNDQUMdPdHS0gRG7dyI1y2mCAECeEEhKzZaWx9P5MmKQUYdR5RhRhp59ujPpkm5x6T3XZJahpRyt9evdB1qPy4rBqHjVxmPUPLPSfc2b+4GMc5W0Qea4WbUsM5T4t0G/+OILLFy4EIsWLcJtt92GvXv3Yty4cYiKisLAgQNdnjNp0iRMmDDB8Xv+K2tmiw0Pho8NRVb0MeFlpeYp7piM8rUel1WPjP6QUYaefdo8Jky3uPSeazLL0FqOlvqN6AOtx2XEYGS8auIx6j5gpfuat/cDrecqbYOscZM5B2TPJ6OV+FfWnn32Wcera/Hx8RgwYADGjx+PxMREt+cEBAQgJCTE6ccKIkODkNgrHr42G4AbE2RGrwZOL71qzePpfBkxyKjDqHKMKEPPPm0UHaZbXHrPNZllaClHa/1694HW47JiMCpetfEYNc+sdF/z5n4g41xZfam1nWaXZYYS/5m1SpUqYfr06RgxYoQjLTExEfPnz8cff/yhqAyl7xkbJSU9B0mp2YgJL+t2gmjN4+l8GTHIqMOocowoQ88+1TMuveeazDK0lKO1fr37QOtxWTEYFa9eces5zjLj1RKL3ucqyStz3KxalgxK1x8lfrE2aNAgfP/993j//fdx2223Yc+ePRg2bBgef/xxzJo1S1EZVlusERERUel30yzWMjMzMWXKFCxfvhznz59HVFQU+vXrh6lTp8Lf319RGVysERERkdFumsWaDFysERERkdFumq07iIiIiEozLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NizUQp6TnYciwVKek5HtOVpmk9X4961KQb1Sa1efVog5FtldUPSvLqMS+MaLPMsvSYAyWhPbLKLin3QKX5zWyPFfKaMc/1uC+Zyc/sAG5WS3YmY9Ky/bALwMcGJPaKR9/mNVymA1CUpvV8Pepxl9dVes+Eali+57TubVIbv5rxUtoGI9sqY74pzeuqXVrnhd5j5ildr/5TMwdkpus5H2SMn1HXtl7XlbfXhB7t0eMa1zMuveaVjPuS2WxCCGF2EGbLyMhAaGgo0tPTERISont9Kek5aDNzPewFet7XZsOyka3Q890tTuk+AGCDxzSt5+tRj7u87tIL06NNauPfPLEDACgeL6VtMKqtauPX2meFyZgXeo9Zcel69l9hsvrFrPbIGD+jrm29ritvrwk92qPXNa5XXHrOq8LUxrV5YgdEhga5L1ADpesPvrJmghOpWUUmUp4Q2Jl0qUi6HQAUpGk9X4963OV1l16YHm1SG39SajYEhPQ2KM2nta1q49faZ4XJmBd6j1lx6Xr2X2Gy+sWs9sgYP6Oubb2uK2+vCT3ao9c1rldces6rwtTGlZSardtiTSku1kwQGx4MHxer+uYxYUXS1fzfipbz9ajHXV536YXp0Sa18ceEl71xXHIbjGqr2vi19llhMuaF3mNWXLqe/VeYrH4xqz0yxs+oa1uv60r2K2tG/U3QK6+e88fI+1L+eJuJDxiYIDI0CIm94uFrswG4MRlm9GqARtFhRdITe8crStN6vh71uMvrLr13k2q6t0lt/JGhQarGS2kbjGqr2vi19lnhdsmYF3qPWXHpevaf0jkgM13P9sgYP6Oubb2uK2+vCT3ao9c1rldces4rrfcls19VA/iZNQDGf2YtX0p6DpJSsxETXtZpMrhKV5qm9Xw96lGTblSb1ObVow1GtlXPcVTSLq3zQu8x85SuV//p2S9mtEdW2SXlHqg0v5ntsUJeM+a5HvclPShdf3CxBvMWa0RERHTzUrr+4NugRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYXp8g0GR44cwcqVK5GUlASbzYbY2Fj06NEDtWrV0qM6IiIiolJL+mItMTERU6dOhd1uR0REBIQQuHDhAiZOnIgZM2bgmWeekV0lERERUakl9W3QDRs24N///jcmT56M1NRUpKSk4OzZs47F2sSJE7Fp0yaZVRIRERGValK/waBv376oUKEC3n//fZfHhw0bhszMTCxevFhWlVLwGwyIiIjIaKZ8g8GOHTswYMAAt8cHDBiAbdu2yaySiIiIqFSTulg7d+4cYmJi3B6PjY3F2bNnZVZJREREVKpJXaxduXIF/v7+bo+XKVMGV69elVklERERUakm/WnQjz76COXKlXN5LDMzU3Z1RERERKWa1MVajRo18OGHH3rMQ0RERETKSF2sJSUlySyOiIiI6KbHr5siIiIisjCpr6y9+eabivKNGTNGZrVEREREpZbUTXFjY2M9V2iz4fjx47KqlIKb4hIREZHRlK4/pL6yduLECZnFEREREd30SsVn1k6fPo1HH30UlSpVQlBQEOLj47Fr1y6zwyIiIiLSrMQv1i5duoQ2bdqgTJkyWL16NQ4ePIjXXnsNYWFhZoemWkp6DrYcS0VKeo5Xx5Xm9faY2nwy2qOlDJltkRGP1njdHZfVTqv0tZFjauR8V5LHiGtcTT1G94+nfEbVozSP1mtSVrxG3QOMziMrZiV51ZRjBumb4hpt1qxZiI6Oxvz58x1pSj47ZzVLdiZj0rL9sAvAxwYk9opH3+Y1FB9XWpa3x9TEKqs9WsqQ2RZZbdISr7vjstpplb42ckyNnO8yxkBWP1m1f7S2y+iYtV6TRvaLlvbI7jejY5bZh2aS+oCBGerXr48uXbrgzz//xMaNG1GtWjWMHDkSQ4cOdXtObm4ucnNzHb9nZGQgOjratAcMUtJz0GbmetgLjISvzYbNEzsgMjTI43GlZQHw6ljBOpTEIqM9WsqQ2RalefWM1925y0a2Qs93t2hup1X62sgxlZnPqGtCSUye+smq/aO1XUbHrPWaNLJftLRH9jyX1W4jrxm9KX3AoMS/DXr8+HG89957qFOnDtauXYsRI0ZgzJgx+OSTT9yek5iYiNDQUMdPdHS0gREXdSI1y2miAECeEEhKzVZ0XGlZ3h5TE6us9mgpQ2ZbZLVJS7zuju9MuiSlnVbpayPH1Mj5riSPEde4mnqM7h+t7TI6Zq3XpKx4ZbXZqHmuNI+smJWUpaYcM+n2NqjdbsfRo0dx/vx52O12p2Pt2rWTWk+zZs0wY8YMAEBCQgIOHDiAefPmYeDAgS7PmTRpEiZMmOD4Pf+VNbPEhgfDx4YiK/uY8LKKjqspy9tjSsuX1R6tZchqi6x4tMTr7tzmMWFS2mmVvjZyTGXmM+qaUFqWjHqM7h+t7TI6Zq3XpJH9oqU9sue5zHYbdc1YhS6vrG3btg21a9dGvXr10K5dO7Rv397x06FDB6l1RUZGon79+k5p9erVQ3JysttzAgICEBIS4vRjpsjQICT2ioevzQbgxkSZ0auB4yVYT8eVluXtMTWxymqPljJktkVWm7TE6+54o+gwKe20Sl8bOaZGzncZY6A0Jln1GN0/WttldMxar0kj+0VLe2TPc5njZNQ1YxW6fGatcePGuOWWWzBt2jRERkbC9ncn5AsNDZVW1yOPPIJTp07hp59+cqSNHz8e27dvx5YtWxSVYZVNcVPSc5CUmo2Y8LIuJ4qn40rzentMbT4Z7dFShsy2yGqTlnjdHZfVTqv0tZFjauR8V5LHiGtcTT1G94/Wdhkds9ZrUla8Rt0DjM4jK2YledWUI5PS9Ycui7Xg4GD8+uuvqF27tuyii9i5cydat26NadOm4aGHHsKOHTswdOhQfPDBB+jfv7+iMqyyWCMiIqKbh6kPGLRs2RJHjx7Vo+gimjdvjuXLl2Px4sVo0KABXn75ZcyZM0fxQo2IiIjIynR5wOCpp57C008/jbNnzyI+Ph5lypRxOt6wYUOp9d1333247777pJZJREREZAW6vA3q41P0BTubzQYhBGw2G/Ly8mRXqQnfBiUiIiKjmfJF7vn4he5EREREcuiyWKtZs6YexRIRERHddHTbFPfYsWOYM2cODh06BODG10KNHTsWcXFxelVJREREVOro8jTo2rVrUb9+fezYsQMNGzZEw4YNsX37dtx2221Yt26dHlUSERERlUq6PGCQkJCALl26YObMmU7pEydOxHfffYfdu3fLrlITPmBARERERjN1n7VDhw7hiSeeKJL++OOP4+DBg3pUSURERFQq6bJYq1y5Mvbu3Vskfe/evYiIiNCjSiIiIqJSSZcHDIYOHYphw4bh+PHjaN26NQDg559/xqxZszBhwgQ9qiQiIiIqlXT5zJoQAnPmzMFrr72GM2fOAACioqLw7LPPYsyYMUW+2N1s/MwaERERGc20TXGvX7+ORYsW4ZFHHsH48eORmZkJAChfvrzsqoiIiIhKPemfWfPz88Pw4cNx5coVADcWaVyoEREREXlHlwcMWrRogT179uhRNBEREdFNRZcHDEaOHImnn34af/75J5o2bYrg4GCn4w0bNtSjWiIiIqJSR5cHDHx8ir5gZ7PZIISAzWZDXl6e7Co14QMGREREZDTTHjAAgBMnTuhRLBEREdFNR5fFWs2aNfUoloiIiOimo8ti7dNPPy32+GOPPaZHtURERESlji6fWQsLC3P6/dq1a8jOzoa/vz/Kli2Lixcvyq5SE35mjYiIiIxm6he5X7p0yenn8uXLOHz4MNq2bYvFixfrUWWJlZKegy3HUpGSnuMxXWteNee7SneXT0adevWDjLL16Dcjx12vdpkRg9Fxm30dmtEPMvLq3R6rjovZ15nS+6pV4lUTsx6xqp2jZtLlbVBX6tSpg5kzZ+LRRx/F77//blS1lrZkZzImLdsPuwB8bEBir3j0bV7DZToATXnVnO8qvWdCNSzfc7pIvuLaorROd2Vr7Qe16Ub1m9axNDqvXv2lNga114zWuPVon4z+0bMfjJ4v3rTHquNi9nVWOE3Pe7Ze/Wvk3wI192Yr0OVtUHf27t2Ldu3aISMjw6gqFTHjbdCU9By0mbke9gK972uzYdnIVuj57handB8AsMHrvGrOd5demK/Nhs0TOyAyNMhlW9TU6apsrf2gNt2oftM6lkbn1au/1MaweWIHAFB8zWiNW4/2yegfPfvB6PniTXusOi5mX2eu0gqTec/Wq39dxaxX3xZW3ByNDA1yf6JGpm7dsWrVKqffhRBISUnB22+/jTZt2uhRZYlzIjWryMTJEwI7ky4VSbcDgIa8as53l15YnhBISs1GZGiQy7aoqdNV2Vr7QW26Uf2mdSyNzqtXf6mNISk1GwLCsHHWo30y+kfPfjB6vnjTHquOi9nXmau0wmTes/XqX1cx69W3hRU3R/VcrCmly2KtR48eTr/bbDZUrlwZd911F1577TU9qixxYsOD4eNiFd88JqxIursVv9K8as53l16Yr82GmPCybtuipk5XZWvtB7XpRvWb1rE0Oq9e/aU2hvy5ZtQ469E+Gf2jZz8YPV+8aY9Vx8Xs60zpK2uy7tl69a+rmPXq28I8zVGz6fKAgd1ud/rJy8vD2bNnsWjRIkRGRupRZYkTGRqExF7x8LXZANyYFDN6NUCj6LAi6Ym94zXlVXO+u/TeTaoVyZf/fxuu2qKmTldla+0HtelG9ZvWsTQ6r179pTaGyNAgVdeM1rj1aJ+M/tGzH4yeL960x6rjYvZ15ipNz3u2Xv1r5N8CpfdmK7yqBuj8mbWrV6/ixIkTiIuLg5+fYc8yqGbm1h0p6TlISs1GTHhZp0nhKl1rXjXnu0p3l09GzHr1g1X7zchx17MfjY7B6LjNvg7N6AdZY6Vne6w6LmZfZ0bes/XqXyP7Vu0c1YPS9Ycui7Xs7GyMHj3asTnuH3/8gVq1auGpp55CtWrVMHHiRNlVasJ91oiIiMhopu6zNmnSJOzbtw8//vgjAgMDHemdOnXCkiVL9KiSiIiIqFTS5b3JFStWYMmSJbj99tth+/v9XwC47bbbcOzYMT2qJCIiIiqVdHll7cKFC4iIiCiSnpWV5bR4IyIiIqLi6bJYa9asGb755hvH7/kLtI8++gitWrXSo0oiIiKiUkmXt0FnzJiBrl274uDBg7h+/Trmzp2LgwcPYsuWLdi4caMeVRIRERGVSrq8sta2bVvs3bsX169fR3x8PL777jtERERg69ataNq0qR5VEhEREZVKhn43qFVx6w4iIiIymqlbdxARERGRHFI/s+bj4+PxaU+bzYbr16/LrJaIiIio1JK6WFu+fLnbY1u3bsWbb74Ju90us0oiIiKiUk3qYu2BBx4oknb48GFMnDgRX331Ffr374+XXnpJZpVEREREpZpun1k7c+YMhg4divj4eFy/fh179+7FJ598gpo1a+pVJREREVGpI32xlp6ejueffx61a9fGb7/9hh9++AFfffUVGjRoILsqIiIiolJP6tugs2fPxqxZs1C1alUsXrzY5duiRERERKSc1H3WfHx8EBQUhE6dOsHX19dtvmXLlsmqUgrus0ZERERGU7r+kPrK2mOPPcYvaiciIiKSSOpibcGCBTKLIyIiIrrp8RsMiIiIiCyMizUiIiIiC+NijYiIiMjCSt1ibebMmbDZbBg3bpzZoRARERFpVqoWazt37sT777+Phg0bmh2KYinpOdhyLBUp6Tmq09Sma80rO+1mKdOo/tRr3hjZLqv1lZH9ISO9NLSrNMxNV+lmzne96pfVV2b3g9pYzSD1aVAzXb58Gf3798eHH36I6dOnmx2OIkt2JmPSsv2wC8DHBiT2igcARWl9m9dweb67dDVlKI1BS5oedVuxTDP7WMa8kTHPSmpf6XXd6TUuPROqYfme0yW6XXrOWaPmptKxMWq+W31sAW1/C428l5tJ6qa4Zho4cCAqVqyIN954A+3bt0fjxo0xZ84cl3lzc3ORm5vr+D0jIwPR0dGGboqbkp6DNjPXw16g930AwAaPab42G5aNbIWe725RlK6mDKUxaEnTo24rlmlmH8uYNzLmWUntK72uOz3HpbCS1i49+8aoual0bIya71Yf280TOwCA138LjbyXb57YAZGhQZDNlE1xzfL5559j9+7d2Llzp6L8iYmJmDZtms5RFe9EalaRi9kOAArS8oTAzqRLRc53l66mDKUxaEnTo24rlmlmH8uYNzLmWUntK72uOz3HpbCS1i49+8aoual0bIya71Yf26TUbAgI0/pBzflJqdm6LNaUKvGfWTt16hTGjh2LhQsXIjAwUNE5kyZNQnp6uuPn1KlTOkdZVGx4MHxszmk+gKI0X5sNzWPCFKerKUNpDFrS9KjbimWa2ccy5o2MeVZS+0qv607PcSmspLVLz74xam4qHRuj5rvVxzYmvKymv4VG3stjwsvCTCV+sfbLL7/g/PnzaNKkCfz8/ODn54eNGzfizTffhJ+fH/Ly8oqcExAQgJCQEKcfo0WGBiGxVzx8//56Ll+bDYm94xWlzejVAI2iwxSnqylDaQxa0vSo24plmtnHMuaNjHlWUvtKr+tOz3Hp3aRaiW6Xnn1j1NxUOjZGzXerj21kaJCmv4VG3svNfFUNKAWfWcvMzMTJkyed0gYPHoxbb70Vzz//PBo0aOCxDDO/yD0lPQdJqdmICS/rmAxK09Sma80rO+1mKdPMPpYxb0pSX1ux/4wcl9LQrtIwN5WOjR5xlsSxNbsf1MYqk9L1R4lfrLnSvn3xDxgUZuZijYiIiG5OStcfJf5tUCIiIqLSrFQ8DVrYjz/+aHYIRERERFLwlTUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwP7MDuBmkpOfgRGoWYsODERka5Pg92N8XWVfzEBseDABOacUdy0/blXQRNpsNTWuGOfIoLUttuUpiVVqPt+1W0zcyz1OaX0ndesRiVPu0jp+MeeFNf6rNm3wx2+38lz2eWuaYXnNWz2vW2/Jkzh0ZY6T3vVTr9aflHKV97e1/ZVyjsq4hNWMcGRoEM3GxprMlO5Mxadl+2AXgYwN6JlTD8j2nYRf/5LH9/V/h4nxXx2wu8uanKS1LbblKYlVaj5Ky1Naj53lK8yupW49Y9CjT23qUlqm1jd7E5E1eV9eE2jJljpmWPpQxj2WPmzf3KyvcN/S+l2q9/rSco7SvvSX7Gi0ur5b5XfDfPjYgsVc8+javoSASffBtUB2lpOc4FmoAYBfA/3Y7L9SAG5PB3WR0dcxVXlHgv0rKUltucfGorUdJWWrr0fM8pfmV1K1HLHqU6W09SsvU2kZvYvImr97jqfY8LX0oYx7LHjdv7ldWuG/ofS/Vev1pOUdpX3tL9jVaXF4t87vgv+0C+NeyA0hJz1EYjXxcrOnoRGpWkYUZERERlSx5QiApNdu0+rlY01FseDB8bJ7zERERkXX52myICS9rWv1crOkoMjQIib3i4Wu7sWLztdnQu0k1x+/5bABsbhZ1ro65ypqfR2lZastVEqvSepSUpbYePc9Tml9J3XrEokeZ3tajtEytbfQmJm/y6j2eas/T0ocy5rHscfPmfmWF+4be91Kt15+Wc5T2tbdkX6PF5dUyvwv+29dmw4xeDUx9yMAmhLjp36jLyMhAaGgo0tPTERISIr38lPQcJKVmIya8rONp0KTUbJT190H2VbtjtV4wrbhj+Wm/JF2CzQY0+ftJo/w6lJSltlwlsSqtx9t2q+kbmecpza+kbj1iMap9WsdPxrzwpj/V5j11Mcft/Jc9nlrmmF5zVs9r1tvyZM4dGWOk971U6/Wn5Rylfe3tf2Vco7KuITVjrNdCTen6g4s16L9YIyIiIipM6fqDb4MSERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGREREZGFcrBERERFZGBdrRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGREREZGFcrBERERFZWIlfrCUmJqJ58+YoX748IiIi0KNHDxw+fNjssIiIiIikKPGLtY0bN2LUqFHYtm0b1q1bh2vXrqFz587IysoyOzRFUtJzsOVYKlLScxQfc5Uuqxy15esZo57tVNsevcuR3Ra1fedNW/SaJzLTvT2mZ/rNdM2bFY83c71wmhHj5E09Rt+fjb6velOGjHKU3JfNZBNCCLODkOnChQuIiIjAxo0b0a5dO0XnZGRkIDQ0FOnp6QgJCdE5wn8s2ZmMScv2wy4AHxuQ2CsefZvXKPaYq3QAUspRW76eMbrKL6udatujJkZvysk/5mleaOmn4vrOSvNEZrrMa0xWut5z2GpjaUY83sz1wuf0TKiG5XtO6zpO3sxPNde2Ve7xatrort893Te1lqPkvqwXpeuPUrdYO3r0KOrUqYP9+/ejQYMGLvPk5uYiNzfX8XtGRgaio6MNXaylpOegzcz1sBfofV+bDZsndgAAl8eWjWyFnu9ucUr3AQAbNJejtnwZZbiL0VV+We1U2x41MXpTTv6xyNAgAO7nhdK2qO27yNAgVXXqOU9kpnvqb3fH9IxL7zlspWverHi8meuuzilM9jgVd93JuC9a5R6vdm4U5qkMd/2ophxP5etN6WLNT/dIDGS32zFu3Di0adPG7UINuPE5t2nTphkYWVEnUrOKTK48IZCUmg0B4fLYzqRLRdLtACChHLXlyyjDXYyu8stqp9r2qInRm3Lyj+XfFNzNC6VtUdt3kaFBqurUc57ITPfU3zKuDb2vg5J8zZsVjzdz3dU5hckep+KuOxn3Ravc49XOjcI8leGuH9WU46l8qyhVi7VRo0bhwIED2Lx5c7H5Jk2ahAkTJjh+z39lzUix4cHwcfF/IjHhZQHA5bHmMWFF0t39H43actSWL6MMdzGq+T9IWf3lrj1qYvSmnILHAPfzQmlbvOk7NXXqOU9kpivpb6Pj0nsOW+maNyseb+a60lfWZI+T2r8Baq5tq9zj1c6NwpSU4aof1ZTjqXyrKPEPGOQbPXo0vv76a2zYsAHVq1cvNm9AQABCQkKcfowWGRqExF7x8LXZANyYHDN6NUBkaJDbY42iw4qkJ/aOl1KO2vJllOEuRlf5ZbVTbXvUxOhNOfnHPM0LpW1R23dq69RznshM99TfMtqs93VQkq95s+LxZq67Oqd3k2q6jlNx152M+6JV7vFq54arfi+uDHf9qKYcT+VbRYn/zJoQAk899RSWL1+OH3/8EXXq1FFdhlkPGAA3PqOUlJqNmPCyRSaHu2Ou0mWVo7Z8PWPUs51q26N3OYVpbYvavvOmLXrNE5np3h7TM/1muubNisebuV44zYhx8qbfjL4/G31f9aYMGeUouS/r4aZ5wGDkyJFYtGgRVq5cibp16zrSQ0NDERSkrMPNXKwRERHRzemmWazZ/n7psrD58+dj0KBBisrgYo2IiIiMdtM8DVrC15pERERExSo1DxgQERERlUZcrBERERFZGBdrRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGREREZGFcrBERERFZGBdrRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsWaiVLSc7DlWCpS0nOKTdM73V1eb8pXk8ebsvWIR+90o84pae3TUq43x4zoa2/OM+taNXrM9LzfKYlbr+NGz3GrXf963Rdk1ynjXDP5mR3AzWrJzmRMWrYfdgH42IDEXvEAUCStb/MaLvPKSndXp7sYiyvfU/sK5vGmbD3i0TvdqLaWtPYpmScyj8mc5zLntppr3og26DVmet7vtNxv9Lxf6THHZfWZ1e8Lsu+bWsfCCmxCCGF2EGbLyMhAaGgo0tPTERISont9Kek5aDNzPewFet4HAGxwSvO12bBsZCv0fHeLLunu6tw8sQMAFImxuPI3T+yAyNAgt+0rmMfd8eLK1iMePftWS9xqzzErXc954q5cb47JnOee2qVmrqm55o1og15jprXt3s5BT2Oi9bjRc9yMvxFm3BeK6ze95oGnc/WkdP3BV9ZMcCI1y2lSAIAdAAql5QmBnUmXiuSVle6uzqTUbAgIVeUnpWY7JrWr9hXM4+54cWXrEY+efaslbrXnmJWu5zxxV643x2TOc0/tUjPX1FzzRrRBrzHT2nZv56CnMdF63Og5bsbfCDPuC4D6e7bWeeDpXCvgYs0EseHB8Cn0f0ju/q+peUxYkbyy0t3VGRNe9sZxFeXnn+OufQXzuDvuqWzZ8ejZt1rjNiNeI9sHeJ4nso7JnOee2qVmrqm55o1og15jprXt3s5BT2Oi9bjRc9yMvxFm3BeK6zc954GSuMzEBwxMEBkahMRe8fC12QDcmBSJveOLpM3o1QCNosN0S3dXZ2RokMsYiyu/4P99uDs3P483ZesRj559qyVus+I1qn1K5onMYzLnuad2qSlPzTVvRBv0GjOtbfd2DnoaE63HjZ7jZvyNMOO+4G2faxlnT+daAT+zBuM/s5YvJT0HSanZiAkv6/QZh8Jpeqe7y+tN+UrO1VK2HvHonW7UOSWtfVrK9eaYEX3tzXlmXatGj5me9zslcet13Og5brXrX6/7guw6ZZyrB6XrDy7WYN5ijYiIiG5eStcffBuUiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjF83BSB/q7mMjAyTIyEiIqKbRf66w9OWt1ysAcjMzAQAREdHmxwJERER3WwyMzMRGhrq9ji/wQCA3W7HmTNnUL58edj+/m4wIiIiIj0JIZCZmYmoqCj4+Lj/ZBoXa0REREQWxgcMiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwkxdrCUmJqJ58+YoX748IiIi0KNHDxw+fNhx/OLFi3jqqadQt25dBAUFoUaNGhgzZgzS09OdyrHZbEV+Pv/8c6ObQ0RERCSdqYu1jRs3YtSoUdi2bRvWrVuHa9euoXPnzsjKygIAnDlzBmfOnMGrr76KAwcOYMGCBVizZg2eeOKJImXNnz8fKSkpjp8ePXoY3BoiIiIi+Sz1DQYXLlxAREQENm7ciHbt2rnMs3TpUjz66KPIysqCn9+Nrza12WxYvnw5F2hERERU6ljqi9zz396sWLFisXlCQkIcC7V8o0aNwpAhQ1CrVi0MHz4cgwcPdvs9n7m5ucjNzXX8brfbcfHiRVSqVInfDUpERESGUPrdoBAWkZeXJ7p16ybatGnjNs+FCxdEjRo1xL/+9S+n9Jdeekls3rxZ7N69W8ycOVMEBASIuXPnui3nhRdeEAD4wx/+8Ic//OEPf0z/OXXqVLFrJMu8DTpixAisXr0amzdvRvXq1Yscz8jIwN13342KFSti1apVKFOmjNuypk6divnz5+PUqVMujxd+ZS09PR01atTAqVOnEBISor0xRERERB5kZGQgOjoaaWlpCA0NdZvPEm+Djh49Gl9//TU2bdrkcqGWmZmJe+65B+XLl8fy5cuLXagBQMuWLfHyyy8jNzcXAQEBRY4HBAS4TA8JCeFijYiIiAzl6SNYpj4NKoTA6NGjsXz5cqxfvx6xsbFF8mRkZKBz587w9/fHqlWrEBgY6LHcvXv3IiwszOWCjIiIiKgkMfWVtVGjRmHRokVYuXIlypcvj7NnzwIAQkNDERQU5FioZWdn47PPPkNGRgYyMjIAAJUrV4avry+++uornDt3DrfffjsCAwOxbt06zJgxA88884yZTSMiIiKSwtTPrLl72W/+/PkYNGgQfvzxR3To0MFlnhMnTiAmJgZr1qzBpEmTcPToUQghULt2bYwYMQJDhw4t/smKAjIyMhAaGup40pSIiIhIb0rXH5Z5wMBMXKwRERGR0ZSuP/jdoEREREQWZomnQYmIiIj0kJycjNTUVABAeHg4atSoYXJE6nGxRkRERKVScnIy6tathytXsgEAgYFlcfjwoRK3YOPboERERFQqpaam/r1Q+wzAZ7hyJdvxKltJovqVtbS0NCxfvhw//fQTTp48iezsbFSuXBkJCQno0qULWrdurUecRERERF6qZ3YAmih+Ze3MmTMYMmQIIiMjMX36dOTk5KBx48bo2LEjqlevjg0bNuDuu+9G/fr1sWTJEj1jJiIiIrppKH5lLSEhAQMHDsQvv/yC+vXru8yTk5ODFStWYM6cOTh16hQ3piUiIiLSSPFi7eDBg6hUqVKxeYKCgtCvXz/069cPf/31l+bgiIiIiG52ihdrnhZqWvMTkTXlP/ZeUh95JyIq6bx6GtTX1xcdOnTAxYsXndLPnTsHX19fKYERkfnyH3tv2rQp6tath+TkZLNDIiK66Xi1WBNCIDc3F82aNcNvv/1W5BgRlQ7/PPb+7xL7yDsRUUnn1WLNZrPhf//7H7p3745WrVph5cqVTseIqLSpaXYAREQ3La9fWfP19cXcuXPx6quvom/fvpg+fTpfVSMiIiKSTPPXTQ0bNgx16tRBnz59sGnTJhkxEREREdHfvHplrWbNmk4PEnTo0AHbtm3DqVOnpAVGRERERF6+snbixIkiabVr18aePXtw7tw5zUERERER0Q1Sv8g9MDAQNWsq/yDypk2b0L17d0RFRcFms2HFihVOxwcNGgSbzeb0c8899zjluXjxIvr374+QkBBUqFABTzzxBC5fviyjOVQKJCcnY/fu3di9e7flt50oSbEqld+m0tIeotJK1v2H17w+VL2yFhYWpuhpz8L7r7mTlZWFRo0a4fHHH0evXr1c5rnnnnswf/58x+8BAQFOx/v374+UlBSsW7cO165dw+DBgzFs2DAsWrRIUQxUeuXvEXZj6wkgMLAsDh8+ZMmNXUtSrEoVbFNpaA9RaSXr/sNrXj+qFmtz5sxx/FsIgREjRuCll15CRESEV5V37doVXbt2LTZPQEAAqlat6vLYoUOHsGbNGuzcuRPNmjUDALz11lu499578eqrryIqKsqruKh0+GePsM8AAFeuPIrU1FRL3jxKUqxKOe/RNr3Et4eotJJ1/+E1rx9Vi7WBAwc6/f7UU0+hd+/eqFWrltSgCvrxxx8RERGBsLAw3HXXXZg+fbrjq6y2bt2KChUqOBZqANCpUyf4+Phg+/bt6Nmzp8syc3NzkZub6/g9IyNDt/jJCuqZHYAKJSlWpbhHG1HJIOv+w2teNqmfWZPtnnvuwaeffooffvgBs2bNwsaNG9G1a1fk5eUBAM6ePVvkVT0/Pz9UrFgRZ8+edVtuYmIiQkNDHT/R0dG6toOIiIjIW5r3WdPTww8/7Ph3fHw8GjZsiLi4OPz444/o2LGj1+VOmjQJEyZMcPyekZHBBRsRERFZkqVfWSusVq1aCA8Px9GjRwEAVatWxfnz553yXL9+HRcvXnT7OTfgxufgQkJCnH6IiIiIrEjVK2sFX40CgKtXr+KVV15BaGioU/rrr7+uPTIX/vzzT/z111+IjIwEALRq1QppaWn45Zdf0LRpUwDA+vXrYbfb0bJlS11ikCU5Odnxpdjh4eFSP4SZX7Y35So9V0sdZnPV93qOR3H1Wo3Z41oSx0FWeTfDtedJSbhGzOCpX9TOicLl6a00z1mjqFqs7dmzx+n31q1b4/jx405par7I/fLly45XyYAbm+3u3bsXFStWRMWKFTFt2jT07t0bVatWxbFjx/Dcc8+hdu3a6NKlCwCgXr16uOeeezB06FDMmzcP165dw+jRo/Hwww9b+klQPbdp0PLotNJzS/Lj2SkpKWjT5g6nvl+//nvcdVcnXbfNKAlbc7gaV7PqB0rGOBi95UFJvvY8KQnXiBk89YvaOeGqvC+//MKQ+Dmm3lP1NuiGDRs8/qxfv15xebt27UJCQgISEhIA3HjlLiEhAVOnToWvry/27duH+++/H7fccgueeOIJNG3aFD/99JPTXmsLFy7Erbfeio4dO+Lee+9F27Zt8cEHH6hpluGcH5P+DFeuZDv+L0de2f9WXa7Sc7XUYba0tLQifX/8+HHdxiOfnmMui9njakQfya5DVnk3w7XnSUm4RszgqV/UzglX5aWlpRkQf+mbs0Yy9QGD9u3bQwjh9vjatWs9llGxYsUSvAGunts0aHl0Wum5JfnxbFd9b8S2GSVhaw6zx7UkjoPRWx6YPUZ6KgnXiBk89YvaOWF0P5fmOas/xa+szZw5E9nZ2Yrybt++Hd98843XQRERERHRDYoXawcPHkTNmjUxcuRIrF69GhcuXHAcu379Ovbt24d3330XrVu3Rt++fVG+fHldAiYiIiK6mSh+G/TTTz/Fr7/+irfffhuPPPIIMjIy4Ovri4CAAMcrbgkJCRgyZAgGDRqEwMBA3YImIiIiulmo+sxao0aN8OGHH+L999/Hvn37cPLkSeTk5CA8PByNGzc25BFgcmbENh3exgRoe8y8uHxGP+JvhVi0xODqXBnjX7De3NxcBAQEmNYHMsoFXG/nIqNtVt+WRPa5rvrP3fHi/nYYsTWKp7HW6z6rZBshT+UeOuT6qW3Z17eMLUM8nav2PqWl/2S1wyhePWDg4+ODxo0bo3HjxpLDITW0bLWg1zYNsh4zLy6f0Y/4WyEWLTG4G2ut41+4XsAXQJ5u237otQWAku1cCrdNy9Yc+XVYaVsS2ee66z93x91tH+FqbGRvjaJkHuuxHZKSflPaL2rqVcpT3+vx90dJmoz+8xSLFRdsJeobDMiZEdt0eB+TtsfMi8tn9CP+VohFSwyuzpUx/s71vowbf4z1ezxfrznreTsX7W2z+rYkss913X/Fb5fjavsIV2Mje2sUT/NYr/us535T2i8vq6pXKU99L7tf1N6ntPSfp1isyNLfDUpKGbFNh1qyHjMvLp+VHj03KhYtMbg6V8b4F6zXiMfzjZyzsttm9W1JZJ9bT8VxtWV7Q+n1I/taUXvdyuoXI+as7H5R2/eytmGy9tYifGWNiIiIyMK4WCMiIiKyME2LtaNHj2Lt2rXIyckBgGK/jYCIiIiI1PPqM2t//fUX+vbti/Xr18Nms+HIkSOoVasWnnjiCYSFheG1116THedNwdXj4wUfedeyfUB+2flluHvcu6D8PFq3LTh06JDbc/PrUFp2cnKyy9iLq8OTEydOqMpfMGZ3xws/eq6kv11x93i+pxiKO1cGLW0qWIaWLQqKmzuF57unOtRQ0/fF5VMyZ9Vsc6NkPNT0y6FDhzRtuaEXd/3mzVYrMq7N4mIpblsNPa5LT8yqVxYl115p5dVibfz48fDz80NycjLq1fvng3x9+/bFhAkTuFjzQtFHsfMfdf/nkXdvt0ZwfsS5YHnu/AXAB48++qimeoEURzlFz3WuQ8kj00UfsXddh/IF241zp0yZojB/0ZidHwt33d6iMSuMzuXj+Z5iKO5cOVyPg7Yy1LWj+Lnjbr4reYy/eN71vdJ5UpjSrRGUjofyfvknPm+33NCH+2vdm21ktMxjdVuByKtXC7PqlUPZtVeaefU26HfffYdZs2ahevXqTul16tTByZMnpQR2syn6KHYegCfwzyPv3m8f8M+jyYXLc+cyALvmeoG0v8txdW7BOpQ9ku/cDiV1KI3vCQ/53Mfs/Fh40Vhcx6wwOpeP53uKobhz5dDSpqJleNOO4ueO6/mu7DH+4nnT98rmiSvqt7kpfjyU90t+fEXzebM1gjz5canffsMVLfNY3VYg8urVwqx65VB27ZVmXr2ylpWVhbJlyxZJv3jxouMlc/JWwUeOI12kaXm82FV5SmMx8rF1TyJdpMnoF6W8eZRdbR2e6jN6ywNXtLQpn5Z2eDpX7XxXyuhtFZTmUzoeSvuluHxGb5tTkJbtN1zRMo+13NtkXD/eMKteGcycd+by6pW1O+64A59++qnjd5vNBrvdjtmzZ6NDhw7SgiMiIiK62Xn1ytrs2bPRsWNH7Nq1C1evXsVzzz2H3377DRcvXsTPP/8sO0YiIiKim5ZXr6w1aNAAf/zxB9q2bYsHHngAWVlZ6NWrF/bs2YO4uDjZMRIRERHdtLxarCUnJyMkJASTJ0/GF198gW+//RbTp09HZGQkkpOTpQYYExMDm81W5GfUqFEAgPbt2xc5Nnz4cKkxEBEREZnFq7dBY2NjkZKSgoiICKf0v/76C7GxscjL87Q1hHI7d+50Ku/AgQO4++670adPH0fa0KFD8dJLLzl+d/XwQ2ljpb1yZO19U3BfJ3d7ahkVC6BsnzK1e7QVpGVvOE8xeLt3nBHc7fWktS+V7CGopQ6l9BoPb8ZIab9oYUSfFsebvcO09EVxY5Obm4vjx497XbYrZvdvQUbMp4J1qaWmr7zZv9FMXi3WhBCw2WxF0i9fvozAwEDNQRVUuXJlp99nzpyJuLg43HnnnY60smXLomrVqlLrta7Ce6CZSdbeN673dXJVh/6x/B2Rx33K1O7RVvRcT/tsKS3HOQZte8fprbi98rT2ZfF7CGqpQ10s8sfDmzFS2i9aGNGnxVO/d5iW+a5kbGT2tfn9+w8j5lM+7+e70r7yZv9Gs6l6G3TChAmYMGECbDYbpkyZ4vh9woQJGDt2LPr27YvGjRvrFCpw9epVfPbZZ3j88cedFosLFy5EeHg4GjRogEmTJiE7u/gLNzc3FxkZGU4/JUfhPdCsEouWvW/SUHRfJ1d7aindG077Pjye9ykrGLPq0uH93nCeYlAbl7Hzqfi98rT0pac9BLXU4U0s3tbrajy8GaOC9SrZW9EbBeswh/q9w7TMdyVjk78/pgxpMLt//5EG/edTPq3zXUFuL/ZvNJuqV9b27NkD4MYra/v374e/v7/jmL+/Pxo1aoRnnnlGboQFrFixAmlpaRg0aJAj7ZFHHkHNmjURFRWFffv24fnnn8fhw4exbNkyt+UkJiZi2rRpusVpDCvtNyMrFhn7Ohm9p5ZeezSp4SoG2XvHySYjZlfnWmFvK73GQ8uehFbfb08rI+e7p7GR3R9W6N98RsynfLL24FRbh5X+tv5D1WJtw4YNAIDBgwdj7ty5CAkJ0SUod/7v//4PXbt2RVRUlCNt2LBhjn/Hx8cjMjISHTt2xLFjx9w+mTpp0iRMmDDB8XtGRgaio6P1C5yIiIjIS159Zm3+/Pmy4/Do5MmT+P7774t9xQwAWrZsCQA4evSo28VaQEAAv2mBiIiISgSvFmsAsGvXLnzxxRdITk7G1atXnY55WlB5Y/78+YiIiEC3bt2Kzbd3714AQGSklV46JiIiIvKOV4u1zz//HI899hi6dOmC7777Dp07d8Yff/yBc+fOoWfPnrJjhN1ux/z58zFw4ED4+f0T8rFjx7Bo0SLce++9qFSpEvbt24fx48ejXbt2aNiwofQ49CTj8WxZj/trUVw7rLTdiBG0ttdKj+znk73lgRXI2GpDCyv0i9L2ysqntM9l3E9K0pyV0b/e/B3Q6++P0nx6b9PhLVnbK8ng1WJtxowZeOONNzBq1CiUL18ec+fORWxsLJ588kldXtH6/vvvkZycjMcff9wp3d/fH99//z3mzJmDrKwsREdHo3fv3vj3v/8tPQb9yHg8W9bj/loU1w4rbTdiBK3ttdIj+/lkb3lgBTK22tDCCv2itL2y8intcxn3k5I0Z2X0rzd/B/T6+6M0n/7bdHin6PZKZi/YvPoGg2PHjjnejvT390dWVhZsNhvGjx+PDz74QGqAANC5c2cIIXDLLbc4pUdHR2Pjxo3466+/cOXKFRw5cgSzZ882/MEHbdKg/fFsWY/7a5EG9+2w0nYjRtDa3jRY55H9fLK3PLCCNGjfakMLK/RLGpS1V1Y+V8eVpuXzZjsfq8/ZNGjvX2/+DiittzhaxkP/bTq8k1+H1u2V5PHqlbWwsDBkZmYCAKpVq4YDBw4gPj4eaWlpHvc4I3dkvCJphceQi2uHNR+J1o/W9lrxc5eytzywAtnbiKhlhX5R2l5Z+ZT2uYz7SUmaszL615u/A3r9/VGaz4htOrwha3sl7bxarLVr1w7r1q1DfHw8+vTpg7Fjx2L9+vVYt24dOnbsKDtGIiIiopuWV4u1t99+G1euXAEATJ48GWXKlMGWLVtK4OfFiIiIiKzNq8VaxYoVHf/28fHBxIkTHb/n5ORoj4qIiIiIAGjYZ62w3NxcvPPOO5g9ezbOnj0rq9hSJzk52RKP6hdmxGPwRtOyJUNp3rqhpI+hlZgdX0kaSypZ42Xkdh5GM/u69YaqxVpubi5efPFFrFu3Dv7+/njuuefQo0cPzJ8/H5MnT4avry/Gjx+vV6wlXnJyMurWrff3F8hahRGPwRtNy5YMpXnrhpI+hlZidnwlaSypZI2Xkdt5GM3s69Z7qrbumDp1Kt577z3ExMQgKSkJffr0wbBhw/DGG2/g9ddfR1JSEp5//nm9Yi3xUlNT/16olcQtGaywzYBSafB+Swal+WQwuk9L+hhaSRrMja8kjSWVrPFKg3HbeRgtDda+r7in6pW1pUuX4tNPP8X999+PAwcOoGHDhrh+/Tp+/fVX2Gw2vWIshUrylgxW2GZAKS1bMpTmrRtK+hhaidnxlaSxpJI1XkZu52E0s69b9VS9svbnn3+iadOmAIAGDRogICAA48eP50KNiIiISCeqFmt5eXnw9/d3/O7n54dy5cpJD4qIiIiIblD1NqgQAoMGDUJAQAAA4MqVKxg+fDiCg4Od8i1btkxehEREREQ3MVWLtYEDBzr9br0nPawpOTkZqampln2MmcgVLfOVc52IrKAkbtPhiqrF2vz58/WKo9Sy5nYdRMXR8ti9VR/ZJ6KbS8ndpsMVVZ9ZI/X+2a7Dao8wE7mj5bF7qz6yT0Q3lzSU1G06XJH2DQbkiVUfYSZyR8uc5XwnIisoedt0uMJX1oiIiIgsrNQs1t555x3ExMQgMDAQLVu2xI4dO8wOiYiIiEizUrFYW7JkCSZMmIAXXngBu3fvRqNGjdClSxecP3/e7NCIiIiINCkVi7XXX38dQ4cOxeDBg1G/fn3MmzcPZcuWxccff2x2aERERESalPgHDK5evYpffvkFkyZNcqT5+PigU6dO2Lp1q8tzcnNzkZub6/g9PT0dAJCRkSE9vsuXL//9r18AnPz73yeZxjQ3aVaIgWlM0yPNCjEwjWlq0v4AcOPvuB7rA+CfdYcQoviMooQ7ffq0ACC2bNnilP7ss8+KFi1auDznhRdeEAD4wx/+8Ic//OEPf0z/OXXqVLFrnRL/ypo3Jk2ahAkTJjh+t9vtuHjxIipVqqTpS+kzMjIQHR2NU6dOISQkREaopAHHw3o4JtbC8bAWjoe1GDEeQghkZmYiKiqq2HwlfrEWHh4OX19fnDt3zin93LlzqFq1qstzAgICHN9vmq9ChQrSYgoJCeGFZiEcD+vhmFgLx8NaOB7Wovd4hIaGesxT4h8w8Pf3R9OmTfHDDz840ux2O3744Qe0atXKxMiIiIiItCvxr6wBwIQJEzBw4EA0a9YMLVq0wJw5c5CVlYXBgwebHRoRERGRJqVisda3b19cuHABU6dOxdmzZ9G4cWOsWbMGVapUMTSOgIAAvPDCC0XeYiVzcDysh2NiLRwPa+F4WIuVxsMmhKfnRYmIiIjILCX+M2tEREREpRkXa0REREQWxsUaERERkYVxsUZERERkYVysSfTOO+8gJiYGgYGBaNmyJXbs2GF2SKVOYmIimjdvjvLlyyMiIgI9evTA4cOHnfJcuXIFo0aNQqVKlVCuXDn07t27yKbJycnJ6NatG8qWLYuIiAg8++yzuH79upFNKZVmzpwJm82GcePGOdI4HsY7ffo0Hn30UVSqVAlBQUGIj4/Hrl27HMeFEJg6dSoiIyMRFBSETp064ciRI05lXLx4Ef3790dISAgqVKiAJ554osB3HZNSeXl5mDJlCmJjYxEUFIS4uDi8/PLLTt8FyfHQz6ZNm9C9e3dERUXBZrNhxYoVTsdl9f2+fftwxx13IDAwENHR0Zg9e7bchmj/dk4SQojPP/9c+Pv7i48//lj89ttvYujQoaJChQri3LlzZodWqnTp0kXMnz9fHDhwQOzdu1fce++9okaNGuLy5cuOPMOHDxfR0dHihx9+ELt27RK33367aN26teP49evXRYMGDUSnTp3Enj17xLfffivCw8PFpEmTzGhSqbFjxw4RExMjGjZsKMaOHetI53gY6+LFi6JmzZpi0KBBYvv27eL48eNi7dq14ujRo448M2fOFKGhoWLFihXi119/Fffff7+IjY0VOTk5jjz33HOPaNSokdi2bZv46aefRO3atUW/fv3MaFKJ9sorr4hKlSqJr7/+Wpw4cUIsXbpUlCtXTsydO9eRh+Ohn2+//VZMnjxZLFu2TAAQy5cvdzouo+/T09NFlSpVRP/+/cWBAwfE4sWLRVBQkHj//feltYOLNUlatGghRo0a5fg9Ly9PREVFicTERBOjKv3Onz8vAIiNGzcKIYRIS0sTZcqUEUuXLnXkOXTokAAgtm7dKoS4cfH6+PiIs2fPOvK89957IiQkROTm5hrbgFIiMzNT1KlTR6xbt07ceeedjsUax8N4zz//vGjbtq3b43a7XVStWlX85z//caSlpaWJgIAAsXjxYiGEEAcPHhQAxM6dOx15Vq9eLWw2mzh9+rR+wZdC3bp1E48//rhTWq9evUT//v2FEBwPIxVerMnq+3fffVeEhYU53a+ef/55UbduXWmx821QCa5evYpffvkFnTp1cqT5+PigU6dO2Lp1q4mRlX7p6ekAgIoVKwIAfvnlF1y7ds1pLG699VbUqFHDMRZbt25FfHy806bJXbp0QUZGBn777TcDoy89Ro0ahW7dujn1O8DxMMOqVavQrFkz9OnTBxEREUhISMCHH37oOH7ixAmcPXvWaUxCQ0PRsmVLpzGpUKECmjVr5sjTqVMn+Pj4YPv27cY1phRo3bo1fvjhB/zxxx8AgF9//RWbN29G165dAXA8zCSr77du3Yp27drB39/fkadLly44fPgwLl26JCXWUvENBmZLTU1FXl5ekW9MqFKlCn7//XeToir97HY7xo0bhzZt2qBBgwYAgLNnz8Lf3x8VKlRwylulShWcPXvWkcfVWOUfI3U+//xz7N69Gzt37ixyjONhvOPHj+O9997DhAkT8K9//Qs7d+7EmDFj4O/vj4EDBzr61FWfFxyTiIgIp+N+fn6oWLEix0SliRMnIiMjA7feeit8fX2Rl5eHV155Bf379wcAjoeJZPX92bNnERsbW6SM/GNhYWGaY+VijUqsUaNG4cCBA9i8ebPZody0Tp06hbFjx2LdunUIDAw0OxzCjf+JadasGWbMmAEASEhIwIEDBzBv3jwMHDjQ5OhuPl988QUWLlyIRYsW4bbbbsPevXsxbtw4REVFcTxIMb4NKkF4eDh8fX2LPOF27tw5VK1a1aSoSrfRo0fj66+/xoYNG1C9enVHetWqVXH16lWkpaU55S84FlWrVnU5VvnHSLlffvkF58+fR5MmTeDn5wc/Pz9s3LgRb775Jvz8/FClShWOh8EiIyNRv359p7R69eohOTkZwD99Wtz9qmrVqjh//rzT8evXr+PixYscE5WeffZZTJw4EQ8//DDi4+MxYMAAjB8/HomJiQA4HmaS1fdG3MO4WJPA398fTZs2xQ8//OBIs9vt+OGHH9CqVSsTIyt9hBAYPXo0li9fjvXr1xd56blp06YoU6aM01gcPnwYycnJjrFo1aoV9u/f73QBrlu3DiEhIUX+yFHxOnbsiP3792Pv3r2On2bNmqF///6Of3M8jNWmTZsi29n88ccfqFmzJgAgNjYWVatWdRqTjIwMbN++3WlM0tLS8MsvvzjyrF+/Hna7HS1btjSgFaVHdnY2fHyc/9T6+vrCbrcD4HiYSVbft2rVCps2bcK1a9ccedatW4e6detKeQsUALfukOXzzz8XAQEBYsGCBeLgwYNi2LBhokKFCk5PuJF2I0aMEKGhoeLHH38UKSkpjp/s7GxHnuHDh4saNWqI9evXi127dolWrVqJVq1aOY7nbxXRuXNnsXfvXrFmzRpRuXJlbhUhScGnQYXgeBhtx44dws/PT7zyyiviyJEjYuHChaJs2bLis88+c+SZOXOmqFChgli5cqXYt2+feOCBB1xuV5CQkCC2b98uNm/eLOrUqcOtIrwwcOBAUa1aNcfWHcuWLRPh4eHiueeec+TheOgnMzNT7NmzR+zZs0cAEK+//rrYs2ePOHnypBBCTt+npaWJKlWqiAEDBogDBw6Izz//XJQtW5Zbd1jVW2+9JWrUqCH8/f1FixYtxLZt28wOqdQB4PJn/vz5jjw5OTli5MiRIiwsTJQtW1b07NlTpKSkOJWTlJQkunbtKoKCgkR4eLh4+umnxbVr1wxuTelUeLHG8TDeV199JRo0aCACAgLErbfeKj744AOn43a7XUyZMkVUqVJFBAQEiI4dO4rDhw875fnrr79Ev379RLly5URISIgYPHiwyMzMNLIZpUJGRoYYO3asqFGjhggMDBS1atUSkydPdtrmgeOhnw0bNrj8mzFw4EAhhLy+//XXX0Xbtm1FQECAqFatmpg5c6bUdtiEKLCNMhERERFZCj+zRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGRKXWoEGD0KNHD9PqHzBgAGbMmKFb+QcPHkT16tWRlZWlWx1EZD5+gwERlUg2m63Y4y+88ALGjx8PIQQqVKhgTFAF/Prrr7jrrrtw8uRJlCtXTrd6HnzwQTRq1AhTpkzRrQ4iMhcXa0RUIp09e9bx7yVLlmDq1Kk4fPiwI61cuXK6LpI8GTJkCPz8/DBv3jxd6/nmm28wdOhQJCcnw8/PT9e6iMgcfBuUiEqkqlWrOn5CQ0Nhs9mc0sqVK1fkbdD27dvjqaeewrhx4xAWFoYqVargww8/RFZWFgYPHozy5cujdu3aWL16tVNdBw4cQNeuXVGuXDlUqVIFAwYMQGpqqtvY8vLy8OWXX6J79+5O6TExMZg+fToee+wxlCtXDjVr1sSqVatw4cIFPPDAAyhXrhwaNmyIXbt2Oc45efIkunfvjrCwMAQHB+O2227Dt99+6zh+99134+LFi9i4caPGHiUiq+JijYhuKp988gnCw8OxY8cOPPXUUxgxYgT69OmD1q1bY/fu3ejcuTMGDBiA7OxsAEBaWhruuusuJCQkYNeuXVizZg3OnTuHhx56yG0d+/btQ3p6Opo1a1bk2BtvvIE2bdpgz5496NatGwYMGIDHHnsMjz76KHbv3o24uDg89thjyH/TY9SoUcjNzcWmTZuwf/9+zJo1y+kVQ39/fzRu3Bg//fST5J4iIqvgYo2IbiqNGjXCv//9b9SpUweTJk1CYGAgwsPDMXToUNSpUwdTp07FX3/9hX379gEA3n77bSQkJGDGjBm49dZbkZCQgI8//hgbNmzAH3/84bKOkydPwtfXFxEREUWO3XvvvXjyyScddWVkZKB58+bo06cPbrnlFjz//PM4dOgQzp07BwBITk5GmzZtEB8fj1q1auG+++5Du3btnMqMiorCyZMnJfcUEVkFF2tEdFNp2LCh49++vr6oVKkS4uPjHWlVqlQBAJw/fx7AjQcFNmzY4PgMXLly5XDrrbcCAI4dO+ayjpycHAQEBLh8CKJg/fl1FVf/mDFjMH36dLRp0wYvvPCCYxFZUFBQkOOVQCIqfbhYI6KbSpkyZZx+t9lsTmn5Cyy73Q4AuHz5Mrp37469e/c6/Rw5cqTIK1z5wsPDkZ2djatXrxZbf35dxdU/ZMgQHD9+HAMGDMD+/fvRrFkzvPXWW05lXrx4EZUrV1bWAURU4nCxRkRUjCZNmuC3335DTEwMateu7fQTHBzs8pzGjRsDuLEPmgzR0dEYPnw4li1bhqeffhoffvih0/EDBw4gISFBSl1EZD1crBERFWPUqFG4ePEi+vXrh507d+LYsWNYu3YtBg8ejLy8PJfnVK5cGU2aNMHmzZs11z9u3DisXbsWJ06cwO7du7FhwwbUq1fPcTwpKQmnT59Gp06dNNdFRNbExRoRUTGioqLw888/Iy8vD507d0Z8fDzGjRuHChUqwMfH/S10yJAhWLhwoeb68/LyMGrUKNSrVw/33HMPbrnlFrz77ruO44sXL0bnzp1Rs2ZNzXURkTVxU1wiIh3k5OSgbt26WLJkCVq1aqVLHVevXkWdOnWwaNEitGnTRpc6iMh8fGWNiEgHQUFB+PTTT4vdPFer5ORk/Otf/+JCjaiU4ytrRERERBbGV9aIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgs7P8BV0WZaEeqwZMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ diff --git a/snudda/data/nest/synapses/excitatory.json b/snudda/data/nest/synapses/excitatory.json new file mode 100644 index 000000000..439852706 --- /dev/null +++ b/snudda/data/nest/synapses/excitatory.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 1 +} diff --git a/snudda/data/nest/synapses/excitatory_distal.json b/snudda/data/nest/synapses/excitatory_distal.json new file mode 100644 index 000000000..2b9fe7d82 --- /dev/null +++ b/snudda/data/nest/synapses/excitatory_distal.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 5 +} diff --git a/snudda/data/nest/synapses/excitatory_proximal.json b/snudda/data/nest/synapses/excitatory_proximal.json new file mode 100644 index 000000000..588bd735f --- /dev/null +++ b/snudda/data/nest/synapses/excitatory_proximal.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 3 +} diff --git a/snudda/data/nest/synapses/excitatory_soma.json b/snudda/data/nest/synapses/excitatory_soma.json new file mode 100644 index 000000000..439852706 --- /dev/null +++ b/snudda/data/nest/synapses/excitatory_soma.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 1 +} diff --git a/snudda/data/nest/synapses/inhibitory.json b/snudda/data/nest/synapses/inhibitory.json new file mode 100644 index 000000000..6f60346f7 --- /dev/null +++ b/snudda/data/nest/synapses/inhibitory.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 2 +} diff --git a/snudda/data/nest/synapses/inhibitory_distal.json b/snudda/data/nest/synapses/inhibitory_distal.json new file mode 100644 index 000000000..4f6614245 --- /dev/null +++ b/snudda/data/nest/synapses/inhibitory_distal.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 6 +} diff --git a/snudda/data/nest/synapses/inhibitory_proximal.json b/snudda/data/nest/synapses/inhibitory_proximal.json new file mode 100644 index 000000000..5ea1a2837 --- /dev/null +++ b/snudda/data/nest/synapses/inhibitory_proximal.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 4 +} diff --git a/snudda/data/nest/synapses/inhibitory_soma.json b/snudda/data/nest/synapses/inhibitory_soma.json new file mode 100644 index 000000000..6f60346f7 --- /dev/null +++ b/snudda/data/nest/synapses/inhibitory_soma.json @@ -0,0 +1,3 @@ +{ + "receptor_type": 2 +} diff --git a/snudda/plotting/Blender/visualisation/visualise_network.py b/snudda/plotting/Blender/visualisation/visualise_network.py index df3d7f67e..a2f766715 100644 --- a/snudda/plotting/Blender/visualisation/visualise_network.py +++ b/snudda/plotting/Blender/visualisation/visualise_network.py @@ -96,7 +96,7 @@ def visualise(self, """ - if neuron_id: + if neuron_id is not None: neurons = [self.data["neurons"][x] for x in neuron_id] else: neurons = self.data["neurons"] diff --git a/snudda/utils/conv_hurt.py b/snudda/utils/conv_hurt.py index 8c89c28db..39248c493 100644 --- a/snudda/utils/conv_hurt.py +++ b/snudda/utils/conv_hurt.py @@ -405,65 +405,3 @@ def add_version(self, hdf5_file): hdf5_file.attrs["version"] = [0, 1] hdf5_file.attrs["magic"] = 0x0A7A - - -if __name__ == "__main__": - # ch = ConvHurt() - # ch = ConvHurt(simulationStructure="cerebellum", - # inputStructures=["pons","cortex"]) - - ch = ConvHurt(simulation_structure="striatum", - input_structures=["cortex", "thalamus"]) - - # Test example, we have 5 neurons, big network - # two groups - - node_data = {"positions": np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.], - [1., 8., 9.], [2., 3., 2.]]), - "rotation_angle_zaxis": np.array([0.1, 0.2, 0.3, 0.4, 0.5])} - - ch.write_nodes(node_file='striatum_nodes.hdf5', - data=node_data, - node_id=np.array([0, 1, 2, 3, 4]), - population_name="striatum_nodes", - node_type_id=np.array([0, 1, 0, 1, 0]), - node_group_id=np.array([0, 0, 1, 1, 1]), - node_group_index=np.array([0, 1, 0, 1, 2])) - - node_type_id = np.array([0, 1]) - node_data_csv = OrderedDict([('name', ['A', 'B']), - ('location', ['structA', 'structB'])]) - - ch.write_node_csv(node_csv_file='striatum_node_types.csv', - node_type_id=node_type_id, - data=node_data_csv) - - edge_group = np.array([5, 5, 11, 11, 11]) - edge_group_index = np.array([0, 1, 0, 1, 2]) - edge_type_id = np.array([0, 1, 0, 1, 0]) - source_gid = np.array([1, 2, 3, 3, 4]) - target_gid = np.array([2, 3, 4, 0, 1]) # THESE ARE SORTED ... HAHAHA - - # Delay needs to be in ms (bad bad people, real scientists use SI units) - edge_data = OrderedDict([("sec_id", np.array([10, 22, 33, 24, 15])), - ("sec_x", np.array([0.1, 0.3, 0.5, 0.2, 0])), - ("syn_weight", np.array([0.1e-9, 2e-9, 3e-9, - 0.3e-9, 0.1e-9])), - ("delay", 1e3 * np.array([1e-3, 4e-3, 2e-3, 5e-3, 1e-3]))]) - - ch.write_edges(edge_file="striatum_edges.hdf5", - edge_group=edge_group, - edge_group_index=edge_group_index, - edge_type_id=edge_type_id, - edge_population_name="striatum_edges", - source_id=source_gid, - target_id=target_gid, - data=edge_data) - - edge_type_id = np.array([0, 1]) - edge_csv_data = OrderedDict([('template', ['Exp2Syn', 'NULL']), - ('dynamics_params', ["mysyn.json", 'yoursyn.json'])]) - - ch.write_edges_csv(edge_csv_file="striatum_edge_types.csv", - edge_type_id=edge_type_id, - data=edge_csv_data) diff --git a/snudda/utils/export_sonata.py b/snudda/utils/export_sonata.py index 84ea8ce8d..1e96098d9 100644 --- a/snudda/utils/export_sonata.py +++ b/snudda/utils/export_sonata.py @@ -109,12 +109,19 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di if self.target_simulator == "NEST": if "nestModelTemplate" in con_type_data["channelParameters"]: edge_model = con_type_data["channelParameters"]["nestModelTemplate"] + if "nestDynamicParams" not in con_type_data["channelParameters"]: + raise KeyError("If nestModelTemplate is specified, nestDynamicParams must be specified also") + dynamic_params = con_type_data["channelParameters"]["nestDynamicParams"] else: edge_model = "static_synapse" + if con_type == "GABA": + dynamic_params = "inhibitory.json" + else: + dynamic_params = "excitatory.json" else: edge_model = con_type_data["channelParameters"]["modFile"] - edge_type_lookup[pre_type, post_type, con_type] = (edge_type_id, edge_model, f"{pre_type}_{post_type}") + edge_type_lookup[pre_type, post_type, con_type] = (edge_type_id, edge_model, f"{pre_type}_{post_type}", dynamic_params) node_id_remap = np.full(shape=(self.snudda_load.data["nNeurons"],), fill_value=-1, dtype=int) @@ -198,7 +205,8 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di edge_type_id = [x[0] for x in edge_type_lookup.values()] edge_data = {"model_template": [x[1] for x in edge_type_lookup.values()], - "population": [x[2] for x in edge_type_lookup.values()]} + "population": [x[2] for x in edge_type_lookup.values()], + "dynamic_params": [x[3] for x in edge_type_lookup.values()]} ch.write_edges_csv(edge_csv_file=f"{volume_name}_edge_types.csv", edge_type_id=edge_type_id, @@ -569,6 +577,30 @@ def setup_edge_population(self, node_group_lookup): ############################################################################ + def get_nest_synapse_models(self): + + synapse_model_lookup = dict() + + for synapse_models in self.snudda_load.data["connectivityDistributions"].values(): + for synapse_type, synapse_model in synapse_models.items(): + synapse_type_id = synapse_model["channelModelID"] + + if synapse_type == "GABA": + synapse_model_lookup[synapse_type_id] = dict() + synapse_model_lookup[synapse_type_id]["soma"] = "inhibitory_soma.json" + synapse_model_lookup[synapse_type_id]["proximal"] = "inhibitory_proximal.json" + synapse_model_lookup[synapse_type_id]["distal"] = "inhibitory_distal.json" + else: + # Assume excitatory + synapse_model_lookup[synapse_type_id] = dict() + synapse_model_lookup[synapse_type_id]["soma"] = "excitatory_soma.json" + synapse_model_lookup[synapse_type_id]["proximal"] = "excitatory_proximal.json" + synapse_model_lookup[synapse_type_id]["distal"] = "excitatory_distal.json" + + return synapse_model_lookup + + ############################################################################ + # This code sets up the info about edges def setup_edge_info(self, edge_population_lookup, node_group_id, group_idx): @@ -611,6 +643,8 @@ def setup_edge_info(self, edge_population_lookup, node_group_id, group_idx): sec_id[i_syn] = syn_row[9] sec_x[i_syn] = syn_row[10] / 1000.0 synapse_type = syn_row[6] + synapse_conductance = syn_row[11] * 1e-3 # pS --> micro simens + syn_weight[i_syn] = synapse_conductance pre_type = self.snudda_load.data["neurons"][source_gid[i_syn]]["type"] post_type = self.snudda_load.data["neurons"][target_gid[i_syn]]["type"] @@ -620,7 +654,6 @@ def setup_edge_info(self, edge_population_lookup, node_group_id, group_idx): dend_dist = syn_row[6] * 1e-6 axon_dist = syn_row[7] * 1e-6 delay[i_syn] = axon_dist / axon_speed * 1e3 + 1 # Delay in ms and not SI units :-( - syn_weight[i_syn] = 1.0 # !!! THIS NEEDS TO BE SET DEPENDING ON CONNECTION TYPE edge_data = OrderedDict([("afferent_section_id", sec_id), ("afferent_section_pos", sec_x), @@ -1015,6 +1048,19 @@ def copy_mechanisms(self): mech_file = os.path.basename(mech) copyfile(mech, os.path.join(self.out_dir, "components", "mechanisms", mech_file)) + def copy_nest_synapses(self): + print("Copying NEST synapses") + + mech_path = snudda_parse_path(os.path.join("$SNUDDA_DATA", "nest", "synapses"), + snudda_data=self.snudda_load.data["SnuddaData"]) + + for mech in glob(os.path.join(mech_path, "*.json")): + if self.debug: + print(f"Copying {mech}") + + mech_file = os.path.basename(mech) + copyfile(mech, os.path.join(self.out_dir, "components", "synapse_dynamics", mech_file)) + ############################################################################ def sort_input(self, nl, node_type_id_lookup, input_name=None): From 2d325067dd55598be14570d83c6d62ee8de630c8 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Wed, 7 Jun 2023 14:37:04 +0200 Subject: [PATCH 08/14] Updated inhibitory synapses --- examples/notebooks/NEST/Snudda-in-NEST.ipynb | 122 +++++++++---------- snudda/utils/export_sonata.py | 22 +++- 2 files changed, 82 insertions(+), 62 deletions(-) diff --git a/examples/notebooks/NEST/Snudda-in-NEST.ipynb b/examples/notebooks/NEST/Snudda-in-NEST.ipynb index c37b3f4fd..e30e4dc2e 100644 --- a/examples/notebooks/NEST/Snudda-in-NEST.ipynb +++ b/examples/notebooks/NEST/Snudda-in-NEST.ipynb @@ -293,72 +293,72 @@ "text": [ "Using input file: networks/snudda_in_nest/input-spikes.hdf5\n", "Copying morphologies\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var4.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var6.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var8.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var3.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var7.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var7.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var5.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var3.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var2.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var2.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var7.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var4.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var4.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var7.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var2.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var7.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var4.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var1.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var3.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var0.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var2.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var5.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", + "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var8.swc\n", "Copying mechanisms\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/can_ms.mod\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/Im_ms.mod\n", @@ -419,9 +419,9 @@ "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir_ms.mod\n", "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/it_lts.mod\n", "Copying hoc files...\n", - "Creating nodes/iSPN\n", "Creating nodes/FS\n", "Creating nodes/dSPN\n", + "Creating nodes/iSPN\n", "Missing hoc template: \n", "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", @@ -910,12 +910,12 @@ "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", - "Writing file networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_FS_Striatum.hdf5\n", "Writing file networks/snudda_in_nest/SONATA/inputs/input_FS_Striatum.hdf5\n", "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_dSPN_Striatum.hdf5\n", "Writing file networks/snudda_in_nest/SONATA/inputs/input_dSPN_Striatum.hdf5\n", + "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", + "Writing file networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", "Writing networks/snudda_in_nest/SONATA/simulation_config.json\n", "SONATA files exported to networks/snudda_in_nest/SONATA\n" ] @@ -978,7 +978,7 @@ " Type 'nest.help()' to find out more about NEST.\n", "\n", "\n", - "Jun 07 13:35:32 SimulationManager::set_status [Info]: \n", + "Jun 07 14:34:02 SimulationManager::set_status [Info]: \n", " Temporal resolution changed from 0.1 to 0.1 ms.\n" ] } @@ -1045,16 +1045,16 @@ "output_type": "stream", "text": [ "\n", - "Jun 07 13:35:32 NodeManager::prepare_nodes [Info]: \n", + "Jun 07 14:34:02 NodeManager::prepare_nodes [Info]: \n", " Preparing 4863 nodes for simulation.\n", "\n", - "Jun 07 13:35:32 SimulationManager::start_updating_ [Info]: \n", + "Jun 07 14:34:03 SimulationManager::start_updating_ [Info]: \n", " Number of local nodes: 4863\n", " Simulation time (ms): 1000\n", " Number of OpenMP threads: 1\n", " Not using MPI\n", "\n", - "Jun 07 13:37:49 SimulationManager::run [Info]: \n", + "Jun 07 14:36:17 SimulationManager::run [Info]: \n", " Simulation finished.\n" ] } @@ -1071,7 +1071,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjhElEQVR4nO3deVxUVf8H8M+w74PIniCIu+ESbriVxiO5lbnkluKSleJeFmQuLYra86SVa1Zqv9JMc0lNzdxN3MgFFU0NAZVFQgZkFTi/P4yJgQFmYJg7A5/36zUvmXPP3PO9987y9d57zpEJIQSIiIiIyCCZSB0AEREREZWPyRoRERGRAWOyRkRERGTAmKwRERERGTAma0REREQGjMkaERERkQFjskZERERkwJisERERERkwJmtEREREBozJGhHphY+PD8aOHauXts6dO4cuXbrA1tYWMpkMFy9e1Eu7urRgwQLIZLIabeO5557Dc889V6NtEFH1MVkj0rENGzZAJpMpH2ZmZnjqqacwduxY3Lt3r8bavXbtGhYsWIA7d+7UWBtSuH//PhYsWKBxwvX48WMMHToUaWlpWLZsGf7v//4PDRs2rNkgSWMLFiyAj4+PStmvv/6KCRMm4Omnn4apqWmZ5SUVFRVh6dKl8PX1hZWVFVq3bo3NmzeXqXf27FlMnjwZAQEBMDc3rzDxXb16NYYOHQpvb2/IZLJy/1OhLnYifTCTOgCi2urDDz+Er68vcnNzcfr0aWzYsAEnT57ElStXYGVlpfP2rl27hg8++ADPPfdcrfpBuX//Pj744AP4+Pigbdu2lda/ffs24uLisG7dOrz22ms1H6AR+/XXX6UOAQCwadMmbNmyBc888ww8PT0rrDtnzhwsXrwYEydORIcOHbBr1y6MHDkSMpkMw4cPV9b75Zdf8NVXX6F169Zo1KgR/vzzz3LXuWTJEmRmZqJjx45ITEzU2XYR6QrPrBHVkD59+uDVV1/Fa6+9hq+++gpvv/02bt++jZ9//lnq0LSSlZUldQhaSUlJAQA4OjpWWtfYtk3XLCwsYGFhIXUYWLRoETIyMvD777+jTZs25da7d+8e/ve//yE0NBRffvklJk6ciN27d6N79+6YPXs2CgsLlXUnTZoEhUKB8+fP4z//+U+F7R87dgypqanYt28fLC0tdbZdRLrCZI1IT7p37w7gyZmfYvn5+Zg3bx4CAgIgl8tha2uL7t2748iRI2Ve/8MPPyAgIAD29vZwcHCAv78/PvvsMwBPLr0OHToUANCzZ0/lJdijR48qX79v3z50794dtra2sLe3R79+/XD16lWVNsaOHQs7Ozvcvn0bffv2hb29PUaNGlXuNhXfV3X9+nW88sorcHBwQP369TF9+nTk5uZWuk/++usvDB06FE5OTrCxsUHnzp2xd+9e5fKjR4+iQ4cOAIBx48Ypt2vDhg1q1zd27Fg8++yzAIChQ4dCJpMp78mqaNuysrLw1ltvwcvLC5aWlmjWrBn++9//Qgihsn6ZTIYpU6Zg69ataNmyJaytrREYGIjo6GgAwNq1a9G4cWNYWVnhueee0/iS9MmTJ9GhQwdYWVnBz88Pa9euLbfud999h4CAAFhbW8PJyQnDhw9HQkKCcvmUKVNgZ2eH7OzsMq8dMWIE3N3dlUmNunvWcnNzsWDBAjRt2hRWVlbw8PDAoEGDVN63RUVFWL58OVq1agUrKyu4ubnhjTfewMOHDzXa3tI8PT1hbm5eab1du3bh8ePHmDx5srJMJpNh0qRJuHv3LiIjI5Xlbm5usLa21qj9hg0b1vj9gUTVwcugRHpS/MNdr149ZVlGRga++uorjBgxAhMnTkRmZia+/vprBAcH4+zZs8rLfgcPHsSIESPw/PPPY8mSJQCAmJgY/P7775g+fTp69OiBadOm4fPPP8d7772HFi1aAIDy3//7v/9DSEgIgoODsWTJEmRnZ2P16tXo1q0bLly4oHLZtKCgAMHBwejWrRv++9//wsbGptJte+WVV+Dj44OIiAicPn0an3/+OR4+fIhvv/223NckJyejS5cuyM7OxrRp01C/fn1s3LgRL774IrZt24aXX34ZLVq0wIcffoh58+bh9ddfVya8Xbp0UbvON954A0899RQWLVqEadOmoUOHDnBzc6tw24QQePHFF3HkyBFMmDABbdu2xYEDBzB79mzcu3cPy5YtU2njxIkT+PnnnxEaGgoAiIiIQP/+/fHOO+9g1apVmDx5Mh4+fIilS5di/PjxOHz4cIX7Ljo6Gr1794aLiwsWLFiAgoICzJ8/XyXuYgsXLsTcuXPxyiuv4LXXXsODBw/wxRdfoEePHrhw4QIcHR0xbNgwrFy5Env37lUm8ACQnZ2N3bt3Y+zYsTA1NVUbS2FhIfr3749Dhw5h+PDhmD59OjIzM3Hw4EFcuXIFfn5+yv28YcMGjBs3DtOmTUNsbCxWrFiBCxcu4Pfff9co8aqKCxcuwNbWVvm+LtaxY0fl8m7dutVI20SSEkSkU+vXrxcAxG+//SYePHggEhISxLZt24SLi4uwtLQUCQkJyroFBQUiLy9P5fUPHz4Ubm5uYvz48cqy6dOnCwcHB1FQUFBuu1u3bhUAxJEjR1TKMzMzhaOjo5g4caJKeVJSkpDL5SrlISEhAoAICwvTaFvnz58vAIgXX3xRpXzy5MkCgLh06ZKyrGHDhiIkJET5fMaMGQKAOHHihEqsvr6+wsfHRxQWFgohhDh37pwAINavX69RTEeOHBEAxNatW1XKy9u2nTt3CgDi448/VikfMmSIkMlk4tatW8oyAMLS0lLExsYqy9auXSsACHd3d5GRkaEsDw8PFwBU6qozcOBAYWVlJeLi4pRl165dE6ampqLkV/SdO3eEqampWLhwocrro6OjhZmZmbK8qKhIPPXUU2Lw4MEq9X788UcBQBw/flxZ9uyzz4pnn31W+fybb74RAMSnn35aJs6ioiIhhBAnTpwQAMT333+vsnz//v1qy7XVr18/0bBhw3KXNWrUqEx5VlZWhe/b0NBQoenPna2trcr7lMgQ8DIoUQ0JCgqCi4sLvLy8MGTIENja2uLnn39GgwYNlHVMTU2V9wwVFRUhLS0NBQUFaN++Pf744w9lPUdHR2RlZeHgwYNax3Hw4EGkp6djxIgRSE1NVT5MTU3RqVMntZdcJ02apFUbxWeZik2dOhXAk5u8y/PLL7+gY8eOKmdC7Ozs8Prrr+POnTu4du2aVjFoqvS2/fLLLzA1NcW0adNUyt966y0IIbBv3z6V8ueff17lTGSnTp0AAIMHD4a9vX2Z8r/++qvcWAoLC3HgwAEMHDgQ3t7eyvIWLVogODhYpe727dtRVFSEV155ReU4uru7o0mTJsrjKJPJMHToUPzyyy949OiR8vVbtmzBU089VeGZp59++gnOzs7K41dS8WXCrVu3Qi6X4z//+Y9KHAEBAbCzs1P7ftKVnJwctfeUFXfYycnJqbG2iaTEZI2ohqxcuRIHDx7Etm3b0LdvX6Smpqr9odm4cSNat24NKysr1K9fHy4uLti7dy8UCoWyzuTJk9G0aVP06dMHDRo0wPjx47F//36N4rh58yYAoFevXnBxcVF5/Prrr8ob8ouZmZmpJJSaaNKkicpzPz8/mJiYVHjPVlxcHJo1a1amvPgSV1xcnFYxaELdtsXFxcHT01Ml0aoojpJJFQDI5XIAgJeXl9ryiu7jevDgAXJycsrsPwBl9s3NmzchhECTJk3KHMeYmBiV4zhs2DDk5OQoO7M8evQIv/zyi/I+vvLcvn0bzZo1g5lZ+XfI3Lx5EwqFAq6urmXiePToUZn3ky5ZW1sjLy+vTHnx/ZGa3qNGZGx4zxpRDenYsSPat28PABg4cCC6deuGkSNH4saNG7CzswPw5GbxsWPHYuDAgZg9ezZcXV1hamqKiIgIlRu6XV1dcfHiRRw4cAD79u3Dvn37sH79eowZMwYbN26sMI6ioiIAT+5bc3d3L7O89A+zpaUlTEyq9/84Q71ZWxfbVt79XuWVi1KdFKqqqKgIMpkM+/btU9tW8XsKADp37gwfHx/8+OOPGDlyJHbv3o2cnBwMGzZMJ3G4urri+++/V7vcxcWl2m2Ux8PDA0eOHIEQQuU9VjzcRmXDfhAZKyZrRHpQnID17NkTK1asQFhYGABg27ZtaNSoEbZv367y4zN//vwy67CwsMCAAQMwYMAAFBUVYfLkyVi7di3mzp2Lxo0bl5sgFd8U7urqiqCgoBrYuidnW3x9fZXPb926haKiogrHe2vYsCFu3LhRpvz69evK5UDNJ34NGzbEb7/9hszMTJWza6XjqAkuLi6wtrZWnv0sqfS+8fPzgxACvr6+aNq0aaXrfuWVV/DZZ58hIyMDW7ZsgY+PDzp37lzha/z8/HDmzBk8fvy43E4Cfn5++O2339C1a1e9n8lq27YtvvrqK8TExKBly5bK8jNnziiXE9VGvAxKpCfPPfccOnbsiOXLlysv2xSfISl59uXMmTMqQxAAwN9//63y3MTEBK1btwYA5WUhW1tbAEB6erpK3eDgYDg4OGDRokV4/PhxmbgePHhQja16YuXKlSrPv/jiCwBPxporT9++fXH27FmVbc3KysKXX34JHx8f5Y9xedulK3379kVhYSFWrFihUr5s2TLIZLIKt6G6TE1NERwcjJ07dyI+Pl5ZHhMTgwMHDqjUHTRoEExNTfHBBx+UOVsnhCjzHhk2bBjy8vKwceNG7N+/H6+88kql8QwePBipqall9kVxG8CTJLCwsBAfffRRmToFBQU1dpwA4KWXXoK5uTlWrVqlEteaNWvw1FNPldtLmMjY8cwakR7Nnj0bQ4cOxYYNG/Dmm2+if//+2L59O15++WX069cPsbGxWLNmDVq2bKlyc/hrr72GtLQ09OrVCw0aNEBcXBy++OILtG3bVnlvVdu2bWFqaoolS5ZAoVDA0tISvXr1gqurK1avXo3Ro0fjmWeewfDhw+Hi4oL4+Hjs3bsXXbt2VfvjrI3Y2Fi8+OKLeOGFFxAZGYnvvvsOI0eOrHCA07CwMGzevBl9+vTBtGnT4OTkhI0bNyI2NhY//fST8nKln58fHB0dsWbNGtjb28PW1hadOnVSOZNXHQMGDEDPnj0xZ84c3LlzB23atMGvv/6KXbt2YcaMGcozkzXlgw8+wP79+9G9e3dMnjwZBQUF+OKLL9CqVStcvnxZWc/Pzw8ff/wxwsPDcefOHQwcOBD29vaIjY3Fjh078Prrr+Ptt99W1n/mmWfQuHFjzJkzB3l5eRpdAh0zZgy+/fZbzJo1C2fPnkX37t2RlZWF3377DZMnT8ZLL72EZ599Fm+88QYiIiJw8eJF9O7dG+bm5rh58ya2bt2Kzz77DEOGDNFqH1y+fFl5f92tW7egUCjw8ccfAwDatGmDAQMGAAAaNGiAGTNm4JNPPsHjx4/RoUMH7Ny5EydOnMD333+vcnk4Li4O//d//wcAOH/+PAAo19mwYUOMHj1aWXf37t24dOkSgCfTlV2+fFlZ98UXX1T+x4hIMlJ1QyWqrYqH7jh37lyZZYWFhcLPz0/4+fmJgoICUVRUJBYtWiQaNmwoLC0tRbt27cSePXtESEiIyvAF27ZtE7179xaurq7CwsJCeHt7izfeeEMkJiaqrH/dunWiUaNGymEfSg7jceTIEREcHCzkcrmwsrISfn5+YuzYseL8+fPKOiEhIcLW1lbjbS0euuPatWtiyJAhwt7eXtSrV09MmTJF5OTkqNQtPXSHEELcvn1bDBkyRDg6OgorKyvRsWNHsWfPnjLt7Nq1S7Rs2VKYmZlVOoxHRUN3lLdtmZmZYubMmcLT01OYm5uLJk2aiE8++UQ5XEUxACI0NFSlLDY2VgAQn3zyiUZxqHPs2DEREBAgLCwsRKNGjcSaNWuU+7a0n376SXTr1k3Y2toKW1tb0bx5cxEaGipu3LhRpu6cOXMEANG4cWO17ZYeukMIIbKzs8WcOXOEr6+vMDc3F+7u7mLIkCHi9u3bKvW+/PJLERAQIKytrYW9vb3w9/cX77zzjrh//36l21ta8WdG3aP0e6awsFD5mbGwsBCtWrUS3333XZl1Fu9/dY/S21w8rIu6h6ZDxhDVJJkQOrr7lYjqnAULFuCDDz7AgwcP4OzsLHU4RES1Eu9ZIyIiIjJgTNaIiIiIDBiTNSIiIiIDxnvWiIiIiAwYz6wRERERGTAma0REREQGjIPi4slcd/fv34e9vb3BzmlIREREtYsQApmZmfD09Kxw3mImawDu378PLy8vqcMgIiKiOighIQENGjQodzmTNUA5eXNCQgIcHBwkjoaIiIjqgoyMDHh5eSnzkPIwWQOUlz4dHByYrBEREZFeVXYLFjsYEBERERkwJmtEREREBozJGhEREZEBY7JGREREZMCYrBEREREZMCZrRERERAaMyRoRERGRAeM4axK6lPAQZ++koaOPE1wdrHD+ThrScx6jno0FvOpZIz4tGzKZDNbmJvgrNQsdfZwAAGfvpKGRsy2y8wshk8ngVc8aWfmFyMkvqLRefFq22jbU/V1ZLNWNuWQbAQ3rISUjV6uYy2vD2sIMthamksXC/aK7927O4yIIIeDtZKOXfa+Lz1HCwxytYjbUWKR4v3D/Gc73kLHvP13F0tHHCW286lXxV153mKxJZPL3UfglOknqMIiIiKgCg595Cv97pa2kMfAyqAQ+2X+diRoREZER+OmPe7iU8FDSGJis6VmiIgcrj96WOgwiIiLS0OeHb0navqTJ2oIFCyCTyVQezZs3Vy7Pzc1FaGgo6tevDzs7OwwePBjJyckq64iPj0e/fv1gY2MDV1dXzJ49GwUFBfreFI1FxUmbnRMREZF2DsWkIFGRI1n7kp9Za9WqFRITE5WPkydPKpfNnDkTu3fvxtatW3Hs2DHcv38fgwYNUi4vLCxEv379kJ+fj1OnTmHjxo3YsGED5s2bJ8WmaEQIIXUIREREpKU/JDzZInkHAzMzM7i7u5cpVygU+Prrr7Fp0yb06tULALB+/Xq0aNECp0+fRufOnfHrr7/i2rVr+O233+Dm5oa2bdvio48+wrvvvosFCxbAwsJC35tTqfb/9DIhIiIi4/EwO1+ytiU/s3bz5k14enqiUaNGGDVqFOLj4wEAUVFRePz4MYKCgpR1mzdvDm9vb0RGRgIAIiMj4e/vDzc3N2Wd4OBgZGRk4OrVq+W2mZeXh4yMDJUHERERUXmkvDAmabLWqVMnbNiwAfv378fq1asRGxuL7t27IzMzE0lJSbCwsICjo6PKa9zc3JCU9KQnZVJSkkqiVry8eFl5IiIiIJfLlQ8vLy/dblgFeM8aERGR8ZHJpGtb0sugffr0Uf7dunVrdOrUCQ0bNsSPP/4Ia2vrGms3PDwcs2bNUj7PyMjQW8LGe9aIiIhIG5JfBi3J0dERTZs2xa1bt+Du7o78/Hykp6er1ElOTlbe4+bu7l6md2jxc3X3wRWztLSEg4ODykNfeM8aERERacOgkrVHjx7h9u3b8PDwQEBAAMzNzXHo0CHl8hs3biA+Ph6BgYEAgMDAQERHRyMlJUVZ5+DBg3BwcEDLli31Hr8mPOTWeK6Zi9RhEBERkZGQ9DLo22+/jQEDBqBhw4a4f/8+5s+fD1NTU4wYMQJyuRwTJkzArFmz4OTkBAcHB0ydOhWBgYHo3LkzAKB3795o2bIlRo8ejaVLlyIpKQnvv/8+QkNDYWlpKeWmlStRkYOjNx5IHQYRERFpwdFauhEmJE3W7t69ixEjRuDvv/+Gi4sLunXrhtOnT8PF5cmZp2XLlsHExASDBw9GXl4egoODsWrVKuXrTU1NsWfPHkyaNAmBgYGwtbVFSEgIPvzwQ6k2qVLsYEBERGR8Anykm9BdJnjHOzIyMiCXy6FQKGr8/rX3tl/GprMJNdoGERER6VZkeC94yHXb+VHT/MOg7lmr7RIVOdjMRI2IiMjoSDmDAZM1PUlU5GDP5fuo86cxiYiIjJCU1yEln26qLthyLh7h26NRxEyNiIjI6Mgg7T1rPLNWwxIVOUzUiIiIjNhLbT11fr+aNpis1bDY1CwmakREREbsQWaepO0zWathvs62MJFwPjEiIiKqnt9v/41ERY5k7TNZq2EecmtEDPKHqZQzwBIREVG13EnNlqxtdjDQg2EdvNGjqQui7jzEw5x8zN15VeqQiIiISAs2FtKd32KypifH/3zAjgZERERG6u7DHLTxkqZHKC+D6gF7hBIRERk3KcdZY7KmB+wRSkREZNy8nDh0R63GHqFERETGLSGNvUFrNfYIJSIiMm5S/oSzg4GeFPcIvZOajez8x5iwMUrqkIiIiEhDVubSnd/imTU9SVTkIDY1Cz7ONrifnit1OERERKSF32/9LVnbPLOmB5zInYiIyLg9yi2QrG2eWathHLaDiIjI+DV0tpGsbSZrNYzDdhARERk/ubW5ZG0zWathHLaDiIjI+DlaW0jWNpO1GsZhO4iIiIxfgI80U00B7GCgF8M6eKO5uz0OxaTg88O3pA6HiIiItOApt4KHXLoZDJis6QF7gxIRERmv+4pcXEp4yIncayv2BiUiIjJ+h6+nSNY2k7Uaxt6gRERExs/ZzlKytpms1TD2BiUiIjJ+rRvIJWubyVoNY29QIiIi45edXyRZ2+xgoAclJ3HfceEufjx/V+qQiIiISEMyGeDDGQxqPw+5NQL96sNfwtOoREREpL3eLd0kHbqDyZqetX6KyRoREZExecpRukQNYLKmdwkPc6QOgYiIiLRQ3066qaYAJmt6JwTH8SAiIjImDlbSTeIOMFnTO28n6W5QJCIiIu1JPaADkzU9y8ovlDoEIiIi0oKjNS+D1im+zrZSh0BERERauJ6UIWn7TNaIiIiIKrDyyG0kKqTrIMhkTc9iU7OkDoGIiIi0IAD8EfdQsvaZrOmZrYWp1CEQERGRlqQczIHJmp6xgwEREZFxkQEI8KknWftM1vSMHQyIiIiMSyMXW043RURERGSobj/IwqUE3rNWZ7CDARERkfHZdfG+ZG0zWdMzXgYlIiIyPg8e5UrWtkEla4sXL4ZMJsOMGTOUZbm5uQgNDUX9+vVhZ2eHwYMHIzk5WeV18fHx6NevH2xsbODq6orZs2ejoKBAz9ETERFRbeViayVZ2waTrJ07dw5r165F69atVcpnzpyJ3bt3Y+vWrTh27Bju37+PQYMGKZcXFhaiX79+yM/Px6lTp7Bx40Zs2LAB8+bN0/cmaOT8nTSpQyAiIiIttfC0l6xtg0jWHj16hFGjRmHdunWoV+/frrEKhQJff/01Pv30U/Tq1QsBAQFYv349Tp06hdOnTwMAfv31V1y7dg3fffcd2rZtiz59+uCjjz7CypUrkZ+fL9UmlUsm9WywREREpLWMHOmu2BlEshYaGop+/fohKChIpTwqKgqPHz9WKW/evDm8vb0RGRkJAIiMjIS/vz/c3NyUdYKDg5GRkYGrV6+qbS8vLw8ZGRkqD32JuS/t/GJERESkPR9nG8naNpOs5X/88MMP+OOPP3Du3Lkyy5KSkmBhYQFHR0eVcjc3NyQlJSnrlEzUipcXL1MnIiICH3zwgQ6i106iIgerjt7We7tERERUPbmPiyRrW9IzawkJCZg+fTq+//57WFnp78a98PBwKBQK5SMhIUEv7camZkHC2SqIiIioih5mS3drlaTJWlRUFFJSUvDMM8/AzMwMZmZmOHbsGD7//HOYmZnBzc0N+fn5SE9PV3ldcnIy3N3dAQDu7u5leocWPy+uU5qlpSUcHBxUHvrg62wL3rFGRERE2pA0WXv++ecRHR2NixcvKh/t27fHqFGjlH+bm5vj0KFDytfcuHED8fHxCAwMBAAEBgYiOjoaKSkpyjoHDx6Eg4MDWrZsqfdtqkzP5i5Sh0BERERGRNJ71uzt7fH000+rlNna2qJ+/frK8gkTJmDWrFlwcnKCg4MDpk6disDAQHTu3BkA0Lt3b7Rs2RKjR4/G0qVLkZSUhPfffx+hoaGwtLTU+zaVZ+3x21i87zoEr4MSEREZHUdrC8nalryDQWWWLVsGExMTDB48GHl5eQgODsaqVauUy01NTbFnzx5MmjQJgYGBsLW1RUhICD788EMJo1a19thtROy7LnUYREREVEUBPvUqr1RDZELwXE9GRgbkcjkUCoXO719LVOSgS8RhdiwgIiIyYpHhveAht9bpOjXNPwxinLXajD1AiYiIjN+d1GzJ2mayVsN8nW1hwi6gRERERksGaQfFZbJWwzzk1ogY5M8hO4iIiIxUGy+5zi+BaoPJmh70aOoCTglKRERknC7dVSBRkSNZ+0zW9CA2NQtFvHGNiIjIKAnBe9ZqPd63RkREZLx4z1odUHzfmimvhRIRERkdPxdb3rNWFwzr4I2TYT0xrVdjqUMhIiIiLdx+kMV71uoKD7k1mrjZSR0GERERaUEA+CPuoWTtM1nTs/Y+TlKHQERERFqScr4nJmt65iG3Rp+n3aUOg4iIiLRgbSFdysRkTc8SFTnYfyVJ6jCIiIhICxy6ow7hXKFERETGp71PPcnaZrKmZ77OtlKHQERERFpydbCSrG0ma3rmIbeGi5251GEQERGRFtgbtA75ZP91PHj0WOowiIiISAvsDVpHJCpysPLobanDICIiIi15OXEGgzohNjVL6hCIiIioCrLziyRrm8maHtlamEodAhEREVWBDcdZqxuy8gulDoGIiIiqIPqeQrK2mazpEc+sERERGacHGXmStc1kTY94Zo2IiMg4tfaSS9Y2kzU98nW2hUzqIIiIiEhruY/ZwaBO8JBbI6xPc6nDICIiIi1xnLU65I1n/RDelwkbERGRMbFmb9C65cU2nlKHQERERFq4fJe9QeuUJftipA6BiIiItOBsZylZ20zW9GztsdvYeTFR6jCIiIhIC60bsDdonZCoyEHEvutSh0FERERa4nRTdUCiIgd7Lt+XOgwiIiKqAh9nG8naNpOs5Tpky7l4hG+PRpGE3X6JiIio6lIycuEht5akbZ5Zq2GJihwmakREREbu/J2HkrXNZK2GxaZmMVEjIiIycu196knWttaXQW/evIldu3bhzp07kMlk8PX1xcCBA9GoUaOaiM/oFU8xxXyNiIjIOLXydEAbLyNJ1iIiIjBv3jwUFRXB1dUVQgg8ePAAYWFhWLRoEd5+++2aitNoecitMbG7L748ESt1KERERFQFk571k7R9jS+DHjlyBO+//z7mzJmD1NRUJCYmIikpSZmshYWF4fjx4zUZq9Ea180XJpzBnYiIyCj9Ei3t+KgyITSbmnTYsGFwdHTE2rVr1S5//fXXkZmZic2bN+s0QH3IyMiAXC6HQqGAg4NDjbSx5Vw83tt+BYVSzgRLREREVbIrtIvOL4Vqmn9ofGbt7NmzGD16dLnLR48ejdOnT2sXZR0yrIM3Tob1xNu9m0odChEREWnJKHqDJicnw8fHp9zlvr6+SEpK0kVMtZaH3BqW5uyAS0REZGykHBRX48whNzcXFhYW5S43NzdHfn6+ToKqzTr6OEkdAhEREWkp97F0001p1Rv0q6++gp2dndplmZmZOgmotmvjVQ9tvOS4lKCQOhQiIiLSkJS3nGucrHl7e2PdunWV1tHG6tWrsXr1aty5cwcA0KpVK8ybNw99+vQB8ORs3ltvvYUffvgBeXl5CA4OxqpVq+Dm5qZcR3x8PCZNmoQjR47Azs4OISEhiIiIgJmZ4c6k9Z8WbkzWiIiIjIiXkzRTTQFaJGvFCZUuNWjQAIsXL0aTJk0ghMDGjRvx0ksv4cKFC2jVqhVmzpyJvXv3YuvWrZDL5ZgyZQoGDRqE33//HQBQWFiIfv36wd3dHadOnUJiYiLGjBkDc3NzLFq0SOfx6sqFeOluUiQiIiLtZedLdxlU46E79MXJyQmffPIJhgwZAhcXF2zatAlDhgwBAFy/fh0tWrRAZGQkOnfujH379qF///64f/++8mzbmjVr8O677+LBgwcV3mNXkj6G7iiWqMhBYMThGm2DiIiIdEvKoTs0PrP2+eefa1Rv2rRpmq5SRWFhIbZu3YqsrCwEBgYiKioKjx8/RlBQkLJO8+bN4e3trUzWIiMj4e/vr3JZNDg4GJMmTcLVq1fRrl07tW3l5eUhLy9P+TwjI6NKMVdFbGqW3toiIiIi3ZDyzJrGydqyZcsqrSOTybRO1qKjoxEYGIjc3FzY2dlhx44daNmyJS5evAgLCws4Ojqq1Hdzc1MOEZKUlKSSqBUvL15WnoiICHzwwQdaxakrthamkrRLREREVWdjId3QWxona7GxNTO3ZbNmzXDx4kUoFAps27YNISEhOHbsWI20VSw8PByzZs1SPs/IyICXl1eNtlksK79QL+0QERGR7tx9mCPZZO6Sd5m0sLBA48aNAQABAQE4d+4cPvvsMwwbNgz5+flIT09XObuWnJwMd3d3AIC7uzvOnj2rsr7k5GTlsvJYWlrC0tJSx1uimZz8AknaJSIioqqT8g5/gxtOv6ioCHl5eQgICIC5uTkOHTqkXHbjxg3Ex8cjMDAQABAYGIjo6GikpKQo6xw8eBAODg5o2bKl3mPXxImbqVKHQERERFoyiqE7akJ4eDj69OkDb29vZGZmYtOmTTh69CgOHDgAuVyOCRMmYNasWXBycoKDgwOmTp2KwMBAdO7cGQDQu3dvtGzZEqNHj8bSpUuRlJSE999/H6GhoZKdOatMdh4vgxIRERmbOnsZNCUlBWPGjEFiYiLkcjlat26NAwcO4D//+Q+AJ50aTExMMHjwYJVBcYuZmppiz549mDRpEgIDA2Fra4uQkBB8+OGHUm1SpbwlnFuMiIiIquZhtnRTahrcOGtS0Oc4a99GxmLerms12gYRERHp1ooR7dC/jadO16nzcdZKKioqwq1bt5CSkoKiItVxR3r06FGVVdYZTraGeXmWiIiIyhfgI80lUKAKydrp06cxcuRIxMXFofRJOZlMhsJC3pNVEa960t2gSERERNqTSdy+1snam2++ifbt22Pv3r3w8PCATCb1JhiXLecSpA6BiIiItCAA3EnNhodcmhMuWidrN2/exLZt25Rjo5HmEhU52HSWyRoREZExkQHwkbCDoNbjrHXq1Am3bt2qiVhqvai4h1KHQERERFqSuiem1mfWpk6dirfeegtJSUnw9/eHubm5yvLWrVvrLLjahh1viYiIjNMfcQ/Rr7WRXAYdPHgwAGD8+PHKMplMBiEEOxhUor2Pk9QhEBERURVIeb5F62StpiZ0rws85NYIfc4PK4/eljoUIiIi0oJRTTfVsGHDmoijzpj9QnMcuZGCa4mZUodCREREGoq+pzCu6aZu376N5cuXIyYmBgDQsmVLTJ8+HX5+fjoNrrZJVOQgNjULXvWsmawREREZkb8eZEnWttbJ2oEDB/Diiy+ibdu26Nq1KwDg999/R6tWrbB7927lvJ6kasu5eIRvj0YR+xgQEREZnfp2FpK1rXWyFhYWhpkzZ2Lx4sVlyt99910ma2okKnKYqBERERkxubV55ZVqiNbjrMXExGDChAllysePH49r1zhBuTqxqVlM1IiIiIyYo7V0Z9a0TtZcXFxw8eLFMuUXL16Eq6urLmKqdXydbWHCWbmIiIiMllH1Bp04cSJef/11/PXXX+jSpQuAJ/esLVmyBLNmzdJ5gLWBh9waEYP88d72KyjkwLhERERG5+7DHOPpDTp37lzY29vjf//7H8LDwwEAnp6eWLBgAaZNm6bzAGuLYR280aOpCzaficfnhzldFxERkTExmkFxCwoKsGnTJowcORIzZ85EZuaT4Sfs7e1rJLjaxkNujSZudlKHQURERFqS8jKoVvesmZmZ4c0330Rubi6AJ0kaEzXNJCpycOp2KrydbKQOhYiIiLSUnV8kWdtaXwbt2LEjLly4wJkMtFByjDX2MyAiIjI+NhZa98nUGa2TtcmTJ+Ott97C3bt3ERAQAFtbW5XlrVu31llwtUHpMdbYvYCIiMj4JKQZUQeD4cOHA4BKZwKZTAYhBGQyGQoLC3UXXS3AMdaIiIiMX3pOvmRta52sxcbG1kQctVbxGGtM2IiIiIyXlIPiap2s8V417XCMNSIiIuMX4CPNJVCgCsnat99+W+HyMWPGVDmY2qp4jLWoOw8x7YcLPMtGRERkZFIycuEhl2b4Dq2TtenTp6s8f/z4MbKzs2FhYQEbGxsma+XwkFujfxtrZOUXIPynaEjXAZiIiIi0df7OQ8k6GGjdD/Xhw4cqj0ePHuHGjRvo1q0bNm/eXBMx1irDOnhjR2gXqcMgIiIiLbSX8DKoTgYNadKkCRYvXlzmrBupt/dyotQhEBERkYbaesklO6sG6ChZA57MbnD//n1dra7WSlTkYN0J9qglIiIyFkMCGkjavtb3rP38888qz4UQSExMxIoVK9C1a1edBVbbJCpyEJuahdspjzgwLhERkRGRejAHrZO1gQMHqjyXyWRwcXFBr1698L///U9XcdUqJaebIiIiIuMik3iuSK2TtaIi9mPURunppoiIiMi4SH1mrcr3rOXn5+PGjRsoKCjQZTy1DqebIiIiMm5RcQ8lbV/rZC07Oxvjx4+HjY0NWrVqhfj4eADA1KlTsXjxYp0HaOyKp5siIiIi47Tz4n0kKnIka1/rZC08PByXL1/G0aNHYWVlpSwPCgrCli1bdBpcbVA83ZSp1Be8iYiIqMoOxSRL1rbW96zt3LkTW7ZsQefOnSErkYC0atUKt2/f1mlwtUXxdFN3UrMRFZeG//76p9QhERERkRb+epAlWdtan1l78OABXF1dy5RnZWWpJG+kykNujUC/+hgs8VgtREREpL36dhaSta11sta+fXvs3btX+bw4Qfvqq68QGBiou8hqqeN/PpA6BCIiItKS3Npcsra1vgy6aNEi9OnTB9euXUNBQQE+++wzXLt2DadOncKxY8dqIsZao3gYDyIiIjIujtZGdGatW7duuHjxIgoKCuDv749ff/0Vrq6uiIyMREBAQE3EWGtwGA8iIiLj5OVkLVnbWp9ZAwA/Pz+sW7dO17HUesXDeDBhIyIiMi7Z+dJNCqCzidypch5yawS3cpc6DCIiItKSjYV0KZPGZ9ZMTEwq7e0pk8k4o0EFEhU52HclSeowiIiISEtGcWZtx44d2L59u9rH7NmzYWlpCTMz7a6qRkREoEOHDrC3t4erqysGDhyIGzduqNTJzc1FaGgo6tevDzs7OwwePBjJyaoD08XHx6Nfv36wsbGBq6srZs+ebZBJY2yqdGO0EBERUdXIAPg420jWvsbZ1UsvvVSm7MaNGwgLC8Pu3bsxatQofPjhh1o1fuzYMYSGhqJDhw4oKCjAe++9h969e+PatWuwtbUFAMycORN79+7F1q1bIZfLMWXKFAwaNAi///47AKCwsBD9+vWDu7s7Tp06hcTERIwZMwbm5uZYtGiRVvHUNF9nW6lDICIiIi1Jfau5TAjt55K/f/8+5s+fj40bNyI4OBgRERF4+umnqx1M8YC7x44dQ48ePaBQKODi4oJNmzZhyJAhAIDr16+jRYsWiIyMROfOnbFv3z70798f9+/fh5ubGwBgzZo1ePfdd/HgwQNYWJTtapuXl4e8vDzl84yMDHh5eUGhUMDBwaHa21GeREUOAiMO19j6iYiIqGasHNkO/Vp76nSdGRkZkMvlleYfWt0tp1Ao8O6776Jx48a4evUqDh06hN27d+skUStePwA4OTkBAKKiovD48WMEBQUp6zRv3hze3t6IjIwEAERGRsLf31+ZqAFAcHAwMjIycPXqVbXtREREQC6XKx9eXl46ib8y5++k6aUdIiIi0i3tT23pjsbJ2tKlS9GoUSPs2bMHmzdvxqlTp9C9e3edBVJUVIQZM2aga9euyuQvKSkJFhYWcHR0VKnr5uaGpKQkZZ2SiVrx8uJl6oSHh0OhUCgfCQkJOtuOinA6LiIiIuNkFOOshYWFwdraGo0bN8bGjRuxceNGtfW2b99epUBCQ0Nx5coVnDx5skqv14alpSUsLS1rvJ3SvOpJd6CJiIio6qTsDapxsjZmzJgaOzM0ZcoU7NmzB8ePH0eDBv9OdO7u7o78/Hykp6ernF1LTk6Gu7u7ss7Zs2dV1lfcW7S4jqGIT8uWOgQiIiKqAqMYZ23Dhg06b1wIgalTp2LHjh04evQofH19VZYHBATA3Nwchw4dwuDBgwE86YEaHx+vnDQ+MDAQCxcuREpKClxdXQEABw8ehIODA1q2bKnzmKsjPfux1CEQERFRFdx9mIM2XvUkabtK003pSmhoKDZt2oRdu3bB3t5eeY+ZXC6HtbU15HI5JkyYgFmzZsHJyQkODg6YOnUqAgMD0blzZwBA79690bJlS4wePRpLly5FUlIS3n//fYSGhkpyqbMijjbmUodAREREVfAwO1+ytiVN1lavXg0AeO6551TK169fj7FjxwIAli1bBhMTEwwePBh5eXkIDg7GqlWrlHVNTU2xZ88eTJo0CYGBgbC1tUVISIjWY77pg7eTdAPqERERUdU5WpcdCkxfqjTOWm2j6Tgn1XXqdipGrjtTY+snIiKimhEZ3gsect12FKyRcdaoejiDARERkfHp0LCezhM1bTBZ0yMPuTUGtvWQOgwiIiLSwlMSD73FZE3Pgloa1nAiREREVLGfL91HoiJHsvaZrOlZQENpuv0SERFR1RQJ4E6qdGOlMlnTsw93X5M6BCIiItKSlIPiMlnTo0sJD7Hvivr5SomIiMhwRd9TSNY2kzU9OnQ9ReoQiIiIqAoeZORJ1jaTNT3Zci4enx+6JXUYREREVAWtveSStc1kTQ8SFTkI3x4tdRhERERURbmPiyRrm8maHsSmZqGozs8TQUREZLyknO+JyZoe+DrbwkQmdRRERERUVQE+0g29xWRNDzzk1ogY5A9TGTM2IiIi0g6TNT0Z1sEbJ8N64pWABlKHQkRERFr6I+6hZG0zWdMjD7k1/CXsTUJERERVw3vW6hAh5dEmIiKiKvFykm4ydyZreiYD71sjIiIyNtn5HLqjznC0MZc6BCIiItIS5watQ64nZkodAhEREWmJZ9bqiERFDlYdvS11GERERKQlnlmrI2JTs8DuBURERMaHZ9bqCFsLU6lDICIioirwcbaRrG0ma3qy5Vw8Bq48JXUYREREZGSYrOlBoiIH4dujeQmUiIjISEXd4QwGtVpsahaKmKkREREZrfScfMnaZrKmB9F3FVKHQERERNXgaG0hWdtM1mpYoiIHS/ZflzoMIiIiqgZON1WL8RIoERGR8ePQHbWYr7MtTDgdKBERkVHjoLi1mIfcGhGD/GEqY8ZGRERkrHhmrZYb1sEbJ8N6YlwXH6lDISIioirgoLh1wPE/H2D9qTtSh0FERERGhsmaHhQPiktERETG6VBMsmRtM1nTA/YIJSIiMm4PMvIka5vJmh6wRygREZFx69XCVbK2mazpAXuEEhERGTdXByvJ2maypic9mrpg+fA26NPKTepQiIiISEt/xEk3kbuZZC3XIVvOxSN8ezTvWyMiIjJSd/7OkqxtnlmrYcU9QZmoERERGa+/H+VL1jaTtRrGnqBERETGr76dhWRtM1mrYb7OtlKHQEREREaMyVoN85Bbo7+/u9RhEBERUTXkP66jc4MeP34cAwYMgKenJ2QyGXbu3KmyXAiBefPmwcPDA9bW1ggKCsLNmzdV6qSlpWHUqFFwcHCAo6MjJkyYgEePHulxKyo3sUcjqUMgIiKiaqiz46xlZWWhTZs2WLlypdrlS5cuxeeff441a9bgzJkzsLW1RXBwMHJzc5V1Ro0ahatXr+LgwYPYs2cPjh8/jtdff11fm6CRNl71MPiZp6QOg4iIiKqgrZccbbzqSda+TAhhELe/y2Qy7NixAwMHDgTw5Kyap6cn3nrrLbz99tsAAIVCATc3N2zYsAHDhw9HTEwMWrZsiXPnzqF9+/YAgP3796Nv3764e/cuPD09NWo7IyMDcrkcCoUCDg4ONbJ9APDutkvYcv5uja2fiIiIdC+4lRvWjm6v8/Vqmn8Y7D1rsbGxSEpKQlBQkLJMLpejU6dOiIyMBABERkbC0dFRmagBQFBQEExMTHDmzJly152Xl4eMjAyVhz442pjrpR0iIiLSnV+vJiNRkSNZ+wabrCUlJQEA3NxUR/x3c3NTLktKSoKrq+o1ZDMzMzg5OSnrqBMREQG5XK58eHl56Th69SzMDHZ3ExERUTkEgDup2ZK1Xyezh/DwcCgUCuUjISFBL+0GteBUU0RERMbIxkK6lMlgkzV39yfDXSQnJ6uUJycnK5e5u7sjJSVFZXlBQQHS0tKUddSxtLSEg4ODykMf2njVw9Oe+mmLiIiIdCf6nkKytg02WfP19YW7uzsOHTqkLMvIyMCZM2cQGBgIAAgMDER6ejqioqKUdQ4fPoyioiJ06tRJ7zFXJlGRgyv39XN/HBEREelOSkaeZG1LOpH7o0ePcOvWLeXz2NhYXLx4EU5OTvD29saMGTPw8ccfo0mTJvD19cXcuXPh6emp7DHaokULvPDCC5g4cSLWrFmDx48fY8qUKRg+fLjGPUH1KTZVuklgiYiIqOraeMkla1vSZO38+fPo2bOn8vmsWbMAACEhIdiwYQPeeecdZGVl4fXXX0d6ejq6deuG/fv3w8rKSvma77//HlOmTMHzzz8PExMTDB48GJ9//rnet0UTnHqKiIjIONlYSDeig8GMsyYlfY2zBgCL9l7Dlydia7QNIiIi0q1doV10PjCu0Y+zVluZm3KXExERGZu7DznOWp2QqMjBqqO3pQ6DiIiItPQwO1+ytpms6VFsahbq/DVnIiIi0gqTNT3KyS+QOgQiIiKqgvTsx5K1zWRNj/7i0B1ERERGKS2Ll0HrhEYcuoOIiMgo1bezkKxtJmt6ZG0h6bB2REREVEUNnaQ74cJkTY84KC4REZFx8nKylqxtJmt65CG3RnN3O6nDICIiIi1l5xdJ1jaTNT1KVOTgetIjqcMgIiIiLfk420jWNpM1PeJE7kRERKQtJmt6xHvWiIiIjNOd1GzJ2maypkcecmt0buQkdRhERESkBRmkvQzKsST0JFGRg/N30nD6rzSpQyEiIiIttPR0gIdcut6gTNb0YMu5eIRvj0YRJwYlIiIyOtfuZyBRkSNZwsbLoDUsUZHDRI2IiMiICQB/xD2UrH0mazUsNjWLiRoREZGRExL+ljNZq2G+zrYwkUkdBREREVUHZzCoxTzk1ogY5A/ma0RERMaLMxjUcj2aukDGbI2IiMhocQaDWo73rREREVFVMVnTA963RkREZNw4g0EtV3zfmimvhRIRERklGwvpUiYma3oyrIM3Tob1xPPNXaUOhYiIiLR092GOZG0zWdOjlIxcHLqeInUYREREpKWH2fmStc1kTU+2nIvHwJWnpA6DiIiIqsDR2kKytpms6UHxlFPsEEpERGScOChuLcehO4iIiIwbB8Wt5Th0BxERkXHjoLi1HKecIiIioqpisqYnwzp4463eTaUOg4iIiKrgj7iHkrXNZE2P5DbmUodAREREVSAkvPecyRoRERFRJQJ86knWNpM1IiIiIgPGZE2PHK15GZSIiMgY8Z61OsLbSbpuv0RERFR1vGetjsjKL5Q6BCIiIqoCzmBQR/g623KsNSIiIiN092GOZG0zWdMjD7k1wvo0lzoMIiIi0lJaVr5kbTNZ07M3nvVDVz8nqcMgIiIiLTjZWkjWNpM1CbzzAs+uERERGQsZgGcacpy1OqWNVz30edpd6jCIiIioEjIAiwf7w0PODgbVtnLlSvj4+MDKygqdOnXC2bNnpQ6pQqtfDcCUnn6Q/dPjQAagdQMHmJTTA6FkcSffeuV2VChZXt76ZAB6NnNRqVvy77ZecpXXyTR8XXn1ZBXELAPQpZGTcj9UtM7ScWmyPcX7tbyYS8dV3f1Q0baqq6duWUXrU9d2ydcENnLS6Ph0KVWvZJ2KjnFF76mK2i5Z1sm3Xrn7tXRcmhyr0vtSuQ3ltNHWS15hbJrsv9LvqZJKb1/p9Wu77drEVfrYVfSdUjrmqnynlBd/ZZ+Dmn4flbcObb8PUGqZpu2VjlPb9jR5D+vyu7Ci72F17WnyXYgK2iu9jvK+C7X9zJS3joq2raL9NbKTF1aObIdT4b0wrIN3OS3ph0wIKUcO0Y0tW7ZgzJgxWLNmDTp16oTly5dj69atuHHjBlxdXSt9fUZGBuRyORQKBRwcHPQQ8b8SFTm4k5oNH2cbeMitVZ4DUPu3LurVxLKK6tXEOo1xWV3dl/puuzZsQ02/V2p6u+vSMeAywzuWulp/TdM0/6gVyVqnTp3QoUMHrFixAgBQVFQELy8vTJ06FWFhYWXq5+XlIS8vT/k8IyMDXl5ekiRrREREVDdpmqwZ/WXQ/Px8REVFISgoSFlmYmKCoKAgREZGqn1NREQE5HK58uHl5aWvcImIiIi0YvTJWmpqKgoLC+Hm5qZS7ubmhqSkJLWvCQ8Ph0KhUD4SEhL0ESoRERGR1sykDkAKlpaWsLS0lDoMIiIiokoZ/Zk1Z2dnmJqaIjk5WaU8OTkZ7u4cHoOIiIiMm9EnaxYWFggICMChQ4eUZUVFRTh06BACAwMljIyIiIio+mrFZdBZs2YhJCQE7du3R8eOHbF8+XJkZWVh3LhxUodGREREVC21IlkbNmwYHjx4gHnz5iEpKQlt27bF/v37y3Q6ICIiIjI2tWKctepSKBRwdHREQkICx1kjIiIivSge5zU9PR1yubzcerXizFp1ZWZmAgDHWyMiIiK9y8zMrDBZ45k1POmQcP/+fdjb20MmK2+mMSIiIiLdEUIgMzMTnp6eMDEpv88nkzUiIiIiA2b0Q3cQERER1WZM1oiIiIgMGJM1IiIiIgPGZI2IiIjIgDFZIyIiIjJgTNaIiIiIDBiTNSIiIiIDJmmyFhERgQ4dOsDe3h6urq4YOHAgbty4obauEAJ9+vSBTCbDzp07VZYdOnQIXbp0gb29Pdzd3fHuu++ioKBAD1tAREREVLMkTdaOHTuG0NBQnD59GgcPHsTjx4/Ru3dvZGVllam7fPlytbMLXLp0CX379sULL7yACxcuYMuWLfj5558RFhamj00gIiIiqlEGNYPBgwcP4OrqimPHjqFHjx7K8osXL6J///44f/48PDw8sGPHDgwcOBAA8N577+HgwYM4d+6csv7u3bvxyiuvICUlBfb29vreDCIiIiKdMaiJ3BUKBQDAyclJWZadnY2RI0di5cqVcHd3L/OavLw8WFlZqZRZW1sjNzcXUVFReO6559S+Ji8vT/m8qKgIaWlpqF+/PucGJSIiIr3QdG5QCANRWFgo+vXrJ7p27apS/vrrr4sJEyYonwMQO3bsUD4/cOCAMDExEZs2bRIFBQXi7t27onv37gKA2LRpk9q25s+fLwDwwQcffPDBBx98SP5ISEioMEcymDNroaGhuHLlCk6ePKks+/nnn3H48GFcuHCh3Nf17t0bn3zyCd58802MHj0alpaWmDt3Lk6cOFFulhoeHo5Zs2YpnysUCnh7eyMhIQEODg662ygiIiKicmRkZMDLy6vSW7YM4p61KVOmYNeuXTh+/Dh8fX2V5TNmzMDnn3+uknQVFhbCxMQE3bt3x9GjR5XlQggkJiaiXr16uHPnDlq2bImzZ8+iQ4cOlbafkZEBuVwOhULBZI2IiIj0QtP8Q9Iza0IITJ06FTt27MDRo0dVEjUACAsLw2uvvaZS5u/vj2XLlmHAgAEq5TKZDJ6engCAzZs3w8vLC88880zNbgARERFRDZM0WQsNDcWmTZuwa9cu2NvbIykpCQAgl8thbW0Nd3d3tZ0KvL29VRK7Tz75BC+88AJMTEywfft2LF68GD/++CNMTU31ti1ERERENUHSZG316tUAUKbH5vr16zF27FiN17Nv3z4sXLgQeXl5aNOmDXbt2oU+ffroMFIiIiIiaUh+GVQXrzl8+LAuwiEiIiIyOJwblIiIiMiAGczQHURVFR8fj9TUVDg7O8Pb21vS9ek6lrqqeD8C4L40cjyWulPR9wv3s6ra9l3MZM1AFb/R8vLyYGlpCQDKv0u++aR6Q+qi3cq+XDRpIz4+Hs2atUBubjasrGxw40ZMhXV1uT5dxFLy+OriGJbcp7p+v+j6h6K89ZXcjwCqdByq+qOl7rXVKatOu8ao9HYAqNKx1PZ9Wp3vEkPY99X9bqqJz0x13uNS79Py9pWhvw8qwmTNAKl+8EwBFP6z5MnflpZW+OmnbQCAwYOHIi8vR1nm4eGh/JFWl+ipSw7U/cBXlCSWjK9ku5quT5Mv8craKJaamvrPOt5Hbu7HOHHiBFq0aFEmlsTEROW+UvdFVlwvJiZGZX2pqakaf2hLx1L82tKJWclYSh7f4riK11XyGJV+f2iS5BSvu+R6Nf0CK12mqx+Kyo5HfHw8Tpw48c+6vgMA5Oa+WuY4lJfsltxGAMr3jr+/f5ltK/0eT0tLK3FcnmzH4cO/oVevIJVt07SsvPdYZcetopjVHaPKPufqkvbSMZX3Wm1+tNS9D7Zt+1HjY1nZe03TY17R+7Oy966u970mSY6m36elv5tKftf9+92jup8BlDm+pbcjOjq6Su/74lidnJw0Oh6VxVL6/aBNPU1+FxwdHcv9zlG3D7RJdvVB62QtPT0dO3bswIkTJxAXF4fs7Gy4uLigXbt2CA4ORpcuXWoizjqh7IdyAoCv8eQDGAtgLoCpyMtbif79+5d4Zemy4gSgbKJXsszS0gqrV6/CpEmhyjdpRa8t/nCmp6f/E59qu+o+0OW1u2TJ4jJfLidOnED37t3h7e1d4sOm2oa6L9Mn7ACY4NVXX61g24DSX3TqfqSfaAgAiIl58iWjSQJcXLfka8tLzJ4oeXyf7IPo6GgMGfJKuV+IJddXOkH/66+/SuzT4vfLv9v7pI3yv8DU/Seg+EurvKS4bLv/HstGjRpVmAyVPh4lY3miBUpSl+iVTnZVk4NU5OXNQv/+/dVum/rPB1S249ChQ2W2TV1ZZftA8+S04pg1346yZZX9QJX3WS39g1zeZ0HdPvh39pl/j2VMTIza/7iU/X759z89ANT+B1a775LK3ru63/fqvodKJwIVfdep/w4r+123ZMniMvs5MTERXbt2L/NdrH47gMrez6rv+3/3lSbHo/T3WulYir/Dyn5HaFZP09+FJ8p7X6nuA23+o64Xms7dee/ePTFhwgRhZWUlGjVqJIYPHy5mzZol5syZIyZNmiS6d+8ubGxsRIsWLcQPP/yg6WoNgkKhEACEQqGQLIa4uDhhZWVTar6w9//5N0oA35Uq+04AH1VQNqGSsuUCMCnRVmWvnVqqful2n8T30UcfadlulAD2KMssLa3Enj17xHffqdve5VrXKxvL4lLLTLWsZ1pJmbrXlrdPSx7fKDX7r+R2lG6j9PEoubzk+0VdLOrKyj++3333XYn9XNH+Uz2W6vdVZfu55L76d78sX75cWFpaV7BPS7//Su4DddtW0eej9HZUVFb6uFW0D1T36Z49e0ptU2Uxa7sdZd9r6tvV5LNa2fu+oveBJvtF3batU8b87/uvOt8llb13db3vS8f37/s0KipKxMXFiaioqCp8h1VUr7zvkoq+x8t+3sp/P5feV5UdD21iKe87orJ6/7Zb8e9C8frWKY9BVFRUufsgKipKL7/9muYfGvcGbdeuHZycnBAVFYXbt29j8+bN+N///oePP/4Yq1atwvHjx5Gamoq5c+di+fLl+O9//6vpqgkodRr7Iw1e0QKAbwVlHpWUOQMowpOzO5q8Vv5PfXXxtQDgCMAEc+fO1bJdAEj/p2wq8vLy0b9//1L/Eyr9Wk3rqdu2R6W2o1DLeoWVlKl7bel9UPq4AUAiyu6/kttRuo3Sx6PkdpSkLhZ1ZeqO77//K/13P1e0/4B/j2V5+6r0PqhoX/27X2bMmPHP/6LL26eOUN1/Janbtoo+H6W3o6Ky0setdL3Sx+3ffdq/f/9/tkndcVMXs7bbUbKsonY1+axW9r6v6H2gyX5Rt21/o+z7rzrfJZW9d4vpat+r+x56cubrxIkTaNq0OQICAqrwHVZRPUD9d0lF3+NlP2/lv59Lq+x4aBNLed8RldXT9HdBdf/FxMSUuBrigdJiYmIQHx+vZpulofFl0GvXrqF+/foV1rG2tsaIESMwYsQI/P3339UOrm5qUXkVnSr7Jq1YefGl498P6tdVbLfkhzIWTy7jqaNpvYq2reR2aFuvsjJ1r61MOsrff5q2oel2aFpW8set9H6urN2K9pWm8QFl90t13n9V+WxVtG2VtatuH6jbp7o4bpXRtt2SNH3fV7avKnot1JRV9P6rrI2KviN0/ZmpjPr/fDxRne+w8uqlo+qfhYpeq49YqvOdrenvwr//CVAvUbnckO5d0/jMWmWJWnXrU22hbfKnTnlnn6paz5joYv/pmiHs56r8UOhTVf7TI8U+NYRjqa3qxGxo25uOys+Y6Up1Pgu6/hzp83NZ2T5Vdza/pPR/lr+P3Nxs5b1tUqvSoLimpqbo2bMn0tLSVMqTk5M5H2cVxMfHlzgdS0REtZsh/qesrqksqWuor0A0UqWhO4QQyMvLQ/v27bF79260atVKZRlpruxwC0RERET/qtKZNZlMhp9++gkDBgxAYGAgdu3apbKMNPdvxwJ1N28SERFRXVelZE0IAVNTU3z22Wf473//i2HDhuHjjz/mWbVq4WlxIiIiKqvaMxi8/vrraNKkCYYOHYrjx4/rIiYiIiIi+keVzqw1bNhQpSNBz549cfr0aSQkJOgsMCIiIiKq4pm12NjYMmWNGzfGhQsXkJycXO2giIiIiOiJKp1ZK4+VlRUaNtS8u+vx48cxYMAAeHp6QiaTYefOnWXqxMTE4MUXX4RcLoetrS06dOhQZlThyMhI9OrVC7a2tnBwcECPHj2Qk5NTZl1ERERExkarM2v16tXTqLdn6fHXypOVlYU2bdpg/PjxGDRoUJnlt2/fRrdu3TBhwgR88MEHcHBwwNWrV2FlZaWsExkZiRdeeAHh4eH44osvYGZmhkuXLsHERKd5KBEREZEktErWli9frvxbCIFJkybhww8/hKura5Ua79OnD/r06VPu8jlz5qBv375YunSpsszPz0+lzsyZMzFt2jSEhYUpy5o1a1aleIiIiIgMjVbJWkhIiMrzqVOnYvDgwWjUqJFOgwKAoqIi7N27F++88w6Cg4Nx4cIF+Pr6Ijw8HAMHDgQApKSk4MyZMxg1ahS6dOmC27dvo3nz5li4cCG6detW7rrz8vKQl5enfJ6RkaHz+CsTHx+P1NRUzlxAREREFTLYa4UpKSl49OgRFi9ejBdeeAG//vorXn75ZQwaNAjHjh0DAPz1118AgAULFmDixInYv38/nnnmGTz//PO4efNmueuOiIiAXC5XPry8vPSyTcWKZy0ICAioYDJZIiIiIgNO1oqKigAAL730EmbOnIm2bdsiLCwM/fv3x5o1a1TqvPHGGxg3bhzatWuHZcuWoVmzZvjmm2/KXXd4eDgUCoXyoe8hR/6dtaC8iWSJiIiInqj2oLg1xdnZGWZmZmjZsqVKeYsWLXDy5EkAgIfHk1H/1dUp3WO0JEtLS1haWuo44qpoIXUAREREZOC0StZmzZql8jw/Px8LFy6EXC5XKf/000+rHZiFhQU6dOiAGzduqJT/+eefyuFBfHx84OnpqbZORR0XiIiIiIyFVsnahQsXVJ536dJFed9YMW0mcn/06BFu3bqlfB4bG4uLFy/CyckJ3t7emD17NoYNG4YePXqgZ8+e2L9/P3bv3o2jR48q25o9ezbmz5+PNm3aoG3btti4cSOuX7+Obdu2abNpRERERAZJq2TtyJEjOm38/Pnz6Nmzp/J58Zm7kJAQbNiwAS+//DLWrFmDiIgITJs2Dc2aNcNPP/2k0tNzxowZyM3NxcyZM5GWloY2bdrg4MGDZYb4ICIiIjJGkt6z9txzz0EIUWGd8ePHY/z48RXWCQsLUxlnjYiIiKi20Lg36OLFi5Gdna1R3TNnzmDv3r1VDoqIiIiIntA4Wbt27RoaNmyIyZMnY9++fXjw4IFyWUFBAS5fvoxVq1ahS5cuGDZsGOzt7WskYCIiIqK6ROPLoN9++y0uXbqEFStWYOTIkcjIyICpqSksLS2VZ9zatWuH1157DWPHjlWZv5OIiIiIqkare9batGmDdevWYe3atbh8+TLi4uKQk5MDZ2dntG3bFs7OzjUVJxEREVGdVKUOBiYmJmjbti3atm2r43CIiIiIqCSDnW6KiIiIiJisERERERk0JmtEREREBozJGhEREZEBq1ayduvWLRw4cAA5OTkAUOlsBERERESknSola3///TeCgoLQtGlT9O3bF4mJiQCACRMm4K233tJpgERERER1WZWStZkzZ8LMzAzx8fGwsbFRlg8bNgz79+/XWXBEREREdV2Vxln79ddfceDAATRo0EClvEmTJoiLi9NJYERERERUxTNrWVlZKmfUiqWlpcHS0rLaQRERERHRE1VK1rp3745vv/1W+Vwmk6GoqAhLly5Fz549dRYcERERUV1XpcugS5cuxfPPP4/z588jPz8f77zzDq5evYq0tDT8/vvvuo6RiIiIqM6q0pm1p59+Gn/++Se6deuGl156CVlZWRg0aBAuXLgAPz8/XcdIREREVGdVKVmLj4+Hg4MD5syZgx9//BG//PILPv74Y3h4eCA+Pl6nARYWFmLu3Lnw9fWFtbU1/Pz88NFHH6mM6bZgwQI0b94ctra2qFevHoKCgnDmzBmdxkFEREQkhSola76+vnjw4EGZ8r///hu+vr7VDqqkJUuWYPXq1VixYgViYmKwZMkSLF26FF988YWyTtOmTbFixQpER0fj5MmT8PHxQe/evdXGSERERGRMqnTPmhACMpmsTPmjR49gZWVV7aBKOnXqFF566SX069cPAODj44PNmzfj7NmzyjojR45Uec2nn36Kr7/+GpcvX8bzzz+v03iIiIiI9EmrZG3WrFkAnvT+nDt3rsrwHYWFhThz5gzatm2r0wC7dOmCL7/8En/++SeaNm2KS5cu4eTJk/j000/V1s/Pz8eXX34JuVyONm3aqK2Tl5eHvLw85fOMjAydxkxERESkK1olaxcuXADw5MxadHQ0LCwslMssLCzQpk0bvP322zoNMCwsDBkZGWjevDlMTU1RWFiIhQsXYtSoUSr19uzZg+HDhyM7OxseHh44ePAgnJ2d1a4zIiICH3zwgU7j1FR8fDxiYmIkaZuIiIiMj1bJ2pEjRwAA48aNw2effQYHB4caCaqkH3/8Ed9//z02bdqEVq1a4eLFi5gxYwY8PT0REhKirNezZ09cvHgRqampWLduHV555RWcOXMGrq6uZdYZHh6uPEsIPDmz5uXlVePbEh8fj2bNWiA3N7vG2yIiIqLaoUr3rK1fv17XcZRr9uzZCAsLw/DhwwEA/v7+iIuLQ0REhEqyZmtri8aNG6Nx48bo3LkzmjRpgq+//hrh4eFl1mlpaSnJTAupqan/JGoTAHyt9/aJiIjI+FQpWQOA8+fP48cff0R8fDzy8/NVlm3fvr3agRXLzs6GiYlqp1VTU1MUFRVV+LqioiKV+9IMi4fUARAREZGRqNLQHT/88AO6dOmCmJgY7NixA48fP8bVq1dx+PBhyOVynQY4YMAALFy4EHv37sWdO3ewY8cOfPrpp3j55ZcBPJmn9L333sPp06cRFxeHqKgojB8/Hvfu3cPQoUN1GgsRERGRvlXpzNqiRYuwbNkyhIaGwt7eHp999hl8fX3xxhtvwMNDt2eNvvjiC8ydOxeTJ09GSkoKPD098cYbb2DevHkAnpxlu379OjZu3IjU1FTUr18fHTp0wIkTJ9CqVSudxkJERESkb1VK1m7fvq0c98zCwgJZWVmQyWSYOXMmevXqpdOelvb29li+fDmWL1+udrmVlZVOL7sSERERGZIqXQatV68eMjMzAQBPPfUUrly5AgBIT09HdjZ7OhIRERHpSpXOrPXo0QMHDx6Ev78/hg4diunTp+Pw4cM4ePAgZwwgIiIi0qEqJWsrVqxAbm4uAGDOnDkwNzfHqVOnMHjwYLz//vs6DZCIiIioLqtSsubk5KT828TEBGFhYcrnOTk51Y+KiIiIiABU8Z41dfLy8vDpp5/C19dXV6skIiIiqvO0Stby8vIQHh6O9u3bo0uXLti5cyeAJzMa+Pr6YtmyZZg5c2ZNxElERERUJ2l1GXTevHlYu3YtgoKCcOrUKQwdOhTjxo3D6dOn8emnn2Lo0KEwNTWtqViJiIiI6hytkrWtW7fi22+/xYsvvogrV66gdevWKCgowKVLlyCTyWoqRiIiIqI6S6vLoHfv3kVAQAAA4Omnn4alpSVmzpzJRI2IiIiohmiVrBUWFsLCwkL53MzMDHZ2djoPioiIiIie0OoyqBACY8eOhaWlJQAgNzcXb775JmxtbVXqcfonIiIiIt3QKlkLCQlRef7qq6/qNBgiIiIiUqVVsrZ+/fqaioOIiIiI1NDZoLhEREREpHtM1oiIiIgMGJM1IiIiIgNWa5K1lStXwsfHB1ZWVujUqRPOnj0rdUhK8fHx+OOPPxATEyN1KERERGRktOpgYKi2bNmCWbNmYc2aNejUqROWL1+O4OBg3LhxA66urpLGFh8fj2bNWiA3N1vSOIiIiMg41Yoza59++ikmTpyIcePGoWXLllizZg1sbGzwzTffSB0aUlNT/0nUvgPwkdThEBERkZEx+jNr+fn5iIqKQnh4uLLMxMQEQUFBiIyMVPuavLw85OXlKZ8rFAoAQEZGhs7je/To0T9/ZQPI/efvuH/+jSrxN8tYxjKWsYxlLDOMsj8BPPkNr4ncoFjxuoUQFVcURu7evXsCgDh16pRK+ezZs0XHjh3Vvmb+/PkCAB988MEHH3zwwYfkj4SEhApzHaM/s1YV4eHhmDVrlvJ5UVER0tLSUL9+/WpPSp+RkQEvLy8kJCTAwcGhuqFSNfF4GBYeD8PC42FYeDwMiz6OhxACmZmZ8PT0rLCe0Sdrzs7OMDU1RXJyskp5cnIy3N3d1b7G0tJSOb9pMUdHR53G5eDgwA+bAeHxMCw8HoaFx8Ow8HgYlpo+HnK5vNI6Rt/BwMLCAgEBATh06JCyrKioCIcOHUJgYKCEkRERERFVn9GfWQOAWbNmISQkBO3bt0fHjh2xfPlyZGVlYdy4cVKHRkRERFQttSJZGzZsGB48eIB58+YhKSkJbdu2xf79++Hm5qb3WCwtLTF//vwyl1lJGjwehoXHw7DweBgWHg/DYkjHQyZEZf1FiYiIiEgqRn/PGhEREVFtxmSNiIiIyIAxWSMiIiIyYEzWiIiIiAwYkzUdW7lyJXx8fGBlZYVOnTrh7NmzUodU60RERKBDhw6wt7eHq6srBg4ciBs3bqjUyc3NRWhoKOrXrw87OzsMHjy4zMDJ8fHx6NevH2xsbODq6orZs2ejoKBAn5tSKy1evBgymQwzZsxQlvF46Ne9e/fw6quvon79+rC2toa/vz/Onz+vXC6EwLx58+Dh4QFra2sEBQXh5s2bKutIS0vDqFGj4ODgAEdHR0yYMKHEXMekqcLCQsydOxe+vr6wtraGn58fPvroI5W5IHk8as7x48cxYMAAeHp6QiaTYefOnSrLdbXvL1++jO7du8PKygpeXl5YunSpbjek+rNzUrEffvhBWFhYiG+++UZcvXpVTJw4UTg6Oork5GSpQ6tVgoODxfr168WVK1fExYsXRd++fYW3t7d49OiRss6bb74pvLy8xKFDh8T58+dF586dRZcuXZTLCwoKxNNPPy2CgoLEhQsXxC+//CKcnZ1FeHi4FJtUa5w9e1b4+PiI1q1bi+nTpyvLeTz0Jy0tTTRs2FCMHTtWnDlzRvz111/iwIED4tatW8o6ixcvFnK5XOzcuVNcunRJvPjii8LX11fk5OQo67zwwguiTZs24vTp0+LEiROicePGYsSIEVJsklFbuHChqF+/vtizZ4+IjY0VW7duFXZ2duKzzz5T1uHxqDm//PKLmDNnjti+fbsAIHbs2KGyXBf7XqFQCDc3NzFq1Chx5coVsXnzZmFtbS3Wrl2rs+1gsqZDHTt2FKGhocrnhYWFwtPTU0REREgYVe2XkpIiAIhjx44JIYRIT08X5ubmYuvWrco6MTExAoCIjIwUQjz5AJuYmIikpCRlndWrVwsHBweRl5en3w2oJTIzM0WTJk3EwYMHxbPPPqtM1ng89Ovdd98V3bp1K3d5UVGRcHd3F5988omyLD09XVhaWorNmzcLIYS4du2aACDOnTunrLNv3z4hk8nEvXv3ai74Wqhfv35i/PjxKmWDBg0So0aNEkLweOhT6WRNV/t+1apVol69eirfVe+++65o1qyZzmLnZVAdyc/PR1RUFIKCgpRlJiYmCAoKQmRkpISR1X4KhQIA4OTkBACIiorC48ePVY5F8+bN4e3trTwWkZGR8Pf3Vxk4OTg4GBkZGbh69aoeo689QkND0a9fP5X9DvB46NvPP/+M9u3bY+jQoXB1dUW7du2wbt065fLY2FgkJSWpHA+5XI5OnTqpHA9HR0e0b99eWScoKAgmJiY4c+aM/jamFujSpQsOHTqEP//8EwBw6dIlnDx5En369AHA4yElXe37yMhI9OjRAxYWFso6wcHBuHHjBh4+fKiTWGvFDAaGIDU1FYWFhWVmTXBzc8P169cliqr2KyoqwowZM9C1a1c8/fTTAICkpCRYWFjA0dFRpa6bmxuSkpKUddQdq+JlpJ0ffvgBf/zxB86dO1dmGY+Hfv31119YvXo1Zs2ahffeew/nzp3DtGnTYGFhgZCQEOX+VLe/Sx4PV1dXleVmZmZwcnLi8dBSWFgYMjIy0Lx5c5iamqKwsBALFy7EqFGjAIDHQ0K62vdJSUnw9fUts47iZfXq1at2rEzWyKiFhobiypUrOHnypNSh1FkJCQmYPn06Dh48CCsrK6nDqfOKiorQvn17LFq0CADQrl07XLlyBWvWrEFISIjE0dU9P/74I77//nts2rQJrVq1wsWLFzFjxgx4enryeJDGeBlUR5ydnWFqalqmh1tycjLc3d0liqp2mzJlCvbs2YMjR46gQYMGynJ3d3fk5+cjPT1dpX7JY+Hu7q72WBUvI81FRUUhJSUFzzzzDMzMzGBmZoZjx47h888/h5mZGdzc3Hg89MjDwwMtW7ZUKWvRogXi4+MB/Ls/K/qucnd3R0pKisrygoICpKWl8Xhoafbs2QgLC8Pw4cPh7++P0aNHY+bMmYiIiADA4yElXe17fXx/MVnTEQsLCwQEBODQoUPKsqKiIhw6dAiBgYESRlb7CCEwZcoU7NixA4cPHy5z+jkgIADm5uYqx+LGjRuIj49XHovAwEBER0erfAgPHjwIBweHMj90VLHnn38e0dHRuHjxovLRvn17jBo1Svk3j4f+dO3atcxQNn/++ScaNmwIAPD19YW7u7vK8cjIyMCZM2dUjkd6ejqioqKUdQ4fPoyioiJ06tRJD1tRe2RnZ8PERPWn1tTUFEVFRQB4PKSkq30fGBiI48eP4/Hjx8o6Bw8eRLNmzXRyCRQAh+7QpR9++EFYWlqKDRs2iGvXronXX39dODo6qvRwo+qbNGmSkMvl4ujRoyIxMVH5yM7OVtZ58803hbe3tzh8+LA4f/68CAwMFIGBgcrlxUNF9O7dW1y8eFHs379fuLi4cKgIHSnZG1QIHg99Onv2rDAzMxMLFy4UN2/eFN9//72wsbER3333nbLO4sWLhaOjo9i1a5e4fPmyeOmll9QOV9CuXTtx5swZcfLkSdGkSRMOFVEFISEh4qmnnlIO3bF9+3bh7Ows3nnnHWUdHo+ak5mZKS5cuCAuXLggAIhPP/1UXLhwQcTFxQkhdLPv09PThZubmxg9erS4cuWK+OGHH4SNjQ2H7jBkX3zxhfD29hYWFhaiY8eO4vTp01KHVOsAUPtYv369sk5OTo6YPHmyqFevnrCxsREvv/yySExMVFnPnTt3RJ8+fYS1tbVwdnYWb731lnj8+LGet6Z2Kp2s8Xjo1+7du8XTTz8tLC0tRfPmzcWXX36psryoqEjMnTtXuLm5CUtLS/H888+LGzduqNT5+++/xYgRI4SdnZ1wcHAQ48aNE5mZmfrcjFohIyNDTJ8+XXh7ewsrKyvRqFEjMWfOHJVhHng8as6RI0fU/l6EhIQIIXS37y9duiS6desmLC0txVNPPSUWL16s0+2QCVFiGGUiIiIiMii8Z42IiIjIgDFZIyIiIjJgTNaIiIiIDBiTNSIiIiIDxmSNiIiIyIAxWSMiIiIyYEzWiIiIiAwYkzUiIiIiA8ZkjYhqrbFjx2LgwIGStT969GgsWrSoxtZ/7do1NGjQAFlZWTXWBhFJjzMYEJFRkslkFS6fP38+Zs6cCSEEHB0d9RNUCZcuXUKvXr0QFxcHOzu7GmtnyJAhaNOmDebOnVtjbRCRtJisEZFRSkpKUv69ZcsWzJs3Dzdu3FCW2dnZ1WiSVJnXXnsNZmZmWLNmTY22s3fvXkycOBHx8fEwMzOr0baISBq8DEpERsnd3V35kMvlkMlkKmV2dnZlLoM+99xzmDp1KmbMmIF69erBzc0N69atQ1ZWFsaNGwd7e3s0btwY+/btU2nrypUr6NOnD+zs7ODm5obRo0cjNTW13NgKCwuxbds2DBgwQKXcx8cHH3/8McaMGQM7Ozs0bNgQP//8Mx48eICXXnoJdnZ2aN26Nc6fP698TVxcHAYMGIB69erB1tYWrVq1wi+//KJc/p///AdpaWk4duxYNfcoERkqJmtEVKds3LgRzs7OOHv2LKZOnYpJkyZh6NCh6NKlC/744w/07t0bo0ePRnZ2NgAgPT0dvXr1Qrt27XD+/Hns378fycnJeOWVV8pt4/Lly1AoFGjfvn2ZZcuWLUPXrl1x4cIF9OvXD6NHj8aYMWPw6quv4o8//oCfnx/GjBmD4oseoaGhyMvLw/HjxxEdHY0lS5aonDG0sLBA27ZtceLECR3vKSIyFEzWiKhOadOmDd5//300adIE4eHhsLKygrOzMyZOnIgmTZpg3rx5+Pvvv3H58mUAwIoVK9CuXTssWrQIzZs3R7t27fDNN9/gyJEj+PPPP9W2ERcXB1NTU7i6upZZ1rdvX7zxxhvKtjIyMtChQwcMHToUTZs2xbvvvouYmBgkJycDAOLj49G1a1f4+/ujUaNG6N+/P3r06KGyTk9PT8TFxel4TxGRoWCyRkR1SuvWrZV/m5qaon79+vD391eWubm5AQBSUlIAPOkocOTIEeU9cHZ2dmjevDkA4Pbt22rbyMnJgaWlpdpOECXbL26rovanTZuGjz/+GF27dsX8+fOVSWRJ1tbWyjOBRFT7MFkjojrF3Nxc5blMJlMpK06wioqKAACPHj3CgAEDcPHiRZXHzZs3y5zhKubs7Izs7Gzk5+dX2H5xWxW1/9prr+Gvv/7C6NGjER0djfbt2+OLL75QWWdaWhpcXFw02wFEZHSYrBERVeCZZ57B1atX4ePjg8aNG6s8bG1t1b6mbdu2AJ6Mg6YLXl5eePPNN7F9+3a89dZbWLduncryK1euoF27djppi4gMD5M1IqIKhIaGIi0tDSNGjMC5c+dw+/ZtHDhwAOPGjUNhYaHa17i4uOCZZ57ByZMnq93+jBkzcODAAcTGxuKPP/7AkSNH0KJFC+XyO3fu4N69ewgKCqp2W0RkmJisERFVwNPTE7///jsKCwvRu3dv+Pv7Y8aMGXB0dISJSflfoa+99hq+//77ardfWFiI0NBQtGjRAi+88AKaNm2KVatWKZdv3rwZvXv3RsOGDavdFhEZJg6KS0RUA3JyctCsWTNs2bIFgYGBNdJGfn4+mjRpgk2bNqFr16410gYRSY9n1oiIaoC1tTW+/fbbCgfPra74+Hi89957TNSIajmeWSMiIiIyYDyzRkRERGTAmKwRERERGTAma0REREQGjMkaERERkQFjskZERERkwJisERERERkwJmtEREREBozJGhEREZEBY7JGREREZMD+HxODNDjvaQ3HAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVwV9f7/X3OOooCyCcgimwcVRDYRBBQUrBQxRa0UKm1xuYLavbdMqOy2Clb39qvUMu1rdsvlllu5lzviQgaKCy4IgiwKiWiAopz5/THM8Syznl2d5+PB7Xpm5jOfmfnMZ96fz+f9fr0JkiRJSEhISEhISEhIWCUyS1dAQkJCQkJCQkKCHclYk5CQkJCQkJCwYiRjTUJCQkJCQkLCipGMNQkJCQkJCQkJK0Yy1iQkJCQkJCQkrBjJWJOQkJCQkJCQsGIkY01CQkJCQkJCwoqRjDUJCQkJCQkJCStGMtYkJCQkJCQkJKwYyViTkJAwC/7+/njhhRfMcq7CwkLEx8fD3t4eBEGguLjYLOc1Ju+88w4IgjDpOYYPH47hw4eb9BwSEhKGIxlrEhJG5ttvvwVBEKq/Tp06wdvbGy+88AKqq6tNdt4zZ87gnXfeQUVFhcnOYQlqamrwzjvvCDa47t69i6effhrXr1/Hp59+iv/+97/w8/MzbSUlBPPOO+/A399f47ddu3bh5ZdfxoABAyCXy3W2q6NUKvHRRx8hICAAXbt2RVhYGNasWaOz37Fjx5CZmYmoqCh07tyZ0/D98ssv8fTTT8PX1xcEQbAOKpjqLiFhDjpZugISEg8r7733HgICAnD79m0cOXIE3377LfLz83Hq1Cl07drV6Oc7c+YM3n33XQwfPvyh+qDU1NTg3Xffhb+/PyIiInj3Lysrw+XLl7F8+XJMmzbN9BV8gNm1a5elqwAAWL16NdatW4eBAwfCy8uLc98333wTeXl5mD59OqKjo7F582ZkZGSAIAhMnjxZtd+2bduwYsUKhIWFoXfv3jh//jxrmYsWLcKtW7cQExOD2tpao12XhISxkGbWJCRMREpKCp577jlMmzYNK1aswGuvvYaysjL8/PPPlq6aKJqbmy1dBVFcu3YNAODk5MS774N2bcbGxsYGNjY2lq4GFi5ciJs3b+LQoUMIDw9n3a+6uhr//ve/kZWVha+//hrTp0/HL7/8goSEBMybNw/t7e2qfWfNmoWmpib8/vvvePzxxznPv3//fjQ0NGD79u3o0qWL0a5LQsJYSMaahISZSEhIAEDN/NC0tbXh7bffRlRUFBwdHWFvb4+EhATs3btX5/i1a9ciKioK3bt3h4ODA0JDQ/HZZ58BoJZen376aQBAUlKSagl23759quO3b9+OhIQE2Nvbo3v37khNTcXp06c1zvHCCy+gW7duKCsrw+jRo9G9e3c8++yzrNdE+1WVlpbimWeegYODA3r06IFXXnkFt2/f5r0nly5dwtNPPw0XFxfY2dkhNjYWW7duVW3ft28foqOjAQAvvvii6rq+/fZbxvJeeOEFDBs2DADw9NNPgyAIlU8W17U1Nzfj1VdfhY+PD7p06YJ+/frhk08+AUmSGuUTBIHZs2fjxx9/RP/+/WFra4u4uDiUlJQAAJYtW4bAwEB07doVw4cPF7wknZ+fj+joaHTt2hUKhQLLli1j3ff7779HVFQUbG1t4eLigsmTJ6Oqqkq1ffbs2ejWrRtaWlp0jk1PT4eHh4fKqGHyWbt9+zbeeecd9O3bF127doWnpycmTJig0W6VSiX+3//7fwgJCUHXrl3Rs2dPzJw5E42NjYKuVxsvLy907tyZd7/Nmzfj7t27yMzMVP1GEARmzZqFK1eu4PDhw6rfe/bsCVtbW0Hn9/PzM7l/oISEIUjLoBISZoL+cDs7O6t+u3nzJlasWIH09HRMnz4dt27dwjfffIORI0fi2LFjqmW/X3/9Fenp6RgxYgQWLVoEADh79iwOHTqEV155BYmJiZg7dy4+//xzvPHGGwgODgYA1X//+9//YurUqRg5ciQWLVqElpYWfPnllxg6dCiKioo0lk3v3buHkSNHYujQofjkk09gZ2fHe23PPPMM/P39kZubiyNHjuDzzz9HY2MjvvvuO9Zjrl69ivj4eLS0tGDu3Lno0aMHVq1ahbFjx+Knn37C+PHjERwcjPfeew9vv/02ZsyYoTJ44+PjGcucOXMmvL29sXDhQsydOxfR0dHo2bMn57WRJImxY8di7969ePnllxEREYGdO3di3rx5qK6uxqeffqpxjoMHD+Lnn39GVlYWACA3NxdjxozB66+/jqVLlyIzMxONjY346KOP8NJLL2HPnj2c966kpARPPPEE3Nzc8M477+DevXv417/+pVFvmg8//BALFizAM888g2nTpqG+vh5ffPEFEhMTUVRUBCcnJ0yaNAlLlizB1q1bVQY8ALS0tOCXX37BCy+8ALlczliX9vZ2jBkzBrt378bkyZPxyiuv4NatW/j1119x6tQpKBQK1X3+9ttv8eKLL2Lu3LkoLy/H4sWLUVRUhEOHDgkyvPShqKgI9vb2qnZNExMTo9o+dOhQk5xbQsKikBISEkZl5cqVJADyt99+I+vr68mqqiryp59+It3c3MguXbqQVVVVqn3v3btH3rlzR+P4xsZGsmfPnuRLL72k+u2VV14hHRwcyHv37rGe98cffyQBkHv37tX4/datW6STkxM5ffp0jd/r6upIR0dHjd+nTp1KAiCzs7MFXeu//vUvEgA5duxYjd8zMzNJAOSJEydUv/n5+ZFTp05V/fvvf/87CYA8ePCgRl0DAgJIf39/sr29nSRJkiwsLCQBkCtXrhRUp71795IAyB9//FHjd7Zr27RpEwmA/OCDDzR+f+qpp0iCIMiLFy+qfgNAdunShSwvL1f9tmzZMhIA6eHhQd68eVP1e05ODglAY18m0tLSyK5du5KXL19W/XbmzBlSLpeT6l10RUUFKZfLyQ8//FDj+JKSErJTp06q35VKJent7U1OnDhRY7///e9/JADywIEDqt+GDRtGDhs2TPXv//u//yMBkP/5z3906qlUKkmSJMmDBw+SAMgffvhBY/uOHTsYfxdLamoq6efnx7qtd+/eOr83NzdzttusrCxS6OfO3t5eo51KSFgD0jKohISJeOyxx+Dm5gYfHx889dRTsLe3x88//4xevXqp9pHL5SqfIaVSievXr+PevXsYNGgQ/vjjD9V+Tk5OaG5uxq+//iq6Hr/++itu3LiB9PR0NDQ0qP7kcjkGDx7MuOQ6a9YsUeegZ5lo5syZA4By8mZj27ZtiImJ0ZgJ6datG2bMmIGKigqcOXNGVB2Eon1t27Ztg1wux9y5czV+f/XVV0GSJLZv367x+4gRIzRmIgcPHgwAmDhxIrp3767z+6VLl1jr0t7ejp07dyItLQ2+vr6q34ODgzFy5EiNfTds2AClUolnnnlG4zl6eHigT58+qudIEASefvppbNu2DX/99Zfq+HXr1sHb25tz5mn9+vVwdXVVPT916GXCH3/8EY6Ojnj88cc16hEVFYVu3boxtidj0drayuhTRgfstLa2muzcEhKWRDLWJCRMxJIlS/Drr7/ip59+wujRo9HQ0MD4oVm1ahXCwsLQtWtX9OjRA25ubti6dSuamppU+2RmZqJv375ISUlBr1698NJLL2HHjh2C6nHhwgUAQHJyMtzc3DT+du3apXLIp+nUqZOGQSmEPn36aPxboVBAJpNx+mxdvnwZ/fr10/mdXuK6fPmyqDoIgenaLl++DC8vLw1Di6se6kYVADg6OgIAfHx8GH/n8uOqr69Ha2urzv0DoHNvLly4AJIk0adPH53nePbsWY3nOGnSJLS2tqqCWf766y9s27ZN5cfHRllZGfr164dOndg9ZC5cuICmpia4u7vr1OOvv/7SaU/GxNbWFnfu3NH5nfaPFOqjJiHxoCH5rElImIiYmBgMGjQIAJCWloahQ4ciIyMD586dQ7du3QBQzuIvvPAC0tLSMG/ePLi7u0MulyM3N1fDodvd3R3FxcXYuXMntm/fju3bt2PlypWYMmUKVq1axVkPpVIJgPJb8/Dw0Nmu/WHu0qULZDLDxnHW6qxtjGtj8/di+53UClLQF6VSCYIgsH37dsZz0W0KAGJjY+Hv74///e9/yMjIwC+//ILW1lZMmjTJKPVwd3fHDz/8wLjdzc3N4HOw4enpib1794IkSY02Rstt8Ml+SEg8qEjGmoSEGaANsKSkJCxevBjZ2dkAgJ9++gm9e/fGhg0bND4+//rXv3TKsLGxwZNPPoknn3wSSqUSmZmZWLZsGRYsWIDAwEBWA4l2Cnd3d8djjz1mgqujZlsCAgJU/7548SKUSiWn3pufnx/OnTun83tpaalqO2B6w8/Pzw+//fYbbt26pTG7pl0PU+Dm5gZbW1vV7Kc62vdGoVCAJEkEBASgb9++vGU/88wz+Oyzz3Dz5k2sW7cO/v7+iI2N5TxGoVDg6NGjuHv3LmuQgEKhwG+//YYhQ4aYfSYrIiICK1aswNmzZ9G/f3/V70ePHlVtl5B4GJGWQSUkzMTw4cMRExOD//f//p9q2YaeIVGffTl69KiGBAEA/Pnnnxr/lslkCAsLAwDVspC9vT0A4MaNGxr7jhw5Eg4ODli4cCHu3r2rU6/6+noDropiyZIlGv/+4osvAFBac2yMHj0ax44d07jW5uZmfP311/D391d9jNmuy1iMHj0a7e3tWLx4scbvn376KQiC4LwGQ5HL5Rg5ciQ2bdqEyspK1e9nz57Fzp07NfadMGEC5HI53n33XZ3ZOpIkddrIpEmTcOfOHaxatQo7duzAM888w1ufiRMnoqGhQede0OcAKCOwvb0d77//vs4+9+7dM9lzAoBx48ahc+fOWLp0qUa9vvrqK3h7e7NGCUtIPOhIM2sSEmZk3rx5ePrpp/Htt9/ib3/7G8aMGYMNGzZg/PjxSE1NRXl5Ob766iv0799fwzl82rRpuH79OpKTk9GrVy9cvnwZX3zxBSIiIlS+VREREZDL5Vi0aBGamprQpUsXJCcnw93dHV9++SWef/55DBw4EJMnT4abmxsqKyuxdetWDBkyhPHjLIby8nKMHTsWo0aNwuHDh/H9998jIyODU+A0Ozsba9asQUpKCubOnQsXFxesWrUK5eXlWL9+vWq5UqFQwMnJCV999RW6d+8Oe3t7DB48WGMmzxCefPJJJCUl4c0330RFRQXCw8Oxa9cubN68GX//+99VM5Om4t1338WOHTuQkJCAzMxM3Lt3D1988QVCQkJw8uRJ1X4KhQIffPABcnJyUFFRgbS0NHTv3h3l5eXYuHEjZsyYgddee021/8CBAxEYGIg333wTd+7cEbQEOmXKFHz33Xf45z//iWPHjiEhIQHNzc347bffkJmZiXHjxmHYsGGYOXMmcnNzUVxcjCeeeAKdO3fGhQsX8OOPP+Kzzz7DU089JeoenDx5UuVfd/HiRTQ1NeGDDz4AAISHh+PJJ58EAPTq1Qt///vf8fHHH+Pu3buIjo7Gpk2bcPDgQfzwww8ay8OXL1/Gf//7XwDA77//DgCqMv38/PD888+r9v3ll19w4sQJAFS6spMnT6r2HTt2rGpgJCFhMSwVhioh8bBCS3cUFhbqbGtvbycVCgWpUCjIe/fukUqlkly4cCHp5+dHdunShYyMjCS3bNlCTp06VUO+4KeffiKfeOIJ0t3dnbSxsSF9fX3JmTNnkrW1tRrlL1++nOzdu7dK9kFdxmPv3r3kyJEjSUdHR7Jr166kQqEgX3jhBfL3339X7TN16lTS3t5e8LXS0h1nzpwhn3rqKbJ79+6ks7MzOXv2bLK1tVVjX23pDpIkybKyMvKpp54inZycyK5du5IxMTHkli1bdM6zefNmsn///mSnTp14ZTy4pDvYru3WrVvkP/7xD9LLy4vs3Lkz2adPH/Ljjz9WyVXQACCzsrI0fisvLycBkB9//LGgejCxf/9+MioqirSxsSF79+5NfvXVV6p7q8369evJoUOHkvb29qS9vT0ZFBREZmVlkefOndPZ98033yQBkIGBgYzn1ZbuIEmSbGlpId98800yICCA7Ny5M+nh4UE+9dRTZFlZmcZ+X3/9NRkVFUXa2tqS3bt3J0NDQ8nXX3+drKmp4b1ebeh3hulPu820t7er3hkbGxsyJCSE/P7773XKpO8/05/2NdOyLkx/QiVjJCRMCUGSRvJ+lZCQeOR455138O6776K+vh6urq6Wro6EhITEQ4nksyYhISEhISEhYcVIxpqEhISEhISEhBUjGWsSEhISEhISElaM5LMmISEhISEhIWHFSDNrEhISEhISEhJWjGSsSUhISEhISEhYMZIoLqhcdzU1NejevbvV5jSUkJCQkJCQeLggSRK3bt2Cl5cXZ95iyVgDUFNTAx8fH0tXQ0JCQkJCQuIRpKqqCr169WLdLhlrgCp5c1VVFRwcHCxcGwkJCQkJCYlHgZs3b8LHx0dlh7AhGWuAaunTwcFBMtYkJCQkJCQkzAqfC5YUYCAhISEhISEhYcVIxpqEhISEhISEhBUjGWsSEhISEhISElaMZKxJSEhISEhISFgxkrEmISEhISEhIWHFSMaahISEhISEhIQVIxlrEhISEhISEhJWjKSzZmFqm1pR3tAMexs5mtvaEeBqD09HW9Xv9L+1j/m94joIgkCUnzPjdu1jT1Q14ljFdcT4uyDcx5l1fwA6xzKVp/0bW33F1pWvLlxlGnLPuOqi/Wy4nps6XPfckPsj9tnrey6+Y/i2cdWD774yHcd3T/Vtx3zXwPWMud4NvuO4noXQ6xT7PNjqxFWm2HsgtG8Qcp1C2quYdqRvf8R1/YbWR0z/J6R/FHqtXPsIrS/fNeh77/muXei7JrZMIffMUkjGmgVZV1iJnA0lUJL3fyMAJPRxRf7FBihJQEYAuRNCMSnaV3VM9voSqB2CnJQgzBym0CmTADA9IQBXbrRiW0mdav+EPq746KkweDra6tSBAEDi/nkBaGzPiPGBn6s9Fm0vVdVvfKQ3NhZVa5zzxaEBOHC+XnBdZQQwKsQD20/XgewoBx11IQggOyUIMxMVWHagDLnbSjXuV95EzXrSdU/s64byhmaUVDchb1upqh70MfQ9BYBlB8qQt70UpNo1bfijWqPubPeE3jZ/VBBCezkiwNUen+w8h/V/VKu2TxzojX8/E6HROWjfH+16ad8f7TrR+6tfp/pzEdpuapta8X/55fgmv1zjWAA69ctOoa6R655q15uuh/Z5+O7rmFAPTE/srfqIv/q/YtZ7+n/55VhxsFyjPmztmACQHuMDEATWHK1kvIZlB8o0rk+9nkzPhwCQOVyBtnYl6/Wp3wP1ugLAIrXnrn2d6u+rdjuly9V+vjrX0nEM1LZndzx/7edFt2P19sR0nPY9YOoLUgZ4YMfpOtW/1Y/Vvs6UAR54Ps6P891gauvadQMBQfcIoPqz+EBXRPk548D5eo3nqd4Ps10/DVtfPj0hAD26d2F8L/nuHcDdF9Not0u6PtrXOqOjX6YNELY2c6P1rqqP5Xqv548KQsNfd1TtXfue6fstYLt2+nimPl/7ntPn5CtT+3kfvNDA+Z2wJARJkiT/bg83N2/ehKOjI5qamsyWwWD32TpMW3UcQm6+nCCQn50EAIjP3cN4TM7oIMQGuCBtaQGEPFGCALJHBWHRjlKdl1+1T8f/6NNC6I8lE1lJCgR5dMcra4tZz81Ef4/uOFN3S9D5CFDXyHVtBTnJ8HS0xcc7S7Fkb5mgOqi/9GJ5Id4P3x2+rOocmMqg63Xt5m2MW1IgrE4cz2hxRiR8nG2RtqSA8XxJ/dyw91w9Yz3EXqOMAJZPiWJs1zmjgzSMbJ1jO07K9LwmDvTGlDg/xvvxQrwfvi24zFkvMe1YRgCzhitY2wP9Ll67eZv1njKWC2DyYF8N41C7jnzPnelZyQkCGzLjGI8hAGQmsV8LQL2LX+4rE/Ue0sfp8w7Txz7RvyfrdXK9G1zvNBsyABuz4nmfl5g2nxbhicf6eyDKjxpIsPXLTMgJAl9PGYiXVx0XeAT3+wFQ96Ugm+rPdp+t4yx7TKgHxg/0Fvz9AYDNWfEYv7RA9L3ng24LXM+GtT3wvNNcz1PWsY3vctS/E6ZCqP0hGWswv7GmPaIUwprpsdhbehVfHyw3Ua0ePWYk9EbnToRgQ81cpEV4YVNxjaWrYVVMGtQL636/YulqAABSQz2xtaTW6OW+Py4ERy/9iS1qs+BCCPLojlKWQYy1MiLIDbtLdQcJpmJMqCe2mOCZAea/FjaWZERiT+k10d8WIQzyc8bvlxuNXu6DwIyE3ngjNdhk5Qu1PywaYPDOO++AIAiNv6CgINX227dvIysrCz169EC3bt0wceJEXL16VaOMyspKpKamws7ODu7u7pg3bx7u3btn7ksRzImqRtEvk4wAWtruSoaakfn64CWrM9QASIYaA+Yy1Liz81GYwlADgAWbT4s21AA8cIYaALMbN6Z6ZoD5roUndST+V1hlEkMNwCNrqAHA8oOXUNvUaulqWD4aNCQkBLW1taq//Px81bZ//OMf+OWXX/Djjz9i//79qKmpwYQJE1Tb29vbkZqaira2NhQUFGDVqlX49ttv8fbbb1viUgRxrOK66GMGeDmKmjKXEPbRlZDQJj3GOvxTJIwLCWCIooelq2EQ04f25ty+/0KDmWry4JPYx1XwviSAP6zAWLW4sdapUyd4eHio/lxdqZvY1NSEb775Bv/5z3+QnJyMqKgorFy5EgUFBThy5AgAYNeuXThz5gy+//57REREICUlBe+//z6WLFmCtrY2S14WKzH+LqKPOVndZIKaPPiEeTuybnsY1/ZnJykwsn9PS1fDZFjawCYATIruZeFaSJiKQ2V/WroKekMA6NHdxiRlB3l0wwdpIZBZ+gU0IwdEGrbW4CxmcWPtwoUL8PLyQu/evfHss8+isrISAHD8+HHcvXsXjz32mGrfoKAg+Pr64vDhwwCAw4cPIzQ0FD173v+AjRw5Ejdv3sTp06dZz3nnzh3cvHlT489cuDt0Ndu5HmZyUoLwfloI5z7m6HtyUoLw/jjuehiL6813sfPMVf4drQw5QSCuN/8gxdL94YSB3pwDI772xLdMJbQcCQltSFARrqagtO4vhHo7Yv6oIP6dH0EIAFH+zNJL5sSixtrgwYPx7bffYseOHfjyyy9RXl6OhIQE3Lp1C3V1dbCxsYGTk5PGMT179kRdHeXXUVdXp2Go0dvpbWzk5ubC0dFR9efj42PcC+Pgdz2WQSU0eWmIP2YOU6C5rZ1zP76Pf2wAtwFBgH/ppLapFQs2sw8MhBDWy0HQB3z1sUqDzmMJlmREYtbw3jh8ybLtngAVuMHFxj+qsWwfsw9jtL8TpicEcB4vdNY8c7iCfycj8qAv/0lQmHJ2551fzsDb2Xo0xayJ7NFBVqG3ZlFjLSUlBU8//TTCwsIwcuRIbNu2DTdu3MD//vc/k543JycHTU1Nqr+qqiqTnk8dQujw20oZHCBshPFKcqDJ6tCjG7UcYG8j17sMGQFMjPLm3IcE/9IJn2yEEE5euYlXR/Y1uBxLwdWifztzFYutIIiDBH/ghhLAlRu3GbcVVtzAnbtKzuOPlQszSL9kMQhNRYCrnVHLIwCMCfMwapmW4GF2KRBLUeUNzF5dZOlqWCXeVmCoAVawDKqOk5MT+vbti4sXL8LDwwNtbW24ceOGxj5Xr16FhwfVUXh4eOhEh9L/pvdhokuXLnBwcND4Mxe0Lg8TD4LPwNFyYY6Wkwf7UsKjJsDPxR7rCiuRJlCHjInJ0b640XrXiLUyjE92nufdxxqbBy0S6tiVWV9740MU2brqCLdhLnTiQwnzPsvvjxp3MEoC2HJSfNSqtfEguhRImJ85a4qwrtDyqxpWZaz99ddfKCsrg6enJ6KiotC5c2fs3r1btf3cuXOorKxEXFwcACAuLg4lJSW4du2aap9ff/0VDg4O6N+/v9nrLwRPR1tkJTEvgyyfEoUZCdwRPw8K127eRn9P0xjB20/VIntDiUE+TmsLK/HhVtP4gJgKS/t0MUECyN1eiqbb1iuXY41Y47OUkJDQhQSVPcHS8h0WTTf12muv4cknn4Sfnx9qamrwr3/9C3K5HOnp6XB0dMTLL7+Mf/7zn3BxcYGDgwPmzJmDuLg4xMbGAgCeeOIJ9O/fH88//zw++ugj1NXV4a233kJWVha6dOliyUvjpLqxhfH3Y+XXsSL/4dBS+3z3Rewuvca/ox5s1UOLShtjK3FLSEiYF0/HrqhtYl62lpAwJiSA4xWNGBNuuSVRixprV65cQXp6Ov7880+4ublh6NChOHLkCNzc3AAAn376KWQyGSZOnIg7d+5g5MiRWLp0qep4uVyOLVu2YNasWYiLi4O9vT2mTp2K9957z1KXxEttUys2FTMLNC478HAYagAMMtSeieqF/x23DrV6CQkJ60Qy1CTMiaXdzaV0UzBvuqmFW89ImQgkJCR08HTsiqs3b0uzvhISVsjmrHiE+xhfwuOBSDf1qFHb1IrlkqH2SDMzkVv+QeLRpbbpNiZGckcoS0hIWIaWNu5ocFMjGWtmorapFVtO1kiOxY84d++ZtwUME5FWRcIwjLFKYow8n5E+ToZXRELCQAgAGSZSBDA3coKAv5ElcMQiGWtmYF1hJYbk7Xngog8ljA+fqUYAmGckzbUIHydMifcTdYw1yoM8KIyL8IJcgGMLV6dbUmN4NpWMwZb/QErtSOKL9EjMGdHH0tUwGDlBYOGEARYXxpWMNRNT29SKnA0lBvuhhHmbTwvOmpCByl33sLCyoIJ1G61ZdqPFOPpvKaEemLbquKhjHtdTKJTQ+q8lIABMHGi5ZcQXh/gjPzsJb6UGc+43RM/ZTqH3tpezvaj7IOaZyQTuL6S7M7StSAahlUNQEk4P6nPy72GHNdNjkZ+dhEnRvpaujmSsmZryhma9DDUZqBHykoxIbM6KR4CbvdHrRp8nqZ+b0cs11gs6Jd4PpXV/Gak0cUwaxJ7UW8j1EQC+mRolKJsDASArSYG87aUG+zXKQOUsXbS9VPSy+y49hEIzYnxRkJOMxemRRomYIqBf+5kS54cNf1QbXgEGhNQnbWkBDpyvR2qYJ6fA9aELDXoJYJOg+oTZSQrO+vxx+TpeG9kPm7PiMSLInbPMJRmRgg10AsD8lCDkTQw1yvttDIeAD9JCzGIMLMmIxDdTo1i30+2eqy4vxPtZ9Qf3pXh/1m0KV/Hfn9mrizBuSYHVu/6wPbPK6y3wd7Wz+IwajTW3nYeCAFd70R3zgtRgHMpJxsLxYbhyoxXjlhRgM4vchyE8M6gXNmbFY//5eqOXLeQFTYvw4m2Aq4yQzklfEvqyG7Ek+D/gJIDWNiVcuzNr/tHHywkC2SlBWLqvTO+OTX1ma35KEOxs5GaLKpwzIpDq0Ajj6NdNT+iNgpxkZMSIG81+d/iyyT4MQsolSeCNDafw84kazvugBJVBQx/WHK3ibScf7zqPIXl7cOTSdew9xy2h8+uZq4INdBLARzvOIbGvG157wjzp0biMTRKAk62NWerhYt8F/b0cEenjyFwX8n6d2PBxtsNyDoPPksgJgnNCoKyh2aTnlwGs99aULEgNxnvjQhi3KUmgooFZE9USWFRn7VHA09EWuRNC8caGU2gnSRDgfqFlAHo6dgUALNtfhtzt+vu5TYj0woYi9nQ///v9CmqbLCsVwHdqS47KfjtzlfN5Canb3LVFiOvNnOB7kJ8T/vlEEPxd7fSegdWuC51RwJjwtdmV+eXo0b0LcrcZfl4ZgBeH+gMA1ohMXG/KtsJ3D2jaSRJ5PPeBABAf2AOrRV4fOuogRGxJSQprB3z5UrVpJ0mszK/A1wcviTpOX7j0GuUEgYJLDZzPRehz40IG4GT1DTy74ohB7+ggf2c0t7UbWBvTMMjfCW9vPm2x8ysBBHs6oqiqyaznvd7SBluWHNMEAYsHFagj6azBPDprJ6oaUVjRiGh/SqdlHEteS2N0LnQ5EFgWQWh+AMQcaw0Y654xlZuVpDBZInKCAAqykwEAv56pw9ubz5jkPIaSFuEl+qOuL1lJCgwJdMWWkzVYrUdOS6a2m5MShDw9loRNyTdTozD9u+MPnKaatfQNMgKYPyqI1yCdNKgXQns54u3Npw2618boYzZnxaPyegteWVv8wD13c2Cqflxfxkd4ITnYHQRBIMrP2WTLoULtD8lYg+mNtXWFlaogAxkBjI/0xnoT+dboC22wyQBMSwhAY3MbfrSyOj6MzEjojRX5l6TOuwPtgYM+DA5wwdHy66p/D+/nhv3n6q3qQyBhGCkDPJAa5onZq4t49yUATBho+T6XbtvWZpRIMKP+nAgAeRNDTRJoIBlrIjClsVbb1IoheXus/mNMgJIe4PO3kTAuUsctIaEff0sMwFcCU/RJ79mDib+LHSqum9dvjK2tyAjgUHay0WfYpAwGVoKhvkjmggTlv/Ig1PVhQrrdEhL6cbS8UfC+0nv2YGJuQw0Anghhjo62dMCBZKyZGH2iQSUkJCQkuCmuumHpKkg8hOw8zRwdLbNwwIFkrJkYOhqUVjaXEwQSpBRAZmFwgLNkKEtIPKRIs2US5oIAkDsh1KKaa5J0hxmYFO2LxL5uqGhoUVnmpvBje3awD37QI4KOD2vw9xii6IFDZX+KOoZeJhkR5IbdpcK15OjrtYbrlnh4iezliKIrxpcqoCMl77Yr8cmu88KOASWfwMaj+C48atf8sFxvL6euqDGiJBUBYFNWPMJ9nI1ToJ5IM2tmhASJazdv4/eK65gsUvBTCPoaakLEXS0JASBe0UPv48UYajMSArApKx6L0yPxqpFydEqYH3pGlU4mLURwM9DdNFlC2DDEUPNzYR/h//Pxvrh8vQX/+VW4oTY61INzn/5e3cVUTy+MNQvu1aFTaShzBGQeeVgwVSYbU8KWhvDKjdsYG+6J8RFeBp9DThDImxhqcUMNkKJBAZhXusPaeFhGU8bEHFpSET6OKFYTgBzg5YBTRkjiLUExNc4Pd9tJrDlWKbVvHqQ+gJmkIDfsFTHQk3i4MNeMmlD7Q1oGNTHGSuRuKqy0WhbFkJRPQo8t1lLqlgw147LqsOXSlD1oSH0AM5Kh9mhDAmhp43IOMC/SMqiJeVCkOyQMR3rMEhKPLqNYJB8kHlzsbKzHRLKemjykSNIdEhISEg8/UX6W92uSMC7SzNojhLZ0hwR/QIM5sIY6SLAjPR/jY857KqS7G+jr9FA95w+3lcLLSb/ghofpPpgKAkC/nsxBBaZAThBWlchdMtbMwKRoX2zIjMNcA6OLLPVCG/u81rBcaK46pEV4mulMpidCQESlMZiRGIBxRojkMgUjgt0f2A9rrMIFGTE+ZjkXSQLzRvblvFd/VN7Aa09wR1ynRXjpfb97du+i8e8BXg4Y2d84S5UEgP6euhGyNTduI5UnspYJWirIGPR1N59BY06CPbvj/NW/zHIuGQG8PqofyhuaUdvUapZz8iFFg+LRjgaVkJCQsFaWZERi15mr2FxcY+mqSDxkDPJzxu+XmVOWpanlyZYRlCCuKZK4A1JuUKvB2qNBJSQkJKyV3ysaJUNNwiSwGWqAZp5sJQnkrC+x+AybZKyZGCkaVEJCQkI/VhZUWLoKEkbgQXUdoFECWJlfYdE6SMaaiZGiQSUeRaSORZPB/s4P/AdLnalxfpauwkNHTkrQQ9VG1HlvXIjVfQfFxvytyL9k0dk1qU81MdrRoGLba8ZgH2QM9jVLQ/flSGFjKQZ4Gd+HUJ04hYtJy2ci0M0es5MUD1THPDhAnCzB87HcH/MH6dqNQWFFo8mCWixxLx1tO1vgrJpMHOhtlHKspS3uKb2K7NHCDDa+fbKSFBgcYJy+zdD7IyOAlrvtsDbveLH1UZJARUOLaSojAMlYMwOTon2Rn52ENdNjUZCTjPfHhQg+ds3RKqw+WgklqV9kYZqIqLrK68YZNXwzNcpoHaBQZX99z3e47LqeR+rPxfpmLN5bZhVRsTR8o8xgD3FG86oj3BkE9L32B3WGylRqTTLwz3I9FektehaBj8/3XDRugXowJc7PKG3BXO/hKyMCsTkrnnX70fJG5G4rFVQWV52zhivg0LUzjpYbp2/76KlQzEjorfeEwazhCizaXmrQfR7ex9XobZgNGcGcJ9XSUh6SsWYmPB1tEafoAU9HWzjZCR+VqjfwTcW1os4pJwizCzUSAPp7OSJvYqhZp72tyfB5EEmP9uX88H1rJembjppwhkpf6I+IJYxIJfhTa/1UVI2BPk68ZYV4mnYW29hsLq6xurbAhWu3Ljhyid+AMvSalu4rQ+52YUafEG623sOLQ/3xztj+erXxu/eUBvtt77/QYLaZuceDe2LvOd1UY6+n9IOno+VWnyRjzQLU3Lht8nPICCAt0gtvbz5t8nOpQ4KaKp4U7Yv5KUFmPTcTkwb1Yt02xAJLoMYmvrfh10AAWFsoJTzXF/ojYqn7J+S8xytv8O5zutY68tMKNQj+71CF4DKHM8yUmJu3N582qhHFhrHb4e6zVxGftwdvbz6jV9krDpYbPJAhId7HTF92nrnK+HuYt5N5KsCCZKyZmdqmVizaYfoXNiclCBuLqi3yAdlxqhb/3lUqeErflLTda2fddkjPJVBrWoYrEDBS54MEpIjlB4TBAQ/mMrBQCADhJhBfPnCu3uL37UF9xQouXTdoVksJw6+dIIDM4QoDSzHg/IDFsxlIxpqZMZeUx4fbSi32AV51+DK+2FMmaF9TK9VvFLl0LIQHtdOVePA5Wm59y8DGhARQXNVk9HKNYTBIWA6SBC4aOXvBEEUPzEjoLez8AA6c110aNSeSsWZmAlztLT7Csyb6ezpI90NCQkJCghO25Ul9OVT2J74+eEnw/jkbLCuMKxlrZsbT0RbTEwIsXQ2r4aMd55A+2Pj5Cs2Z8FdCQkJC4uFGku54BHlxqGSs0bSTJOJ7u7Juf4YjQIAL/x6W9S+QkJCQkHh4kBGW9VuTjDUL4OloixyWSMlHbUlQBuC3s+zT21WN+o1kdp25xvi7uSKKJCQeFKzllRD7MbKWepuDB6XfekCqqRfzU4Ik6Y5HkZnDFMhKYo5uEdLgXxriz/j7x0+F4qV45m1s/G1YAMaEehrlRRsTKk64VwkqaS4b+orWsjkTjwv3UmWT4IIAkBHjg2+mRul1/geRJ/r3ZN1GgIowZhtkmJoRQZaXXjAWBJhFN8WQMsADL8QblvIp0NUOizMikcnSD5mbV5/oK2p/EtbZLmQEMIPD1SUrSYHF6ZGiyiRJ9j6fRt/+Oy3CE++nhWBJRiSSDWyX73EIvo8IdsML8cKFjGckBpg8AE0MknTHI8zde7q65iSERS01trQx/j7vpxL8n8jkxyVXbmLxswOxgsMwee2JvngrNZizHBmA5rv3RJ3b3GwursHfhvfGmumxeD+NuWOZmxyIgpxkhPs4Ydqq43qfa4iih97HWgJvJ/ZRIwnAya4zLv/ZbL4KdUAA2F1qnEgsGYyXYSMt3AsZevhbkgCj6KYYtp+qw7cFhgkVlzW0YPbqIizZKyxyWygfPxWq33G7zos+xljtQgx8RtO7Y0PQuRP7p/XuPRK/cqwmsLVNPl25L9IjkRHjy7kPE5tP1GLBptOYvbrI4Ha55QT7wHv32Xp8d/iyIM07AoDCrRseC3Zn3cechpwk3fEIU9vUiuUHy/U+fmMR+0vBxgBvZoXyQ2V/YtmBMrTeZU+K03DrDhqbmQ1EmsR+bthrgc5TDCSAJXvLcPLKDXg5dmXc5+btuwCo6B99w/1lAArK/tTzaPNDAFjJY+TPX1+C1ceqTHJuLowluSAjgNyJoRgR7GGUvJKbTtRg9VHj3w9zYSopi4o/TeOEzTXza052cxhaALBg82lOA/jrg5ewmWM1YQpP+jAmCACNrW1YfaxS9LHqos6GtomjFY2c25WksIEKCSB7fQlu32XXydxcXGO25WFrkH2RjDUL8cWeC2ZvAKeq2RXKF20vZZ2tA6h0Q0v2cY/A9xk4KtMXfd7X3O2lOHGFWc+J0om7oLdOHQFgWkKASZ5vkEd3E5Rquc5oRmIA3mOZ4TQ2I/v3RJBHd3y49Qx++qPaLOd8FFlq5Jk6muY7dxl/j/ZzMsn52LhspBzKbPClD2OCBLBgk3mz1ZgaEtRKEec+Zuy4VuZXmO9kDEjGmgVYtr/M6kbkShKov3nHZOUPCTThkqCeo6s//2K+XpKEwc9nsBHSQDFRWnfLrDlXTU1qqCec7WzMcq7tp69i3JICg2a0Jfgx1feTLeNI4eUbJjqjhMR9VuRfknTWHiVqm1qRZ4b8cPrw+Z6LJiv70EXTLQnqO7qqbjTNi0cCKOfR4zHE3hob7vXQRF3tKb0GH2fLRVhJSEg8+BCAyQexks7aI0Z5Q7NVrH8/TOj7jnbv2om9TANefBmAAFc71noFutljU1a83uVvLq7B2HDriZLiggC1/MjGzdZ7qDKR0awvo6zEN0obSxno+pz3YRlMGJsnwzwsXYWHEhLA55MjTRrUJemsdZCXlweCIPD3v/9d9dvt27eRlZWFHj16oFu3bpg4cSKuXtV07qysrERqairs7Ozg7u6OefPm4d49641IDHC1N1nZ6qMLq3mwAvkgLcSgkZE+h8YEML/YMgLITgkSJPHBhBLA9O+Os0Y9Xaxvxrrf9V9mJQFs5oi6siYyBvtiTDi7nMvKggrMWV0kulxTGgN9OfwCCVBtdbyBkWj61H/F1Ci93hGZnuej0SfqzpABKQEga7gCI4LYIwGFlGEsxJbFtb/cwOkfGQHMTlJY1BVicICz5U7Ogpwg4ONia3BQFwFgSUYkRod66PyeOyFU0lkrLCzEsmXLEBYWpvH7P/7xD/zyyy/48ccfsX//ftTU1GDChAmq7e3t7UhNTUVbWxsKCgqwatUqfPvtt3j77bfNfQlGQ04QyBkdpPPCZw1X8M72jIvwwqHsZKyZHotDOclG18TSNgbTIrg11SJ6OfJ2dLR+V2+3bhg1QL9RJwnxYesEAC8n5mjQiZHemJmoQH52EtZMj0WSHlpOShI4cL4BET6OjNvXHK2ySt8zQu2/hIhnzcbs5EAM8nfhbAckfT4R5WYlKfQ2prkgAISzPDOAqqvCrTs+nRyJnNFBej9DtsjGkf17MpaZlaSArU0nzE8JEtVpEwCWT41CNkdfoP6smeCKXOQ797ODfVXXI/QZkwC+2n8JH4wfwHuP2QzJSF9HzfMa2FSEPmc5QWBoH/aMLD8X1xpkSE4b2huvjQzCxsx4i8xeZg1X4JXH+mJzVrxeMiFiiPZ3YvydgKbBKicILJwwAFWNrYIGCVztMHt0EAb6OWPHqTqdYxL7WlbTj30dyEz89ddfePbZZ7F8+XJ88MEHqt+bmprwzTffYPXq1UhOTgYArFy5EsHBwThy5AhiY2Oxa9cunDlzBr/99ht69uyJiIgIvP/++5g/fz7eeecd2NiYx3FZDOUN7DpVMgJYOGEAJkX7Ymy4F45XNOJGaxucOhyw+XyzovycUd7QjABXe3g62mLmMAUuX282WjADCSA92hdPhnvB39UOizh8794fF4Ln4/yx7EAZcrex70cCyNteavBI3MfFFmO6ecLZvjO+3FsGdhESigkDvVmjQX/8oxpKAP9+JgIAsI9FjkRGAPNHBeHPv9qw/OAlnWtoJ0kE9LBHcZXueeh7ueZYJUhQBtHkGB9GaYy0CC9sLq4xyfI5Ac1ZkMzhCgR7OgAE4ONsi60n67Ai/xI2FdfyljM13g+rDl8GSXbIZKiNRCcM9MZ6jghMEpSWn38Pexy+9CfWHKuEktStH82SfWXIHhWEsF5OuNLYjNd/0l9mRZ3slCDY2rB3izLcXwpxsu2st78kW1Lq6AAXxm1L95Vhyd4yEKAGE+uLqgVdLwlg2nfHkR7NrAe3IDUYo8M88fOJGuo9ZCiU7Txh3o4oqW5i3U4CsLfppCENoQ4B4LWRfdF2T4nPdmv6y7aTJI5XNCLU2xGZwxVYsrdM43gZKBkWOxs5ozH5RyX1ziX2ccWip6hJgK0na/HB1rMstWWHBPDF5EgQBHDoYgOrfM2C1GAM8ndG2pIC1rKUAGYk9MaKg5egBHv7ZqNzJwIFZQ3YcpK5PxgR5I69565BSVL3iK8fJEC1+RNXbmBbSR3jPq8kB6KvR3ecrb2JJfvKsGRfmeq4jME+Bn9f5iYHQkmSWLqvTPXOA0BhxQ3G/UkAQwLd8GysHyoaWuDvaocD5+sxW8AMPQFgekIAbDrJsFgrajkjxgdjw71Q3tCsowSgBOWvZsmZNYsba1lZWUhNTcVjjz2mYawdP34cd+/exWOPPab6LSgoCL6+vjh8+DBiY2Nx+PBhhIaGomfP+6PUkSNHYtasWTh9+jQiI5lVou/cuYM7d+5HAt68yS5pYWxKWAwEABoNxNPRFtVN9ztQejTA9WK//fNp1b7ZKUGYOUyBSYMMf5nUWVtYiTkjAvHeL2ew/RTzyy0jgMf698S6wkpOg47G0I8sCSBtaYHq2tNjfEAQBFYfrWQte8Mf3B+79X9UY0qcH+dojSSBm613sTxf11Cj2cgxK6GuiaQE4Gxnw/iM9Z3Z0Ae6I6Znu8BQHyZIAKsKLqv2HRvuCfsunVTRUxuL+KUyPtl1HsP7ueHbF2MwOzkQK/MrsPzgJebzkZTcTGaSAkv3lRnNkF20oxSDA9gjeUkAB87XI7GvG7LXG8dApJEB6NJZBhkBnY+FusHzk9a95HtOJAlWA2N0GDVjuojFUOPiZDV7X0azguPdIEE988xhzBkU5qwpYj12+dQo2Np0Qmsbt8vLgQsNOFPThBHBHkgN88SHW88ylsnXt/5++Tq+O3yZU87HwbYTmtvaOcuREwReHOqP1DAP7D57DTadZPhEhBjwkr1lnBpuu0upNHsZMT6YM6IPfi6uQS5HH0wPlrnqmxzsjrWFVVij1oZIUPJHWR0zXPrKHAHAqeom7Dtfr1EGX3F/Nt+BnY0MJEhcu3kb2eu5JT5UEMDXLNHgq49VYW1hFeaPCmJsD5YWxbWosbZ27Vr88ccfKCws1NlWV1cHGxsbODk5afzes2dP1NXVqfZRN9To7fQ2NnJzc/Huu+8aWHvx1Da1YtEObuMle0MJEvu66bxk6h9PNtQ79NztpQABhHqzL+nog5IEfjtzldVQA4DxkZTgaM6GEoNeYjGoX7sQ4VYh1fp8z0XsPsucY5Qug097TgxsZZnyFjKVTXJsE1rWpuJabOpY8pmeECC4Hew7V4+XVh7DhxNCOT/0AGXgao+ODUVJAocvsac4IwG8seEU3hnb36jPhf44LNh0WrVsRwqYHZEByExS6H0ffj5Rg1BvR5O9p3zlkiQ1a8i4jeO4aauOC77/01YdR97EUCT2deM8hstgE5ItYt5PJZzq/ASolZMD5+uNbuhrs/pYFfxc7TFzmAIgwLu6wYSMANIivZC2pIB1ny/3lWFWx8ynvuzR0ucUcl+EzKIxwTcgUXYMApn4+UQNZiZaLjWbxXzWqqqq8Morr+CHH35A167MvkOmIicnB01NTaq/qirzaJ4xTa9qQ5KUQjbTaEfsy71oeynsbeQij+JGThC4VM+dcmjDH9U4frnRbIaaqeAy1CSEQYJ9JMvGnnP12HD8itW2n3aSZJ0h93PWvy/TMJJJKpBhI0/UsKEGqyn6CHWE+qiJRcwxtIH9G0fmARJAsgEBDTR8wuBBHt1NbqjR5G4rxYmqRr0jx5Uk/wqEkoTZdBLNhRLM7WvR9tJHU2ft+PHjuHbtGgYOHIhOnTqhU6dO2L9/Pz7//HN06tQJPXv2RFtbG27cuKFx3NWrV+HhQTmie3h46ESH0v+m92GiS5cucHBw0PgzBwGu9oIcVcuuGUfeQ0kCVddbMSbUOOHitE9dzQ1urRkS1OybMeALxbY2H30ZQTnhShjGx7vOW7VkRDXLO3C58bZe5Wm/7ySAtzadRmndLZMmK1eSQEubEhkx4nOcCiE9xtcqotjaSZLV95SGXkI0FLY2SAIorGg0q3TTuCUF+GL3Bb2P56srASDa3/qiQw2Brb0+sjprI0aMQElJCYqLi1V/gwYNwrPPPqv6/507d8bu3btVx5w7dw6VlZWIi4sDAMTFxaGkpATXrt1/yX799Vc4ODigf//+Zr8mIbw8NID3g7KyoMJoH525a4vg18NwuRAZgOVTolBcdQM7z/B3asbys+IKxZaBkjOwJoNt+ZQozBsVhBQ9I1sNZbCFOk59noGcIBCn4PYPE4OMoAIkzAGbmr6xyV5fgozBzFF3Qu453z60dlRnOfenQN93bFJ0LyyfGqXn0cati7GMMT7iOLKXFFU2mqUO6pgin686RzjcBvggACT1c7OaPlxOEBjGspRtaZ01i/msde/eHQMGDND4zd7eHj169FD9/vLLL+Of//wnXFxc4ODggDlz5iAuLg6xsbEAgCeeeAL9+/fH888/j48++gh1dXV46623kJWVhS5dupj9mrhYdqCMNdqKCWONvpQcPiFiiPB1EuUnYqz68/ksHb1k3pEqH3Y2nQEAbz/ZH7VNrYyRoKaETqQsNsrMEMaEemLbqVrRDuqvp/TDzEQFXlp5TMdvRR+UJODbww4RvRxRzBHIw8aIIHfE9HbBom2lvFF05oIE0NqmxESGaFqhgR9cTI72xc/FNZz5KOmApUMXG3DgQoOAs97n37vO46CIY4S0W2t635ko4DBetrJEXLKhHuxjjdet8o/mgCtilISwxO7mIibAmbU+04b2lnTW2Pj0008xZswYTJw4EYmJifDw8MCGDRtU2+VyObZs2QK5XI64uDg899xzmDJlCt577z0L1lqXZfsp+QpzJp1Vxxin/aPyhmANG301ucRCAFiezxwtaCl2nqrFusJKxOfuMbuhZgkIAFtP1erlX2ZvI8cvJ6oxIaoX3hxtHE3A7PUlcLTtrNexu0uvoaaxFeMirSs7BEEAU+L8TFL26mOVvB9bEpS/Tv5FcYYaQEVjCm0aBIApsX5WM8tiLXyQFmKwTpylyEpSYE5yH0tXQzBcwUUvDvU3X0UYIEjSUiaE9XDz5k04OjqiqanJ6P5rtU2tiM/dY5WjIgnTYK2jYIkHk+R+bth7rl5qUw8xMgIYEujKOAv5VmqwXvpw1sCMhN7o0c2Gd0Bg7RAA8iaGYlK08YWAhdofFtdZe9iRcoE+ekjPW8KYGGOJ2BjQciIS4hAyeFs+JQpnam8yGmuOtp0e2AEgm06iqTF2W6UjihP7ullsKdSql0EfBoRGgFo7CjcT5jR9CO6PsYn0dZTuixHhcvrmwliPwBrzKYolPdpXWqLUg9RQT84PbbBHd0xbdRz/3sUctXnleqtOrkqxhHmbR/FAGxKWMTJNMahoJ8lHMxr0UcHT0Ra5E0If+E5O37ydQpBG67oUVTZJ98VIjB7goXfE2tQ44/hQHS03fxSgsaFTo5mDF+L8LBbZbGxcu9twWv1n625x3tfP91wUHZigTY/u1hVwZ+0EutnpDJblBGHRaFDJZw2m9VkDKL+1IXl7rFbkUwhiUg9JSFgThiyJSEt/lkEGAAamMZKQMBT6/aeTxUs+aw85QjIXWDsPePUlHmEMMbYkQ80yKAGp05GwOAQJLM6IxEA/Z4vKdgDSMqhZeFj81iQkJCTMhdRlSlgaJagBm6UNNUAy1swC7bcmlzzGzQoBqcN/WHDsarr8lZZCapvcSBNrmlhbe0kyYRo0a2Lu2iKsK6y0dDUkY81cTIr2RX52EtZMj8X740IsXZ2HHqLjf4R0+D0l51tBjAhyx8j+PS1y7qbb7RY5r6kQIsWQFmFd4rwSluW9cSE4nJNssXdQmxkJCsRzpIszhKkmEoHWByVJyXZYMok7IBlrZsXT0RZxih5wstNPYV0sI4LcrarRmxMSwv2Nrt66Y9K6PCwEeXbHzjNXLV0NXhanR1rdqH9k/54arhBCmuYmI+XXlXjwIQA81mGkWcM7KCOArw+WocAEOXKTgtzw7rgByDJTnl8hWFq2A5CMNYswyN/FLFPaEwZ6429GaPDWNv3+sPBBmnXMsD4e7I7XnujLu9+SvYbnmDUHv5yowd5S8wvJcr0nCX1dsTEz3iq084YG9rB0FawOK3gsnExPCAAA/F5hfONIHxICXU32ju0/V4/aplY46Jk2zhRYOok7IBlrFsHT0RZ5E/m11wwJSiAADPRzRnlDs/6FdMA1C0AAyEkJkgIo9OD2XetIF/7r2Wv4967zlq6G0bDUzENCH1fWbU62Nmhua7eK6NJDF/+0dBV0sGT3MSbUE19kRFqwBuwEutl3zGKVY0jeHhwus45nd/P2PZOVrSSB385cRR5PiipzDnxGDfCweJCBZKxZiMS+bpyNjSCAjZnxWJweKdoQovOYeTraGiUSla2eMf7OKMhJxsxhCuROCBV1HrEvGtfuYi9PXzV7YxPgamdSI1dM0YbYEExLjsYM7qDbigxAYh9Xvcs1dd/OlCqIPm+UvzNKrjSZuAbCMORZywgga7jCqB9KGYDs0UGsHyMCwDyOmV8hbe2VEYGs7XR6YgCi/JwNfhcXp0ciI4Zdh0uf4i/W35d9UpLA2mNVJm/HhNZ/mSiqusFbhiHv6oLNp3nbadZwhehnJgPw7GDxmTh2nroq+aw9qvBqr5GAu0NXjAn30ogkFdvItCNR2Y7nKjdlgAdjQ/m9ohHXbt6+X2WBX4Gc0UHI0yM69tnBvoyq0nkTQzGjY5lACEcuXcfspPsvupCXQGhNxXQet+8qNZ6NDNwdkLVOXu5jWA5JCfXgnZEVAgFgU2Y81kyPxaGcZHz38mBsyooXfS/UHfpNdR/ZrnfCQG8AwKIdpk1mLaTtpQzw0Pv6ZyQG4FB2Mp6L88O0oQGiB1Bsv+VODMXYcC98lh6BEUHuOvuQAD5mmfmVEdTAlG+loo97d6x8IQazkzQNTRLA+KUFOHC+nhpwcpTBR3VTK+aMCGTdPj2ht8GKAMqOcow5eAWArCSFamKAbsckqD6J6ZnwQYKawd2UFY8ZCb0599V3YNd2jxQ9Uz1+oDc+HB+KgpxkzEjoLbi/lnzWHlFqm1rx5193OBsoCWDryVrUNrVqRJIK+VCRAHLWl2DLyRrBx5OgRoZMEWg7T13FuwwRrEoAaUsLsGx/GXI2lAgesYd5O6nqJDQylgSw+milxstJAHhnbH8k9nXDi0MDBL94JIAgDwccyk7Gmumx2MhzT2UQFp0kJwhs7DAsckYH8XbM15vbNJ7NoZxkzBsVpGPAZcT4YElGJN4T4ePGF20opIMcohDm28R0nu0M6XEIUMbomumxeFWAjxxAzbiE+zgjrqMuBWUNqGpsFTU7xHQvRM0CAxjeT/+AhU1FNTh+uVGQMDYBYGRIT42BhNCqvjcuRKftyQkCWcMVmJsciPfTQvC3YcwfTiH345uDFfj5RA2G5O3B8oPlrM9ARnTMlBH3rykjxod1/xutdzEkbw/mrCnGntJroj7cn0+ORGJfN/i42OE9jr7E1kaGgrIGPBvrh01avoN0tF9iXzfGfg4AFqQG4wWePmDRtlL8xrIELyOAF4f6Y0NmHOYmBzLOTGYlKbBYwHJs504E68wmPXh9X2BfQb+T80YGwaWbjU4bVQIYH+mt16xjO0mipU2JF4f6c04SZKcEiV6GJgAsz7+k0aYI8LfjTUU1qhmy4UFu2JgZj7dSg3nPZ+lUU4CUwcDsrCusRM6GEkEd9wdbz2LhtrPInRCKSdG+qjXzWIULDvNE4SgBzF5dBAJA5nAFhvRxRYCrPTwdbZGdEoRcLX8AggB8XGwR4u2gE4XWTpKov3WH8aNHksCi7aUQ6n2l3ugPnK/Hv34+LfBIhnODmi5/e/Np6pomhOKNDafQTpKQARjaxxUHWJamLly7hSh/yggoKGtg/ZDICQJ/G9YbS/ZxO9cTABZOGIBwH2cAUBkXedtKWct2sbdBbVMryhuaVc8GoGReEvu6YWV+BVbkX8LqY1VYc6wKY8OFSTnwGWoA9WGvvN6Cb/LLGdsiQQDpg31xSE8fGabzf5EeiTHhXlhXWCnYR87b0RYFZQ0oqW6i2hl539Dku8aMGB8EezpgwWbNNkZHChOgZpp2nr6Kdo4hOgnK6ZkPtjq1kyQam9t4j5cTBNIivbCxqFr1TJKC3LBboCP3iOCeqojzseFeqGhogZ2NDFtO1uKb/eWqe8dUx2lDe2PFwUuc73E7SXK2Z5r5KUFwsu2sMbDy62HP3H8AyN1WqvFvgPro8vWRMgAFl/7E3LVFvPtO++44SJIqd9rQAJ0ZmXaSxMr8Ciw/eEnnWDlBoLGlDauOXOY8hxJUf8R0nfNTgnDgfD1n3x/s4aBajuW6ni/3ljE+pwWpwRgd5glPR1ss288fDETX88v9ZfDtYYcgj+6M+/m42GJ+SpDq/WNifKQXNhZpfjcIUE755Q3NrG2GBJC3vRRTYv04U7uNDOmJX89cVZ2fVP2PZlnvjQ3B2dpbWH2MWReNfs4r8i9B2dEeZg1T8KaVS4v0srjPmpQbFKbPDUqjb45QOUEgPztJ9RJqG1pCkRFA7oRQJPZ1Q3zuHsbZBn3TYgn5eALAxIHe+PczEahtamWsgyFkJSkQ5NEdMoJAL2dbjF9awHk9MgKYPyoIXk5dMXdNsU5diI4yl+wt462nDMChnGTVC813fQRBjSjpDpB+NnTuOVPmk6UHn2TH/08f7IPVR6t09tucFc97D8WQlaTAc7F+gq+LAHWfGI1Jjm3q+wh5bsunRsHOpjNOVt/Aom3CBx7apAzwwI5TdYzv1dhwT2wqruU8fmqsH/579LJe95sAtRyonrtwXWElstfzz3jT/cu1m7cxbkkB5zn4yspJCcLYCC+dZywnCPxteG/BEcXzRvbFJ7vOs35AhfY3TLDlHWUqkwDlm3u0olHnd7B84NXbpgyUocZ0T3Tq1dEH3Gi5q1cfvzkrHuE+znr1HXKCwDtj++sMbADK/WTNsUpVeULvPUEABdnJAGBwXybmeXPtq2/OWfVvsLERan9Iy6BmRN8cofR6eW1TK2uEjJApYCVJLY+uOVbJ2Jj1fZnENKL1f1SjtqkVxy83cr58Mf7OjL9zXeKSvWWYs6YYc9YUYevJWt7rUZJA7vZSzGEw1ADqhV+yj99QA6hRtbpPA9f1EQCyR2mOVOlnc6KK+igYO5+stsaXul/KGgZDDQCqrrcaNfPGkr1leGsj88wC2xnY7gHJsU19Hz6UAF5edRwnr9zAzEQF/ilweZaJnQyGGgCMDffiNdQAYNURfkON7V0joSncWdvUKtg14fWUfvB0tMXWk+x1lBME0mN8eOs2NsKLse22kySGBrohK0mYlNCdu0pWQyhjsA9vgAOXP6oSwGSGhNxsfYC2oUb/ns6S1JsEtTxLuzaMjfDClpM1gvqjNzacgrezfgZBSxs1zNCn76BXT5hYfbRSozyhRZMk1Sdq+03rY3SIuRyufndaQoBB32BLIhlrZiTA1V5v5147GxnndHJKqAcOZSdjcXok5zmUAD7ffVHQOSdE8i+7EQBG8ziTa/PF7ovgm9AtrGhkvI4Xhvjzlq8kgRUHyw2O7pJBeNCEnCBg1+EXU9vUynl9BABvZ1tG/5C0pQVYV1hpUFvRRob7kcVs/oqM9STuZ95YnB5plAhAtiU9tg+lsWG7hNztpcj84Tg+MUDCRAndKGcCwGYjiduOCfXk9K9U/6CI+WDLCQInqhqx/GC5zjYCwJKMSORnJ2HOiD6c5dADFqYIdPr9ECIITgAYEeyuU4YMwKaseIwJ8+K9tseDe2JuciD++URfxrqAMKx1yQgg2JN52VBGQOViceB8PYbk7cGHW4XNlLWTJECKl21S1wHTp++QEwRGBLuL6h+ElEnXSd03d/nUKN5jjdX3qUMC6NxJptd3QdJZe8TwdLRFpp4itS1tSk4Zju2nKIfuMeFeyBQ4euVCThCI9GOe3QLUZBQIYAuDMzkXawsr4etixxtgQS/TAff9lFYeqhB0DiUoPxx9Z4XkBIH5AvXjCFA+DeOXFiBj+VEMyduD0tpbnHVj65DJjtE1QC2TGgMSQGndLbh0s2HseOl7q83Ajufv6WiL5rZ7Zk/WyHbv9e205ATBKRGxTWQ7Zio/ZYCHxm/qs5hCYWty207Vwt2hq0ogVRvtD7bQj9IHW89i3JICxnqmx/giNUyYvw79cdaeSaF98cYvLRBktGSnUEEl2mXkTgxFuI8z7G3kvAOHnWeu4vM9F/HJrvOUrx5xv46vj+rHOJusvjrB18ZGDfDA2wxLhgAwa7gC5Q3NOFHVKNg/mUZOEIjyp65dTM81bWhv1TPydLTFKK12yAXtb1tap9tn6auhKScILJwwQKfdkCDRyqMvKScIbMqiArW4AiW4pF7Y+HJfGeansAd/ycAsKzU/JcjiPmuSsWZmhnAIZ7Kh3Qkyjn5I4I/LjVhXWIkveZzhmVDvqOgXLczbkXHfD9JCsDErHvkXG/SaUlaSlPGZN5E/VJ7oOB9BiPvoyQkCLw71V43mcjg+0kzn3JAZd18/jmd/EtBwCleS4HwGRMfIm+1Z0jMkYyO8kBHjo1dkoHb93thwCvY2csaON3t0kI70AQEqAARgX1LTLkvd6JMBGODF7f/5/GAOTSoCGp2qnCCQkxKkit4VrT1IUB+kmYkKQSN7GhkBHQOMcT8Ar4/qhx2n+A0+AtRHkC2dzoqpUQjz1r13yo5lJbbIZ/UPCpNkjz5tZ21hpSqJNZfAtvrHubapFT4udtiQGYc102OxITNO4/3gY9GOUqwrrNSYjcnPTsKkaF+sK6zE+KUFoiUbSPL+DGFoL0fGvmR6Qm+NCHGme0yA8i3czrDkTQAYPcADX+4rQ8byo0hbIt7fk16SnhTti4KcZAwO0NSETBngwTjj+OJQf9W/a5tasfO08IEHASDIo7vOO04vawt1hSAIql0vTo/EZ+kRSOx7P4J6XWElhuTtQcbyo5jTEfjGxusp/VQR4GzfoEmDemFjVjwWafdbBPcgV0lSagTq3wX15dlpCQHITtH8LSclCDMTLZ/6SooGNTP0FLWYd1h9hDIp2heHyxoYfWCuN7fhXz+f1suAon0w4hU9AAKI4sh+oHDrjua2dv2DETpmAOIUPZDY1w3HKxoxZ00Rsx8dKD0ysaNT9Xvm6WiLyuvNKs9TApQQZo9uXRij20gAyw+U480xXTsqDNUD6+1qh0sMvgtMS5qsz5nH/0NOEDhZfQPPrjiiiuCbkRiA1FBPrC2kIkO5eDHeHysLKjR+aydJnLzShBAvB5RU31T9njLAAzMTFahtatWIiKINvMS+bqxLatH+Lvi9ohHtJKm654l93VRRiOOXsjurywkCVzhEJkm1TrWioUU1WKHhi07TvvcESX2QPtx6Bt/k6y73MUEvH4f7OGPZgTLO85EA/vzrjiCfs40djuAFZQ2MUcatbUqNZ6SO+qBNPfJ5PsMHhY4qpu/fgfP1ggIO1FGXtaBntLQNJQKUoUobU/RsEu0w7+Nix3hfxoR6YmtJrU59aP9N+y6dEOV3X7aFHjSolyUDMCXOD98evsx7LQVlfyI1zAs/MyxL0waPp6OtyuB8eWiAKlpaBmAaR58BUBHW6v0v27u9ITMOyw+UY0uJbh9eUtWEE1WNaG5rR0l1EwrV0ktlDVdg3qggrCusVD17phkssT5rSlBuJ0x9WEVDi0Y7yr9YzxokQnQshdDRueoBberPja9qYd5OAKjnfYwlvda636/gf79fQd5ESjPteEUjbrS2wcnOhjPyWn3iQz1ymo4Q/fpguUpBYWgfN51+x5JIxtoDwI3Wu6r/X9vUis0MhhoB4GzdTcaXdEFqMHo6dsXs1UWc51lzrBJrCytVL9r8UUE6EaLqfgh6R4+qHePpaAuXbuy+eHTYvFDUw9dptDt5EpRm1Osp/VjPu6WkFls7OlP1fZgMNbERRiSA4xXUEolOWQT14VM3DGjjccVBZpkNdeglp1WHK3T2ZYr02nX6qko+hMkpvKKhBfY2csZzHS2/jqwkBYYGanZqnh1yG1x1TejLnVtQu1NVZ11hJafhBOh+EJQAZ6QjE+MHequkWGYmKjA23AsfbjnL+JElASzv8JNkizKkl+Ca29pR29SqWqrUfr/AMYv884kazExU6BhitIGhLQOjfv9utNzVayVbXe6AaUaLBPDRjnOI7e2i8Z7RRte7aSGM9yXUxxHTEwMYnwstPaQeJc3URpUARg7wxLW/7vAuY685VolnBvViFCeePPh+8IS6wUkPlF4cQi09D8ljjvCWEwSc7XV1yrShZ43eHNOV0VDdUlLL2L4A4Kv9l/BcnB/vs2dqV1zICCDaX1cyRL2vVzduAOY8wUpQMhyk2vN/Y8MpfJYeIcp/0t/VTpDEFQkgZ0MJDmUno7ntHt7ezD1RISPAuDQLQCXlQZe7ZF8ZHOw6q67XGpCWQc0MV5AA29Rw3rZSVZQX2/HpMb6MfhgyAhgd5gnbzvyPmgQ0OtqPdpzTWYp6fVQ/1YybkCVCNodV9cgaNv8a2nARs6xb1vCX6v/XNrWioKyBUZCU1oziQoi/Ee1Lw7Sk2THQ1PmdNkCZOpZ3x4ZAJtPtaNWfDRdpkV4I93HW8LfjWnJoJ0kcr2jEn3/dYVxe+bP5Dqoa2WfAlu4tg52NTMc4ZipPnX0cumXq7Uw7xcuJqkZkC/ADMoaDsrqAJs1Wlg8pQD0jpihDAtQS3KzhvZG3o1Tl10ir5qsvubw+qh98OKIBc7eV4r+HK1Db1Kr6eHo62mLZgTLEdywzDcnbo1q6BKjn8cuJav5ciyy/y0AJkHLd83aSZJ2dWbCJ+SP60fZzOMmTgov+4J+oYm6jdOCCkOVnJck8gwQAq49WIT53D97YcJJxYAewz1jRRoCQlFVh3k4qwyp9MHd0rTbqqgDlDc0qQ019iTE+dw9W5pdjlgjf6PkpQXB36IqX1ZbX2XzOaptaOYNEmPTrGpvbBAUn0ecEINjXT0neH/jy7b98ShR8XOx03mm257poe6nOvpZEmlkzM2JHPQDVYSzaXor/NzmSMb8gNbNDsopd0ssfYmknSY2lqJPVNzSESacnBODdcSGMMzbA/dm5RTt0Z0FOVt9QjVoOnK/Xecnp0azYKf3VR6llwgmR3io/GdpgYlruNJQnQnqqln+YIAHMSOiNb/LLVUtWQwJ7MDonE4Dey9g0m4pq0Neju8ZzSuYQViVwf9mCAFTLXPT9ms3jX0KCimDN65j90J6VEMsHaSFobmtn1J8Tqhsm1s2ADfrjSH+wVuazq/YDHT58DFGGSlCpd9SFOmkjJD87Ca+n9ENeh77boh2lmDY0gLNetBA0rav28c5SjZkO9aVLPiFWVd0BZCYpKKkardmV+MAerHlP1TlVfUNU39ZOkqx9h/Z+aWp+auozlQsnDBAk0wNQbZtrlp4EsJrBxYBuB2x9L71UDlBq/+v/qGYsX0ZAx71BTFvVdo9g6l9JQLWUJ4SsJAWcbDurdNDUXS7oGWC6/YsRdFfnbQF5PoH7S+lCZE5oiI7/4dt/4kBvTP/uuE6fAoB15YD2EbWWZVBJFBfmE8WlUfc5EENSkBv2n6vXaZhZSQosZRFunRrnh++OXBbtkEujr9DiyP498c64EFYhXxmAzzMi4eNsizSGSLTDHQKzu8/W4eVVx3XKF/tBpg0RukMSeyzX/t9MjVJ1BNrQYrkAVArpXDOrxngZdfy1WMqlO3T1bTIA76WFYMEmYR0sDe2Loy2iK+aaJg70xmsj++m0M1q4lu0eqyODfhGYjGURwKHsZNUyU1zuHtZ9CYLSzsvbzuzPxHYf3h8XwvgxE6TgTwBTYtn9teYmB2Lx3ouC3lkqk0OdzrN7Y3QQPuSZgVbHGG1YSBm0X1GQZ3dGQWvW4xh87oSQlaTAl/vKGPveIYFUdhiAW/zVkL6Ynm1ma1/6wCZSTRtAdMYH2u/MVCLdNHKCwOsp/TQyWvBBEFTuYC7xbvW+n4b+/lTfaOV0qaC/f6ZEqP0hzaxZANrnYM3RSny+R5jmGQBWH5/fK9gFWFcJcLzl4uSVJlReb8GFa3+JelF3nb2KgX7OCO3lyCjySPuksPHH5Ub8dYd9RvAFBid6LkhQARTdunTC1wwpZfiO5WJfqa4BTaMENSOTGuZJ+fyIPM+IIHfsLr0mrKIs5bCdc1yEl05qMSXYBX3njeyLjX9U42K9buBJO0nix9+vMC7fZsT4sqZ/AYDnY33xVFQvldM901Iak8HORKC7Pc5fY49aFMPQQFfVqPp3FkfnIYoeyBjsi4F+zpxCyGy/s80sJQW5Y2/pNc53TkmC07FeTN+ynWEZkQRYDbUxoZ6svntcCDFCU0I9sKOkjjNIhwR4U8Axoe+glS3F09J9ZViyt0yVxorr2r47fFm0oTW8nxtmJirg72rHKyQulmAPB8ZZLFL1P9Szyt5Qgi/SI01qqAFUHyLGUAOo57n1ZB1n3UjoPne+7w8NLTRsDUjGmoU4cL5eVGfKxdFy7jyhhiBkmYIJkoTGbJrYETcd2cp2zLcFFaLL5DIYDGF4kBt+OFbJ2mF8fbAcXzMIjvIhA0QbamLQNtRotHP80Xy8k1sw9vujLPeXR4C0b8/ucHegIm+ZlprEYCxDDQAOXmhQLQPdaLnLuE9KqAdSw6h8p/P1cDVgY/fZa6olqT7u3TDvJ+OVzYbQ94kAMH6gF6sjPBfLp0Sp8nSysb2kTqMyxppxNgQ2w1HdmX75wXLOmTt9rmHfuXrEKXogTtEDJGncfn7O2iJBxitJAjda2gxKR2gqZKCCA/j20SfFFKDprmNppAADC1Db1KqXD9mDjNhlR7bIVu3yDM1SYAxcu3XBkEDx+nlcyEAtez8MMOUdVWfB5tMYkrcHy/aXMUbqGQIBYDBL6jI+SFDZNqj/z9wY8y80YPfZOsbIXkMhQUUBv24GQw2ggpSEQIJ7ppPrlTx5pYnXQFCfCTGXbZAW4cXr58VXF6YZHGNAB5j5uhhXQV9MXW+03BUUUKYv+pQrI/jTRxEAJsf4YGw4fzYeJvKsKMhAMtYsgCHT2dZgnBgC7T/ABVtkqzYkrGOkN25JgSAHbDGQYE/N9DCi7JiJFfM8+/W0593nif498crj+uf7XH2sEm9sPIlbrfcYt+84fRUvr+L3pdMXY/nfCeFue7tRyskeHYT+LKmYbt9tF522zBzXf725De+NY1fLtyQkgN1nr6K5zTjPRx/+3ZGG7V0T3KNXkgMxe0Sg6OPeHRuCznJ2E4YW1F19rIp1FYEPWmzeGpACDGCeAAN1HZxF288KSuzMxOAAF0HLnsEe3RHgZm9wCh1TMCOhN1YcvMToAwJQH9hdZ66atU4S1oEplry4AnAkjAudqJ1VOBWWX9K0ZvxcbHH5OvNMTtZwhV5+esbCkGfn2LUTmm4zD3j0XV7lq4+x2tri9EiM0XNmTghSgIEVoS1nwNaAQjwdcLqWWbmc5phA/7SzdbdQepU9P6UlGdzbGXfu+bEGP0iG2qPLuAgvbC6uMeoHnc1wkDCu8TSUQzCVRjLUuGEz1AD9AiqMiSHPjs1QA/RfHRGyLM1HYh9XHOBZFam2kmVQaWYNpp1ZEyN5Yc2jzhfj/dHdthM+322coAgJCSYyYnyx5lil1b4HEhISjxa0/JKp9NaE2h+Sz5qJESPqas0fqFWHKyRDTcLkSIaahISENUHJL1VYuhrijbULFy7gk08+wezZszFnzhz85z//waVL4nSrHiXoxO0POtbgyC9hfGQABvk5WboaKszVzGQEkBEjLt2PUNIiPEU70RubQX6GC3mOCHI3Qk3MT0IfV6RFeFq6Gg8FPk5dLV0Fq2BF/iWLR4WKMtZyc3PRv39/zJ8/H+vXr8ePP/6IefPmISgoCJ988omp6vhA4+loi+kJ3Olj9OGV5MAHPjJUwjLICCCpnxsIUKPG3y/fYN33YW1iGzPjMSnaxyRG1abiWoDkj3pmY0ZCb3wzNcqgOhw3QgTbqAE94eXYxeByzAEBIKyXAwiC0sfbrGcAlyHnf9jwceqKqhu3LV0Nq4BOPWVJBBtre/fuxVtvvYU333wTDQ0NqK2tRV1dHerr65GdnY3s7GwcOHDAlHV9YHlRLUGuMZARwOTBvhpJoPmKfxg7Ewn9eDy4J/aeq3+klxvXFV7BeLV8k8aGBKUF/IpISQICQGqYh8FiyIZelq+LLeb9VIKapjsGliQcOlemWF4ZEYhNWfE4VX1TQ5/NXH2eDMCKqVFYnB5p0vOMDvUwq9+SuQ01fxf9fcIIAM8M6mW0umi3HTlBwN/VuDp3YhH87L/66itMmzYN77zzDpyd70+xu7i44L333sNLL72EL7/80iSVfNDxdLQVZVjxMXqAJzwdbTEp2hf52UlYnB6J9MHcgpbpMb6Ymyxey0abB8HomzjQCy/E+fHu93ysr0pqgAkh16rv/aCPkwEYE+qhZyn6sVNEtO3DatCt5sg4IRS+Z68EJZjMh/pAjgSl28cnJGwsAlztGAeSlRxRieoY03jQV1Ou/lYbqhpbmdMmmQElgGmrjqOgjD2qMGOwDzIGG7bs/nysPzZmxZtsid3SKzWXGzXbnNDq0Pv97/crRqkHAUorkP5eywkCCycMsHhCd8Hv2rFjx/D888+zbn/++edx5MgRo1TqYYQ2rNZMj8WmrHiDylK38A+cr8ecNUVYzZbqp4O1hZUI93Fk3R7q7YD3eQQPhwT2eCA+3uv/qOHMmUgzvJ8bqhvZp7azkhS8LwgJIC3cCzmjgwS/TASATVnxmJHQGyCALRxaeE9HeRutc5YBiBGp5m9IBz461IOzwyUA5IwOMuoAwFy+YkJOIwPgbG/Du5++GlOs20Tcg/KGFpWkkD51mDVcYfEB3JpjlZgjIM+jWAgAs5OEXR8JSnyVjdVHqwQJfbPWhaD6/XAfZ2SnGPmdAbBoYig2Zhr2XTIU7Vlu3jyzoPIVC9mXRuiz/PNWGzZkxuGt1GBsyIzDpGhh2T1MiWBj7erVq/D392fdHhAQgLo66xNgtSY8HW0Rp+gBd4euBr1sS/aVobapFbVNrcjZUCKooSpJqmNmo6T6Jt7efJqzXocu/im6rtbMtFXHOcWJl+4rw/yUIGTwpOHZdIJSxxY66s0Y7At3h65YkX+J90P94/FqVSdmUJvJiMTyqVE4ViHOl2na0N6qEaZYdp66iteeYM8ekB7ji5mJCnyRYbzloxh/Z04DkzBCYEHGYB98kRHJ+94pAZyt4dZN1Ac+iZ/UAZ6in5k+gzASwFf7LyHdwBkjQzEkywPXB5AEMCTQDQU5ybx9gBAMGuh2HLyusBJ520qNOmimy1pXyG5MWtog10ZGAOMHeuOTnedF3Quh+y4/eAnjlxbgg61nMX5pAdYVmiavtBgEG2u3b9+GjQ37KLFz585oa2szSqUedsobmnkbDdfLQZJU+pEtJ2tEjcq7dJZxfsi0820SoCLbDJldifBx0v9gE8P7sSWBj3ac401EDgCLtpfC3aEr8iaE8t4vT8euoiRdaEjoP9N1oqoJ0zjyOTIhJwi8ONQf+dlJnEvobL5G7SSJj3exJ3+//GczaptaEeXHbWCJ4Wh5I0gSGMGSV/XVx/siiCUVkjppEeyK5W7dusC2s0yQYW4KIVO+ZjM9MQD52Ul4KzXY6OfWpp0kEewhTJsyNsDFxLURz5McyvSyjtksT0dbjAkXFl3a35P/XugTfU0COF7RKHhwLpac9SWsM4MvxvtbPLpZnRHBblg+JQobi6pNttKjnspQSQJvbDhl8WhQURkMVqxYgW7dujFuu3XLOtXyrZEAV3veFBt8jXDBptOiG+qCTdwzZ/R5v5gciR7dusDf1Q7lDc16p8YCgOKqG3ofaw20k6Qg/yH1aCE+p/V/7zqP7JQgvdKs0PtPjfVDl85yfH2QXzZHBmqkKOZUMgAvD/UHQM0I9+nJ/N4DlH9HbIAL0kQ67B8q+xND8vYgd0IocieEImd9CWsKMnX4ZpZIAHtZ8qr+59fzgu75zydqWKPhPrNyvcHSulsI93FGtL8zCEJ8cnEZAcwfFYS8HaW8x8pERAUcEZh9xZxsPsGeM3JooKvKT0lInw0AZ3gy0ADc0dcAe1qp3aVXTSahxPbeEQCi/J2xsqDCqOeTcZyTDbqZ7T5bj91nzZs3uZ0kUdHQYlG/NcEza76+vli+fDk+/fRTxr8VK1bA11fcVPGXX36JsLAwODg4wMHBAXFxcdi+fbtq++3bt5GVlYUePXqgW7dumDhxIq5e1XSOrqysRGpqKuzs7ODu7o558+bh3j321BbWgKejLeanBBlUhr7vrJAZvSh/Z5WhZm8jt7jjqT7ICKrTMxdygoCdjUzQyJcENRM3hSMIIphn9mfVkcu4dkvYSC9O4SK6vZAAvj5YjiF5e7Bsfxkq/mxm3beXky3CfZwxIdJb5Fmoj1/2+hIk9nXD50ZcDmX6EBAQbhwrSdNGw43s31PU/mLewZwNJVh2oEzvaNd3x4ZAJhNm5I0e4ImbLXfFn8TMRPg4ig6GOHihAVtO1qC2qZXqs0cZ1mcLgQAwkGXmbWMRu2Fpqi46tJcDfJxtBbU/IXY7Acol41UO9wjt/TNifPBBWgg18BB0lHj46m4N0aAWTTf1yy+/QC6Xo0+fPiBJEqtWrcLHH3+MoqIihISEYNasWdi6dSu+/fZbODo6Yvbs2ZDJZDh06BAAoL29HREREfDw8MDHH3+M2tpaTJkyBdOnT8fChQsF18McidzVWVdYiez1ppnONhQ6EmbR9lLeXKbWDAFgekIAvj5YbvJzyQggd0Ioyq79ZZbzWRsZMb6YMyIQcbl79C4jsY8rFj0VhvjcPQ9kezM1748Lwds/nxZsfOkzowZ0fLT0mPG1dghQ8hovi3QFAO6/3z4udshYftSgOqTH+HAGIgDAc4N98T1PwJix8XLswirTQgCYMNAbG/7gXnYcouiBQ2Xcfs10Wev/qBZUL/r7Y47v0NzkQHy+R3fWnACQNzHUZEEGD0S6qSeffBKjR49Gnz590LdvX3z44Yfo1q0bjhw5gqamJnzzzTf4z3/+g+TkZERFRWHlypUoKChQRZ3u2rULZ86cwffff4+IiAikpKTg/fffx5IlS6zWf662qdVqDTWAeiHyOgw1+t/WDNtoiASwnMdwejpK/EwQExsz45HY1433fA8rawsr8dtZ4XIgTBy40IBrN28j28AZ54eVm613hRtq0M9Qo3nYDDWA6g9a25R6ZTagfZbsbeSc+/HNKs0cFoA5I/rwno+0QK/LpadHAthYVI2PngrlLIPPUKPLEmqo0fur/9dUyADYdGY3hxL7MvvAmhPBPmuff/65oP3mzp2rV0Xa29vx448/orm5GXFxcTh+/Dju3r2Lxx57TLVPUFAQfH19cfjwYcTGxuLw4cMIDQ1Fz573lxRGjhyJWbNm4fTp04iMZF5WuXPnDu7cud84b940fsQWG0KCC7jIGOzD6kP1XKwvyuubGV8aoSNtQzt6c8Pnu8RF107cnS8f9Igr3McZC7eeMUmHMjjABcfKrxu97KCe3VB69S+jlKUkgfqbwsRTB/s7gyAIRv+l3ysaMTbCC3nbjRvtxoUMQKyiBwoEfGgsSds9peDZhfQYH6wtrNLL6HqAXn3REATQ0ibWU4qinSRRdb0VAa52rFH1m7LisfVkLevs+lf7y6FUcvfhAPCDgRp7ppiFUpJAU6t496LYABer9FVUh75fn+xkDoaigzvGhFtWZ02wsfbpp5/y7kMQhGhjraSkBHFxcbh9+za6deuGjRs3on///iguLoaNjQ2cnJw09u/Zs6dKIqSurk7DUKO309vYyM3NxbvvviuqnsYiwNWeddvTA72xvqiatZMlADjbskfkfn+Efep8xZQotLYpMXsNux7Rg7bkKQMAA5Zshge54QcDxFE3ZcUj3McZJ6oaTbb8eaz8Ol4d2Rf/FhmizgefoSa2LbSTpKBjCi834vlYP8YOfJC/s8GDGTF8kBaCEcE9ce3mbYxbUmCms2pCz8bwXXNysDvukSSW7OWOLiUISu+LXs40xcAra7gCX+4vs4oZOKHtlCAo5/9dIgShtc8zZ00R67lmJykQ7uMMd4euWH6wnHW/rw+Wq/yjTHH7PkgLQXNbO3K3lYo6js/hX0YA0R2yOEKfuwyUjuL4pQVGaStC3xV94CtzzpoiNLfds6jemuBl0PLyct4/fRK69+vXD8XFxTh69ChmzZqFqVOn4syZM6LLEUNOTg6amppUf1VV5lELB6jgghksuUJ/+qMamcMVrBpJJIAv9ZACmDjQGyOCPdDcxj4yeiU50CTh2XSZpnCAnT86CPP1FIgcHeqBEcEeyJ0QqnN8Qh9X3uMJAO4OXbGusBJpPB96Q65dfcSnfi/NEfMxIzGAM8ODOl/tu4Ts0fxLmEoS+O7IZcZtpXW3EOBqb9LMEeo42dqgvIE9cILpnBmDfYwqR5M3MVSQztyR8uuC3n31dEsggZeG+BtUPyaW7qf0B4VouRFgl1ERA6cIMM+xMgLIHhWEpTyGLlu5fEZCRC9HvDaSavuejrbIm6jbp6hDcpQltm7anKm5hUXbxRlqABWExMW0oQFwd+iqkYmHj8mDfVTHGAOu+yYnCMH9tnb1hTwLElTgjiXlOyzqswYANjY2CAwMRFRUFHJzcxEeHo7PPvsMHh4eaGtrw40bNzT2v3r1Kjw8qPQ8Hh4eOtGh9L/pfZjo0qWLKgKV/jMnLw4NYHzZSFC6TM9xpI5SQtiH6rUn+uK5WF98MzUK/34mAieqGpG9voRxXzlBoI9Hd6OPlNWXVGknUaHICQIpA7jTMFX+2YJFei6ZPR/rDwC40XJX5/j8C+xpY2iE6h4tSA3Gpqx4g40LEpTc25KMSGSPDjL66HKAl2b0KQngm4MVCBagGwVQM2vejraCosHYZntyOtqnEL+199NC8P64EJ3zCb3PBIC5a4uQsfwor7ENUB3l1Hg/rD5axSpHsyA1WLBxS5PY1w1Rfs689c7dVqqXLt/tu0qjG/YkCdjbyHn194YG9gAIYDeLjIoQ6OjBgpxkLGYwakkAT3BE1mYM9sGh7GSE9nLU650ZEezOa1wVX2nSEE2dFO2LgpxkDBNgPOjLOBYdwDV6rhQcKmNeqhwa2AMy4n5kOAB8PWWgoDa1+mgVhuTtwY2Wu8LfSz0a64KOLAN8/faC1GAU5CTr7Rdr6WTuFjfWtFEqlbhz5w6ioqLQuXNn7N69W7Xt3LlzqKysRFxcHAAgLi4OJSUluHbtftLjX3/9FQ4ODujfv7/Z6y4UT0dbDOvHPNokOWYeVPvwlE+A0pP6/kglpn93HK/+rxjjlhQwHicjgIUTBggWJuXbh94sY6in0D4kY7APNmTGYedp7owYq4/q1zHRYdi1Ta3IZRiFCilSThBobGnjPL8MQE/HruIryIISVPvIE7nEIYRTNbo6ie0kCZACUysRQGNLmyDZEjaUAFbmV2DmMIUgo+ex/j0xLSFAJ7emEEiAN4iGLldOEBg5wAPfFrC/lwQoB2WxszeL91zEtZv6SYQMUfTg3WfNsUqkCMw9K+Y7+dam0/j+8GW4dmd3y8i/+KfBy7AkgBMdxrGPM7PPEFeu23XHqHyRtE6a2HPvPnuNdz+Akp9Rn3V5dV0x9gsY9OmDDMDmYmYZDxLGTblWUPanhjhs9voSvLzquOD3TEkCuSIG1HF6CCcP8nfG1pO1nOeg++JrN2/rNfMI3BdJthSiRHGNTU5ODlJSUuDr64tbt25h9erV2LdvH3bu3AlHR0e8/PLL+Oc//wkXFxc4ODhgzpw5iIuLQ2xsLADgiSeeQP/+/fH888/jo48+Ql1dHd566y1kZWWhSxf+BMqWorapFfvOsY82jTFrov6CcUXf/PPxvvBxscPPJ4RlQ+Dbh978WHBP7NIzQnDN0Sq03GkXfC6xvJ7SD56Otnhjw0m9jpcTBEaG9MSCzac59yMBzDZizkI5QaCxldkgMpUPzNk6YcE3owZ44G2e+yGErw9eQmqYB3xduDvF3ysa8fbm06o2YorrJ0lqKTg11FPQ7NuCTeKv/4ejlfhBT5kGodF32zlyz6ozJdYPq3gGiuqYIjsDE18fLFf5eomFFjOtvC4+Y4gY1J3QX1h5DAWXTOdU38+zO87WsovQx/i74KiRnPq175mp3RQP63HfTl5p4vUZpvtiffsJokO+xZKiuBY11q5du4YpU6agtrYWjo6OCAsLw86dO/H4448DoIIaZDIZJk6ciDt37mDkyJFYunSp6ni5XI4tW7Zg1qxZiIuLg729PaZOnYr33nvPUpckiOOXG3n38Xbqimo9RTnFNEahiu5i0ddQA6j6b2IZORoDexs5aptaefWOmJg7IhA3W+4KShRvzNsqI4DXR/VD2TXmwIBBfs74/XKj0TvTL/eW8ZY5Nc4P/z1y2WjnHrekgPfDvLm4RuN8pnI6/uZgBa7dvGPQjKGlEVq3/4ow1CyBXh9ZQCVWbWoIAth9to5zIG4MuAw1AEYz1IyNkOAEfZ4x36BZvVyx5ROgXC5GBPe0qKEGWFgU11owtyjuLyeqMWdNscnPI8HOYH9nHBWZ1NySZMT4Ym2h/pGrpiTS1wlFlTcsXQ0JCR2MLY4d5NEdpXXMxlJyPzfsMbGh9iAzOIB/xk+fNFSmZHg/N8xI7I0AV3uTGWtC7Q+9jDWlUomLFy/i2rVrUCo1b21iYqL42loYcxtrtU2tBqm9SzxaPKyq8oagT15ViUcTQyV+JMyDjABGhnhg+ylhy/bmhM5iYQrpDpNlMDhy5AgCAwMRHByMxMREDB8+XPWXlJRkUKUlJCR0iVf0MMuHZmSIuHyVliItwssseRolHg6UAKYN7W0WuRtjQ8vFPAq8OzaEN6jMUtBZLB4o6Y6//e1vGDRoEE6dOoXr16+jsbFR9Xf9unWulVsbYrSdjMWbAjSwrBG+hOaA+KTY1oSMAL6ZGsW5j7eTsETKhrLztGEpo8zF4/17wpslMpCLrCSFqPsYxZJQ27VbZ0HHZ8Q8Gh9Zc6Hve04QwItD/fFeWoiRa2R60iK8MCe5zwNpaIpBRgDO9jZWPftJB6tYCtHG2oULF7Bw4UIEBwfDyckJjo6OGn8S/PAJf8oABHl0M9r5Bvo6YSGP3AOB+1IF1tQx8DnTygkCPTjkA6yd+SlBGBHsgUUT2YUjfzx+BeMjvQWLUapjTc9SDFz1PlT2J+aIjLJ9Ic4Pvi52gqUkclKCkDmcWT6k4a+7vMfTmQSsDQKU2v6DyFA9dcuyhivg6WiLx4IfvEHdxuIaHDhfb9KcuabqI0K9HQT3WfNTggTLR3Fhyv6OlnyyFKKNtcGDB+PiRd3M9BLGQU4QmDVcgXNGyNv4yohAfDM1CkWVNzijYOQEgbyJoTiUnYw102OxKSveLDM5QIfYaKyfqGPoqskJAq+P6oc1BubS40IGYHNWPJKMoMLOhJMtNUszKdoXh3OSGdXxSVCJlL+eMhDJQe6sZSX1c1O90MZOadPfs7vR9JsI8D/z7NFBOm2Q/ufqo5WirispyA0zhyt4BYxH9u+JJRmROJyTDCe7zpj+3XERZ9GEyygcHeqh+ojJCQITB3obXfAyLcKLVXh7qRElN2YnKVg/kMbqQgiAGszoUeAALwdVdgFj1slYMCnqa5O9vgRjI7yQw7E6khbhxdlnywiwioyToNJUcdVxSUYk67MezVJuSfVNfD1lIN4fxz2jmTLAAzMTKYNa34w02vXVhxmJAdjMImBO65FaMiJUdB8xZ84cvPrqq/j2229x/PhxnDx5UuNPgh+2/IfPD/bFrOG9sXRfmcFiklnDFfjH4/1ga9OJ98M2KboXEvu6wdPRFnGKHmhu49c4E8I3U6PwVmow5z7zU4IwUqBo54LUYBzOSUZBTjLeHxeCrGQF7GzkJpNNkBMEcieGorTuFvbxqLC/khyol4Gr7gdx4Hy9SgBUGyUJvLzqOPaUsot0zkhU4FAOZXC/Ny7EqPflTO0txjYpRJhVmy/SI3mf+cmqJo3zjQhy4+2F2TY/NbAXyhv4dbZ2nbmKE1U3cO3mbeRsKBH9DhAA5j3Rl3e/gb7O2JAZhzXTY5GfnYR/PxOBzwWknAKoj+Y3U6M4s5wAlPQNW/WZrmtxeiRGcAwE2Aj2dMB7LB9jY7W/L9IjMSnaF8crxLvZnK29pXq/TJ13VkZQM7JMmTW4SI/2wZKMSLzPYjCRANYcrcTYcC/GLA4AMMDbERsz41n728nRvng+jn2AVH/rDuu26Qm9kRrmhddGBmFTVrzO9m2n6jBpUC/GY/eV1qP+L/ayAWDX6auobWrFusJKURlpmM7Jlm1iRkJvXmPnm4MVyL/QwHi8NSzPitZZmzhxIgDgpZdeUv1GEARIkgRBEGhvbzde7R5SaDVt7QbwXz3FMZlYsq8MdTdv47WR/XhnWFYfq8KaY1XIm0hFu7DVT+xMTWubEqlhnvhw61nW4z7acQ4bMuN4y5YTBEaHecLT0Rav/q+YU+jXGIwIcscH4wfg2s3bSFvKnP1BvW76putS94Pgm/nhgp6i93S0xYHz9UYRqBWCEGFWdeQEgSh/Z17V/q0ltRr/5kpZJAPwRUYkrre0MQrT/nrmKkYEu/NGkJKgBFi5EnFzQQLw68H87qjzwdazqugyf1c7FJQ1wMfZVtD7daKqCSvyLxn140EQQJS/M2xtZNjNMRhggiQBJzthPnz64uNii2X7y7CpuJZxO9f9pt8vT0db1n6NC6F9HgFgY2Y8wn2csXDrGVGZNFYfq8LawipMjmb3cfx8z0Us3nsR80cFMV4D3abmjwpirPPawkpMimY2qADAtVsX1mtVdzOpvM7ss7Xu9yuMvwv5prWTpCp1n5hnM8DbET8ev8J7jAxAapgHOncisIQjw0g7SeLjXedZt+dsKFFNalgC0TNrbAnc9U3k/iji6WiL3Amhgmdi6CUtsaz/oxq/nbkqKME2ifspUzwdbTGLxV9HzOzRjdY2eDrasvr+ANQL0tKm5NyHXu4sb2jG7rN1og21wf7OovYHgL3nruHnEzVIW1LAO8v5XKwvSJLUa2ZNBkq0U8jMD2sZHYK55Q3NqhywYorSt33pA5094uSVJqOUR4CanU0N80KYN7PP7KbiGsxZUwySFJaKR187SEZQhsXLQwN42wKdumdI3h5VftJwH26fXxlgdEMNoAyu45cbkX9BnOENUEbeIH/2FEHGcKeout6KPJYUQRkxvhgb7sl6LC2KC0CvZTa2HJzaTI3zQ3NbO05UNWK5HppuShJYw+PjqCSpwe38lCBGXzB6ezpD9KiSBA6ypL8iAIT1cmT1Cfxo+znV7CRhzFxWaufXR1olrJejoMTySlBC22JTwemUQ1o2N6jomTU/P3H+RRLsCF3qzExSwNfFDm9sOEXlaxTBgs2nqfDvGB+0tLXrKL9r1AdUypTmtnrGhk121HmIwoU18a/GuTedRme5DE723CPvQxfrMaSPK2P6mrnJgbDv2gmLtotPZA1QH7jn4/1FC+AqSSoHp5BTrjp8GasEZDRgPA+A8UsLMDJE2FKwNmHeDkgN99L7/tBMGOiNTUU1nO2La5YhwscRxVX8BliYtxPWFVYKUh3ngu6eSQCLdpTCya4zfHhSVJEAZCSQMdhXkN8bPYMhdHZl1AAPjF9aoDpmRmIAwno5saYco98n+v/z3b9pRhR31UaftGgEqKX7SdG+yBjsg9UMvqOTo33h2s0Gn+/h93Nmu88Fl5iXpgAq9ynXsyFBvV+5E6gAHjHLbASAKD9nQdlUVh25jG8PXzbIT1TIce0kCW9HW+RnJ+HDLWexRWsGup0kEd/bFWuPVen0B5+wzBoFeXSnBqUc56RnJ6sb9ZeueDHeHysLKnR+JwEUXGwQPevZ0qbEpGhf7D9fj20CUqoxFS3meVk6N6hefq1lZWWYM2cOHnvsMTz22GOYO3cuysrMkyfuQaa2qRUFZQ04UdUoasnry31lSOzrhvzsJF5nTSboqfafT9Qgc7gCqaHsI9HL15t56ybEUKPPm72+hPdtWLqvDK1t9xi3fb7nIvK26WeIEASQOzFU7ygjfTtdsadSktBbCLKk+qbBhhoJYFNRDTZkxrG2LxkBztnPEwIMNQC4WH+LM/WPmHtHXzKtgWRvI+c9XglgNc8HHqBmczdmxmNxeqSg2binBnpjx6k6jeTw3xysUC1vGoPBvV3MFvgjBBLUff9kZymjoQZQy28jgt0F3YMVU6OQEaPri8dWNl0HPuhZTLHLbCmhHoIHFepGNx+GPsLZa4rw1sYSHUONxselY+VGYHln625x1psAZaScqGpE3g79kqDLCQJpkcxBLwD1fRI68w1QhgtdJyGGGhNiDDVryA0q2ljbuXMn+vfvj2PHjiEsLAxhYWE4evQoQkJC8Ouvv5qijg8F6worNZY8xHQaShJYeYgaUd++p79PoJKkfNm0/YHUuXNXadRlFhLAhzyyIUoSKOeYXtZ7pEpSo8b/yy8XHbChj+M8TXqMr9mWFUkYx/mVXo52tmeWQRkb7oUhHNIJQquwYNNpxvrSEX/TEwIElaNdBF3/FJ7ABRmEzWinRXrB3aErzl29Kej+/vRHtc5+7SSJdYVXjObUXtHQgvkpulGyYhESgSiUdpLEYo7lJSUJbD0p7GNqZ9MZ3brIjVMxLfR5TwxR0ud6RiP798QX6RF6BXTQcPlw0jNOQoNW+CABwS4hTMgJAgsnDEC4jzPjEq36eQgSGMSib6i974Hz9TimR9CJehlcpAzwwOL0SCzJiERBdrJJsheIQfQyaHZ2Nv7xj38gLy9P5/f58+erkrBL3Ke2qVVjVKdP5738QDlWHCw3eVRKU+tdEITwJVpjICcIONqKboqCGLekQK/jxDrOq9Pfi1/I15gYQ6KDAHCy+gZyWQzrTcU1egnRCiUzSYFJ0b6obWrFinz92vnXB8uwlysQocMBO0/AUtiGP6qx4Y9qg+/r6mPGCxpqbGnD0n1lnPfmhTg/fMuxJD+yf088GeEFH2dbrCu8olM/AtQM18ur9JctUUcGYHn+JUEzmXY2Mr38vUyBDIYNgmYNV0BOEIzLvzvOXMWOM6YToD5ZfQNxih6I8nM2mnwPW78ghNdH9cOkaF+sK6zknCUFqJnv3y/f4C2TBJC9oQQrpnALiuvLN1OjMCJYP9cUUyF6Zu3s2bN4+eWXdX5/6aWXcObMGaNU6mHDEOdxGmPNoPCx6vBlsxtqCycMwBke8dsHBQKAk52NSSUCmKBH8jLot8xCgvLn4YIrkspQlu4rUwW35E4I1esauAw1gIrWmzlMgSkCdP1IGE96whikDPDgNdQAwKaTHGkR7G4OO89cxezVRUhbUsBqSNbc4I7UFYqMAIb0ceXtT+g+oKqx1aB7TvvmGoqcIAzW+/pq3yWMCNZ/5swQFm0rxZaTNfjhyGWraMN520vx7i+nkc3h/qAPJAnUNhmnrapDAGj4q83o5RqKaGPNzc0NxcXFOr8XFxfD3d0yjdPaoUPGJTR5LtYXGzLjMCnaF+frblq6OoLge4wRPo7wMeEMFBO0IU8AmBzjo3cHbUktIZIE1h6rRG1TKyZF+5okNdDWk3WobWrFPVKpdxmE1n/NQZzCBc/H+Ql6PivyL8Hbmd8JmivIyNDgD5rlU6KQzxKBSPN8rC/ys5MAQHRWCm2+SI9EnAHuCzR/G9YbM4cpBC/JM0EvywuNJjUmSlABI1zL0+rICEqX01SQAFYeqjDJJADfAE0f6Fk7S+YBZUK0sTZ9+nTMmDEDixYtwsGDB3Hw4EHk5eVh5syZmD59uinq+MBDzxaYWrX8QeP7I5UYv7QAy/aXCQ5asDQrePJ4FlU1YfzSAla1cFNCAlh7rEovQ0LfGTlj8tnuixiStwfrCitZZTgMYfnBSxiStwc/GJDxgtT6rzk4XHYduwT6TylJ42Yo0Jd4hYsgQe6noijtL0M0BoGOyE1/Z/jyRAQLYcm+Miw7UIbUMPYZSiH1WVdYiZ8FRJJamo2Z8Zg3Kshqc9ly9UtcuoCG9GckCfxxudGAEoyPaHthwYIFePvtt/HFF19g2LBhGDZsGBYvXox33nkHb731linq+FAwKZoaQQpRLXftZr5cl4l9XEU16gFeDkY1MpUk//IbjT56YPT+MlBSCqMFZktg4+ilRs48ngB1TbtOX0Uay6jalEaREuDV69JGRlBaZdF66NEZGyUJ5KwvQZVIiQAC4B0AmcqVwByzbVx+aNoIncEwpb5eQdl1/HG5kbP8gb5OCPdxNpqbyMr8cqw8VCFof77rzttWKlogWLs+XFkk+DDnwGnXacp/bs6IPnodb8pVo3499c+R/VSUN+f2MG8Hzu3Xm9tQUNZgNTNsor679+7dw3//+19kZGTgypUraGpqQlNTE65cuYJXXnnFJIJ5DxN0Oic6/JctrN+c6+UKd3Evw5mam0ZZalBHzKJUbG92AU4m6M7yyXAvpIZ6YocBEV4A8PXBS0js68aZpw+glkGi/JiNn6wkhcEG79Q4P0aZA4Bfr0sdGShJjrztpTgmUovOVCgBFFz8U9RHgATQ16M7DuUkY0ZCb1NVjfXcSzIisSkrntNfjMbUvaSQ8mUApicEIMuESd0/2XWe01gprryBLSdrBEmuCOHrg+WCNNEA/plREsDnu42fA1vQsyGopW91DDFa+FiyrwyZP1ABJVz1G8YQDS4D8M8n+uLFIf56P0OuyPtzV//S2+D98TizePqIIHd8MzUKJ6u5XW/e/vk0MpYfVc32WxqCJMWtJNvZ2eHs2bMPlTjuzZs34ejoiKamJjg4cFvb+lLb1IryhmYEuNoDAP4vv9xqIp+YMDSKyFhRSNbI+AgvbD5RwzkbICcI/PPxPozpS5ZkRIKE/kKk6TE+mBTtoxJg1ReCADKHKbB0P38uWnNHCBOgkrmL0ZCTEdSSTuX1FsxdU2zW9jci2B27zwqbiUno48qqJm8uHub301IYKyp7WD837DtnfF8sPuY90Zcz3dKjjJwgkJ+dZBKdNaH2h2i9hJiYGBQVFT1UxpqpWVdYqZLueFA6SUsbakMUPQySzzAlGwWM3kcO6Mna8TW2tGFEcE/R56XTsqw+VoXVPKlpBNHh3yToWenxQA1Vc7/c0CJajzBtqX5aUIYi1FAD2NP+mBOhtyjKzwnHeaQUspIUgiKFLd33fZAWggWbTpusDsYo15iyKWIxl6Fm6XagD+pZHCyFaGMtMzMTr776Kq5cuYKoqCjY29trbA8LCzNa5R4GjKGx9qBhjGu0VkNNKFyq2k62+vkkkqr/MQ5iihJ7Wlqva9qq43pXWR+NMmMZamJT31gj4yO8BA0suOAz1ADKqBaKJT/U9bfumPzc6mnQxCADlW3FWLIpEsaHzjFrKUQba5MnTwYAzJ07V/UbQRAgSRIEQaC9XX+F/YcRYzjPGhMZATwe7I6dZ/R3nn1Y6O/ZnVPfTd8PC9dxdNTacSuLNDI2JChF+ukmzGdpSmYNV8DZzgYfbD1r6arozYjgnrDtIucVIjUEAuDMiKIOCSrXr5A8oabAtVsXk5+DBLA4PRKNLW14ezP/LB4B4P20EDjZ2SDKzxmrj+qXY/hBwoo+h6JoadNf8scYiDYVy8vLdf4uXbqk+q+EJqbSWBsR7C66XAKUT8+TEdxRMvryLEcqEVOjj/QEnxBv9uggbM6KF10XrnRTKaEe8HS0hUhXUYORAXh2sK+qzTBFAsoAzDZC8ANd/p/Nd5Aa5sn5XGQEMJpB5sQS0ifqfLmvjDM6NsLHCYvTI/V+t9lisSJERvKylg9qUDAnWb8IP1U5PNeXPli4rp+MAKdQbFoEe+5I3rIBjAhyY91OAHisf0+Ty1PICOq+Px/nj7yJ/Pk5U0I98Pbm05i9ughD8vbgZgtzjmR9IKAmlk0AMzh048TedxnAG2TFRMoAD6MEkxCgfD+NCVcaNjlBWDSJO6CHsebn58f5J6GJtsaamLx8TLvRORS/mRqNQ9nJVKJpgWXlTQxFuI+zKg2JWGQAXoj3Yz2WS78qqZ+bhs5cTkoQMmJ8DVbel4Fy2D+Uk4y8iffvs6HkpARhZqIC4T7OWDTxvqI+ff+5Ogo/Vzvksch77Dx1FbVNrRjk78J4vRksBm9GjC9yUnQ7RxmAp3lC1AEqwtLeppPGMuGEgd4azyR3YiheGxmEjVnxOm1UH5mH2auLMH5pAUaxGF4Zg32wMTMeKaEeOufbdfoq672QEfp9KLThuh4lSY2kme45ALw7tj/GhHth/ij+eiRqtZWJA72Rp9Yn0LIyh3OSsSlrKOt1C4V+1wEqkEnfN0JOEMhOCdLsuzq2yUC9I3OS+zAarIMDNPsYOhG2u0NX1jrPTwnCFyxyRmNCPRkjV9Xf/5gA5qhC+n54Otpizog+gu9HhI8TZiT01tk/Y7APq5E+PtJb5dc0KdqX8V2i65Q1XIEdp+pUKy9KEvjvEfaZtRFB7ox1l4FKjzQjobeqXnKCQN7EUBzKTsaa6bE4lJ2MF4cGMNY7Z3QQ0nmM2DBvR42ycyeGYmaiApuz4nnv59RYPyxIDcbmrHh8+VwUp9gw0/dR/Tf6XSnIScZHT4XxDpZeSQ4UNKAiCCo6mmkMLSOAhRMGWNRfDdAjGvS7777j3D5lyhSDKmQJzBUNWtHQorLOKxpa0NJ2Fz/+fgU7TuvmiXt/XAhsOsnwxoZTaCdJVRQgrYVDR5Z6OtpSAQzrS6AEs88EAWBTVjzCfZxVdfm//HJ8w5GD8blYXzjZdsaX+y6hXa2JyAhglsAIQnXWTI+Fv6sdjlc0AgQQ5ecMT0dbjfty4Hy96nqFQOd6DO3lqLoXJ6oadZzM+ZYzaf8kGYBpiQF4cUiA6sWk79WKg+VUomFQHX9iXzfE5+1hvAd05NDxy42MEZ9rpsciTtED6workb3+vhhoTkoQxkZ4YUjeHo3nIgOwMSsezW3tKLjYoJN2iL4Pl/9swdrCStZE6dCK6KTLbWlTws5Ghua2do02RT8LOh1QkEd3bCqqwbcFFaKWMmSgcn/S9ZaB+jA72XXW8OfUZnF6JOauLdLZnpWkwLyRQahtasX8n07igJrD/vB+bhga6IqGW7fx1QHm5VcClFzJEyE9UVjRiCvXW3R0zGQAPs+IRJSfM34+UYO8bZr5RGUdxod9l06cUb0EgIKcZFy7eRu/VzRikL+zxntIt336XShvaIa9jZw10leIT9Ti9Eg0t93TaFtCoD+KSvJ+Cig6X6t236XeXn4urkGullainCCwITMOJ680of6vOxgR5I5wH2cUlDUgY/lRnXPPSOiNF4f64/eK64yRvIdzkuHpaItlB8pUEcLaddR+bwDKsJo0yEenbav3l+MiPLGpWHcpV0YAh7KTAQDHKxpBEMDAjn5LvQyNY3C/3dB9iHqd1fuY8oZmxnvB92zof5PQvAfA/Tal/T7TqL/X9Hs4c5gCv5yoxpw1xaznpyOt+foKGSgXgsaWu1hzrBIk7r8riX3dONs327frvXEhCOvliJY2pepdUb8etnZOPz/174oMQJiPo468Ed0XateL/p1+Z02ByaJBX3nlFY1/3717Fy0tLbCxsYGdnd0DaayZA09HW41GRjfynQyGGj1l7+loi8S+bhodunpkKf0STIr21djv/S1nNBzcJwz0VjU27cjUjME+WHusSufF+f5IJaNhpiSpJaL0wb5Ye4zZMNCGnkI+cL6ese7qI9EbrXepRNuk5vFpkV7YVFSjeuGmJQagR7cu9zvBjvJ8XOx0DCguXxn1TkhIR0ACeGPDKeRnJ2FCpDfW/6Gr5UNHDlUzCLvKQC0PagstEgCc7DqrZmLVDaW0SC9VJ8L2TD7acQ752UmYMyIQFQ0tOFl9Ax9tP6cyfJmCE5SgUjAp3O1529SB8/UaHRn9sZABGDXAAztPX1U9G+0PmBJA2z0Sh7KTNT76TB9XGjlBIMrfGbkTQnUMui/3lcHXxQ6Jfd2Qf1EzsnLfuXrsO1fPOtqn6710X5kqEpZeit1xuk4jYnv26iLV/diUFa8xCFCSQPZ6/lyHJIAD5+sxKdpXp8NX7xO03+vxkd6q9i4nCLw+qh/+/KsNK/Iv8UrG2NrIMGeteEONvi4C95Nva9cTHdejXtchgbqzzO0kia0n61T1XbznouqDrR28IQPQo7sNa3ug61bb1IpQb0fG95XNN7ibTWeNd4epbV+7eZvRWFOSlGEap+iBMeGasyqTon1x4soNHX9AOtUTfS4Aqj6KAGXIDOmYaaVdZIT6NKvvRw8c1Z8TQD0rtn6Wrrf2NwWAaqafrSr0THPl9WbGsul+Wz2DBql2bPb6EpWxSbfvjX9Uqwzm6YkBCOvlpDPwIUGlP6PPpa3xeaP1Lmud56cEwdPRVuOa8y/WM0YuK0Fdn3bfu3DCAJMaamIQPbPGxIULFzBr1izMmzcPI0eONEa9zIo5Zta0YZoBAjr0pVKo2SJ7G7nGCIZp9Kg9klu2v0xnlCsDcCiHGiFqHy8nCLye0o9Vz4rp46te1/TBPpwOzHSDT+zrhvjcPTov1vtpIXDucK5lqp/6rGBtUyt+O3MV9X/dQXgvR0z/7rjOtWzIjGMcHT3evyd2ntE1jF+I88M74wbo/M72fFT1HhfC6UD8floI/rX5NOPoke0YdS2f2qZWHK9oRGNrm045bM/k/XEhULh345xl1EZ7xE6Xr96m2GYtAGopZ96oII0RfdqSAp1r1J7dZZthATRH4mx6hHKCwGfpEXpp1TFBt52q662Ys7ZIZ7Dwztj+eufM1H6u6rPiABjvL10f2igBmI3b2UkK1ew3bdgzDSDYIAC8NrIv/r3rPOeMgvqsH9PzZSpXu13RbaC07pbGB/Fvw3rzztTPSOitMvy0DRAA2H22TifyWNZxUr6Zki0naxjbET0zo/6c1LUymfozjeMZzq9eNm3M8a0mjAundB2Z0G5bv1dcx9y1xTrtd0NmHONMmzpM3w7tMthmnsRqPmrP9LOtKqhDf8fo+n+8s5TR8KK/oWMjvDSeF9usLX0M3T+dqGpEYUUjotVmwU2JyWbWmOjTpw/y8vLw3HPPobRUWOqgRxmuqdv0GF8s2qFpONHLXDKZ7otPj+ToZdI1DPpbSgAr8yswPMhN5/h2ksTlhhbWjlIJdkFUEuA01NRHfltOMqdeWbDptGrf6QkBOvUjQUWbhfs445Od5zg/RPRoXruuSoDRUAOAVUcuI9jLQTVFH+BqjwPn63mXkPgivejr0obrmHaSxPGKRkT5g3OZmu2Z0MYE1ywjU32Y7hf98crqmAlg60CX7CuDg11njA33AgkS7g5dMZRB9JUEMG5JARZNpD6ydAfKxLtjQ3Dx2l+cz6CdJAGS2/gVQztJorCiEZca/tK5H+0kaVByc3qm9ecTNapZY/Ul/C0ndQWW6fqkhnnC09EWBWUNjM+gsPw6/t/kcMgIAr2cbZG2pIC3Pur3jATw8U5dfS0lKM26vA6Dgmu5monUUE9s0YoSJQGkLSlAdkqQqs5XbrQidxv/N2N5/iWNWc2c9SWw79IJUX7M/YKcIPDyUH+dSGQlqHY4IyEALw6l3B1+O8MssxPWyxEANbAoqW7SmCFLDfXgbXdK+qKZtpH3Z+hfT+nHeQ/YDDXgfttSn01j2ocetDG5jtCcrW3SPRj3fbaa29oZvz+f774oWvFAe6Y/d3sp0NFvsRmv9HfsjdRgLNtfxqrt90WHGwBt+AlxHSABjF9aQM34FVWrjsvuWCa2BowyswYAxcXFSExMxM2b3CkcrBFzzqxxzVIAptUh+vipUMz7iX/pRh06b6T6kpoY6BHZb2ev4os9+iWYJgC8OrIvPmH4qGjUtWNnsR0Hmz+IJRBybno2VNuPSnufr6cMNIrAZlKQG/afq+dss/T9E1L/wx2zvHG5e/Suk5wg8LfhvQWJsVoaQ+qqPsvIdb9kBDA52kewWLLQNi7kQ6dTF1CzLXwzcKZ8z76ZGoWL15pZZ4qA+4YL2z5Ms4PGZm5yIL7Yc1H/HKIEsClT/MwWoDlDyTWrNm9kX2Ql9eHch7ee4H/W9OwWQBnUbHXemMndtrKSFPhSy6/XEHJGU8FmpsJkM2s///yzxr9JkkRtbS0WL16MIUOGiK/pIwI9hX69uY2zEZnSSBBrqAHAtKG9MTNRgUA3e70+/O0kKWjZhAsS4DXU5ASBSdG99FL2155dMtUzENJhCTHUFk4YwLtvO0miXIRYKRd7S+sxu0Olnumc6vdPyL177X8nkD6YOa+pEGQENWObp+eHw5zIAGqZT0+jkp6B2ZAZx7sf06w6G0LbuNh3gTYAwn2cWR339S1bDCermvDFXm49NyVJ+ZOxwTTrLBShRq6hmnMkCVQ1tuplmNAzlEEe3TnfJT8Xe9Q2tWLRDv3ft5gAZxRWNPJ++9KWFiA9mj0yVUlS2UK4LvfLvWWi8k3zsWh7KcaGe1k8GlS0sZaWlqbxb4Ig4ObmhuTkZPz73/82Vr0eKtSdhx80XhzqDwC41NCsdxmmvuwFqcG4R5LIE7CcYkkMvQ9LMiIxUM23jwsCQLS/s9GU+CsaWoz2HA+V/YkCPTNUjAn1xJtjglHe0Mw7a5MpMA0SH1xG9iA/J/zOovJPgFq6EZzSi4V2ksSmIv5MBCQsOysMAFNi/TAp2hfrCis5DTUujHENrt27CGr3XG4ehmDOZ9DY3Kb3e64EsPxAOa+It6Hi7kfLGwEAkT6OKNKKxFSHFDDo+GLPRe5gCD3ryAYdaGJpY020zppSqdT4a29vR11dHVavXg1PT09T1PGBRjvd1IPGJzvPAQB6c/gYmUL0VwyldTexaDv7kqC14eMs/qUncF82QGjH6e7QFbkT+IU5haDtf8QHX5ugDQtRZQJ4c0wwPB1t0drGLR46PaE3fF0MF7EkQIkjs9WVzVADNP3CDK3DyoIKQftmJSks+j5+d+QyTlQ1ImeD+Fl8gDKcMhn01MRSd/O2oPugrSX3INLw1x3MT2FvowD3u7a1pJZ1e/ZoKqIywNXeKGK2XIYajdDVB1M8sSQGYWUZYHFBXLoeetHW1oZz587h3j3jKS4/jBgr3ZSxOmC2B54R44v3x4Xo/L7+j2qcqGqErQ3zJKyMAJZPiRIs9KtOygAPLE6PxJKMSHwzNUp8AR38eLzaoHs8RMEspvnKiEDMTlIYvVOoamzFN1OjsCA1mPGeM0GCGt0BENRx0vtPivbFu2nCzsFGmLd4P853x4bgrdRgxPd2Yd1HrB/UNDUxTa6ZXgJAapgHo7RGWoQXc/nE/WPVz5mdEoRQb0e8+kRfEbU1jIwYXw0hWjEMCXTDoexkjAllHjib2iRRkuBd7tJGJXhKAHkTQhHsKby9sfVnX+4rw/yUIM4PnAzUcvrMRAXys5MwI6G34POaAwLCntdnuy9i0fZSTmHbZwb1Yt1GggoIYSLM20lADYyLEIF0EpT+mtjvjgzc2VFmJCiQozU4U4KSq7E0oo21lpYWvPTSS7Czs0NISAgqK6lky3PmzEFeXp7RK/igIzbdFNsDmRztKzhbAQ2TqvX8lCDG+jjbd8YflY2M5awqqIC9jZzxuFEDPGCrpYzPxysjAlVq1mPCvZAa5oXWu/yT14Z+aGRgzh7BtCRHAJgc44vXRrKrqnOxJCMS8zg+8HY2nfFyQm881r+noOtST3fi6WjLqQIOUPWn93e20y9xPM37aQNE3XsCwL9+Po0Ptp7FkfLrSOrHnAZISOdDp8kCAXx9sBxD8vZgXWEl50zv9ITeOHmlidEY3FRco3MtcoLAxsx4rJkei4KcZBzOoVTf548OwqIdpchYfhSf7OL2mTQWcoLAnBGByM9OQkaML+U3JfBYGXH/mTPNhBIAVkyN4uyPjPGOBbjaierz3hsbolLZB4A5AuVYXhkRSGUIYNimJClDgyuDgBLAoh2lWFdIfcNW5ItPlzgiSFzaPzH3lwTw6hN9BR2jJIG1HMuH636/wrpNRgDjBzIPYujk5XxuB8ZCRgCTY/hTmMkJAo/174lsARlEaAhQwXJfPhfFmA2D7mPHhuvei+z1JTramOZGtLGWk5ODkydPYt++feja9X7qkMceewzr1q0zauUeBpjSTWlDaBlTTKwtrESUvzOyWbYzYWfTGW+kBqtSjuRnJ2HmMAVjipwle8uwkcUvZkNRDdKWMEcb7Tx1FfY2cubrYvqNoIwgdf2adYWVvHpZLw3xR0FOst45I+UEgfEDvRm/fPSSnHZ96dEUk7gtF7TS+YQo9tHsyeobosrTTnfCljqGCbb0Ykwdls65QS2n5qml3OLbH7jvP6MkKaFanf06ooy5oN+HNWriy7TA5vTvmINdCAB/td3jlNrQbgJpkV4I93FGnKKHSgDW39WOVXuQ7byE2v8Xg/pgin7OPxfXYPWxSlHl0CKgv1dcZ9yeHuOLEcEeGB/JnZ5MrGGu3g6VAKZ/dxzjI70FLy223G1XiZ3mbBAu5uvarQvCfZwxjGUwYGcjQ7iPs0ZqLxr6HHQAxxd7LnAK8rKxu/QaSJJKgZQz+v5yKtuHNTmIPTcqE//edV7w/dDXV2vUAA/WwfKVjr6PS2oH0K/9M/W5o0I8eH3W1NM/hXbIqwiBBCUeXtvUquMiQfexALD66GWde06CymJhSUQHGGzatAnr1q1DbGwsCLUXICQkBGVl1h9Gbwm0VaMBzfQlADS2MYVH006OM4cpAAKCPiT0qEhbgVxMA6dhO1U7SaLqOrMx83j/ntilpW9GksDWk7Uq/ajaplZBSvArD1Wgn0d3vP1kf+w4VSdYdiA7JQhhvZxgZyPD+KXsUalML+cbG04hyKO76Cgokrz/PKcnBDCKun60/RzGhnsJGrESJJDYV/ODRA8CmFLe0PX/43IjUsOo5z4tIUCl20bfl7ERXljKEuGpXc6kaF8EeXTnjex9b1yIjqHEuD8JjI3wwh+Xr2PnmWs6m18a4o/pib0Z3QjYovRop+PVR8UZOZuKavDayH4a74gQ9wXaqVtd+Pl4RSPmaonqckGnWdJOO8UWnScjgOcH+2EVQw7J2AAXFJQ1oPJP5ijg/l7dUdvUio1F7FqFYn0JSVAzY2//fFpDB21TUQ2ej/PFtwW69dRm0fZSxAa44FjFdVHLp//6+TTqmm4zDgYASpEeuN//Hq9oxOw1uoPCdpJk1YtcMTUKRy9d19FrU4cEsOJAOQ7lJGNsuBcqGlpw/PJ1xtnY3aW6bR2g7nlChz6h+i0w9mxWWoQXNhVrDsq3n6pDf5alZ/qZXrt5m7XMucmBquhuMe0/xt8ZR7UMoG2nmDXv1Hl3bIhKEJnNd5UtAIHWstTxqSSBqust3LJaFnZrFG2s1dfXw91dd3TQ3NysYbxJaKJtMEX5Ux8E7W0FZQ1Mh2ssccxMVKg6hV2n61idj8cvLdBR+gaAkiv8Tp5CkRMEpUTNsE3bUKP5YOtZLNx29r5wq4Dz0MbTZ+kRgjswbcV8rg8BU1aAdpLE8gPs+VNZyyKombNnVxxhPZYWsxSSckYJ5mikSdG+KCj7E5uLmWdEz9XdwpUbZRpinjPUcp8WlDUIupe/nrmK1DAvNLe180ZghvVyFCxRsjK/gtFQA6CRW1FIpNuIIHfsPXdNr6g++lmo319Bz4Wk0rXFK1xVGThqbwqXUSBARVtr9w1cBrySBKOhBoA3W4WTrQ1WcuQDpuvEtJntdzlBwNnehlFIWIihBlDXpI+8j5KkRJmZUO8vadmkgkvMfSsXrW1KvDg0ACt47pu6YCv1bgnzcSIAhPZyQEn1TY0ct0Kh26iQd44A9V5pG2skCUbDkgAVCQoAx1hmawFg8d6L8Ham0jq5dOMe5BAAxkV4YXNxjY6hJpQFm0+jpa0dM4cpWH1X2apAf6+YBoCLOSLH1SdWLIXoZdBBgwZh69atqn/TBtqKFSsQF8etBSRBsa6wEkPy9iBj+VGVDw6NvY2c8ZjM4Qqd3KJxih6wY9kfuD/Fr77WLkQvR6jJTU9H6xPdSNeNbQmViXaSRMFF4ZIPR8rvdzB8TvmzWKLoxEZBAlT+P76ZT9o/wtPRlnFZmmlfbWqbWlkNNYDScMrddr8eJIBvDlaotgs12jcV12DZgTLWtklDAlhXeEXwrOfyg8w+Quodo6ejLe+yHQDsKb3GKdrLFECgzqGLmh9XeuaSr4NcfbQKs1cXIT53D+Jz9+DDrcJnYdNjfHUMcEBYAAkTfIaqj4st4yyvdp203wO2e0C//1F+zgYHQDFVXYijORv0krB6X8uVbYWNG61tqrbAV5cV+ZdUfa1SwJokHQRy8spNvQYZtK+lqMAIETc0b2Koqn3G+LMHCql/Z7j6FDry9ucTzNls2KrLVOXc7aVYdqCMs15M5184YYBotxY68OWBk+5YuHAh3njjDcyaNQv37t3DZ599hieeeAIrV67Ehx9+aIo6PlRoS3loG1TNbe2MxznZ2eg4ONY2teLL/dxLz/SsAQ3f8o7QBpER44ND2cmYFO3LWmc+2kkSLW1Kwf5QAOW7J5RF20sFO4UGezhgEocYoxAIUPcl2NOB+x6r+UcUlDXArgu3ETQphtn3rVwP7Tu6PbAZ7YMDmEePi7aXooqnkyMAVj8r7ecb4ePIPIOj1THyLdvRcHX+2aODVH6bbMEiS/aWYcvJGo32MinaF4dy2CMrtc/PZnCwMSma3afR2BCgopD5ZkbnjAjU8LGVEwSrw/d740IQ5NEdW07WIHO4wigSMTQLUoNxKCdZkF+lOgSoPJMzExVGlU1K7OvGuwxGu6qcqGpknfFTr+fWklrW50Ebv3yGsrtDV6zIvyR4deJm610Be1IEeXRX/X93h65I6EhAzwS9vMjUp2QlKVQ+06G9HAW5FwBU28ubGIr3WCLmc7eV4mR1E0aH8vsxL0gNRn52EhL7uolyayFAZUzQXp2yBKKXQYcOHYri4mLk5eUhNDQUu3btwsCBA3H48GGEhoaaoo4PFUzGkvoyDNvIRH3pkG44QmVBTlbfgL+rnSoRM9uU+YLUYPR07CooOfaaY1UI93FS5XnUV5TxZPUNjA33wufpEai83oJPdnI71Io5h7qY4cp8buHHuWuLDOrUB3codK8+VoU1x6o4lyU+n6yZu46P1UersPZYlc6SNj0DI6ba9CwdW9t5PtZfJWCpjpIE76xmcpAbdpcyL/+8Ny4EznY2+O+Ryzhafp1Vb+k9NX8UwDjSN2HeTqqlxtqmVsZ7RoLKh6qdJJx2YtZnhnVBajAG+TuzLk/SPlXamCLyjuz4H673NKGPKzwdbXV8bH+vuM6YGeSXE7V4Sy0Hboy/M44ZwQlbRgCjwzxx4Hy9KFFj7STtxmg7Z2puAQCOX+aXI5ETBE5W3+AV5+Z7Z+kUfS1tSpWvrU7y9EzqOvncO7TRzgTDVZc9Z68h3MdZR9R9RJAb9pyr10kWX3CJuS5375GqABKA363h88mR6NGti2rl4ZcT7IO1BZtOgwAwNZbZj5M+32ieHLtskGB/T82NXoMhhUKB5cuX49ixYzhz5gy+//57yVATCJOUh5wgYGcjwy8nqjmtfu1ZOKGyIHnbSlVLAeOXFmAUQ0SlDEBPx67wcbYVVCYJKipvy0lqGU59NC4DWOUa2Oo2Z00xPtl5HikDPIw2QidA+a3UNrWyLv/Ql8qZ91LAuY6WN2osN6qXrY6cIODjYit6xM+0pM0G1/N7PaWfSuSSqR36uDBP9RNgn9Wk7xGboUb7sl1vuYOj5ey+LwSAx/r31PiNbUlQzFK9+hKyp6MtZ0S19n02JM3OIH9nhPswR3CrL23XNrWioKxBdc6dJfxO1nxo3x85QSDK35lzyf3ghft1oN0sPB1tMcjfhfF+az9LPkNNqEszHSUsJjJUThDInRiqEWXOtWwvZiZ/2YEyXjkROUHg9VH9OMW5CQAfpPFrg72e0k8VnRzu46wz06l+nfY2cp3yuIpXrxsBKoAiazjz7OXney9i2f4ynb5qb2m9xnI5fe1r2II01JaH+dw+6HZKtz0AGMSz1EkC+O+Ry6yzsPSSOCDexYDNBcUSGHPmWkIA2lIecoJAWqQXxi8twJw1xbwfcPVlTaayZjDob5HQlFLYdfoqZqv5aNGjq9mrizB+aYFG2D3fiz97dZEq9VF+dhKll5STjJUvxiBnNLOmG1vdSFDRQM/H+WFGQm/Wc6t3EhMHerM2YsqJvRzHLzcydqBjQj3xRUYke+dKUH4bBTnJyFDrnIS87CSAL9IjdXTuFk4YgOa2dr1G/ExL2kzFDA1kX67w7hhdApSBrVpu6VhWYVvSTg31ZKzzEEUPKl0PR71TBnjg/7P35fFVVOf7z9xIIGHJwpYEEhKCkAABwp4AEQKVTQGhFkEr8lW0EtBqVRJbtbbWgF2VxSpaq7+WpVYWy2YtoBCCgOz7EpYESIBIFiAhgdz5/TE5k1nOmeXmboHzfD6p5c7MmTNnfc+7PO9Di3Lx+uojzHscUPvIAJIQw6KhsOoXl03xNXnmvnjDsUlMOrl5xUyNipUxQE7kz6TFI0vBMK+kHtD6r37wbR5TQ0ADa+zPGNJRtS5YoToQIUX+ahEZEoS5k+r89wQAAxnmciMIohTly4IDQMbQeCS1C2FSadDw2thErJiZgujwYFkoWL4rHw8toicDB4DZ6Z0sle0Ugbkm2VGeT++Ed6f0QruwIMND39xJSejYupnpd2mJaCf3i5HX1pzMYbLWl3yjVsM1d1ISFljghhQBPPnpbtyqcSKdcrgWRTrrgBNSxDWhLCHmTdZnEQsHQTuGjzPJ+Xum+IbqUBoZEoR5Jq4yTkiuLFP7R6tMyMQkrizLjKOSQDlv/AGWzaAOh8M02lMQBJ7RwAKUoeQlldV4Y/VhW5s3oeRQlkVMFr/5D3tDJKgRRQzq1BrNgxohe516ISJh90QNT9T6ZqbJzBUHkZuZrlJ3k6hVEs5t9Rs/3X4OWWMSsCojVWdCUpoIiJr88ZQOTFPTh1vPyJof5WWSughgq+UJZcaWE1ewbFe+TnNmBHJCfKBnlIqaAQC+P3vVJbOx9pRHMz87AOScokeVCQBm14bVOwTgoeR2dQnYReMyZ6TFUX1stjFyfA5PaINNxy7LArgR3prQDUntQnCjugaFZZWyEFMffyMB6mhgLUKDGhlurGS8slY8s2pp+yo0uFHds7UP0/xXjRKLa+u4YGoy2ocF6SIpBUhRplpKEMBY26SsGwGJpEzr3Fo6hOWcxUc5p/EdxVRO4ADwxKBY/G3bWdXvTkD3G7l//tRkHC0sx8Jv8kz9vZQIEATcFkXZVOgQgDmjJDJjVv8GCAKGJ7bB/E2nrPl6GdwkAJi/+ZQ8VsxMnGZ8ZSxNjjZimFAead/14eO9MTwxAoVllZbXmA+3noFDAMb3jMLq/eqAJaPcqSKkgKXpg+IMXTKU2u3lu/Ixh0HV9HhKB7nftO4IZJ/7Yvd5JkG1cs4qo94JyFge0DHckIoFkA4AxHTqL7CsWVu5ciVWrFhB/Xv55ZfRuHFj3HOPPRe47Oxs9OvXD82bN0ebNm0wYcIEHD9+XHXPzZs3kZGRgZYtW6JZs2aYNGkSLl1SU0Lk5+dj7NixCA4ORps2bfDyyy/7vdC45cQVPLdsL15bxRbUWJ2jtaETk8Xl8ptYT9kYaSaR4EAHc2Mgjv+EGNTqgsY6lT/QM0qlAWTVS4l5649JZKwazeHbE7urCEwByMSXRho2QK2Ry67V4hhFGzoBmZPHVvocAE8OjpX/Tfpny4krsslXFO3x9giQTp3aiGCtZvWpIXFMTZAIqLiwvthzQZW/8tUVhwCAaXaxeiJ1ABKNhoV7J/VuhxvVNZiwKFelXXJFUNM6JrMENSIkGcGOYK6F9kRO3qdta5rWzqp3jAggvGljtGnRRH+xth2UpkwCo2AgAXVUDQDwwZY8pCq0fl/uu4iPck6b9osTQO8YaxGiDgHInpSE8yWVWLA5z1ZUpNL0qBV4jer4yugu9HazCbLeaMcK7buV82uqQVqotC6tdJolGljWgqc+3Y3lu/Kpa4ORFcIpAl/up0eWZwyNZxIcK/2tWe4FxAxpNu8+3X6OGXgHSOOZFSAhQN0Pyqh3QM3A8NSndEJtJfrGhvmVoAbY0KyNHz9e99vx48eRmZmJ//znP3j00Ufxm9/8xtbLv/32W2RkZKBfv364ffs2Xn31Vdx///04cuQImjaVTiAvvPAC1q5di88//xwhISGYNWsWJk6ciG3btgEAampqMHbsWERERCA3NxeFhYV4/PHH0ahRI7z99tu26uMtmEUpkZNm+7AgnXOpkQ39f0fpvGbpCW3wzfErqBFFS6Y4Myf0oZ1b4ZsTeu0N4eOiQakBDA50oKLaiR9uVDGDGYjqXKs5ZE0gmbSVoWETAUzpF4MHe0apyjGKNmRx8iihPU0Ktf/z4dYz+CjnjHw61Pa5CMAhAs8N74R3N55iv0BR/3kbjiE0uJHKAZ9GuKzlhHJASlvze5OUSWThZbX59MESwS/r9EwIYp8cHGt4chUgfXd6Qht8d/oqshUO2fJma9YgGtA0riwYOZ6baUaMQOZt7w7qhZ4VVERz+A8QBEzu396UZkI5R7X1JaTMLFoQmsaFmOnIMx98m6ci57bTLw5BEvqyJybh1RWHUCOKVB5DQHIm7xMbhtTsTRZKrhPQerQPZa5RRtogQDIzuhrEoXw/bf0SAcx/JBlF5Tfx1tqjqmtkfs0efi81YAOQ/ME2H7ui0yxpITI+jgiFaZ1bU+fx4ykdmJx2rPYY1Kk1Hh3YgWohUe5HWsJ2ByRBjZghjeadA/oxqeU/NPI91harfJa29prBX4IKlHDJZ+3ixYuYMWMGkpKScPv2bezbtw+ffvopOnToYKucDRs24IknnkC3bt3Qs2dP/P3vf0d+fj5275Yk37KyMnz88cf405/+hPT0dPTp0weffPIJcnNz8d133wEA/vvf/8pBDr169cLo0aPx29/+FgsXLkR1dTX1vVVVVSgvL1f9eRNGg5ZoMsb2iNI5lwowDvdnnRaHJbRGTuYwLJiSjHen9EJa59bM4ASlPw3LCZ3l8Pnl/oumJ0IRItq0aIKU+JaG/ExE+0f8q7QaAhrMNGxLduYjONBhialegDmHlAPAlAF6Xzal9oqcDlmbCjFJat9NeycryECpQaGdqLMnJSGmpbmTLFl4SX21Qg/r9OwA8Ob4blg4NRk5mcMMU2ERrdcLP+oCgJGtA3qtq0D5TVkmTeOqxf6CEizemofK6tvMsZ85OsFQ46uE0o+RaIjG9ojSvZ82jxyQeM+0ffX2xO6YnX6vaR1+NrSjHN1Nm6OsA11kSJAqP7ADkskoNytdFgxYGRRo/UID0aQofa1WZqRS69knNsxUcAoQBGSNTpB9tsb1ioJY+wTLrDstpQN1HSBtYzdnM1BH//DMffGIbRUMURSZ3zS2RySzXyJDgpBlkmrNLKCIFfQB6P2alXPCSKNIy52srLPWQuKA2oIASK4vhCZnW1a6JMDVwmjPoeWs1gbh0NJAAVJWBhqUeU1pa7zRuu4vQQVK2LJblpWV4e2338b8+fPRq1cvbNy4EUOGDHFbZcrKygAA4eGSMLB7927cunULI0aMkO9JSEhATEwMtm/fjoEDB8qUIW3b1kWRjRw5Es8++ywOHz6M5GS9o2V2djbefPNNt9XbLlh+QbRT+eR+MSitvCX7lhFqiLmTkpDWuTXOFN9AXKumiAwJwojEtnhtlT4n4vDEtthy4op8uhAgbUrak+9TtXZ+QOL/imvVVHUPCYb4I0NDo6TK0ELpg0Te/8x98arylUiMrNOSmZ0ylSAatrfXHaNGHk5YmIu5k+q0XT9cr6L7dihMSbQ6Eg0MSW3E0siYZSp4b9MpSRCp1QQ4IKWGGtsjEou3nNFRRtDY9oE6f4y4Vk2pJ+oPGHx82pRJynFCa3ft6Zl892urDqvu146bV0Z1QbvQIECQWNSX78pnphnTCWoCMDG5HVbsuaD6LXNUgqxhISdo5XxQ4hf/2ocvFM/f26YZ8q5clzUATyl8XHJOFWOrCZt8gCCgQ6tglc9facUted4AUNVFO4acqMswkpM5TKfFzBydQBVkCRZ9k4eFm/PgEIBe0aHYk18qX5uQrBcYCZbvylf13ZzaeaiEkfCk0iLX9suqvRflNWQOxaGb+CAqpzjJxWiWpULre6RcRxwC8NRgumn+0+3nkDk6AT9cr5ZNt1rzNGvtoSFAEGQfJu1aRuausvzCsko8ObguxZv23c/cF4+Ve8/jWNF15jtZc52069xJSVT/L0FgCxusvhUAPNRbP8eU30N8F3Myh8m+i1oLAqkbrc5bTlzR9XHava0w78c9EBkShNDgRro140zxDXy5/yLTb9oBKYJcm5UBANYeKELP6DDq2ks08QVXK5F7+gcs3ZGvclPYcuKKX3CrKSGILH2qBu+88w7mzZuHiIgIvP3221SzaH3gdDoxbtw4lJaWIicnBwCwZMkSTJ8+HVVVVap7+/fvj2HDhmHevHl4+umnce7cOXz11Vfy9YqKCjRt2hTr1q3D6NGjde+qqqpSlVleXo7o6GiUlZWhRQt6jjR3Y/mufNXAfHtid1mAUC7y+wtKMH4hPaqJDEDlJkk2QRF1pg2WeTBrTIKctopsFNrFMHtiksp8qTXLavHxtD4YnqimBiksq6Ryik0dEI3Z6fficvlN03QzWg4lFpTfzyyr9iRnJctATuYwebEiASECgNctBoWQMgDgbzln5MVbVydIWrolikWDhdWadtB+c5ZmA2a1P8HU/tGYPfxeANDd5wCwLStdt/juLyjBxqOXMX/zKWoAyI3qGjQNDJDNkkohEDA2N7JMy6rNHuoAgg+25ElRexQh02gOPZAUgRlpHeVyCssqkZq9ydTU+7P7OmLRN/S8qrKGFeo59PWRIryx+ojqGe0YU879D7bkqUzEViEIQG5mOgC1wEgbBwKAXE3/mo0XJbZnSe/ZfbZEFsStvFc5rvYXlODDLaex7qA+56+2fazWS/ksAHn9ulFdoxLmybym5QxVlqNcn2l1WKg4aGuFuRkKgZP0cWX1bTxp4julrD/tEFJYVokUivmY1adm79UKNAIkBcKF0so606ZAD+BgrRNW6jp/arKcXq6wrBJniytw4EKp6fpM9re0zq2pc9YhSHx0N6prcPBCGd5Zf1y13wJguiOZfY87UV5ejpCQEFP5w7JmLTMzE0FBQejUqRM+/fRTfPrpp9T7VqxYYb+2ADIyMnDo0CFZUPMkGjdujMaNG3v8PUagaT+0gtJDGm2CFlpnTJqfwpYTV5iC0Lz1xzCuZ5QcwamNMNJGeVohFHzqs92Yq9HGsNTQhOx1UKdWpgKKE1LuQ23ZShSWVTIjjVRliZA3diMoT7ZazaSV/YKmrRIAPNAjAmsOqANBnAD+aTEBudKfghYVlr3+GCDAkq8IIGlrO7RqiqR2enZxZc5DAqNIzRpR1GlEY1sF6+43aj/tNZHyo4i68VBacUvnX0XmQ2RIkGFewzUHi7DuUJEs3LE0D8qE6wculBoKUcrnnaLERygwNEdkjNE0muN6RpluWNT3i8CCTaewdGe+qrzo8GBdWSKAOf8+gM+eHCD/RoJuvjBYewh2ny3BjerbqvFNyjV6L8l3+4evjhu+RzkH7ZLckmdJcA9NYxwZEoTwZsaZQFbMTDEl2l2+qwBje0RR/aNIxKSdCGdiYvxy/0WVoKQ8hOymBHSRdyo1clbfSxsbWp88lu8ibZ1QwoiCR0tGfbn8pqX1mVwmdBxaP1mnCNVaNEehiQfAPJRZ+R5fwLLP2uOPP46f/OQnCA8PR0hICPPPFcyaNQtr1qzB5s2b0b59nU9WREQEqqurUVpaqrr/0qVLiIiIkO/RRoeSf5N7/BnE94IWxq+M1jMDzU8BMCaWdIqQ+aQKyyqpEUbKKE8rfh6iqPe1MKILcIowNTlpy95fUKIiESVgBViwyjKD0ofLroPq1AHRcnoT7bPrDhRR/dSsQICauuX7s1eZgrgd8uR5648x87QqSS2tpPDR+uxZYX9XwmqUrCgCWV8cpPpXKeeDWf5ApX8Qy7+MJFyPbRVsylCvqyfYQSoOQepPWgo6u+2mxJId+bryWPNwy8li7C+o2/itpvgCgEMXS5H5hXp8Kw975L00f6SK6lumAqHSb8mMdoT1LG1tzfrioGp+GOG8Is0ai1SVtCGtzwhvn1VBTQAgClKQkjK3r9aPzcgoRtYId6bcImC53pN1QkvyDEguAoZl1n7bB1vyJOWCxfpmrZD6keUnq1yL3tlwXFaMsKJpad/jL7AsrP3973/HJ598YvpnB6IoYtasWVi5ciU2bdqEuDi1/0GfPn3QqFEjbNy4Uf7t+PHjyM/Pl5PGp6Sk4ODBg7h8+bJ8z9dff40WLVqga9euturjTWjJMD9hmMesguZUbHYSFSBx05A65DL4uciA1zqvs6Alb3U1dyirbCXNw3IFq/7l8ptue48y0MIoCIGF5TvPA6D3gRPAU4PVpKVTDML5lRAh+TqR72ZxHxL/QaCu34zq6xQljR2NnkNZlt1xWiOKpmmqlCBO/konZiM4wRaeyYbVMzrMMK8hqSfRRtACNIiWYv6mky5Hi9Lw1OCO1MjsGlHEiaJrttjWldDWkdDxPMDIo/j92RJ5k7UjJP71W3YaN+V7aYEUpxm5bcmQ1vp5rT1gPeWXgDrnd9Yc/CTnLABpfhjRaSgFh8iQIGYuysVbzlAzHQQIAkoqqi23qQj2YVK5thox+xPtu9W+ZOUEpiFAEDB1gL69nKLUpmRfS83ehLfXHkFhWaWKZ5CFGlE0JSCmvZO0x5MGgU2kfHKvFe8vZdn+ANu5Qd2JjIwMLFmyBKtXr0bz5s1RVCSZhkJCQhAUFISQkBA8+eSTePHFFxEeHo4WLVpg9uzZSElJwcCBAwEA999/P7p27Yqf/vSneOedd1BUVIRf/epXyMjI8LmpkwXaSe+jWmJCVwQ2FtOylZydyjrQwskFqLmXiJl1/sZThkm7teStVk2HVqDV3BBz14jEtpi/Se9I//G0PrhYehOvrz5suQ7KucxyUP3w8d546rPd1IVVGVig88ES9KSlgJRv1Ur9iHk6rXNr2UdIC22aJcC4/YmwP31wnI76Q6mhMCOT1NUD7DRVNBAHdeJLaeYn6QA7iTpx4J/cLwbv/LgHUuduYm6CysMOi7rkg2/zDCk17M5forFjPfveJnNKFy1I8I7Wp4h834y0jlhDSWdVUlEt+2IJqB+FiRLkvSnxLXVt+ntGGq+PHu+D4MBGOoodFm0DFUIdfc6cUQnU7/ko57SsMTWi01CufwDwdFpHrKW04dpDetJohyAFfLy+Wh/45QqU45RElWoDUcg9RkE8Wuw6U2Kpz8lek9a5NZbtLND5rSl5+ESY94ESNPoOwHgsOgQpv/SjH31n6g+rbDsSTWtlTfQX+DTd1Pvvv4+ysjIMHToUkZGR8t/y5cvle/785z/jgQcewKRJk5CWloaIiAiVX1xAQADWrFmDgIAApKSk4LHHHsPjjz9um/PNm2Cd9B7pF8PsEAHAmO4RqtOpMpyd5sfF0oQJAMb3irK0GGeOSaA6WZptwF/uuyirwo1SfDgEiRiVpa0TUBdiTbtDeVpihaV3jQpBWNNAW5uPCLXJQXlqIwvW8MQIJlWI4URXaCoJVxQgOcsqv1Uw+G5ino4MCULWGDUNgCCo0yyZkVFqhX3atxLTgRmU/WVE0qvtdwES+SbxsyOmfBp9DWkXEjk7hXLKB+qE+f0FJThTfEOlsSMCCe37le8nv+0vKGFGZwoA5k1KwrbMdDzHSGNEMwMqiZnNNNbkitGC/UBSBFZlpMpR1rR0Uz2jwzCpt5oEemiX1lj0TZ7OzK/sxzHdI1Rjc3gCO/cvrV21dDCFZZV4nxKhPCYpAsMTI+R5QeafkS9h1pg6uhVZ0NSYv2hjRKt9NqPTIKC14ZB7W1EPAi/+qDNW7jV3ZxE0/6VB6RhP1lZt6jSt87zVNc9IQ03ba+wQchM/t4xh8fL4dUA9/wMEgUrf4QDwm/HdqPUSUBvsoPHrpH2H0lIC6FOoaevjgJ6E3NewHA16J8NqNIa7wIoocgjAI/2imSc8rZOkciDtLyjBzrNX0T82XBcxSSJsck5dwaLNdRFsVk5SDyRFYkZanCqKKjevGFMX77D0rQKAmUPjkRDZHM8t26da0JQRnvsLSvD59+fxD4qT/W/Hd8N3p69i7UG9GUQZMbXmwEX8bq1+Qx2bFIl1lFRJJHLxwPky7Mkvwcq9+vDvp4d0lE+LAtSRXQQbjxZh8ZYz2Hn2qhwtSKLHWG21dMZA5F+9oY4aGxKHAR3Dcaa4Av1iw9CmRROcLa7AqSvXqJQsvx3fDflXK1QRpiSyU1k/Vh0m9IrC5H4xqgAXZbCCljbhP/svYPbSfbpytPQfWpJe2ljPGBaPxwZ2wPyNJ2WNImmD6YPjdIskGcOkzE9yzmLx1tOWxrJMi1I7fwiFSHRYkCUSXbOoTBKdy4pEVhL2EkJoZeoxQRBkDenaA4U6MlX5OyDNpfe/zdO1p/Ybk9qHyNG4tCjIP3x1DAtr1wJW2z2X3gldIpqjd4cwbDlxRRVlPnNoPDMt1HPpndCmRWOEBgeiT+2zWuf+6PBgS/OCfE9UaBM8v2yfTpNDIvZIVOeJy9fwHoVkesGUZCqhqzLa8uqNaipJ99NDOuLVsYm6aN2NR4uw+fgVDOvSGl2jQmxFqmqRMSwegzu1ZhKFk/RH2mAlMl8AqLSWb689YksLziItVqZdUn4/AJnnTzmejdqARbejohjakicLX8r1hFbu+F5R+FHXtkxidfm9AN75cRLahQVTI2qVkcK5p4qx8Js825RR9YFV+YMLa/C+sAboeZ8IHIAha74ylJ1V1ujuEXj/sT6q58zC3lmTVXVP7eA1yhRgBKH2f5ScRIRuhOUESw5arNNS9sQkAOwQbKO6zBgSh5bNGzMj7mh9oaUQ0bZ9/9gwvDslWaXV0rY72bwNzXuKhYJFPUHbZGnjgxU27xCAbZl1m502OkqAmgJAy2pPsDojlSn0sHIBmpk2tIukdqOgRXJZOXwQzRwtuk77HsJPZ8R3ljVGMtuyKD9YC75WABRQR0NgNE8DBAGvjO4i0xAYgUSUr9x7QfW9duavQwCevS8ei75Vp4IKEASkdWmFzceuGD5Pm78BgoCfDe2IhZv1wt60lA747Ltzluo2unsEfprSAXGtmuqoYbRYnZGKz7afU83VSb3boX9cuGmUt5bqR9uuxPQcGtwIWV8ctJ19A1DTrbDWi/yrFTqBldRPOcaM6GdY7555H134Vh5EjCJ+lcnljSLyjehIWFycAHvtAehUP6zoa9p8NNp/aOupu2FV/vCpGfRuhVG0lRPA4E5sZ2it8/7+ghKd0Lf+UBH+8JV6YJul+liZkYqnTXI/OkWJhuAhzULvgLVoRhGAIEJmuqelYaI9w1p03nskGWmdW6ui0exAG22lBEutTyhElu/Kp7b9zrMl+Od35+R/08wFZum+AHV01EOL1IKabOqhPKcdH4Bkkma9g9w7f6PecV5ELX8W2Kz2AOSMFDRtGMv8atRd2qg3bTAOra6AZC6Z2t/4FCxCT3nDes8H3+YxvxmQMoMQsy0ruuw347vpBbVv9Zo6EZDbysgkWiOK6NEuFCtmpphGzZKIcuX3Zn5x0Fa0nVOErGnQ1uPpIfGYNSzesB60+VsjiljE0Mp9ut2aoAZI6xxxZDdbAwquVupokL7Yc8FSlLdTlKh+tJH6yuey1x9DaeUtvDc12VrlNVC6NWjXiwnJUXhoUS5mL9ULaqQ+ynFsN5WWIAKJUXQhYe2BIpkeyCjil7w7rXNrUyd/ZRACCRKjRdy/s+G4XG5S+xBmmdqDwNxJSXh2aDz1Xm19zfYf2nrqK3BhzQcwE5xyGFGZgDoNU2FZJZNDasHmPPy/7WdV4emsOeSEFD00fXCc6Qag3OxIfVdmpKr8rYzghJSAGoDtyDMlSLoe1iY5MZmegoTA6JUTk6OwYmaKYTj4qysOYeOxy/qLkDY3Zci3Mu0OEVKt0BCQ6Chte/9mfDe2VgrADzeq5BD6/+y/wBQ4CG3Ef/ZfYJreT16+JmubWO9UCnTKkH27vFhKELqD/+y/oAvGWcqoa3jTQKR2amn7PWsPFGJ/QYnuPfNMItO+PX5F/tarN6qo95RW3FK1i5HQS4RnMl5+y/DVCQ50oKCk0rZmG2AffqwctpQgPpmPDuyA9x7pheeH0331aFD6lLkDRgc6oC4ak3aPlfHpgLX6zlt/DNFhQbbTWBGQd6R1bo2/PNITC6cm48PHe2PF3gum9VQKFUZrC61qTgAlN+ipGT/KOY3/HblkGvFL3m22ngtQByE4RYlGxYjyBLBGP+SAxImX1rk1FlG0tspyl+7Ix5oDF03r609BBj6NBr1bYRSl2a1dCxy8QM9VqjxlEXX8s/fRTxAA8Nrqw3h99WE5vdKUAdHUaDYSObjlxBXbIWBE0Nt55qrlhe8/By5iWS1hp5GWyOy9ExbmYnyvSPp10X50HsGKvRexcu9FKZ3L6ARqqpMaUUTrZvRoY1GUBJjwZnVqfm0KFqt0JtpNwgkgLDiQ+W0iJJJJI/MxwajuEaYZKd7deArzN53CnFFs52tB0KcByq4lq60PtD5GBKzqni+tRFQIO/chQB9rb609Sv3dLCG4s7afH+gZJB9AtPjDf0/gj/89IZuMnhocZ2j+JRvD5fKbWHOArhFde6AIi7eeZpRiH3bnnwDoyJ7toH9sGHbUbsKeBtFkB9vkaCNgMfbT4BSB5bvOu7TmCJCiTu0Q5yqhFCqM1pZfjOyMP351QtffX+w5T73fKQJXrtEPItp3W8m4QduDnAByT/1AXdOeW7YXF0orkdQ+RDJFr9MT8irLKbhaiRvVNabj2UqktTYowdfgmjUfgKi6aY1PE9QESKbDFTNTZD8JQBrYf/32NIYZRGYR88oHW9i0AzOHxuNy+U1k2ogeIrBKbkm+wwk1YafZqZg8R4MIYNU+OvfS6n0X8Uj/mHrxVGV+cZCpXREAJk8UAMxW8Nctp0TONg0MsET+qr2HJIqmRU6RepP/GrVrSnw4NhwqsrQpkIi6aSkdqNe/3HdRp5XK/OIg5jGoGTIYJgrae+1g3vpjiAk3PwXT2p32KgfUnG80zFq6F2+vPYLosCDDcQpI3/NhLUWPrk6o87/86cc7MH5hLnac0Qs0RDPhDu1YfZAQ0dxlstWdFgU1B4BZw+JNeR2N8OHjvTG5X4ylcUF7/+LH+8iCgpV6sOiMzDD43la4XH7TUps6AAyIU3Os3d+trRw9a2RF+QNFUAOAfQVlzPfViCKzPBI1+eW+i4aCmgPSvE/p2JJa1tKd+dKapvndKUom5qmLd2De+mOYMzoBTw/pyHzP7GV7cfB8mcvaTe2763vgdCd4gAF8E2BQWFaJJTvOUXnBtCDOx6wIqpFd2+KrI8bs/Uan57R7W2HryWJLgprSeZM46TcJDKBGYCnRNaI5jhZdc5m7yRXtm7/AAeDNCd0QRomOswPiCHz2hxtYd6ioXqYkV9rzgaRIXWJ5V2DEjVZfTOgVRU3qrIQAifuKFv2rbBcy7xIimjNzixIo08OZfdfwxDbYfOyyPIfG94rEiK4RuFBaaaqZ6NGuBQ4wNO+TerfDyj0XXHJwt4tfjU1kRq26goeSo1BWcQubjtcFLEzq3Q5//Ekv7C8owaq9F/FJ7lnb5QqClGx+pQVTohZjkiLkAw2xYrAiYN2xPlktI4MREQzUaQIPnC+lcsG5Wq9hXVqr+qZ7VAscLiy3tAY9n94JV25Uy9YUFt6a0A2Xym8a7okkwIaV2J3cM7J7W6yz8f1G6wYJIvIUeDSoDXhLWCO+PwcvlNnO+ecQpFOeWfJfDs9iUHxLbMuzzsh/p8CKWfVOhCAA86ckm9IDAPY37AeSIhDbqqmK48zKO1iRboBEAM0ianYXAgQBjw2Mwafbz5nfXA84AMwZQ3dDqC/ubdsUJy8Z5wS1CgHAS/d3xu//e8It5d1pcPdB28g1wc49qvthQP0DdVS8u8GjQf0MykgzVgSiEZwiLOfr4/Ac7kZBDZB8Te42QQ2QFvzSimrL0c52sOZgERZsti6okXc8YsD7tGZ/IZOo2V24v1tbfOZhQQ2QXCayPSCoAXCboAZIWqcWFtIp3a1wd/9ZEcLsHlaMbhdRlx/bl+DCmhfgrmS6aw8UedUvhYMDAIYntEFydKivq+EzhAYFWs7d6mkIAgwjXlfuu4jSylvYlpWO4QltPFKHDYeK7krBnYXNx4255jjcC1/sgf5gf+TCmhdQHwoDJTzl58OCgLqUMw4AExiRl94EF1b10Dobuxsbj13Gy/+2lmPQXaiHT7lbQaL0UuLtUYJ4DKKUecEI82qpQSaY0NfUowp+0z/+ABHA0YvX7qq1KSGiuc/ePcWES9HdIGuAr8GFNS/ACkcMoBaOfA1BkJyrt2WmY+mMgdiWlY4He7p38e/Rzp5/4IDYMK9La2OSImxHo3mzDwUAO87QufYaKgIEwTQK01sYnRSByJAgl6IJ7cKqqbXgaiWTsgao42sjyard8V4tMobWL0qTUPY0FDgAZjQ0IEWBZo7RRzN6C0+kdMDSGQMxvpf9NdqVfjhWdM3lZ83ebdSGAoDZwzthTFJEPd9sDSTIyB/oO7iw5gVoWalZjP+ZYxKwLTMdDyT5RoM1tX8MFkxJxsKpycjNTJcT9qbEt8SWE1fcHtxw4EI5ukWan9Ae6BFRm/Yk1Kvq6Iyh8Vj0aB/kZA7Dr8YmWnpm3qQkJi2Lu+EQpJB/FsheGiAImNS7XYOZ7G9P7I5n0uKRkzkMTw/p6LFNfUKvKFPBev1BicHdKi9efTB/SjK2Z6UbmpwFSNxTqxmUNeQekvpLmayahd9O6GY5iTnBoE6tkZM5DAumJNt6jsCI2Nnf4BCA7ElJ6Geiwd52shjbstJdbpP6IDo8GCnxLZFpsx8fSIrEqoxU0/tY80QA8H+DYm29U1eA8j0AZg4zjrz8ct9FbDhkP9I13oDShIan0+KQm5Xu8dygVsFJcb2Eyf1i5ATXrGS9PdqFAgA1YXl9IQB4aWRn/P4rdsRSYmRz9IkN050i9heUIJORNsj0vSZROYcLrzGvKZOSF5ZVYrGNxMTuwPvf5iGmZTAm94tBv9gw0295eWRneWJX33bitdX65Ov1ASGNFCAllB+bFIkJBpQSL93fGbEtm8IpiugbG46XRnbB7rMlmL10r0sbpUOQqFo+2OK5ftAupixOsfrCASnfY0p8S2rydQIRwLKd+UhPaONR+hjCn3e5/Cb2FpQa3mvmUiEC2HLiCtI6t0Z0eDBWZqRi68li/IERrRgaFIjHBkYBAixHXh64UIqU+JYIb+aaoz6N2Nnb9DxW3jehVxTmjE5AZEgQ/rPfOMBry8lifLH7PKprvEGeokbf2DAUllXi+7NXLbejA9I68r+jxrRPT6R0wDND47H2QKGOrsUo+4EZpjIIcln0KID0XXNNMouwcNpiGi4BwKranKgk+4g2AbwvwIU1L4Kw2H/wrX4wEhboT3LOeGTBmti7HTKG3Ytvj19hklKSjAckgW5hWSX+lnMGH211vU710YQt21WAntGhmNwvhplWypMgeeSOFpbj09xzpu+/UHITgBT5625BTYC6LVs2bYydZ68a1unkpev4439PyDxRc0YlIKl9iI4zySr6xYbjQwuCWosm96D85m3b5QPSYjzni4NI69wan+SccYuvJw0P9W6HyJAglFbeMu1XksVhVPcIrLdwondF6HhlVBdsOXHFMAk2bJQ754uD8uHCIQBjurPNRhdqU2aFBjWyXP68dcfQLjQIRwvpnG9GcACAIGXQUHJheXt+W3nf6n0XkRLfEmmdWyPXQiQ4SyDWQjtG7FJNKDGpdzscK7pmmo1ECQckrbyVZz7dfg6RoUEY1ysKv1t7VNduK014DWnIGBqPhMjmWLqjQJ+T2MJhxBWwiKS1/ZA5KgE3qmvwwZY8mWKLlgDe2+A8a/AuKW5hWSVSszfpBs60lA7oGxuG2Uv3eeS9ggCsmplqSu5JMCAuDDvPeF9A0oJwLZmRhfoDBAC/mdANr61yr6B2p2JMUgSTuPKhWpJKu+PPjlbhRxbIpLV4uE87fL674VHoGLVLgCBgxcwUy2tDfesBg7r4Cikdw7H9tHd8P3tFh+gyBjgATBkQg3/usJcBYVpKB0zs3Q4TFuV63EVkWkoHfLbd/NBqBf5Mcs6qW4AgICdzmNs1bJwU1wa8KaytOXDREsGmJxDfuinyrriPX8hb8OeJzeE6AgQBgzu1xLcni31dlbsez6V3spQvkcNzcGWd42ujd7F0xkC3R4ZzUlw/hS9l44YoqAF8MfJnjDDIS2uGGlHkgpqfIDeP94Ov4co6x9dG7yI40HciExfWvIy+sZ7lxPI0zIg2G1I4Pkf98b9jnBD0TsD350p9XQUODr9HRbX3g0cIuLDGYQtTB0QbCmQN8aT3hAF/EkfDAj8s+D980Ud9O/ie1LQhwl94P/0BJAjQV+DCmpdxptjzpsj0Lq09tiDuOO25HGkP9vAO0aEWI7tHGhJecjQcxLdu6rV3TegVhY+n9fHa++4ECAA+mtbH6xkQvveD3I7ugFlkrzsxoVcUVs5kc7B18uJc8zUcgsT/6Ev6Di6seRGFZZX44XqVoSDlgBSJWR+4QssAmJ94HbDGe+XqOlx92/sqZnJaGummBVCA9zV1AYKAn6XFufTs02lxWDDVfSSeI7u1Ne3/347v5rHDxCkv+mX+qGtbBAVy9iM7EAEEBzbyeLL5OxVvjuuGDYeN6WP+LzXWLe9ave8i1h5gc36eLr6BX44xJ+H1ZWoqI3QIty54vfdIss/Jcfl88RKW78rHoLmbMHvpPkNhxwlgxxnzU+DTQzoaXnfFHGnEHO0QgKeGxFni8XkiNRaPDoixvSF/deSyzSfqhwBBwNsTuwMAfrhe5RaVvwhJU5c1JsHw+18e2dktmSrIiW/aoDiXBKCxSZHo0yHMLd8+IC4cXx+5ZDr2erQPwYwh9oRLAcDCqcnIGuMfaagA4HxpJeJssqJ7CqT/AgQBGUPj/Tp3Z3CgA5P7xWBbVrrpOuZr+KIZWeuCQwDCmgYarsEOARjvppywIoCPtp5hrg1OERAsDDSSmspTcLWPzl2ttHQfIaz2Nbiw5gUUllUia8VBS4KO1YE3tkcEtmelY5DFMGIHgFnD4g073GgTXPx4H0wfbE0g+CT3LJbuzEfm6AS3pc5yNZfgyyM7U59bODUZOZnDAKBOiLYp4Y7s2lb3G9HUPZMWj9ysdGZARofwpvjlA4m2hSRyvwOSVmybIi2YldRCWkxYlIstJ64Ypsh6a0I3S/XcdfaqpTFeUe2UxpKNb88ck4CxPaLwTFo8XhndxfqDGvx2fDfqe10ZW++sPw4ApoInEaCswu5YnzUsXs7hm5M5DC+PSsBcTXq7qQOi3eZ/VN9iiJN2ZEgQXh2biNUW0h0ZwQHJZOcqEto2o/4+PTWWOac8ldvUIQCtmgVSr80ZnWB6sHpqcEcUlFgTQsj7pvaPZl531pZJa4MAQUC/WPcc9FwBOcDNN7EMTB0Q7fIhzx/Mn3JdfF2BuwG7z5VYZpaeOSze0uCvqHYiMiQIr4wy37hIbruXRiZgW1Y6c2Ez4lkKDmyEyJAgyxoRpwi8s+E4HuodpVvUAgQBUwewFwgtHJDSf7gijEzs3V56jgg5gpS/c2wPqQ2UQrQIaQGwkjMSAB7sGYWsMQkqAeqVUV3kiR0ZEoS3Huqu+34BkNN62ckjKgBYOTMVS2cMxLasdLw6pqtqESHaiqUzBlpenMTaLA1pnVvLmg7lUwKARgEOZE9MYm5OAoCnLWpdHZA0K1tOXLGl/m0XEoTcvGLsLyjBvPWuESQ7BGBE17aSCa72YwRIQu+qjFTbm06NKGL32RJMHxxHfTZjWLxKgJpnYfwGCALmTkrCRxZ94YYltMZLI6V0SLGtgnGm+AYKyyoxuV8McjKHyWPl7Yd6GPYhDc+nd9J9F5mL8ybZK4tAEKBz0u4ZHWapbVT1UGgSsyclYc7oBJeFhuOXrlN/b9o4AJP7xeA9ijAgApgxhC7EKGFXPrivS2v8ffs53e8Zw+IxrmcUzhTfkL6V8qwDwPTBsZbpoR5IisDKmalI7WSQX7i2TLI2KNv97Ynd0TM6zOO5kFllzxjSEWN7RJkKsMt3nse4nlGWcjyTYrSHYX8Ad7jwMJbvykemSQoZgoxh8Xh5ZAJiwoPx6opDqBFFOCAtDMrpp4xKMfIpAKTB9+a4bkjrLPFhRYYE4Sf9orHKRooQssAWllWivQ07f40o4qlPd+vq/vbE7kjr3BpLdxZY0mbNGZOAntFh6BkdZivnJpl4yrysJMF1YVkl1hy4qBMwRACr9l3E1P7RGNSpFdqHBWH5rvNYspPCLC4A43pG4VrlLSzcnAcngHkbjiE0uJE8wYnGi+SfFADMnZQkC1mT+8WgaeN7mETJhPTSAUngbtOiiWmQiggR43pGYVzPKOw+W4Lnlu01FKRqRBH/O3IJP02JxfTBsVi89bSqPTJXHERuZjpys9Lx82X7sONMHdN7/9gwvDslGZfLb2JxzhnT/nQCGL8wl0nmSWO4FwDMXrYXosgmAR3cqSVy836QUsNAP2cAyDkegbqUNiKk1F09o8MwZ3SCnF6GBtq7n1u2F9kTk5A9MUmeswKkQ9fLI+v8eQrLKhEdHozF0/rgTHEFSiuqsXBznqq8p9PiMH1QHCJrBVMzTEvpgDfHd5fTwn1cm55LmRpHK8xbnT8BgoBHBsQgKixIPtCQcslcTOvcGrvPlmD76R+sM++Lde1xpviGnHNROUf/c+CCLmekEuTQUlHtlOczINVNefh6ICkCD/Vuhxmf7TYc/yKAAbFh2KFJw/f+N6fx6MAOsjCgzWM6oGMYpg9Ox5x/H8AWBl+gHW19xtB4LGLkxbx1W8SguZvk3MAzh8bjVo2Ij3JOwynWrauRIUHoGxtuSJY7KF6aK2sOFmHdoSLMGcX2OyNlEC3o9MGxqnUUANI6t8a7U3rhH9/lq9YGu1DWWQCQOToBPdqHIjjQgQkLc3Xf0yM6BIVllfKhl8w/LWpEEWsPFGJsj0jEmURzkncq9wmeG/QuADF/aoePQwAeSm6HVXsvygLZnNp8nIC0qCZENMeusyXIPVWsChgQUKeWtZLcXISU8/ONLw/LCzjxs7G8jojAl/svWk7yrH2/EitmpqBNiyb4W84Z1UVBAGYMjsOHlO8hCe4/2JJHTTvlgCQE0N59triiboOufeHyXfmmZuklOwuwbFcBsicm4e2JSejQKlj+fiJQ0AQskk80rXNry5O7jwGtAHnfnNHSgkoWbFquug+25ElJjjXXb1TfVgkSpFwlXlt9GPsKSjEsoQ01V9+ecyW4XnUbu86qF+NdZ0sw598HkHOqmLkx0cYa7dbXxiZiTI9IfLn/okpoEhUPsLos59QPsoDdu0MYtpy4ojrwzBmdgGfS4qlzMnv9Mew/X4oNh4rkd2rrzJovpL9zMofhlVFdkF2bZHrR5jzEhAdjcr8Y6nijKQI+3noW0wdJmuumgQGGc3RAbBjeHN9dPgwq7yN1SohojhvVNaqNJjS4EaPEuvyUyo0fqBM4nCJQWnFLvj8yJAh9YiWB1SpEAPM3nsLSXfm6cUpyJwcHOgyFtbmTJIGRWr6iIdYcLMLag0WY2LsdVu65QF0jAOl7f5oaqxPWiOb0gZ5ROmFABPDkp7sxtEtrbD1lj1CY1a8HLpQxDzBEKCPvXvhNHrLGJGBbZrpOeIoMCUKmQYq+bYocp8QCkjEsHgs30wXFT3LO4tWxiToBGzBeS1lrDQ0BgoBnh3bEAkUdQoMbISW+JQrL6GbdWUv2qnIer5iZgoKrldTD6Vtrj1Lzmmrxzobjckop5bf5Q25QLqx5EGeKb1AH8XuPJOOBnlF4aWQX3UQDjCeAiLromjPFNywLT04RyPriIFo1C0RFdQ3zOZrgIwJuy835ybazVK2eIAJje0TiI03ybqJF/ODbPGRTzF8OAXiKIeQBQEX1LVV72llAlILXM2nxtjRVREjUCgcipH6wI8yJAOauPwZBcbon/ZkQ0Rw9o8N07aO8rtUsbjlxRbfBA8AXey6gNcNf5uqNarzx5WGqJpKmVSCaiABBwOR+7bFkJ3vzBaR+CbzHoRPU7EApYNO0qQDbJYGWo1SpTTGqDtnU5yraXwSQWdv+tLlMK4+MG1b/KLHrXAn2F5RQD4OkLJIvUrnRxISzNQuiKPkA9e4QRh27gCTYlt+8JWsNWWucEZRaatrh5kZ1jeHzxEpAUFhWia+PFOGN1Ueoh4IVey7gN+O7UTWKxCcpOow+F2cv24sb1bcxuV8MWjULxJOf7lZd/8Zm5P1bE7rhRnUNdT3derKYmtA9NT4c2/L0Gqt5649hXM8oXfqj5bvybbkK1IgiBndqjes3b+NTign2o5zTaNk8UJfUPK1za8NDr9mwUK4Rr4zqop8/K6R10mifc4qQ1z1SL5aWzcowJXMQULvIuHIIdze4z5oHEdeqqc6WrowsiQwJQkp8S7nzC8sq8Z/9F0y1Pt/XngBp5RvBCek0yEoW7xCAZ4fG60797hwkLPOrE0DB1UpkaxyjiU/eXMbi894jyZg+mO1Ht2RHgc4vzc7eUiOKWLojH2sOSPUOb2YcjQVIggdJS0LbzJyQTqsAsL+gBAs2nTSthwhQy5mwKBcffJtHbR9yffmufJVPU1rn1pg9vBP1PX/dwtbU2tmUH+kXI/trJUaZ59slGuDsda4Jaso6vrrikGweIRvZf/ZfwKsrD1rOyysCmDWsE96aYE4zEiAIKKmspgoKG49etvw9AYKA4EAHUwBTwimal63UiGV9cRCFZZVY/r2x0FxSUS2vRyxBbOHmPHywRdKA2F2DaFBukABw8HyZ4f0bj15Cbl6x9D278pGavQmvUwQ1AvK7tp7EnCppn+kCIvHplOaptdypAqTgBBpCgwINBamx3SPl9Y9UlyaoAVK/rj1QqNI8FZZVIvMLa8FsBI5aN5fG99BXeqcorb9aweV/Ry4ZvsdsWKR1bi2vEe3Cgpga/crq25b8I52idECqvu3Eipkppv5pNBDlAG3sa8ept8E1ax6E1pauNS8QaH1OzBDbKhi5ecU4eKHMdgSjEX6U2BaLvlH70QgC8Ox98VjI8KVggWWaNALx/3lldBfMXXdM9gHLOVXMNA8QR/0ubZtRHYU3Hbtc76wKysCLjKHxOv8VLUQADy3KlU+fNLPH4q2nceryNZc58eR31S6kzI2qdqMurbylOhn/dEAHW+8JCw40/W4llu3Kx+zhnbDlxBW8tsqaj6G7oNRs0syEVvHeplOW3AVeGd0F/2EcQq5X3bbcbhOSo3CjusZy1Ph8hvBAq7MTwM+X7tWZ+rR4bdVhNApwyO4SLMxdJ2l1IkOCMGdUAlXrbRUC6oIOCssqmQczZR1F2EtiLgjAk4Pj8NHWMyot99oDhWjToomhgFgjihi/MNfae2r/+0nuWer1/x01FnBmpMXhlw8kYvfZEsxaan6weGvtUby97qi81izZcc72WH+wZ5Tkc8qwTgjQa/tqRNHU97E/xQ9QiW+OX0HjAAd+Pb4bMyjis+3nbPnBkUOfAODxgfbWOKWLEQDdvPV1BgNB9GVmcT+B1az3rqKwrBK7z5YAQp1/ErH9f7n/om0Toy1/MzfAziZNkNSuBQ5dKLddT1sLMCSH0KBAB15ffcQtZVoBSzDUwgFg8bQ+WLHnAtZSzGy+hN12XpWRijUHCi0fKACJJsNqMIi7MaFXFKYPiqU6JrsbL93fGX/474l6lyNAYvfXmtpo9wHs/vv9j5Pwyr9dE1ABadyuzEjFsl0FWGpgvn5+eCc80j8Gn+ScYbohWMXqjFTcqK5B3pXrHhHuaeZF+Rrctz4YvccMQ+5thXd+3ENy5l95wNBvT/fe2nfXRyvNQu8OodjjQu5YO+2aNTrB8NDpLZBxGNeqqcrvlShaPOGzZlX+4MIaPC+sueoz5a9oH9oE50tv+roaHkV866bI8yIbvr9DKbAP7BiG7zyYduxuRt/YMNnNgYX7u7bFf49c8lKNjOEuQcfbB1B/QkjQPSi/eVv2LxzZLQLrD7EPd92iWuDwxXIv1tDzEACMTopQ+Y62bdEYl8qrvF4PEWq/PJpfuTvBhTUb8KSwVlhWKUfwcTQc3M2bBwcHB4e34W9rboAgyJGhnoRV+YMHGHgYrkRLcfgevMs4OO5uPNjDtXzB9Yy3uGvhb2uurwMKtODCmofhjmgpd8APquA3+OkAY78DB/SRY3cy7qJP5eCwjKs3bpnfRMEv7u/s5prcHfC3dcjXAQVacGHNwyARodpwbKsIEAQppZHJfUblZo1JwOjurp0SXcWYpAhkGCSGt9oOw7q0Nr/JBgIEAT/u254pjJH0NZ5KoeJvC5KZ6UEAMKl3O0vj7+m0OMM+twqHwH6nAN8I0gGCgCwbKY08XU9Xyiff4C3U5/MFC8/b6QtXkJv3g+1nBQCT+rR3uZ0DBAGTercz3S9Y7bNwarKl/YIFZRo2WvnDEty7HpN3zpuUhEwX2sxTc8yfcoIScOoOL0CZkaBfbBjatGgisXjvzGdSUoiAKgJlXM8o2dHxD18dxxd7Lsj3j+4egdcf7IrdZ0uQe/oHLNuZL6fdmTM6AeN6RlG5faYOiMbs9Hux5cQVKsM6rW4TekXhy/0XTYMlNhwswsqMVLQIaiRTRhDyQ5LOw4z88/n0TnhkQAzmbzyJZbsK5G96qjYtz5YTV5D1xUHLFCECgCcHx6JNiyY6ShVlvZRpVD7JOYvFW08z66iMwmLRlWiZ4VnlZo1OwLheUZi/8ZQuvZUDwJuM6MoHkiKx7lChqn1aNmuMd9Yfl7MWmHFQ0b7lKUX6o5dGdsEnOWdVTOrkmSn9ozF7+L2qhY3Fhk6D7NQL4JEB0UiNb4U+HcJ071S2H5kLVkh0rfrCjO4egeiwYNX7tOMiNLgRM60NAUkNZlZPUv4P16vldzoAPFKbieF8aaWqDwH1upDWuTXWHijEW2uPGtZljiaFTmhwI9W8EwRg7sQkFFytUDHIK/H0kI74aOtpy3PtgaRIzEiLw9oDRdQxQ133aueJA8BTQ+IwtkckKqqdyDl1RTeeCEfarrMlzO93AJhfS/ILgDp+CQM+jXpEJN9N+qb23nkb6OON9HtkSJCUjUZAHV0OgJ8O7IDPdpzTRYuScpV9pCRM166TpL8AqALXZgyJQ+8OYRjbQ0o197s1R7HmoHE6QiWyxiRgYFy4vE8dK7qmzwJyX7yUKUWTzWZq/2gq8fWCKck4cL6MuoYq+0deOxRtFiAIGNmtLTYcLpK/UVQ8q5xjP9yoonIoDk9ow6RvokXuCpDoU8i650/gAQbwbjQoSTW1cu8F5oRfmaHPe6dN9bG/oATfny1B31rhT8nTph1waw5cpA7kpTMGyqSh+wtKsOtsCeJaBSM4sBGCAx14aFEuNUUO4TjKrBUuWBsGWVSUmxYg+fE1DQzAjeoaNA0MwNaTxVTqgydSO+DT7efknJDkm0gZhAfKSlYBUn9S9xmKzYAV6UPavGlgAA6cL8Oe/BKs3Kvn01owJRktmzWmtlmAIGDFzBTde7Sps7JqF0LyztxTxVj0TZ5OSNEGqxAnWEBKrRUc6JBDz8lvrM2O1lzKb9GmKiosq8T3Z6/CIQg4WliOhd/k6RjySc7V3601p6MhY71NiyY4W1yBbaeuUMskY7NfbBg1zdDGo0VYujMf/ztqzFmn/WYpaXp37D9fhmFdWmN4YoT8ndq2VI6PwrJK/O/IJby++jC1DbXtoRyrpFwyHoC6+aAUbMgGHhXaBA5BkAUObWRaYVklUrM3UetBBCbWN+w+W4LSWjLfo4XX5EOe7ntQ109mwiGtHUgO0ZLKaoQHB6J9WJBunjgAvDmhG44VXsNSctisfT46PBhTF+/Qlb90xkDEtgqmBnCR9SmpfYjq27XrHCFApZXvECQBRZlmLnN0AoqvV9XlYYVEJD743tbU9Tr3VLE8pllz7rfju+GnKbHyv2lpnZT9FRociD6KLBNKIZSsbYQoXNs2RgdspWAK1OVWJe1EGz+CAHlsstamLSeuYA4jPzbZg2jzRJmfk1BfRYcFUddsVwL5nh7SER/nnJEPQ2OTIjAjrSMzlZmnwKNBbcDfokHn1Z4YyOBVar6IJiO1k6R9YGmnzCYKWYB7RofphEmySWw/fZW5gCvfAYC5YRBh5UZ1DQ5eKNNpF8iC/O2JK6qw7e5RLXBIE55O8sfRNnRXyE+N8r1pU36xFlplxJC2DkRYJZv292evQiCCjkZ4ckBK/k0ENNppGwB+8a99Kq3qpN7t8Mef9NLVWblR0sZfxrB4vF/7LuW3rJiZouJTI+UAMGyPAEHAK6O7MLVcAoCe0SHYV1BGrTstnZi2TFp/advDDMoUNxOSo+RDk7K9tJus9r1Wcss6AMwZo97o505SC3DK+WC0iZrlJXz2H7upVA9C7f/QvoF8h9U5YzaeWGD1IQDTfLXk+Z8N7aibL8p5Z5SKjjWGieBFDki09WtCr0h8ub+QOZ5ZGhhljl4r0K5j2mT0RIDQUkCRwzKrPx5IikBsq6Z4/5vTKq4wWtosZXtpoZynNEESoI8lYikw2hvIHsXKwakljKeN48KySszfeNI0pZ0Wvx3fDT3ah+gOSd7OAcqFNRvwpLCWm1dMPbUZQWmOMlrIyL2sawumJGP20r2Gz07pHy2bGFmYOiAaS3cUMDUxF0orDRnMzYgilZsKAEwb2AGffWeNiZtM+C/3XXSJRV0pTCq1liSvotmzROP1/dmreH7ZPp22YFtWuqVcjzSQ55Wna9rpdcXMFOw/X6rLjRggCHh3Si+qVvVXYxNRI4qymY0ILyv2XKCaK8BYyJWwSwhK6p5/tQLPLd1n6BKgfIYcEL4+UmRIhkzDb8d3Q6c2zdmaY8Y3qA4mczep7rFqZhUAZI5JcCn3qfJwpYTVsQpI/ZObmQ4A+P7sVWabK+urvE7qcKzomq3xbNSHVrTitHGVNSYBz6RJ/pEsy4ESDtBTzWUMi8djAzsgJXuTlU9RgbZ2sARHMxDN4hur9fl3AclE/1WtOVCJqQOiTclzR3ePwOMpsbI53pU8z6tr+10pLM4cGo9B97ZC08AA3VwCJMHnkX508yggCXMDO4brxq9SiDNSRADA33LOMDMvWAVrfHrLDGpV/uA+ax6GUcoWFkTULU5mCyJTEBNAzVeofdbKaYQlqAGwlBLFbCMR5f+R8Ol350zLJCBJtF1Nd6NNeP1QcjuqwKLFa2MTMaZHJL7cf1G3eRM4IW1GrqY7IjlEX63NccfKV8dKhVMjioBIPzG/tfaoSntHhBdaPZ2A6UB0wD57eo0ommYY0F6rEUWq75ESNK0swbGia/hpSixy84p1z2vHofa9Z4sr8Jf/Hdf1tdXPFgGdr49VkDyvczUaPjtjSxSBBZtOyWZGI9D8L50Axi/MxdT+0bZIsWh9eLa4AinxLRHezJzaiDa3erQLlf9/SUW1aR1YvnYLN+dh26li0+dp0K4dc0YlmKbKMqqfUeYGFknukh0Fpoek9YeK8LP7Orp8oAWATUcvY/7mU6ocywu/ycPCb/KYQ8EpwjADBitjAVnTWTlyyRpg5EtsB6zx6W8+azwa1MOIDAnCA0nejcQEYD9juUlRgmB6mw4uPGL7WYdgbbE2gjLh9RcWBLUAQZAEtX3SKdVooSypMBaYzfBRzmk5UbNdGpgAQUCf2DBVNLISThF4Z8NxxLYKNsxJKcC8P0Z2j3ApMssVbaORoAbAkN196c58FJZV2m5LhwBsOFSIHWdKdNfsfLaZJsvwWbEuSX1hWaWlhO9aLNlhQVATJD8sZhk7CwxTN5m1q5ISwVVqo+DAuq0rNKiR/QIUUJrm7UK5dszzUbokK1rV1fsuGgqSZoJAq+aNmePGzmHLyrUAQTDU5JM1wI5m1+4QO3Ch1OYTnodPhbUtW7bgwQcfRFRUFARBwKpVq1TXRVHE66+/jsjISAQFBWHEiBE4efKk6p6rV6/i0UcfRYsWLRAaGoonn3wS16+b5230JmakdbR1v3ZguTLYREjJt+sjMBE4BMk/ws5gmTogGqsyUk3fz7o+pX+MLGA4IPmP0PBIvxiEBrMXa4fBO1xpGxLSDcDSKbq+feAUIRMzamlgzPrjldFdEBkShMn9YpCTOQy/qtXQKUFOkXGtmjLrOWNIR9Ow+v8evoQ5oxPcMt5YZTgEKUrQVBNjcI20J2lLq/V9dmg8Pt1O1/imJ7SxXA7rPinYIQnPpMUZPk/6y1WybbNHnk6Lw7bMdAy6t5Xtsh2C5Je3LTOdOtbIPUpKBO2YtoqK6jpdWd/YcNP2n9rfdR8kq+uvE+aH2uEJbVyux8iubZnXHAAeNeCPrFWy058VpEAKltA8qXc7jOja1qW1PEAQbNH5kPHRp0MYtT5W1wD5fkh5jedOskfF9M764/Ih2V/gU2Htxo0b6NmzJxYuXEi9/s477+C9997DX//6V+zYsQNNmzbFyJEjcfNmXV7KRx99FIcPH8bXX3+NNWvWYMuWLXj66ae99QmW0DM6DJN6t7N8/4whHeXFiyziuVnpeHpIR8ubAtGqzJ2UZOnk6oCUmJmGpwZ3xDNp8ViZkUq9rjxNOyD5Irz9UA/0jA6jbvIOAB9P64OlMwZSBToBwOzhnZCTOQxLZwzEtqx0zBmdSP322cM7MRdrhyCFd88YQt8AfzO+my2uJrKRTe4XgzPFNyxp4EgfKF8jCFIbLZ0x0HQh0xIzEsFr6YyBWGkiDAcIgrzgRIYEYWyPSN33kvIjQ4KYfTV9cCyeuS/esK41ooge7UJNBXTSjr+d0I16/f8GxWJVRqqung5IVA3TB8cZ9tloEw2fsj0n94vBbxj1UL43a3QCBnViCy/PDe+k62MaiM+acm6TcZCTOQyT+8Wge7sQwzJI/WkaKTOtVsaweGq7vjWhGxZOTcb2rHS8OqYrIkOC0DQwwLI23QH13GCNNdKHWudt5Zi2srFr50RkSJDhZuyAtE7Mm5Rk7YM075oxJI5J/aC9N3N0AlPwDBAEPDe8kzl/HIABceGq3yb1bodfj+/GfNYJ4IEeUVjNWKMnJEdRx8bUAdHYlpmOZ+6L1wnNwxNaY3VGKv74k17M9UH5basyUvH0kI7ye4hP78sjE5A1xtpB7jfju8ljSHswJWPMbA0gIOt/z+gwTO4Xg221e6gV+Fv2AsCPAgwEQcDKlSsxYcIEAJJWLSoqCr/4xS/w0ksvAQDKysrQtm1b/P3vf8cjjzyCo0ePomvXrti1axf69u0LANiwYQPGjBmD8+fPIyoqytK7PU3dQUDoNkoqqrFwcx7ToTo3S3ICpiWQJWHM20//IPueEOfwVXsvqqJ+lBE1Z4srcOBCKdVnxogaQuvkzop4NEp4O/Ofu1WRnsroIlIm4Usj/DnMCE3GfcprAtSRWizHfOLEquRbU7YjWQ9E0KOUjKLiaPcrQ92VbfTBljx1VKCg5mUzikxaviufGRZPq8fyXfmq79WWr6wL6zprDCmjYpWOyEPubYWtJ4tVUZFpnVtTo8Ro0YLaemi/4Wf3dUR400D0raX2UF43a09WJODH0/qoKAtY/T0mKQKLHu0jtw1x3hYATOzdDiv3XNCNVzIfaXPFiIrDrB2UHHQHLpTKwSNKjiyz/iflmkW7AgyeLEUZrMhoM/z+q2NMnj6jOaFc55SBM9q18OfL9mHHmavyczQfRy1HG239eGV0F+p7zOqhXKuMvk9Jz0QCS1h+iqyodDLfyHtpvGlKKCNZaZGRyvWB1Ses8a2lGdGCBMBon6GVpf2WfnFh2HW2hMoRqQVtDND6wVtBBg0uGlQrrJ0+fRrx8fHYu3cvevXqJd933333oVevXnj33Xfxt7/9Db/4xS9QUlLnR3L79m00adIEn3/+OR566CHqu6qqqlBVVSX/u7y8HNHR0R4X1pTYX1BCdQwnwpqVQaLkn+lTu6go/03bCGjCmDLKzGyzVr5Xy/nDqqOZAEjuM9rAWBw8Ru3Bmty0xYXWjtooNQeA96Ymy2Ury1TeQ1soWCHvtO9XfiMAw+fIs/M3nsKyXXR/JOXCo+RKo22y2rrQru8vKMGHW85gfS0RL0sIIpxiNE4toyhZLXccq6+VbURoUZT8U7T2pH0Pa3PT9plWCJw5NB4vj0qQ68OK1FXyQim5+2j8Z6Q+ykOJltTWal/Rrin7v31YEJVLjzZfF0/rgx2nS6gExTROMKM5bzYXAP06RMiJWfx/tDqwBAZaP/00JUbmdLRziDGbK6zrtCheAZLJThvxq/0+rdBD2kfJKWf0/aw10u5areQLtLpfkbFfUe3EgQulTFoeK2NE+41m36YtTykMKwmArRyS3YkGHw1aVCRpYtq2Vdvp27ZtK18rKipCmzZqH4B77rkH4eHh8j00ZGdn480333Rzje2hZ3QYnh4Shw81YccigLUHCjG2R6TpBNDyrw25txVyThUz+WJofi5O1Pl/LN+Vrzo1Te7XHmmd9elFIkOCcKP6Cl6vDTMXUMdZpAXrncooR1ImbfE14uAhoPFWae/VZpFQLoi0d0SHB1PrPWvJXlXZRJNBIzol30XjR9K2lfL7ac+x+IVIO709MQmzh3eikpYSlb52vLD6TFsXJZQnb2LSpJ1gSRlrDlw07P+mje/R0S4oowXJIpybV6xaaEn5Og0O6GSoRqTHpZX6HJAszrq/PNKTKuiyInUrqp0y8TRNY0XrB6OxqgWrr2ibk3YcAnqtMWu+Bgc2wqtjEzF9cKyKWZ9s7gLqyFhZZdDGIHlG+w3PpMWrsrYAoPJtAaDOEVq7EMJmWj8pybdfGdVFr01WjHnldfIe2hg16p8b1TXUqOK1B4pU/c0ah0MTWmNsjwhDoYdWL6P1dPe5EttrNQ1mY4+8V9vHrHHKGiPaeny5/yJVK8haf3tG182tntFhhtYhf4DfCmueRFZWFl588UX530Sz5m1MHxyHj2oXHyXeWnsUb687ijmjpE2Hdgon0WDKUOotJ+tC0J2iZEZK69xafob4uWjfl3PqCmJbBes2kiU7C7BsV4GOjb1pYIDu3dnrjwGCtMgqCWCjw+iD/qOc0xjbIwL5VytUGhEjMlraN7FMNtp7tQuukuVb+bxTBLK+OIjF0/owSSJJ2QkRzeX6x7bS198hAM/eF49F3+apqFiUbUX6UqttodWLvFNLMEwWoHG9otC2RWNdvQMEAcGBDmqfnbt6A7PT1amiWJqK9zaeVIXiiwA+3noW0wfFYX9BCXaevYr+seE6kw2r/6cPjpUdiWn1zc0rNhTAC8sqdZo5uX2hJ7plbR7QPJ/1xUGIgjrSL/OLgyruQ+0GQptbDkAWNLTzVVdfxXjQjlWtMKfVNJsJZSRbh7b/CciYT+vcGgfPl+n6Svkd0rMiLpff1JX34dYz+CjnDOaMStC1hQCgovoW8xmWViUlviXV9EfqrIwaJL8lRDTXCbhmpl3l/Jy3/hjG9Yqi8qaR6+3CguQ1y8x0SJvftHYG6uYFIGmLtWuAdhxO6R+NpbsKVGOVrHtawUybKkt7L8udgtTJyqGAJpQlRDRH5oqDujqStUypDdR+Mxkji7eekdc4msZN20/Kd9DWvfKbt/DyyATdN5CDlT/irjSDauEtnzUa7DCwKxcCq2S7ypRSAJ0pHgDG94rC6n36VEqAOTu9sn7K9Cx2QDYlVt49JZQpSlj+Pcp7D5wvZTKcPzVYr90EJP+JoZ1bY/Nx4xRGrtSfvHtbZjozL+vYpAisOajXDhtxKhHBluanRdNgKevCOoXOGBKHls0bG/Zp2r2tVAeFSb3b4aWRXUyZ7hdMSUZ4s0AcvFCmI+dlpWNT+rW8vfYIte+0bUI2N6XwZjZurMAsg4bSpGo2X8l4YHFhERJYM+0YK8OA8tDDwtT+MVRTOvkOQJ0BgFWelOM1Bkt30HMf08BiszfKxcmC1j/OyL+Ulc/36SEdMX1wrOE4cQjAyG4ROg40lv+mXL/a/7LK1aZ9cgXPpXfC/E2nLLW/GXk6ueeBnmofcFrmG21fGY0TspaZpWBUPQO9Ntgs5RorP2rWmASEBjUytdx4Gg3eDBoXF4eIiAhs3LhRFtbKy8uxY8cOPPvsswCAlJQUlJaWYvfu3ejTR3Ly3bRpE5xOJwYMGOCrqltGYVklVu61nipHeRJiacmUcAjqEzEAtGNouliCGiCZCaykT3GKcIkdG1BrRIygjATbfa7EmLdKkPiYWBQbThH4aOsZajuKIiwLaoD1+ivfTYgfadoWmqBG6mVUB/JfhwgsqHWQ3nLiCmYbMLwbnULNhCFArdEFJK66XtGhpgvv7GV7VYSiSnJeIw3InnMl6N0BlpjLRUB3ov/1uK5u4cPStpu2TBHW5ysZD6yxOm/9MQyMCzfUjr264hDendKL+g4r37t0J124EqHXYhmV54TE52YHSiJUpeZn3vpjhsnjacIA4aMjWnUWzYkAYN6Pk/Dyv/UapQ+3nkaTQIcpDQyNrFYZScia30bfU19BDQDe23SKWb6y6ABBMCVPB4Dnlu3FjerbKgHYSl8Zlavlt7QCUp5yL/wk5wwzWG+tQSL7ueuOqTKW0Cw3/gSfUndcv34d+/btw759+wAAZ86cwb59+5Cfnw9BEPDzn/8cb731Fr788kscPHgQjz/+OKKiomTtW2JiIkaNGoUZM2Zg586d2LZtG2bNmoVHHnnEciSoL+EKV5KSXdmMJ+qpwR11g84VRaoAa8SLRnVxB5QcZ7l5xeZkuCJQUFJpurE8NbijrYlg9J1W28CM+LG+cAIIb9oYACyRp9aIohxNZQfDE/Q+jQBQfK3KNLxeuUhaIedVPmeFOoWGGlHElWtVzOt2F0SzdtPOVya9hABp42Bcd4ow7R+SscLVeSiCzRPmhPvGKu0VrPlgJKgZlacUmFgcgiKAssrbzHLf20gXeMxADsmurO/pCW2YzxhxRlqFkr+SaN3DggNNnyOCDKECYvklWqF7cdc+QQR81qFtyoBoU1Je7b7mj5QdBD4V1r7//nskJycjOTkZAPDiiy8iOTkZr7/+OgDglVdewezZs/H000+jX79+uH79OjZs2IAmTZrIZfzzn/9EQkIChg8fjjFjxmDw4MH48MMPffI9duEKe7eWJ2r+1GTqfQIg+z4o0Tc2XPeb9jktZlL4mWiY0j+G+ryAOv4nARLBrd0JSziaACmMfuriHXjdID0LUJc+yIx3a/rgWImzzKRSAiSHejMuMSsM7kbEj6x3281eYGfDCBAE9Iu1V5+s0Ql4bvi91OvpiW1skZ0qyXmN6iAA6BMb5jLzfYAgYHgincT2ueGdZF9FJRyQ+KhocAgwbDftfGWNszmjE9CnQ5ghIbBZ/xBePxavIDEJGz0/0yBzgTs2WYcAJh8XbT4ECAKmpXRglidC4uaicZ6RdmdxhJExbxW18rQp5oxOQGRIkEtjdGiX1tTxt3BqMrZlpdsmd1VCQB1/5YIpyXh3Si+kdW4tR8CbQSsA0/pKyTPH+vRf3N/ZtF0cAB7qZaxwIQI+bXmb2j8Gs9Pvtd3+NGuUv8CnwtrQoUMhiqLu7+9//zsAyY/tN7/5DYqKinDz5k3873//Q+fOnVVlhIeHY8mSJbh27RrKysrwt7/9Dc2aNfPB19gHSzv2dFocssboyRXJoqbUlrE2/MwxCVRVbmRIEJMcMkAQVKSdhBD05ZEJphsvIZ6kEcASVvOnh3SEIACr9rFV09SyBYmjqk2LJjozkNFcpKVbUi64yvbsGR2GuQbfSJiwXx3TVbqX0YYigPceScbSGQMxRpNmbHT3CBUBKul/KwKNCEkDqDwVj1EQwCo3YuV30RZVwnau3Sx7RoeZamsJOWVuVrocUaUlfJ7Uu51MREnITrVtoYWSnFfbX8p3z52UJEeBaUkzrazLr4zuIvcfWfzImHhv4ynM+Gw3Hkpup2rn7ElJzIV/zugEud2szFftOCNz7Jm0eKZQwXoPq89ZpKGZYxJU76Y9zyL/pZnPJvVup/qOqQOijQVtQfIJ6hkdhlfHJmJbZrrhfCB1enN8d+b4CRAEjOjaVvVdtHZ/5r54ZI1JoI75LJPsHICUCzi3VlhSvkfbBqQvAXZ2BqNNd0TXtro2yJ6UhLE9pIAHJbkrbV4bzYEZQzrKEaHPLduLWUv2YtDcTdhy4oolwmCtAEzrq2fS4uU5zyI8n9Snve5ZZTuSb/7zI8mqPqONV9r+R/Yi2lpitkbQrFH+Ar8JMPAlfBlgYETYCsASn40VskPae5XcXFa4g5S/f7n/IpOPjUYAy+Lw+c2EbggLDpR9q7RO2kpqCJaT9oIpknZRSxTMImok7WrETWVErEmwv6BEl4hc2XesfmW9MzjQgbUHiqgJignHW3RYkI63y+y7WBxzhhxQlATrCxkEqOQZLYGn0T1mvEZ2+4tQSSjnAc2Epgy4IeNUy6dH40fTtiNtntnhnzLi51Jyehm9x2qfa8swet6M7BlQczNqv0M71l4Z1QXtQoOoZNAsGI3LxVvOYB2D38+M88zoHhbZM6CftzR+Lytca2Rc/HCjihrsI6COY9POtyjH25YTV6iEu4QvDWCvS7vPlTCDkIw4N804DFlE5lbb0Wy8mxE9a59fuiOf6tOnbH9vosGR4voSvhTWWAKINorTDFYWDFrIM4s404yQUPssYEzeaiRohTcLVIVvs5j+jQRbZei3EeGrEWjkk2ZtquR+Ui4URv1KzJNGBLlK0ktyGhThGnkkuc/O+DDjeDN61qgOdtrXbvnK76QFKtCEZVY//WpsIpXr0Gqd6/stRgSfVsvbX1BiiatNW56KzwzWhF5X+tWs/qz77cxxV8bOtlNXsOibPKpAaOc9RmsuK3rR6rpv9F3a9cMKiwBZl2gH6vlTk6kEylbrSEhwPTlnzMihlc+vOXCRKpQ+OiAGv3vIfkqy+qLBR4PeLaDx7SjVzVZhRFRotPFqn7OzSZNnrTxDi4YTAFmroXzugZ7074gMCcJDye1UkUMTkqNsCxd22shKmwrQk8PSvjdAEHDgQike/eg7w3pGhgTJBKRazY8Rj5KVvrLz7UYkkVaIiOvTvmbPsaAckyp2eAE60xjA5h4kXIfa9xm1oxnsfIuVvjUqz5X5QBvTY5MiqUIvWZ9c7VdX6ujp+4mJkAhqAvQEuVbfA9DJegGpb1kaPCvrvtl3RYYEIb5N0zruOMXLWOuS0gVBq6W6XnVbHgOujCXyjCscZlb7kDUvWaTCWrM+AMxKp+fG9hf41GftbkdhWSXmbdCH6o/s3tZtqlhaiLUyqsfVqfSHXgAAYbFJREFUe+0+Q/MxIvfTniPM28pyaFQnq/ZexP4Cfcg/raz9BSW6Mq1+g7I+NELij7eeNfxeYhJSctWZtW9kSBDCmwXqBAkWzUHWFwexv6CEWhYLRt8eGRIkZxFQYvmufDnII3ud+fcYvYPVz6S/7I5H5fuUzSaIYGbjYPkNutqmRnVy1zw0a9P6zmMyptu0aKKbt6+M6iJr0FzpH7vtYeX+wrJK/Gf/Baw5cNGtbfDOhuO217+sLw6a9o0WDsZhwm47KO8h41+Eek7TfM3Ie9M6t8Yb4xLx3PBOWDEzBWmdW3tsTzBDfcthPQ9Ivq9KX7inGUE5/gSuWfMhWJF6Gw4VyROLBavqfVYaHBLVoyyDde/usyVMbdcnlAwMSroCZT2V2hqa3wYtLZJZKhwWdQIpS5mChEB7QjNqo8gQPUP5U4PjDO8nIN9LzFmAXoNDe04J1kmYRXMwYVGuLmG20VhhffvaA4XoFxtmmjlDC+33FJaxU/zQTDWAMfEqGY/hzdhj3yjdEe1+0k+0VF1OAOMX5mLeJHuaWit1Yn2L2Xg0L48u4Gu/XzkujN45uV8MSitvYW7tQWPehmMIDW5ETclmNp7N2oO2bhitTWS90KYcmzHE2hxVgpZuyewZ1ljTDlxSjgiROnfG9YyyNL7qOzYe6BnE1JpriZ3nbzzlUjvaGeuufKvVdIxmY1riaJPWIFomDcC+md6T4MKaD0H4f7Rz1ynCcGAbqYa1g4uVBodmjkvr3JpqEpqtIUQkKCyrpHLckPBnVk42shjT6lVRfUu1YDhFIHOFlAqnaWCAjsFfSTmhFWhyTl3Bws15uvqRExYhPzQyRdPSmCymEOnSTBha/x8SjaRsXuVztIWBZvpN7dQS0WFBTDJfVpotmhnByAxIYCYw09oNME7x44Ca/JNoJMyIV1mmc2X7NQ0M0LWzIBiH5EeGBKFfbBgzQ0RmbTomV31ufrheZdkNoGlgALWc4MA6Qwir355btpea7kk7Pmns86xn9heUqA48ZP6smJliu52N6k/SWrFMV7T6BQc6qCnHaHMUkNY9mq8dEfi0IG3A2rRZ/WA0z2lr/qp9F5EY1UKOJGXByIxpVqfZS/fiQmmlvAZrBXdX29FKHYXa94uwbkqlrfcA3UWB1j9WXIxoa1DTxvegT23Am6+zGyjBzaA+RGRIEO7rQicVnb1sL6Yu3oHU7E14e+0RlbqfpRpWmqcGzd2E5bvyZbW30sjjhMTeTFMP04g7xVqBSat+ZhGTPjW4Iy6X30QmJSfbB1vy5G/Xmp+cAJ78dDeVkXze+mOYsChXJ6gpKSeUpprJ/dpTBTUCcsJimaJfGd0FAKiM8iKAwZ1aUU1DBMt35SM1exMWbz2jEz609AHEx0rbdwDd9Lv1ZDEeWpSLh5LbUScw+bYPvs1D9jr9Jqs0BxuZAQmUY4yV01D7PWYauG7tWlA1EkaCIM10nvXFQaw5cBEfbMmT248WyWrGoPvBljzd+NI+vvtsCfWa1gSnBOnX2Uv3Sbk+Bfa3kDYuKKGbedYeqGPLJ/2mhVOUTHdzFHxXWlPX/oISZH6hXkPmbjhGfWbLiStSe1I0FAVX9YTTVsPVaOuSCODLfRepZsXL5TfxULKaImZCcpSUEJ1SvghJW6XFvHXHdOMlNXuTTlAB6kyTX+6/iFTK3CTfMWeUnvpDWZYDdSZOciigYW5t3Vim8dy8Yny5/6KpLyZpW906DmkN/v1Xx3SuB6wsACKARygCytz1xwzdN+aMrqPcIOUoD+BGbhCANG8eMpiPrH0vde4mfLAlz3BdN9JAOgHMWrJXHhP1NeW6E1yz5kMUllXiW0ZKI2Vi4Q+3nsHinDOYOzGJaXpg+TCldW4tOVRqTijaOaBUD1ffduK11WrCWVEENh69hI6tmxlq7QDgevVt+oaJ2iTJPaWgAOIf8cbqI6Zs9Ks06bAcAFbMTJGj3EhZ354oxqZjl7FEkXCcBjPS2B+uVRuy5OecKsbMofFYuDkPTtSZhgglBitrgAhg/iPJaNmssSpkXatNnFPbd6z6OUXJX2/xtD546rPdOiGWlWarRhRloUQbTEAzAyqf2322hLoAZgyLx+BOrVXfQzN9KnHwQjn1d5rWAZD6+83x3XTjkiyuSrDanWUG3Haq2FCwl+smQJewXms6IhrkpPYhaBoYoOcFFIG3JnRDaHAg1Q1g/sZTWLqTnqrpw63qhNosR+kaUUSPdqHIyRymo0aYv/EkdW6IItA+NEj1DCDRPNDaM0AQ8PXRS9R67jlXgrE96qKzBUGgRrRq1yUR9JRFxBStPU6s2nsRj6d0oLaBAHoKPavjBZD4Ei+UVuo061kaLWtS+xBGCbXlKypeWFaJnQyhX6ytm9IKodXOa0F8MbWapbTOrZGRHo/5m/TjeuHmPCzcnCe/Z1yvKGYWAAHAjWp9lgeS9o30szaS3CyPdI0o4q01R7HuUKFuLTI76CnL0O57oiilPDzHWDd7tAuV/79RCjjaq62a+D0FLqz5EGa5LZUg2q1VM1OpavDc08XUU8InOWcxNKG16cAH6swsocGNqNdfW3VYp8bOnpikO5Ua5QV0itD5pbkCJ4CCq5XUDdMMSk3Dl4ycqB/lnMbYHhHMyewUpUVPKWARc62RqZAQ9Sp9upbsOEet+4JNpzArvROzDjWiiODARphLieBiaRwAdi68GoPOIOmQaLfcui3Kgq+Sf88VsB5zAggLDrSUkJwGQZDGd25esWz2sjP+BEHKM7hOkbN1aJfW+EZz2CLaC4CRtxLAa6sPI5NidgSAJQxBjWDOvw/gsyelvMeswwRxQ1CaupbvyscciplPVTdRHVWXm6dfUwju79aWmU/4y30Xcb3qtk6Inavx+6P5iBmll6IJpRXVTkzs3Y6aW9LFIQhAmqfR4UGYvXSv7hpZV18dmwiA7c4i16N2bUiIaI6dZ6+avpuMoe9O/2Can5jURen7OapbBNYfLjLVcpL3bDp2iV13sPNGi6K1ZO4sKPN2Wl0/lWD57gLAkp0FVBOq0ny75cQVy5pg8j5fZjfgwpqPQAQMGlgTXxSBf31/XjfAXhnVhZkAmggdVja5imppqbxYepN6XavGZmntjOCAtGnWR1AjeG6Z5IMxdz2dzJIGJbFrYVmlYZL3imonnq3VntGg24hrT5vtw+gnL23El5FPFyAl1p6V3gnP3hePhd/Q63DgQinG9YzCXx7pqeKeovkE0kBOpyKuUrVmBDOHxsvpkLRFLt56mkrk606QzdNViCJkjSJRdFitrwBgJqUPtIKa7p0GdSGmynnrjBOVa7HlpBQl2zM6jOnbRtIdERDNrREESGm8lDAyeW+gJDAn+OrIJXx1RK11EyEFjpCDAWv9syOMBwgCKqpvYcVe9wpqgCSMGh14Fiu0nJEhQZKWnTFHgdrxx7A2sGAmqAF03891Bn1Dw44zdE2fGaLDg1S0Lk6Rrhm1CrJ+9masM1o8OTgW0WFBhvulFu+sPy6bx80O+AKkQ5pTpGfF8Da4z5oPwDKTCZDSlWhTNimxZEe+7rlzV9nmOqcILN913nTgE8dglq1fC6IStpusWASw9kBhvQU1oG5xsFKUA8A8RdoWwDwZ+DZGgAIADGI412479QPyr9ITAU9LiZXpI8gGatQORAsZ2pSu6QQkPxfiEzVryV5ZU0jzCaKBOLnPXrrPsC6DOkmbLC3vpIj6b45mMPJP0oK1qCnNbXbqKwIICDBrSXsgpsr3GLl9jfD92RIs35WPCQtzqde1vlpWkt5P7N1Ope39z/4LhuuAK/1NxrPR+jfWJC2Z0t9zQnIUnvp0ty3tCA0k8EeJ9YeKsO1UMXP+iJAEC4LEKHMydXfPkQBBwFOUaE0aDFxSXYIAoKCk0pZm1AqIdpeV31aJD7eewUOLctE/ju4DSAPZt6xYtWYM6YiVM1Pxq7GJWDEzxafBBQDXrPkELAFn/pRkPFC70OZfraAKCrQBtnRHAVOL4gCYPjBKZAyVIoTeXnvEsgqaqIStaHAIREiTzM4zRrCyOAioS4+jRFyrpobPGZ2UWzdvTP192a58JEY2p177JPcsPt1+FtkTk9C08T2miwVpY2UUoBYi1EJI9vpjgAA8kxaPyf1i0KpZIJ78dLfhe6z0AzEfTB8ch48Y/jM0uGq21GLV3ouICGlieM/U/jF4sGcUggMdtrUYZggMcP+5NjjQgQPn7TssF1ytwGff0U3ngN43z8xMBwAr9l7ASyO7WDYPu9KvxDxrdMB7qHc7rDnI1gw90q+ujx9aZK2PBQHIHJWg8j2Tr0FKBK/1hQSA97/Jw8xhBpr12pcbWUncDeJn1qN9qLz+WpmPHz3eB8GBjbB81znbuZlpEAGU3Ki2fL/V8UK0u1bXGadoTzNIlBInL9N9ZgkcAFo2D7RNBuxJcM2aD0BLrk18mQDpZPu+gaCghQh6xA4APDIg2nSSjO4egZdGJjCpOLRQRj+yIo/MMKV/jC4pOevw5xCAqf2jmWXNGhZvqEESUWfi1YL5Thibdr/cT/fjIIsLq1xiQi6pMF/onh0qJRWmJUs3wjxFpNbwxAjDZ61uuO+sP245epQgQBCQOTqB2hZ2D/o1oohFBkEAJHlzSnxLtGlhLNSR9yu1NFmjE7B0xkD8dnw36v1xrZpidHdjrc9bE7oha0yCKkrY6DsLrhprsQUAvaJDdb9/tv2coU8kza/mKRNNBQkgsiSoCcAUg/kI6LVVQu1mRwKTaO0iAjhTXMFM2g5Ih6HYVsG4UV1j/cAgAuN6RWGexmIhCJIfXZNG9NXLKQKDO7VGxjA6nUaf2DBDLaHRv12FAGBgx3CItW+0Oh+DAxtJh61B5hor7fuyNJGdgDTOwpoGWiqDrAPaMmi4XC654NhZZwApVZSVO0VRekd4U/phm9R3zugEWwTm3gDXrHkJ2oiZ7IlJKsdMpT3crmnRAaBVc/rESe3YCst2FujKS4kPx4iEtqrE22bmEjIZtNGPJJqQRLKJMD9JpXRsiVnpneSk6UpzJnnWAeCp2jROALB0ZwG1zEGdWuNHXdvi118ewd6CUt11cqLXwuh754ymO8oKkAg3PzSInnrjy8OG314jiggLMneWDwuu69M//qQXHk/poEpkzQIxN5Hx9Mef9MKYpAgs3noGO05fVb3T6olXGQmlJEllCbRK38ATl66pHMCH3NsKW08WW3irGqx6OqAWRszGsZK7S0sMeuB8qe5+kqd2P2VsETw9pCMeGxgLQDJDKpPL0xJrA6AGBcnvrP3vPso7nbV10rY9jQXfzC9SicvlVab3Te0fjdnD78X3Z68aRlxP7N0OL43sgo1HL+Fy+U0MT2wrrzORIUHIHE3XdL219igcgqTp332uBN+dUTvkO0WJQqVPLN2vifYbIURWklSTPt1y4gpe/jfDd7h23UiJT0CLoEbIXldXXwGSgzotOh+QrCQXan1iST9Z9e19bWwiSiqqVQFMym8hWmNaajgat6RSgL9RXWNeAQ1CgxtR01D16aDnt6R9y5haAtvQ4EZyGSx8f7ZEHidW1hkCsp9ocyrTHpuwKBeZoxKo18m6ZYV82NvgmjUvgMWhRcvdBtA1byyQAffexlO6a0RbR+MB2pF3FWN6RKpMg0bvJQOFVFV70thy4gqW7aoT1GYOjWeWRZyZI0OCENsqWBc9KEDSUrw3NVnOt0kWeBr+33dnMWFhLlVQA+ocrrWcPkZm0IEdw3XcbU+nxSE3Kx3TB8cxv02EuVmR9MvcScYayb4ah++e0WFY8GhvbMtMx4Ipycw60AhQZ3y2G99pBDVSXyVYw05ZppYkVYtJvdvJvoGFZZVYsUfPE2c2vpWaL1YbCZBO1BAk0zqZW6xxLEDqw22Z6XL+SmU6LZa/Jhl3RvQG0wfHyv9Wlju5XwxWZqQiPaGN7rllte4LSjggjX1BYAunRFNBxqYASYgi30VglQKBlDE8sY1pvyzfdR4A0Dc23PC+VXsv4sv9F/H66sN4b1MeJizMVfFFPnNfPLLG0LUtThH467enmdefW7aXGcX9zo+TdP5ZyrEbGRKEB3pGYWwPyd2ElvqJgLiGAJIAruUNe3XFITQNDKDW8WhRuXQAVbgoCKIkDAxLoHNrkrreFkWqoKZ8N6Beg8mYe3lkgqrdtI7xtLnhADAtpQPzXSSYLCdzGJbOGIiczGHy/DHTfvVVRL5P7hcjl/HxtD7M+wkKyypVbciCcj95dWwitmWm4+khHZn3kwCf0RoNrnLdskJM7W1wYc3DMModR8YgmRBKwcdsgE7tH4MFU5KZi7pyktJ4gEjItxIsp/Sn0+Lw3tRkauj87rMl1Jx6f/32tIpkk8AByfRgRkz42urDmLVkr0q4fea+eKpJYt3BIubCNrV/DJ5Ji2cSBj/AMLl8f7ZEtbhsy0rHq2O61sv0C6j7ZXK/GGzLSsfSGQN1pp8h97ZimvMiQ+g5QwG9dsVKIIP8LIDMMfo+05L30khSlVi1t47Yk+XIqzSD05A5JgHbMqW2YTnhT+kfg6U783Wmin9+pzcTEkGb9CENLI12j3ahhtq6TE30pRKE3HPTscu6a05IBNJKd4DsSUno2LoZs79I/z6TFo9XRneR5/+yXQXYckIdPcj6HtpmPXdSEpVcWgtlqjojua5GFOX0VECdr6pqPqfFY1tmOn5VS4Ghfb6i2kmdZ04RzAjwl/99EKO7RTAJgZUws2A8OrCD4b2kjrTD8MLNedR1TRTB5NYk+YPnrrMe3a7sDwLSrkrBioAQ1ir7TgQQFcrWFik1StpcwWSNpPUhIBE5Kw/JpAyae8ak3u1UygNW/6Td20oeE2TsAlAdxD/KMY5OrxFFrNdEzSrXLZYGkuVO4w1wM6iHYTd3HAAmoSoB8c9hDWal6hlgOxgv3irReignCI2K46MtZ7AyQ8/vBkinXFauzHYhQTKlRPuwIFRUO+UTLuG7YhETsrjABnVqZYnAFKhNcTK8k8TYvuIgtcwZaR2pDs2xrYLlOtLSqkzuF4P950uxZIcx+a4Sz6V3wpQBMSpBipjGFz3aBxuPFmHxljPYcfYqtp4sxqC5m6hOraz0RQ4AK2eqAynscPk5IW0YK2amoKLaieBAh9xnyqwEZuUpF3eRIdWldGyJn/Rtj/GMiMYe7UJlwZiVmiy1U0sdL1mNKGKBZnwIAKLDg7H7XAn6dAB142a1qZVAGqKNS2ofYiuPqgOSRm764FiVOXZ/QQnTZEZ+Y6WAIvPE6HtY/QtAZVI7X3KDaiKsqL6FNQcumq5RLH5CZT0jQ4Iwtkck3l53lNruKfEt0bTxPZaJbAGJukJJ1AzUrTdWUkURKE1eRmmeTl2+Rn1eu+Y6AJRUVFPf99jAGDzcpz3yr1ZQv+2h5Cis3KvXJgqgu3hEhgThcvlNrDlwUSZwBqTDg1YYFCH5ubJglnKL9OHv1h6l7jHa/L+E+HZSn/YY2DEc+8+XYViX1hieqD6wsvatnFPFWJmRKo/dLSeuYNDcTbLpc2xShLUAGQMzp5W0Xt4GF9Y8DFaeNNpYOnX5Gn64Ye438pAizJ622OTmFavUzyQUWutnJUKf+JslXC7fdR5PDo7DR1vVaUmcIvDR1jPUb5q9bK/MazVjSBzG9ohUsXGTyav0h3BAH+GpnURW/awA4A9fHceKPReoWsGzxRVIiW+JSRpSzd4xoZjx2W7DKCCJzNa6oAYA8zefQrswSaOmJZN8KLmdrp7ajQ1Q+yAJqPODcUAy92ojXnNP2fMNIz5Dc0Yl6IQPq76UDgA/3KhCYVkl+saGU/vrQlklUzWj9TEkmkzlGJkzOgEXGGmZtBAhEToTZNWywxPo2rT2Ga2Wcs7oBKr51ynWEeEqxwuN9FVbry0nrsgmJWVdjNJekchDlqb7RvUV6hghmpsb1TVoGhiAG9U11NzDkSFBzFyZAHQZM7QwI0fV+v5oLQmCIAUwnSm+AQCWfKO0eP+bPDw2sINhfkfZd5jhU6gkUKWNwVdGSdGztEhSoNb0qRC6nQBeX32YOh/+8V0+luzIxyP96IEbfTqEYfU+fVYQERIJsXI8A8DMf+5WEThPqvUhZB22nKDvS8qUW2TsC6jLsEAQGRKEwRRfVBH6g3dp5S2d68uSHfkqQY4IhbR9i3BgpsS3pFp1jKKJCab0j8GyXfm69vx/352VtYc0Pz1f8qwJIuvoexehvLwcISEhKCsrQ4sW5nw5dmGXYd9MGHEA2JaVjsgQKVG30vFViUm92+GPP+kFQBIuUrPpqWMEAKtqqS2M7vMEyEk//2oFHIKAJo0cVKqJ1bX1219QwtTG2IFDALZlSm34i3/tozKgy/eirr0J/t/2s8xF2gy/ndANb6w+bHnzWTpjoLwwkROkEkrhQrngfX/2KmYv3edSHZVlzxgSh+mD4/DlvotUp3Cg7tBA5C9lfUorbjGfo2HWsHi8NFIyLSmTsy/fVSAHmSjf4wqmDojG7PR7cbn8pmFO0Kdrv50IL1be54AUfahNkUZDgCAgJ3OYrFEzqotV0DQ686cm42hhORZ+k6cqn3YYYY0zq/jt+G74aUqs4byanhqLCclRaNOiie5dRMAkAtacUQnYdOySbfLW59I7YcHmUzrtCGlvgt9/dYyqrVeuEYCkzXx340lsPnbF1hjU9ofRc6y1f8FUKfUVi0Q5Y1g8EiKaQxAE7DpzFZ9uP6e7Z4LFMUkwdUA0UuNbSeOG0j5ZYxLwTFq87bWG9Y0BgoBXRneRBTmHACYhONkPcvOKMXXxDsvfBNRaIDJS8bdtZ7CaQmOyOiMVbVo0kdcdrfbZ3bAqf3BhDZ4X1uwuflYWgQeSIvHLBxJxpviG4WBdbVEIEyDZ/tM6t8Zba45grYXTibsga4cEYFAneqTg0hkDkX/1hmnKHMvvhPS9CRHNLQl/Tw/pKKeXsZK6x472z7AcAcit3TCsLEwBgoBnh3bUbcr1rkftf42K7BUdgn0FZbr6vDull86MZYRfjU3E2B6R9U5JZgZ39VF9Qca2nQOdXUztH8NMZaUVYFzZAJUgEXVW1jxXI4PrA3L4AaS1OSV7k+m9Zgc6b8AhAI/0izbNe+wOKAVmo/poKS7q/V6G+V+LtyZ0w2MDYy0d3pXfQsiUV+69wKzz8MQ22Hzsstf41azKH9wM6gW4wvL/0v2d8Yf/nmDes+ZgIdYdKsSz99E5gAhIKPQnOWcMNwIRUvJwO6mj3AWlmpy2cDsEKQrHncSTIqRAj4f7trd0/0c5p+WIP6MIMmX5boGiIFaEkhI0ny03V4MJraBG6gPRHnHyW2uP4ne1CeU9ORT9QVATUJd+zVP1MSPG1polt9VDeBIAJvUBDVtPFnt9zTl1+ZqsKfmfJi2WEsQcv7+gxOeCGiDNH28IaoDafGlUHyu0Grbea7GsHWd+wGMDY5nZYlRlApj/SDJaNmsskykbjc1NRy/rIm6Vrii+Ao8G9QLsUHEAxGnUmF0fkAaSGXlu31riRitkt4D3BTUreGpwR8NUQ1P7G596WE3vBLD8+/OW6kD4newK3lZgNAlFQA48WXug/szj3oZDkMLqH0q2TuoL1D+FlY3p5hWw6iMCWL5Lz4PorveRlESGbhUKH8HCskosskHIrcX4XlGy+chqH4ztHmmZSNgMVp59bfVhpGZLUamXr9HzIANAv1oaCbPk6+5O5eQJpHY0plpxBTQnfW/hP/uLsHxXPgQLje+AlMc0Jb6lJTJlmi+oNuLWF+DCmheg5aMxG14ipKghKwKeWSDxd2euWsoN6M9o2TzQUKs0PJHNW+QQpHQy7sBzy/bi4PkytwoCAoBnDTjpHKjL2WpV4PYUXPnuObUcZVquNU/Xxd/G++MMHitA0pa4e78XIZkjczKHYWyPSMN7hyq0BvVdK77cfxFTF+/AeBvpvh7qHaWiyDHjHzSC1XeSQA1ahgiCHWdKMGjuJpTeuGVclr8NNgqmDuiAaQPpY/CXY+hZRszQk0IJ5U1krjiI6DBzbZcTwEOLcrF8V74l64QWvo4CJeDCmpeg5OzKzUrH1AHG6VpeW3VYirwxmUVmk2ze+mPYZjMi0O47rN7jKuatP4YCg8i/v+WwhZg5oxMwomtbW5pNFpyiRKZoJ3GwGUQAiwz8y0RI0XLuErhHd4/A00M62u4vhwDc14UtFNOQMSwez6TFY/7Gk4Z1j2jBTv3Cgitt8fG0Pi59e32RNToBI01SVQHun0MkKbaZRvabE1dURNH1qYcrGsIZn+3GlhNXVETCVhLcv3R/Z+q8HmBxfooAKqudhunYnCLqpWl0FRnD4rF0xkDTfcIqnlu2F0eL6Pkwr1fdNg1o0zazAGD/eb3bgxGURL39Y+u/hooicL6kEve2sWaFenXFIcN9hIVXRnfxuQkU4MKa1yFCxOXym1hqgfZBhMR6/daEbtRFySGY5+hzx2IjAsyciQQf1W6EnoBTBE4UXWNuItvy6GaK+zq3wjNp8XUktm7YDWtE0XZUmhmMTH4ipEXmQol71PD/PXwJY3tE2DLdTB0QjZUzU/ENg8yThccGdpAoTkz8bC6VV9kq11UEBzbCq2MTsSoj1WumqwVTkvHMffGmJ3pXhE/iOM3CpmOXsPFoETM1GgFJT+Yr0PIu9ulgvpnHtWpKJaTddabEcv8KgpSO7eNpfQxN1d7G4E6tkRLfEpP7RrskPGufcYrAzrP0datVM+PD0sqMVMydlKQiGp5hYlqn4Tfju8lEvT810DTbwZniGzh5+Yale4n/rN327NEu1Ha9PAEurHkJSgZ9OyYCJ4Cbt5zUE+ub47pRCVuVMEtIbgUCgBFd2+Jpg2TQZ4orMH1wLFZnpNbvZQy8t+mU7cXh4T5qQdaVdtBObLMJ4wktZI0oMvMX2kWNKGLXWWP+Ly1SO7ZyKafg2eIKmSvLCLSq9Gof4hbhmoD4ZRWWVeJGdY2UWNris1P7xzA1cmZVJMm+zfyeHLAnFAiQyD+NxvSKvRepNDhaKElPzchuPQXCEUcQGRKEpHYGNAaQAhlY2VnGdI807RtSRmFZJYIC70HmGOtjwipcGcPE9YFkv7DbHw4A93dra+lesrZP6MU2lVdUO2XL0IIpyfj1+K6Ibhls+9tEEbL2NCa8/mZFAUB1jfWMAiTN3xQb2krJf9z3JlCAC2tegZ0cfVoECAL6xYbpJoYAKWG4EbeNAOhSixAo8y5mjU6gpnHSoqXBCeyttUcxaO4mHCu6hixGDk9PgeWUvO6QZP6xyrxPg/KZAEHAnNH0fIWAdEpn5S9VQpnSqb4T0O5eQMaTneeMfPVaNwuk/CrhwIVSl3xEpGfL8OxQ8zFpFXNGJ8hM51MX78C89ccslz97eCe8OjYRuVlSzkHS/1aEgT98dRyD5m7C79Ya88w9Oyzecp/c26YZBMEa+acZCNknaRuzegLSdw1lmMTrI2A/t2yvnIqqsKwSBy/QzXaAlCheyTSvxdqDhabzPXOMfkzMGZ1g2VQuwHwMuLLmi5CIbu3sGcp6OAF8dZgd5arE6KQIRIYEITGS7X9G8mFuOXEFs5fuxWurDuO1VRJPpKDYRzKGGo/hN748jOW78mUhlPUdVrWiE3u3w3BKzl2C3jGhurRjW05csUVmLkKaw/4ALqx5AXYiCAWobftvT+zOzNlnJaXGQEoUkAApLRFx6B3XKwqLDOgeREiRkLQk10oQc0Y7C06f9YWyjbInJWEmZeNdd7AI+wvcE8HpAPDh472R1D5ElfPUAclMuHBqMnIz0/HMffGYamKa7tEuVPZfXJmR6rKPkAB7wROEjZyVc5QFpyj5DdKasPh6NfO5d9YfN/QRMdrsnCIQFswWBO0gY1g8xvWM0uXo/eu3pzG+V5Ths8r6KRNFG+XlJRABfLGHzeekRGKEMb/jyyM74/n0Tnjp/s7Iu3K93uM5Y2i8bJJK69zasmDwWq0ZWZuHFADGJEXIbeOK0KY0h5ppZFftvSjPbVoOYjNkjU6gjol3Nhy35CbgECSexlX1mL8siIBl7jIB0rdYMe0nRDTX/fbVoUvYX2C8tldUO+Ucw7oqiVIgy7asdDxmYtpU5sWmfZtsXrU4tlftvYg2LZowfQ73F5RhxcwU3ThnYWr/GKq7zxd7LmB/gXtdX1wB51nzAsxy0Cmh5IRh5ez74UaVJZJRJ4CNCs4Y5TsIK/OZ4hu4eqPa9BSae7rYUv1d4dVyBe9p2mjxVrqw+f3ZEozpEVnv+jgBPPXpbpmZf86oBPRoH0pltk6Jb8n00yLmOJIXMTev2GWzkwhJoLGazuy9R5LxQM8ol97JMjaIYBNZkrHAwuz0Tnhv0ynqNaVGub7jKDGiBTMRdwcTc4yIuhyRyjQ44c0C3UoEChPB70LJTWp6HFfgEICYlsGyC0VunrW5HSAIGNMjknn4+enAWGkuCPbM7EoQmgSztHI1oogJte4kZD4GOAS8VcvPZ4T/GxSLcbUUI7QxYcVNoD5zSaj9HyOhxAlrBLG/Gd8N8W2aoaCk0vTeY0X6HKZm30tM5KwAJxFSHa3uI7S82EBdPmsA+Kg2HaEZiOn8jz/phV7RobqMMjWiKKelAozHOcm3veYAPcMD4Sv1JbhmzQvQUncYgdjViW1fW05sq2CIomj55Dp/0yndyS9AEHDgQqms/p9tQfBbtqPA0jtJ/VnmV7sYlqA3t9DaqH8snUeI5EilOSLbBZnnThGYu+GYSlArLKtEbl6xnA+ThTmjE1T9etBCRJWRBupCaaVqbAUIguSPpXmAtBngWsQfy9QsAEz/LwESvxELwxPbMANniEbZbr/Rypu9VDLj0tpkeGIb07bYduqKyuc0NXsTtp0sdtkfSfeYCESHBRmWt3SnewQ1oE7DsebARRSWVVrigVTmSaXdTzb15bvyTQ+SSuuB7j2Q8soC5i4Fyvk4b/0xNG7ksNQnf9t2FoPmbsL/o6RkYrmdaO+JDpcOWl8dsmeKdgiS+U4rsGhfJwBITzAem8QVhqzhrq63LJoobZ+z5v9zy/Za3kcc0Pc9OQSQA6ydvYOYznu0D9FpFrWUG0bjnOTb7sjgN/UHvzUurHkJSuqO7VnpTB8xVphwYVklfrf2CAbN3YTZS/epaD3MSFW1a/yQzq0wV6FmF2HB9wISOa3Ru5R+AUqzGSnbFcLLLceLMWtYHQ8ZSaCsbSOWaY/8TnNEJnBlkRNFYNnOfBSWVao28kFzN0nfPylJV27WaCmXHiD152fbz1jKmZnUjl33dzYcR1rn1vLYyskchtDgRrrE2GTRJXn87GLOmATMpXwTAIQGNaKbcwUYmkH/e+QSnhwcp+rbp9PisC0zXU7vYtRvlNdJPoWa30VITOta8/WTg2Px3Rnztli4OU+XLHrhN3mqTd0BYGr/aDw6IIY5ngRIpkKWptuIONiOnOYAMKFXJFMYBqT5PGvJXqRmS+PV7DC5cmaqLgG6/O214wuAaZYRYj7clpmOpTMGIkvhv0k0abOW7MWguZsQGtwIWRY5wJzQ0x0FCAIm9W5HbQOnCKynCFqvjO6icztRHpZIuqKHFuVi6uId1BycLEwdEI03x3fDyr0XdLlblX6sgNQOxCpyb5tmVJ9l8h3kfqBOELLiT0fw129OY5SGWqZHuxa6Pp87KUn3rEipAwsCgOxJSTqXHuV6vnxXPtPlgganKI25hzQ5dWn7BBm3tHZZsfcCCssqcbGUTpJ885b1QAZPgZtBvQhycgCAkht0X5/8H+pC6InZ5eCFMsxdpx7AIgCHKCUFFwG8vuqw5QFOo2AgAhurjABBwPTBsbh07SZWU5IBPz+8Ex6pzSRAS8y8YGoytuUV23LuBCRV9qBOrdE8qJEsYM6tFXCeUaTa2n2O7lOwYNMp/O6hJEMNlqsKi3c3nsJ7G0+pyiBai5UZqcgck4DsdXXC2MHzpdhfUIJjRdds5YE8cIFd9xpRxNoDhRjbI1JO9q4tWxSBVs0C8bu1R/CxRRODFj3ahSIlviXyr1aokjqLkPyM3p3SSy+EiNI4Z40rUo4ASUibPigOAGR/JaUWx6oLQY92oXhzQje8tuqw7lq7kCDkZA7DJzln8VHOaVNKC+WzNBPTjjMlEACk3dsKOaeKsWSnpH0e1zMKq/fTzSm0oIAAQUBwoAMr99afOFgAIArAqn2FsnmwXWgQnlu2l9qGIqTNLjcrHStmpjDzLO46W4I2LZqoNj9VmrgTV1B922k6ph8f2AGT+8WgsKwSIkSM6xmFcT2jMH/jKVXuUuK/lpM5DMGNAnQmLhZESHRHJD8pIAVDnLp8He9upJvclaiouo3CskrZ7YSMFacote3P7uuI97/Nc2kOLd1ZQB1HTkjj9pXRXVTrBcHJy9fx+x8noazyNuJaBWPH6RIs3nqaKvTPfyQZAJj9TUONKGK9ZlweuFCOCYtyMVeRFzOtc+t6uSWIAJo2vgd9OoTJ3+qEtJ6HBjey5TupLVfbrk4A8zZI5ZL6F5ZV4tTl63Rzrgj8atUhbDx6mfqOq4z92pvgwpoPYMQ9tWRHPmald7KUxNoJKXWKOxi0HTDOhvDK6C4AQBXUAODeNs1lHyxtnZ2QJgNNUHMIwIM9o5jlCoIUjTRPkYNOBCSNlABZU/VZ7lnq80t35uMnfdsbOtAaCalmoD3nBDB+Ya7uBLfmYJFbIvi0ILk0p/SPRuNGAdQ6WaFwMEJwoAOFZZUqQY2gRhSZh4/XvzyMblEtcOgiO7JPBPDx1rNo2ayx7FhNBI2o0Cbo0T4U+wpKLdXzwIVSBDeiR6CWVkp1JJuvVRBaDZbPzhZFLk2nCKagRnueaKOtpMGxAlHxImIefG9qMuaMTtAd+JTPzN94Cg/0ZNM3vLX2KN5edxTZE5PkTVVZltWx/dl35xAZFqTq52fvi6cmma8RRXyScxaLt542LVf7PdtO/YB9BaW2DyfvbjyF+ZtOyd+pHCsipPR+rupYjNbpnFNXDFMHvvLvuvZmrVfE1cEooIr1LEuAyfzioJwXc/c5130RCWbVmmu1ioc5XxzEgqnJbvVzVub13HLiiukBmSWoAZK5OfAeh0cTupuBC2s+gFGkkwjgf0cu4fXV1jRlZoKaFUGEbIxGJrke7UINkx5r/aG07yypoG/mU/rHYGDHcKawJorA8u/puRPnrjuGgXGSfxiL8NEpwtRh2I3rg1fKZb3Lk0meK6qdTPOpQwDCmtIjN0URhoIaQY0oqpJCO0VYMhFr8c7643jhR/dSrx25eA35P1TY3hAe6t0OzQLvwaffWTd5WcWHj/fG8MQIFJZV1uvQwAIxd5ph6c58hDVtZFxWrdb4vXpsqtrk305RMinTIEASrF15FU34s1NHoi2mHTw9AdohSAmtcKOFQ5DMfiQvKwv3d22LrwzWcdp7Nx69hEYBDswxMXHbKZOG/zD2AC26mxz+lCBBCK5SNxH4Q0J37rPmA5hxT7krtdDkfu0x30LaFisUILGtgg2THv/ju3PIzSvG5XL6PVtP0lNeRYU2Qd/YcEP/CpbpVAQwYVEu5m1g8+AIgKnDsBZPuIld2xMQINEu/Gpsolffe+BCKUor6DkSx/WMspSjzwjuIG8GpMX5D/89Qb22dGe+S/lVV+29iBATQcZVPPXZbplbzNXPt+K7agYR1jKdOAHknvrBZT41O/08vleURyPKjaCMalciQBAM01nVJzOGq486AMwcGo95G45h6uIdmMAwZQOwJagRHCwoM6S8cBes1s2qoAZI/YV6mG6V8HVCdy6s+QBmbPBxrc1znVlB08B7EB0WZGkBmWegxRAhkTSOSGSzYi/cnCcvFLR58V/GRPz9Vyfw5b6LlshkqXUTgdy8HwzvadOiCZWHjQU7TsMAML6nMVeXOyECeP/bPMkXrB4bg128s/44czcZkdjWpQwHBHJggIe/h2XKNEONKCIwwDNLpVh7Ymf5XFrBEymxWDg1ud6cfVaFqKU7812K9rbbz8GBxoYfo6hSFpRBEUYZWQApkllZXwekA/BOg3Rz9Tlw3N+1rSqoYTglEl4LhyC16aJv8lTmWjtwCEDWGIP1103CjrchQOovllXH7Fndb4Jvo0K5sOYDGGnWBAAVVTVuob24eqNaFyXDAuH1YSF7/TEs/76ASqWhhCtzOnv9MWw6Zv/EZwUigDn/PoAFJmYG7TN2wPJR8hSI6cjVjWFkVzbrNwvadEBKRIezmeStQITkx+nPG8Kpy9c9VnaNKBrmvjXDJ7lnkbFkL7LXHXVZOzelPzuKVQsRkiP+qoxUxLa0sXkJQGhwI4zsZp7U3gFg2S5jU6YIie9swZRky3VXEuBWmUT4vb3umC5qfsnOAo+5N3x15BLu79YWC6YkY/7UZAw1YOcnEEXgh+tVluZO2r2tqL//KLEtQoPYmuPu7UKY7Xt/17Yujdv2ofaIuV0B6S9tsJEZktq1wDSadcXH65Mgiu4wPjRslJeXIyQkBGVlZWjRwphJ3B3IzSvG1MU7mNcDBIEZGWQHdiN3Hu7TDl/svuAxvwyOOlghvKz3O+C+9cUoAIVE3j2/dC/Td5DDv/FESgf83aZGmWzSdsaYUbCGXK4AzBgcZylaN2uMRIfz+6+Omfp90RDXKhhn3Gzaqu+8s7s2OGpf6qnDTtaYBGw8cskrczu1YzhyT9unFvIWls4YaJqP2y6syh9cs+YDmPms1YgifrhW/1Bhu5P337svYJxBQl9vY5CbJ4U/wdOCmkMA0i2YUaxAAPCIQQqtbad+QGr2Ji6oNWDYFdQA18zKTivPiECje6xtTfPWH8MHW/IM0+UZ4UxxhdvTRdUXdtcGwoFpN+WWVcxbd8xrc9ufBTUHN4PefTDz73FAioLyNkQAq/cVev29LCS187yW807Fe48kI7kD2xHaLhKj2H2xdFe+ry0EHHcQrAY7AIro0nq+z53wxVwY2yMCOZnD8Fx6J7eXzS0tErTZZ7wNLqz5AHGtmjL9wxwC8NSQOLckHncFIlyPSqIhQBAwhOErYYbAe9gaSHcPXE87t7sCVw/KDkGiUjHKe2mn/UQAYUHspOrckcI3MBoe7tJKuzIEzZ55IMlYe28n2MHsXleCEOoLXywlFdVORIYEYcoA9/OAuZJ55k7D1P4xMqenr8CFNR8gMiSIGv3ogJTWZboiBY8RBNA3dBIhRCuD9QxBgCAg0yDFC+t37bsckHyZcjKH4Z0f9zD8HoFSrlHeRhL5ZmcRFiBlWaDRcgiQ2p3lqDxrWDwz9+WgTvXbFFmfIOf4NHmW9jw5AbIoUYzGB6sufWLDkMUYs1bLcQD4eFofl8aCWdoho02ZvHfpjIFYnZFKf17zrFF5Qm15rLZl4a0J3Sy3FRmvrLHnALAqI5X5Pa+M6mLrXbT0dwGCgI+m9WEfLEHvq8wx7LEVIAiYkcZe3wQB1Ny2rE+ZqUhFR3sXSW21YEoy9b5hCa2pa9esYfHUdFNKZAyLp+b0VKaOMsqpq/33x9P6UOcY6xkCZQ7MyJAgahlmQmsGox0dgpQiyk60vtH8eGtCN/YeAvY30vqA9BMNAYLArIOdd5D3zB7ufo2lXdwxpLgLFy7E73//exQVFaFnz56YP38++vfv7+tqMfFMWjwgSj4XTtQxmfeMlkxX2ROT8OqKQ6gRRQiQ1NyxLZvi/W9Oo0YU5fsByPc5ADxVm7YnMiQIocGNqNcA4GxxBWJbBWPLiSvyPaTMyf1iMK5nlCrVivJ5ZXYFhyDVVVkPUs7YHnWUFsrvcUASFsb1ijKsR8/oMMydlISsLw7CCakO2ZOS5HK1ZSq/T1l35XcBQGRYkMzmTsrsGR2GntFhuFF9W/e+yf1i8OjADswyP9iSJzOyBwgCXhnVBT3ah+LAhVK8s/64qn4tmzWWfyNlaNPaGPWDsnxtu5F2JSdAks+PfI8AYAZjfCjL3XbqikwFQOoSGRIkpfcSoPpW2hh8ZEA0BsW3wvnSSt23Dk+MoPbb2KRIVFQ7Tcfk7rMlEARQy07r3BpniytU7a58L8G8SUkym7kAyDkPte80K482NpXPzKtNp6McR40CHNRvX3ugiDleWWOPrBW07yH5LWn9y6pbi6BGur4dnhiBuZr+enZoPAbf29q0r1htp62bcsz07hBGHZtknJF1R4Ak1D1zXzxiwoOp3xnbKlg2Wz3QMwg3qm+r1tSZQ+Px8qgELN+VT/2GRwd2oK5P8jyrfTdtvSDfz3qW9n3DEyMwPBG6Oab8HtbapjTPseYpbTxrv4W1lwDsehnOD80+QeaAss3mjE6grmdGa522n+ZvPIVlu/L1Y3eSvT2CtRb70vxJcEdEgy5fvhyPP/44/vrXv2LAgAH4y1/+gs8//xzHjx9Hmzbm4c/ejgZVorCsUp7U2gFBu2b1Nyvlu1oHV+pRn+uufp83r7mjnTxRX3d/j7u+qb5jxRNt4o128lSbuOtd7h6b7v5eV8uqb1088ayn5rSVe9w9Br01nnw9Rz0Bq/LHHSGsDRgwAP369cOCBQsAAE6nE9HR0Zg9ezYyMzN191dVVaGqqkr+d3l5OaKjo30irHFwcHBwcHDcnbhrqDuqq6uxe/dujBgxQv7N4XBgxIgR2L59O/WZ7OxshISEyH/R0WxaAg4ODg4ODg4OX6LBC2vFxcWoqalB27bqVEht27ZFUVER9ZmsrCyUlZXJfwUFnkuAzcHBwcHBwcFRH9wxAQZ20LhxYzRu3NjX1eDg4ODg4ODgMEWD16y1atUKAQEBuHRJnVvy0qVLiIgwz0HHwcHBwcHBweHPaPDCWmBgIPr06YONGzfKvzmdTmzcuBEpKSk+rBkHBwcHBwcHR/1xR5hBX3zxRUybNg19+/ZF//798Ze//AU3btzA9OnTfV01Dg4ODg4ODo564Y4Q1iZPnowrV67g9ddfR1FREXr16oUNGzbogg44ODg4ODg4OBoa7gietfqirKwMoaGhKCgo4DxrHBwcHBwcHF4B4XktLS1FSEgI8747QrNWX1y7dg0AON8aBwcHBwcHh9dx7do1Q2GNa9YgBSRcvHgRzZs3h2CU5ZyDg4ODg4ODw00QRRHXrl1DVFQUHA52zCcX1jg4ODg4ODg4/BgNnrqDg4ODg4ODg+NOBhfWODg4ODg4ODj8GFxY4+Dg4ODg4ODwY3BhjYODg4ODg4PDj8GFNQ4ODg4ODg4OPwYX1jg4ODg4ODg4/BhcWOPg4ODg4ODg8GP4vbB24cIFPPbYY2jZsiWCgoKQlJSE77//HgBw69YtzJkzB0lJSWjatCmioqLw+OOP4+LFiz6uNQcHBwcHBweHe+DXwlpJSQkGDRqERo0aYf369Thy5Aj++Mc/IiwsDABQUVGBPXv24LXXXsOePXuwYsUKHD9+HOPGjfNxzTk4ODg4ODg43AO/zmCQmZmJbdu2YevWrZaf2bVrF/r3749z584hJibGg7Xj4ODg4ODg4PA8/DqR+5dffomRI0fi4Ycfxrfffot27dph5syZmDFjBvOZsrIyCIKA0NBQ5j1VVVWoqqqS/+10OnH16lW0bNmS5wbl4ODg4ODg8Aqs5gaF6Mdo3Lix2LhxYzErK0vcs2eP+MEHH4hNmjQR//73v1Pvr6ysFHv37i1OnTrVsNw33nhDBMD/+B//43/8j//xP/7n87+CggJDucWvzaCBgYHo27cvcnNz5d+ee+457Nq1C9u3b1fde+vWLUyaNAnnz5/HN998gxYtWjDL1WrWysrKEBMTg4KCAsPnODg4ODg4ODjchfLyckRHR6O0tBQhISHM+/zaDBoZGYmuXbuqfktMTMQXX3yh+u3WrVv4yU9+gnPnzmHTpk2mAlfjxo3RuHFj3e8tWrTgwhoHBwcHBweHV2HmguXXwtqgQYNw/Phx1W8nTpxAhw4d5H8TQe3kyZPYvHkzWrZs6e1qcnBwcHBwcHB4DH4trL3wwgtITU3F22+/jZ/85CfYuXMnPvzwQ3z44YcAJEHtxz/+Mfbs2YM1a9agpqYGRUVFAIDw8HAEBgb6svocHBwcHBwcHPWGX/usAcCaNWuQlZWFkydPIi4uDi+++KIcDXr27FnExcVRn9u8eTOGDh1q6R3l5eUICQlBWVkZN4NycHBwcHBweAVW5Q+/F9a8AS6scXBwcHBwcHgbVuUPv85gwMHBwcHBwcFxt4MLaxwcHBwcHBwcfgwurHFwcHBwcHBw+DG4sMbBwcHBwcHB4cdwO3VHaWkpVq5cia1bt+LcuXOoqKhA69atkZycjJEjRyI1NdXdr+Tg4ODg4ODguGPhNs3axYsX8dRTTyEyMhJvvfUWKisr0atXLwwfPhzt27fH5s2b8aMf/Qhdu3bF8uXL3fXaBov8/Hzs2bMHe/bsQX5+vq+rw8HBwcHBweGncJtmLTk5GdOmTcPu3bt1KaIIKisrsWrVKvzlL39BQUEBXnrpJXe9vkEhPz8fXbok4ubNCgBAkybBOH78KGJiYnxcMw4ODg4ODg5/g9uEtSNHjpimegoKCsKUKVMwZcoU/PDDD+56dYNDcXFxraD2DwDAzZuPobi4mAtrHBwcHBwcHDq4TVizm5OT5/AEgERfV4CDg4OD4y5Hfn4+iouL0apVK6408FN4JBo0ICAAw4YNw9WrV1W/X7p0CQEBAZ54JQcHh4dB/Cy5jyUHx50D4pbTp08fdOmSyOe3n8IjwpooiqiqqkLfvn1x+PBh3TUODo6GBb6gc3Dcmahzy/kVbt6sQHFxsa+rxEGBR4Q1QRDwxRdf4MEHH0RKSgpWr16tusbBcTfhTtBI8QWdg8O98NS64DrTQAe31oPDvXA7zxogac8CAgLw7rvvolu3bpg8eTJ+9atf4amnnvLE6zg4/BbKyN87I+qXL+gcHPWFp9YFzjRw58LjGQyefvpprF+/Hn/5y1/w+OOPe/p1HF7CnaAtAjz/HVwjJeFOGS8cdeB96jo8tS6omQb+cVevOXcaPKJZ69ChgyqQYNiwYfjuu+/w4IMPeuJ1HF7GnaIt8u533L0aqTtlvHDUgfepu+CpdYEzDdxp8Ihm7cyZMzpqjk6dOmHv3r04ffq0J17J4UXcKdqiO+U7/B3ebueGrPGx6m/k6wwovurThtqvHBz1hUc0ayw0adIEHTrcvRqGOw93Sl/eKd/h71C3sye4nRqyxseqv5Grfkme4dLy/Nzhfljuhac41Ui5ADhfmwfgVs1aWFgYwsPDTf9cxdy5cyEIAn7+85/Lv3344YcYOnQoWrRoAUEQUFpaWv8P4eDg8Cg8RQXSkLWlVv2NXPFLasjUK9wPy33w1DhQltsQx1hDgFs1a3/5y1/k/y+KIp599ln85je/QZs2bepd9q5du/DBBx+gR48eqt8rKiowatQojBo1CllZWfV+z50Os9NPQ2ay5ie7hgO1UPWWB9KtNWRtqVV/I+t+SZ5vb2+A/b31Wbe8ueaRdx09etSj72GBNg7cWy5PoegpuFVYmzZtmurfs2fPxqRJk9CxY8d6lXv9+nU8+uijWLx4Md566y3VNaJl++abb+r1jrsBZuYET5iQvLUQclNJ/eEbYdc1oaohHyp8i4YsxNJhZ93Sjhtvms21a5Rv4bvABnevM3fLId2rPmuuIiMjA2PHjsWIESN0wporqKqqQlVVlfzv8vLyepfp78jPz8fWrVsNTz/uPn17cyHkJzs2rCxmDUnYbch+aRzuh9V1izZuvKlxVK9RZwC85pH3+DPcvc40pHWrvvA4z1p9sWzZMuzZswfZ2dluKzM7OxshISHyX3R0tNvK9keQAf3YY4/V/pII4xOQe05dvvEfMvu2uwtWfUkakl9QQ/ZL4/AkjNct43HjPk2TeTRyIoA4t72vIcHd60xDWrfqC7/WrBUUFOD555/H119/jSZNmrit3KysLLz44ovyv8vLy/1OYHOnmaduQD8J4GO31M8e3LsQatslPz+f6QPSkFTknjDt2dc4+oega63f7jyTHoc34Llxw7W+VuHudcZeeQ3RjcKtwppSAAKA6upq/O53v0NISIjq9z/96U+Wytu9ezcuX76M3r17y7/V1NRgy5YtWLBgAaqqqlTku1bRuHFjNG7c2PZz3oLnJnykG8rwDKxMHlq7AGD6gRQWFmLQoCEeU5G7c8J7fpH3DyHMCuyaNo4ePepV53DA/wV/b4MclpS+YHdjW90JgRzavrzT0FAFarcKa3v37lX9OzU1VUeCayeR+/Dhw3Hw4EHVb9OnT0dCQgLmzJnjkqDWEHAnTHg7sDp5WJFMLK1haWmpx/zY3D3h77Y+N4J1beAPABx47LHHVMK7J2BFgGyIp/X6o64PAKldNm36H9LTR9wVfkRsNEStr74v78R+a6hrrVuFtc2bN7uzODRv3hzdu3dX/da0aVO0bNlS/r2oqAhFRUU4deoUAODgwYNo3rw5YmJi6sXp5h/wrwnvqbBz+5OH1i5GWkNrWiU7J0qzOrveVv7V576FWb9dB+CEu2kIaKAJkFu3bsWQIUMsRRXeuZom0gd17XL69Ol6HZK0bdWQoVxTrMC3Ar++L30hyHivDRrWWuvXPmtW8Ne//hVvvvmm/O+0tDQAwCeffIInnnjCR7XyHnxFjeEZ+Gry0E+UAORNo6qqCo0bN6a0s77OvgjR97VWx7fCiDfHTSKAQmg1ekbC+50QsWY+vmiCtX3TO62t/v3vf9kqw1NmPHtzTL+mmH2H/wj8vnOZaKgmSm/AbcLa3Llz8dxzzyE4ONj03h07dqC4uBhjx461/R4tn9qvf/1r/PrXv7Zdzp0A31Fj3Glh5/oT5cGDB/HjH/9EIXAFAKixZG7zdlv5eoG7E4QReygFW6OnFxwbAq2MkSDA8hX1BGhtZT0rjefMeMo2aNy4Cb744t+IjIw0EJr0a4rZd9zpAr8VuMtEeSdqst0mrB05cgQdOnTAww8/jAcffBB9+/ZF69atAQC3b9/GkSNHkJOTg3/84x+4ePEiPvvsM3e9+q6D0sTmfdt7w3FUt4+6b1P7uxGBy665zTtt5QsfDKX2oiEIIwTuXcTtavTsjwdvBE+wBAEAzHXG83Bl7njOjFc3xmejqmohHnjgAQBWhCZXvqNhCvzuhdQGrmhJPR1Y5iu4TVj77LPPsH//fixYsABTp05FeXk5AgIC0LhxY1RUSI2WnJyMp556Ck888YRbqTjuJtBNbA3D9u6qecK3KVqUi62/t7M36mdk3vFvQd7ftBPGvll6U6s3CaVXrlyJOXOyUFVVqbjT38c/gfvGoX7tCYFv/brqvs1bUdDughHFkh6ua0ntBpY1lOhXt/qs9ezZE4sXL8YHH3yAAwcO4Ny5c6isrESrVq3Qq1evBu8s6g9omOZIexNP65TrPyla2LDrSGynPP/K32rfvOMvMAsS8CZop3+1T1MptKZWVw44rDFCH691/ngkjZ8/rzOePsQZ+5768mBiX5CvT1u5Qxtt349Xv87Yn6tmfdSwol89EmDgcDjQq1cv9OrVyxPFcwCgDUT/PSFYNU/QtTb+LZzadyS2W55Z/la7cM+J3L+1aFqoT/X0IAEjfj9XBQLWs7TTP13ota/NMh4jZuO1FNJcJVQ4nunn+h44tMKuJ+C/B+NS2BHk69NW7jIpuk7Mbm+u2oN/RL9aRYOPBuUAGs4JwSoVA20D81fhoH6aJv2J13gB0fqnbd261UZd6xY9rZM0DQ3NzMIC/VRfCtqGZ5To2z3v1cI941rZVyw+QglWx6v7CbRJ2xYWFmLSpIdRVVVpaa06c+aM7je6T2n9wdY4Gj/jiXlirq23JsjXp61YJkUABiZ8I7gyrkpRHy0zYNZH/rq3qMGFtTsCDeuEQMBWzTeMyaNG/WkK7JXXDEoB3RpKIY0TvZO0WruiP8n6GvXZEI1P9XUbnnGib/up2ryT5s2or4w2c+/OMbp2p+7AkZiYyPTbe+01I+HCXd/hiobcU/PE3dp6gvq0Vd2z5iZ8T8EVn0n/W8tcBRfWGgCs+0M1HCHHG2YMf0f9zCxKAV39rPl40TtJq7UrpfAW2aw53LnYGp/qjTVS9dE01V9Lxe7TUvhPX7FB1+6oDxzmJllPwhUNeSk80/b+7Rdq3YTvDyhFQ5gfVsCFNb+G6ycsd6jm3e00r4SnzBhm8E/TnrmQbU0LaXe8mL23ftF/dpya/UsY8aeoR6t9yq6zb6KoWVCOOd+ZZNlwD9WGe+Cfh+86s3Qi5Tffg14Xf5rTrsGjwtqpU6eQl5eHtLQ0BAUFQRRFW7lBOVw5YblDE+GakEg2Z8L2b22TMF6Q3LcINFx1uHUtpP+cyK3Xuf7CiDtAG6v+IeTUp0/VbetLGM9j3wgl/tG/DQk0s7QVU7VnoA/ecU9d/JVQ1yPC2g8//IDJkydj06ZNEAQBJ0+eRMeOHfHkk08iLCwMf/zjHz3x2jsYdhazUtjRRNA1TfY2iKNHj6qchgnbf/3g7kWgFO7S0Hh7kbevhfT9idx6nX0tYNIEGv8RcupQX5JYX0Uz+m4zZ8Mf+7choBR6szTtN8/DOGjI9br4M6GuR4S1F154Affccw/y8/ORmFi3yEyePBkvvvgiF9a8AjNNhBVNkz2eGglkotR3gyiFZxaB+mho3LfI26GDoJkdGg6s1tlX30YTaOov5PiX1saX46YUvtjMlTCOuPYnSo6GAppZmm6q9gQXHimLHbzDNpub1cMuoa434RFh7b///S+++uortG/fXvX7vffei3PnznnilQ0e3velKkX9NU20RY9MFHdtEN70VzGDexZ563QQ9ddK+JMviX/D9UTk6g2Aa23o8M08NjbHN8TDjx5mvsW+WgPsBJFZE+poc8vquLI7L/1vbHhEWLtx4wY1ofvVq1fRuHFjT7yyAcOeL5X7J547fIH8b2ADnlyk6ve91ikdSuG6VsK35iejtvcvrVN9QNsArAn0tPaxOl65AG4dvgpk8g7M/D19uwZYbXvXfHLdFz2vhD/PLYcnCh0yZIgqUbsgCHA6nXjnnXcwbNgwT7yyAaMUdRquCgMNlz/6frgOz06KhtJWVk+F9SGSfNLS3e4O5KC3fd3m4i3N09GjRz0oHCo3gN9qriUCiKM8Ux8n7YYyrv0RrP5wHzw71mhQjr9/4ObNCgYFj7U1wN1Qu2+w214t1GnnEQ316Us789K/4BHN2jvvvIPhw4fj+++/R3V1NV555RUcPnwYV69exbZt2zzxyjsAZhquUvja98M98MakKMWd0VbugJmg56lADlrbe9MXzJvmSFcCgFxx0rZ6HweBdzQlvjZ9m40/b5ug7a0p/uGTWwp/n1se0ax1794dJ06cwODBgzF+/HjcuHEDEydOxN69exEfH++JV95F8CcfLldQCu+d9hp6W3kDpahvf9A3RKO2d+VkbFcrZ6T18gdYd9J2/b6GB+9oeN1dF38fa95GKaytKf6ozfLfueURzVp+fj6io6Pxy1/+knrNHyIr7hb4r3+Q/04KwL99FzwDV/rDm4utuVaOPtb905+yIcNsTXFt7nhTw+upunhurDXM9chsTSmFv2uz/Ake0azFxcXhypUrut9/+OEHxMVZP1FnZ2ejX79+aN68Odq0aYMJEybg+PHjqntu3ryJjIwMtGzZEs2aNcOkSZNw6dKlen+Dr+A+vwd7mgjv+1v4K3gEpnWUwvs+MTStnPd94e5OmLVzfeZOKTwzljzv7+lZuGpSbEjw74O7v8AjwhorU8H169fRpEkTy+V8++23yMjIwHfffYevv/4at27dwv33348bN27I97zwwgv4z3/+g88//xzffvstLl68iIkTJ7rlO7wLd284VlXz1t7bMBcBV1AK1xdqf1TrewPuXWztjzVuhvIOzNq5FPUXcvxp4/b1uAYatkmRw51wqxn0xRdfBCBFf7722msq+o6amhrs2LEDvXr1slzehg0bVP/++9//jjZt2mD37t1IS0tDWVkZPv74YyxZsgTp6ekAgE8++QSJiYn47rvvMHDgQGq5VVVVqKqqkv9dXl5uuU6eg6eIGs1U82bvvTMXAXMtYn1P5Fytbx/1HWvc5OmKdty+EOF7h/aGdXg0H9f1X49KwdeeOxtuFdb27t0LQNKsHTx4EIGBgfK1wMBA9OzZEy+99JLL5ZeVlQEAwsPDAQC7d+/GrVu3MGLECPmehIQExMTEYPv27UxhLTs7G2+++abL9fAsfLXhsN5bijtrEfBG5JY/aQcaEkpxZ401b8KVcd0QD2INsc6lYI9rd69HfO25U+FWYW3z5s0AgOnTp+Pdd99FixYt3Fa20+nEz3/+cwwaNAjdu3cHABQVFSEwMBChoaGqe9u2bYuioiJmWVlZWbIWEJA0a9HR0W6r650J/1sEXPOx46lm/B/+N9b8H66M61I0POG4FA2vzgS0cc3XIw5r8Eg06CeffOL2MjMyMnDo0CHk5OTUu6zGjRvzTAoNGu44jXKTGcedCFfGdUMUjhtinY3A1yMOY3hEWAOA77//Hv/617+Qn5+P6upq1bUVK1bYKmvWrFlYs2YNtmzZoso3GhERgerqapSWlqq0a5cuXUJERES96s/hz2i4p1EeccvBwcHBYRceiQZdtmwZUlNTcfToUaxcuRK3bt3C4cOHsWnTJoSEhFguRxRFzJo1CytXrsSmTZt0tB99+vRBo0aNsHHjRvm348ePIz8/HykpKW77Hg5/hedTyLgPnF6Cg4OjYaFhBXLc2fCIZu3tt9/Gn//8Z2RkZKB58+Z49913ERcXh2eeeQaRkdbV1xkZGViyZAlWr16N5s2by35oISEhCAoKQkhICJ588km8+OKLCA8PR4sWLTB79mykpKQwgwt8jfz8fK5duSvRcLWBHBwcdybYe1FDDOS4s+ERYS0vLw9jx44FIEWB3rhxA4Ig4IUXXkB6errlSMz3338fADB06FDV75988gmeeOIJAMCf//xnOBwOTJo0CVVVVRg5ciQWLVrktm9xJ/Lz89GlS2Jt0lqOuxPcN4WDg8PXMPP7LUXDDeS4M+ERYS0sLAzXrl0DALRr1w6HDh1CUlISSktLUVFhXVARRdH0niZNmmDhwoVYuHChy/X1FoqLi2sFNT4BOBoOuCaYg+NOg1VN/50WyNFw4RFhLS0tDV9//TWSkpLw8MMP4/nnn8emTZvw9ddfY/jw4Z54ZQMDnwAcDQHe4KTj4ODwHbimv6HAI8LaggULcPPmTQDAL3/5SzRq1Ai5ubmYNGkSfvWrX3nilRwcHG4H97Pj4ODg8Ad4RFgjGQYAwOFwIDMzU/53ZWWlJ17JwcHhMfDTNwcHB4cv4RHqDhqqqqrwpz/9SUe/wcHBwcHBwcHBwYZbhbWqqipkZWWhb9++SE1NxapVqwBI0ZtxcXH485//jBdeeMGdr+Tg4ODg4ODguKPhVjPo66+/jg8++AAjRoxAbm4uHn74YUyfPh3fffcd/vSnP+Hhhx9GQECAO1/ZIJCfn4/i4mIeVcfBwcHBwcFhG24V1j7//HN89tlnGDduHA4dOoQePXrg9u3b2L9/PwRBcOerGgw4txoHBwcHBwdHfeBWM+j58+fRp08fAED37t3RuHFjvPDCC3etoAYoudX+AeC3vq4OBwcHBwcHRwODWzVrNTU1CAwMrCv8nnvQrFkzd76iAYNH1HFwcHBwcHDYh1uFNVEU8cQTT6Bx48YAgJs3b+JnP/sZmjZtqrpvxYoV7nwtBwcHBwcHB8cdC7cKa9OmTVP9mzOfc3BwcHBwcHDUD24V1j755BN3FsfBwcHBwcHBcdfDa6S4HBwcHBwcHBwc9sGFNQ4ODg4ODg4OPwYX1jg4ODg4ODg4/Bh3jLC2cOFCxMbGokmTJhgwYAB27tzp6ypxcHBwcHBwcNQbd4Swtnz5crz44ot44403sGfPHvTs2RMjR47E5cuXfV01Dg4ODg4ODo564Y4Q1v70pz9hxowZmD59Orp27Yq//vWvCA4Oxt/+9jdfV42Dg4ODg4ODo15wK3WHL1BdXY3du3cjKytL/s3hcGDEiBHYvn079ZmqqipUVVXJ/y4rKwMAlJeXu71+169fr/1/uwGcq/3/5/hv/Df+m9t+8/X7+W/8N/7bnfebhOvXr3tENiAgZYuiaHyj2MBx4cIFEYCYm5ur+v3ll18W+/fvT33mjTfeEAHwP/7H//gf/+N//I//+fyvoKDAUNZp8Jo1V5CVlYUXX3xR/rfT6cTVq1fRsmXLeiedLy8vR3R0NAoKCtCiRYv6VpWjnuD94V/g/eFf4P3hX+D94V/wRn+Ioohr164hKirK8L4GL6y1atUKAQEBuHTpkur3S5cuISIigvpM48aN5fylBKGhoW6tV4sWLfhk8yPw/vAv8P7wL/D+8C/w/vAveLo/QkJCTO9p8AEGgYGB6NOnDzZu3Cj/5nQ6sXHjRqSkpPiwZhwcHBwcHBwc9UeD16wBwIsvvohp06ahb9++6N+/P/7yl7/gxo0bmD59uq+rxsHBwcHBwcFRL9wRwtrkyZNx5coVvP766ygqKkKvXr2wYcMGtG3b1ut1ady4Md544w2dmZXDN+D94V/g/eFf4P3hX+D94V/wp/4QRNEsXpSDg4ODg4ODg8NXaPA+axwcHBwcHBwcdzK4sMbBwcHBwcHB4cfgwhoHBwcHBwcHhx+DC2scHBwcHBwcHH4MLqy5GQsXLkRsbCyaNGmCAQMGYOfOnb6u0h2H7Oxs9OvXD82bN0ebNm0wYcIEHD9+XHXPzZs3kZGRgZYtW6JZs2aYNGmSjjg5Pz8fY8eORXBwMNq0aYOXX34Zt2/f9uan3JGYO3cuBEHAz3/+c/k33h/exYULF/DYY4+hZcuWCAoKQlJSEr7//nv5uiiKeP311xEZGYmgoCCMGDECJ0+eVJVx9epVPProo2jRogVCQ0Px5JNPKnIdc1hFTU0NXnvtNcTFxSEoKAjx8fH47W9/q8oFyfvDc9iyZQsefPBBREVFQRAErFq1SnXdXW1/4MABDBkyBE2aNEF0dDTeeecd935I/bNzchAsW7ZMDAwMFP/2t7+Jhw8fFmfMmCGGhoaKly5d8nXV7iiMHDlS/OSTT8RDhw6J+/btE8eMGSPGxMSI169fl+/52c9+JkZHR4sbN24Uv//+e3HgwIFiamqqfP327dti9+7dxREjRoh79+4V161bJ7Zq1UrMysryxSfdMdi5c6cYGxsr9ujRQ3z++efl33l/eA9Xr14VO3ToID7xxBPijh07xNOnT4tfffWVeOrUKfmeuXPniiEhIeKqVavE/fv3i+PGjRPj4uLEyspK+Z5Ro0aJPXv2FL/77jtx69atYqdOncQpU6b44pMaNH73u9+JLVu2FNesWSOeOXNG/Pzzz8VmzZqJ7777rnwP7w/PYd26deIvf/lLccWKFSIAceXKlarr7mj7srIysW3btuKjjz4qHjp0SFy6dKkYFBQkfvDBB277Di6suRH9+/cXMzIy5H/X1NSIUVFRYnZ2tg9rdefj8uXLIgDx22+/FUVRFEtLS8VGjRqJn3/+uXzP0aNHRQDi9u3bRVGUJrDD4RCLiorke95//32xRYsWYlVVlXc/4A7BtWvXxHvvvVf8+uuvxfvuu08W1nh/eBdz5swRBw8ezLzudDrFiIgI8fe//738W2lpqdi4cWNx6dKloiiK4pEjR0QA4q5du+R71q9fLwqCIF64cMFzlb8DMXbsWPH//u//VL9NnDhRfPTRR0VR5P3hTWiFNXe1/aJFi8SwsDDVWjVnzhyxS5cubqs7N4O6CdXV1di9ezdGjBgh/+ZwODBixAhs377dhzW781FWVgYACA8PBwDs3r0bt27dUvVFQkICYmJi5L7Yvn07kpKSVMTJI0eORHl5OQ4fPuzF2t85yMjIwNixY1XtDvD+8Da+/PJL9O3bFw8//DDatGmD5ORkLF68WL5+5swZFBUVqfojJCQEAwYMUPVHaGgo+vbtK98zYsQIOBwO7Nixw3sfcwcgNTUVGzduxIkTJwAA+/fvR05ODkaPHg2A94cv4a623759O9LS0hAYGCjfM3LkSBw/fhwlJSVuqesdkcHAH1BcXIyamhpd1oS2bdvi2LFjPqrVnQ+n04mf//znGDRoELp37w4AKCoqQmBgIEJDQ1X3tm3bFkVFRfI9tL4i1zjsYdmyZdizZw927dqlu8b7w7s4ffo03n//fbz44ot49dVXsWvXLjz33HMIDAzEtGnT5PaktbeyP9q0aaO6fs899yA8PJz3h01kZmaivLwcCQkJCAgIQE1NDX73u9/h0UcfBQDeHz6Eu9q+qKgIcXFxujLItbCwsHrXlQtrHA0aGRkZOHToEHJycnxdlbsWBQUFeP755/H111+jSZMmvq7OXQ+n04m+ffvi7bffBgAkJyfj0KFD+Otf/4pp06b5uHZ3H/71r3/hn//8J5YsWYJu3bph3759+PnPf46oqCjeHxyWwc2gbkKrVq0QEBCgi3C7dOkSIiIifFSrOxuzZs3CmjVrsHnzZrRv317+PSIiAtXV1SgtLVXdr+yLiIgIal+RaxzWsXv3bly+fBm9e/fGPffcg3vuuQfffvst3nvvPdxzzz1o27Yt7w8vIjIyEl27dlX9lpiYiPz8fAB17Wm0VkVERODy5cuq67dv38bVq1d5f9jEyy+/jMzMTDzyyCNISkrCT3/6U7zwwgvIzs4GwPvDl3BX23tj/eLCmpsQGBiIPn36YOPGjfJvTqcTGzduREpKig9rdudBFEXMmjULK1euxKZNm3Tq5z59+qBRo0aqvjh+/Djy8/PlvkhJScHBgwdVk/Drr79GixYtdBsdhzGGDx+OgwcPYt++ffJf37598eijj8r/n/eH9zBo0CAdlc2JEyfQoUMHAEBcXBwiIiJU/VFeXo4dO3ao+qO0tBS7d++W79m0aROcTif+f3t3G9LU28cB/Gua82HlpNlCS8WcD5QPEytsEWE1shILMhCaJmhpYhlC0YP6xsTe1AsjIqEnshRCqKiUoJUZlInzKcPEckKYlWKak5R5/V/8cbQ78765dXqy7wcObOc65/x2rgPuy3V2LtetWzcLZzF/mM1mLFhg+1Xr6OiI8fFxALwec2mm+j4mJgY1NTUYGxuzbvP48WMEBwfPyC1QAJy6YyaVl5cLmUwmrl27Jtra2sSBAweEQqGwecKNpi8zM1N4eHiIp0+fip6eHutiNput22RkZAhfX1/x5MkTUV9fL2JiYkRMTIy1fWKqCJ1OJxobG0VVVZXw8vLiVBEz5OenQYXg9ZhNdXV1wsnJSZw5c0Z0dHSIsrIy4ebmJm7evGndpri4WCgUCnH37l3R3NwsEhISJp2uQKPRiFevXona2lqhVqs5VcT/ISUlRfj4+Fin7qisrBRKpVIcO3bMug2vh/0MDQ0Jo9EojEajACDOnTsnjEajMJlMQoiZ6fuBgQGhUqmEXq8Xra2tory8XLi5uXHqDikrKSkRvr6+wtnZWaxdu1a8fPlyrj/SvANg0uXq1avWbUZGRsShQ4eEp6encHNzE7t37xY9PT02x+nq6hJxcXHC1dVVKJVKkZubK8bGxmb5bOan/wxrvB6z6/79+2L16tVCJpOJkJAQcfnyZZv28fFxkZeXJ1QqlZDJZGLz5s2ivb3dZpu+vj6RlJQk5HK5WLx4sUhNTRVDQ0OzeRrzwuDgoDhy5Ijw9fUVLi4uIiAgQJw6dcpmmgdeD/sxGAyTfl+kpKQIIWau75uamsSGDRuETCYTPj4+ori4eEbPw0GIn6ZRJiIiIiJJ4W/WiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiGje2r9/P3bt2jVn9fV6PYqKiux2/La2NixfvhzDw8N2q0FEc4//wYCI/kgODg5TthcUFODo0aMQQkChUMzOh/pJU1MTYmNjYTKZIJfL7VZnz549iIiIQF5ent1qENHcYlgjoj/Sp0+frK8rKiqQn5+P9vZ26zq5XG7XkPTfpKWlwcnJCZcuXbJrnQcPHiA9PR3d3d1wcnKyay0imhu8DUpEf6Rly5ZZFw8PDzg4ONisk8vlv9wG3bRpE7Kzs5GTkwNPT0+oVCqUlpZieHgYqampWLRoEQIDA/Ho0SObWq2trYiLi4NcLodKpYJer8fXr19/+9ksFgvu3LmD+Ph4m/X+/v4oLCxEcnIy5HI5/Pz8cO/ePXz58gUJCQmQy+UIDw9HfX29dR+TyYT4+Hh4enrC3d0dq1atwsOHD63tW7duRX9/P549ezbNHiUiqWJYI6K/yvXr16FUKlFXV4fs7GxkZmYiMTER69evR0NDA3Q6HfR6PcxmMwBgYGAAsbGx0Gg0qK+vR1VVFXp7e7F3797f1mhubsa3b98QHR39S9v58+eh1WphNBqxY8cO6PV6JCcnY9++fWhoaMDKlSuRnJyMiZseWVlZ+PHjB2pqatDS0oKzZ8/ajBg6OzsjMjISz58/n+GeIiKpYFgjor9KREQETp8+DbVajRMnTsDFxQVKpRLp6elQq9XIz89HX18fmpubAQAXLlyARqNBUVERQkJCoNFocOXKFRgMBrx7927SGiaTCY6Ojli6dOkvbdu3b8fBgwettQYHB7FmzRokJiYiKCgIx48fx9u3b9Hb2wsA6O7uhlarRVhYGAICArBz505s3LjR5pje3t4wmUwz3FNEJBUMa0T0VwkPD7e+dnR0xJIlSxAWFmZdp1KpAACfP38G8O+DAgaDwfobOLlcjpCQEABAZ2fnpDVGRkYgk8kmfQji5/oTtaaqf/jwYRQWFkKr1aKgoMAaIn/m6upqHQkkovmHYY2I/ioLFy60ee/g4GCzbiJgjY+PAwC+f/+O+Ph4NDY22iwdHR2/jHBNUCqVMJvNGB0dnbL+RK2p6qelpeH9+/fQ6/VoaWlBdHQ0SkpKbI7Z398PLy+v/60DiOiPw7BGRDSFqKgovHnzBv7+/ggMDLRZ3N3dJ90nMjISwL/zoM2EFStWICMjA5WVlcjNzUVpaalNe2trKzQazYzUIiLpYVgjIppCVlYW+vv7kZSUhNevX6OzsxPV1dVITU2FxWKZdB8vLy9ERUWhtrZ22vVzcnJQXV2NDx8+oKGhAQaDAaGhodb2rq4ufPz4EVu2bJl2LSKSJoY1IqIpeHt748WLF7BYLNDpdAgLC0NOTg4UCgUWLPj9n9C0tDSUlZVNu77FYkFWVhZCQ0Oxbds2BAUF4eLFi9b227dvQ6fTwc/Pb9q1iEiaOCkuEZEdjIyMIDg4GBUVFYiJibFLjdHRUajVaty6dQtardYuNYho7nFkjYjIDlxdXXHjxo0pJ8+dru7ubpw8eZJBjWie48gaERERkYRxZI2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwv4BMOs/zNKUVssAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1081,7 +1081,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHVCAYAAAB4wWYZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABodUlEQVR4nO3deVhUVR8H8O+wDwiDyJ5s4m64hBtupZKkZvpm5pbiXol7WZJrm5r1llqWZeXyqmWWW5qaW7khKoormQtbCighMwgIwpz3D2NkYIAZneHOxPfzPPPo3Hvmnt+5y8yPc+89VyaEECAiIiIii2UldQBERERE9GiY0BERERFZOCZ0RERERBaOCR0RERGRhWNCR0RERGThmNARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4ZjQEZHZCAwMxIgRI6qlrhMnTqBDhw5wcnKCTCZDfHx8tdRrTPPmzYNMJjNpHU899RSeeuopk9ZBRI+OCR2RBFatWgWZTKZ52djY4LHHHsOIESNw/fp1k9V78eJFzJs3D0lJSSarQwo3btzAvHnz9E7K7t27hwEDBiArKwuffPIJ/ve//yEgIMC0QZLe5s2bh8DAQK1pv/76K0aPHo3HH38c1tbW5eaXplarsWjRIgQFBcHBwQHNmzfHd999V67c8ePHMX78eISGhsLW1rbC5Dg1NRVvv/022rZti9q1a8Pd3R1PPfUU9u7dq1fsRNXBRuoAiGqyd955B0FBQbh79y6OHTuGVatW4fDhwzh//jwcHByMXt/Fixfx9ttv46mnnvpX/ejcuHEDb7/9NgIDA9GyZcsqy1+9ehXJyclYsWIFxowZY/oALdivv/4qdQgAgPXr12PDhg144okn4OvrW2nZmTNnYuHChRg7dizatGmDrVu3YsiQIZDJZBg0aJCm3C+//IKvv/4azZs3R7169fDnn3/qXN7WrVvxwQcfoF+/foiMjERRURHWrFmDp59+Gt9++y1Gjhxp1LYSPQz20BFJqGfPnnjppZcwZswYfP3113j99ddx9epVbNu2TerQDJKbmyt1CAa5efMmAMDV1bXKspbWNmOzs7ODnZ2d1GFg/vz5UKlUOHLkCFq0aFFhuevXr+O///0voqKi8NVXX2Hs2LH4+eef0blzZ0yfPh3FxcWasq+++iqUSiVOnjyJp59+usJldu3aFSkpKVi/fj2ioqIwefJkHD16FI0bN8acOXOM2k6ih8WEjsiMdO7cGcD9HqQShYWFmDNnDkJDQ6FQKODk5ITOnTvjwIED5T7//fffIzQ0FM7OznBxcUFISAiWLFkC4P5p3gEDBgC4/wNVcrr3t99+03x+586d6Ny5M5ycnODs7IzevXvjwoULWnWMGDECtWrVwtWrV9GrVy84Oztj6NChFbap5DqvP/74Ay+++CJcXFxQp04dTJ48GXfv3q1ynVy7dg0DBgyAm5sbHB0d0b59e+zYsUMz/7fffkObNm0AACNHjtS0a9WqVTqXN2LECDz55JMAgAEDBkAmk2muEausbbm5uXjttdfg5+cHe3t7NGrUCB999BGEEFrLl8lkmDBhAjZu3IimTZtCLpcjLCwM586dAwB8+eWXqF+/PhwcHPDUU0/pffr78OHDaNOmDRwcHBAcHIwvv/yywrJr165FaGgo5HI53NzcMGjQIKSmpmrmT5gwAbVq1UJeXl65zw4ePBje3t6axEfXNXR3797FvHnz0LBhQzg4OMDHxwfPP/+81n6rVquxePFiNGvWDA4ODvDy8sLLL7+M27dv69Xesnx9fWFra1tlua1bt+LevXsYP368ZppMJsOrr76Kv/76CzExMZrpXl5ekMvlVS6zWbNmcHd315pmb2+PXr164a+//kJOTo4BLSEyDZ5yJTIjJT/utWvX1kxTqVT4+uuvMXjwYIwdOxY5OTn45ptvEBERgePHj2tOMe7ZsweDBw9G9+7d8cEHHwAAEhIScOTIEUyePBldunTBpEmTsHTpUrz11lto0qQJAGj+/d///ofIyEhERETggw8+QF5eHr744gt06tQJp0+f1jpFW1RUhIiICHTq1AkfffQRHB0dq2zbiy++iMDAQCxYsADHjh3D0qVLcfv2baxZs6bCz2RkZKBDhw7Iy8vDpEmTUKdOHaxevRrPPfccfvzxR/znP/9BkyZN8M4772DOnDkYN26cJinu0KGDzmW+/PLLeOyxxzB//nxMmjQJbdq0gZeXV6VtE0Lgueeew4EDBzB69Gi0bNkSu3fvxvTp03H9+nV88sknWnUcOnQI27ZtQ1RUFABgwYIFePbZZ/HGG2/g888/x/jx43H79m0sWrQIo0aNwv79+ytdd+fOnUOPHj3g4eGBefPmoaioCHPnztWKu8T777+P2bNn48UXX8SYMWNw69YtfPrpp+jSpQtOnz4NV1dXDBw4EMuWLcOOHTs0ST4A5OXl4eeff8aIESNgbW2tM5bi4mI8++yz2LdvHwYNGoTJkycjJycHe/bswfnz5xEcHKxZz6tWrcLIkSMxadIkJCYm4rPPPsPp06dx5MgRvZKzh3H69Gk4OTlp9usSbdu21czv1KmTUepKT0+Ho6OjXvs/kckJIqp2K1euFADE3r17xa1bt0Rqaqr48ccfhYeHh7C3txepqamaskVFRaKgoEDr87dv3xZeXl5i1KhRmmmTJ08WLi4uoqioqMJ6N27cKACIAwcOaE3PyckRrq6uYuzYsVrT09PThUKh0JoeGRkpAIgZM2bo1da5c+cKAOK5557Tmj5+/HgBQJw5c0YzLSAgQERGRmreT5kyRQAQhw4d0oo1KChIBAYGiuLiYiGEECdOnBAAxMqVK/WK6cCBAwKA2Lhxo9b0itq2ZcsWAUC89957WtNfeOEFIZPJxJUrVzTTAAh7e3uRmJiomfbll18KAMLb21uoVCrN9OjoaAFAq6wu/fr1Ew4ODiI5OVkz7eLFi8La2lqU/hpPSkoS1tbW4v3339f6/Llz54SNjY1mulqtFo899pjo37+/VrkffvhBABAHDx7UTHvyySfFk08+qXn/7bffCgDi448/LhenWq0WQghx6NAhAUCsW7dOa/6uXbt0TjdU7969RUBAQIXz6tWrV256bm5upfttVFSUMOQn8fLly8LBwUEMGzZM788QmRJPuRJJKDw8HB4eHvDz88MLL7wAJycnbNu2DXXr1tWUsba21lzDpFarkZWVhaKiIrRu3RqnTp3SlHN1dUVubi727NljcBx79uxBdnY2Bg8ejMzMTM3L2toa7dq103l699VXXzWojpLeqhITJ04EcP/C9Ir88ssvaNu2rVaPSq1atTBu3DgkJSXh4sWLBsWgr7Jt++WXX2BtbY1JkyZpTX/ttdcghMDOnTu1pnfv3l2rR7Ndu3YAgP79+8PZ2bnc9GvXrlUYS3FxMXbv3o1+/frB399fM71JkyaIiIjQKrtp0yao1Wq8+OKLWtvR29sbDRo00GxHmUyGAQMG4JdffsGdO3c0n9+wYQMee+yxSnuwfvrpJ7i7u2u2X2kld4lu3LgRCoUCTz/9tFYcoaGhqFWrls79yVjy8/Nhb29fbnrJTUb5+fmPXEdeXh4GDBgAuVyOhQsXPvLyiIyBCR2RhJYtW4Y9e/bgxx9/RK9evZCZmanzx2j16tVo3rw5HBwcUKdOHXh4eGDHjh1QKpWaMuPHj0fDhg3Rs2dP1K1bF6NGjcKuXbv0iuPy5csAgG7dusHDw0Pr9euvv2puIihhY2OjlXTqo0GDBlrvg4ODYWVlVek1ZMnJyWjUqFG56SWn05KTkw2KQR+62pacnAxfX1+tZKyyOEonXgCgUCgAAH5+fjqnV3Zd2a1bt5Cfn19u/QEot24uX74MIQQaNGhQbjsmJCRobceBAwciPz9fcwPOnTt38Msvv2iuK6zI1atX0ahRI9jYVHzFzuXLl6FUKuHp6Vkujjt37pTbn4xJLpejoKCg3PSS6zX1uWauMsXFxRg0aBAuXryIH3/8sco7bomqC6+hI5JQ27Zt0bp1awBAv3790KlTJwwZMgSXLl1CrVq1ANy/wH3EiBHo168fpk+fDk9PT1hbW2PBggVaF6F7enoiPj4eu3fvxs6dO7Fz506sXLkSw4cPx+rVqyuNQ61WA7h/HZ23t3e5+WV/vO3t7WFl9Wh/D5p6QNyHZYy2VXT9WUXTRZkbKx6WWq2GTCbDzp07ddZVsk8BQPv27REYGIgffvgBQ4YMwc8//4z8/HwMHDjQKHF4enpi3bp1Oud7eHg8ch0V8fHxwYEDByCE0NrH0tLSAOCRE7CxY8di+/btWLduHbp16/ZIyyIyJiZ0RGaiJEnr2rUrPvvsM8yYMQMA8OOPP6JevXrYtGmT1g/U3Llzyy3Dzs4Offr0QZ8+faBWqzF+/Hh8+eWXmD17NurXr19hElVyIbunpyfCw8NN0Lr7vTZBQUGa91euXIFara50PLyAgABcunSp3PQ//vhDMx8wfXIYEBCAvXv3IicnR6uXrmwcpuDh4QG5XK7pRS2t7LoJDg6GEAJBQUFo2LBhlct+8cUXsWTJEqhUKmzYsAGBgYFo3759pZ8JDg5GbGws7t27V+GNDcHBwdi7dy86duz4yD1ihmrZsiW+/vprJCQkoGnTpprpsbGxmvkPa/r06Vi5ciUWL16MwYMHP2qoREbFU65EZuSpp55C27ZtsXjxYs0popKeltK9OLGxsVrDLwDA33//rfXeysoKzZs3BwDNKSgnJycAQHZ2tlbZiIgIuLi4YP78+bh37165uG7duvUIrbpv2bJlWu8//fRTAPfH4qtIr169cPz4ca225ubm4quvvkJgYKDmB7uidhlLr169UFxcjM8++0xr+ieffAKZTFZpGx6VtbU1IiIisGXLFqSkpGimJyQkYPfu3Vpln3/+eVhbW+Ptt98u1+snhCi3jwwcOBAFBQVYvXo1du3ahRdffLHKePr374/MzMxy66KkDuB+olhcXIx33323XJmioiKTbScA6Nu3L2xtbfH5559rxbV8+XI89thjFd79XJUPP/wQH330Ed566y1MnjzZWOESGQ176IjMzPTp0zFgwACsWrUKr7zyCp599lls2rQJ//nPf9C7d28kJiZi+fLlaNq0qdYF7WPGjEFWVha6deuGunXrIjk5GZ9++ilatmypudarZcuWsLa2xgcffAClUgl7e3t069YNnp6e+OKLLzBs2DA88cQTGDRoEDw8PJCSkoIdO3agY8eOOn/ADZGYmIjnnnsOzzzzDGJiYrB27VoMGTKk0kFiZ8yYge+++w49e/bEpEmT4ObmhtWrVyMxMRE//fST5tRocHAwXF1dsXz5cjg7O8PJyQnt2rXT6hF8FH369EHXrl0xc+ZMJCUloUWLFvj111+xdetWTJkyRdPDaSpvv/02du3ahc6dO2P8+PEoKirCp59+imbNmuHs2bOacsHBwXjvvfcQHR2NpKQk9OvXD87OzkhMTMTmzZsxbtw4vP7665ryTzzxBOrXr4+ZM2eioKBAr9Otw4cPx5o1azBt2jQcP34cnTt3Rm5uLvbu3Yvx48ejb9++ePLJJ/Hyyy9jwYIFiI+PR48ePWBra4vLly9j48aNWLJkCV544QWD1sHZs2c11/tduXIFSqUS7733HgCgRYsW6NOnDwCgbt26mDJlCj788EPcu3cPbdq0wZYtW3Do0CGsW7dO61R0cnIy/ve//wEATp48CQCaZQYEBGDYsGEAgM2bN+ONN95AgwYN0KRJE6xdu1YrtqefflrnEDJE1Uqq22uJarKSYUtOnDhRbl5xcbEIDg4WwcHBoqioSKjVajF//nwREBAg7O3tRatWrcT27dtFZGSk1tANP/74o+jRo4fw9PQUdnZ2wt/fX7z88ssiLS1Na/krVqwQ9erV0wx5UXoIkwMHDoiIiAihUCiEg4ODCA4OFiNGjBAnT57UlImMjBROTk56t7Vk2JKLFy+KF154QTg7O4vatWuLCRMmiPz8fK2yZYctEUKIq1evihdeeEG4uroKBwcH0bZtW7F9+/Zy9WzdulU0bdpU2NjYVDmESWXDllTUtpycHDF16lTh6+srbG1tRYMGDcSHH36oGaqjBAARFRWlNS0xMVEAEB9++KFecejy+++/i9DQUGFnZyfq1asnli9frlm3Zf3000+iU6dOwsnJSTg5OYnGjRuLqKgocenSpXJlZ86cKQCI+vXr66y37LAlQgiRl5cnZs6cKYKCgoStra3w9vYWL7zwgrh69apWua+++kqEhoYKuVwunJ2dRUhIiHjjjTfEjRs3qmxvWSXHjK5X2X2muLhYc8zY2dmJZs2aibVr15ZbZsn61/Uq3eaS9VzRq+wwQERSkAlhpKtxiYh0mDdvHt5++23cunWr3Gj7RERkHLyGjoiIiMjCMaEjIiIisnBM6IiIiIgsHK+hIyIiIrJw7KEjIiIisnBM6IiIiIgsHAcW1oNarcaNGzfg7Oxsts+fJCIion8XIQRycnLg6+tb5TOmmdDp4caNG/Dz85M6DCIiIqqBUlNTUbdu3UrLMKHTQ8nDuFNTU+Hi4iJxNERERFQTqFQq+Pn5afKQyjCh00PJaVYXFxcmdERERFSt9LncizdFEBEREVk4JnREREREFo4JHREREZGFY0JHREREZOGY0BERERFZOCZ0RERERBaOCR0RERGRheM4dBYiTZmPk0lZkMlk8KstR25hMZzsrJGSlYfs/Huo7WiH0IDauKm6i+NJWajn7gS5nY2mTFWfA4CTSVmVTiv7+dLLzC8swrXMXLQNdIOniwMSM3MrnVYSX5C7U7mYg9yddNZdUTsetm36xlNZPaZer6Ze14/SNl3L0rcdVa2nyj5n6DqvrvXrZGeN1Nv5EELA382xymUZug3KLsuQ/apsXIa2u7JYdX3uYfchUx9/ptgXTiZlITvvHlwdbTXrtzraUR3fh8Y+Zh71N8vUbXvYYyzI3Qk+CrmRf/UNx4TOAnx58CoW/PKH1GEQERFRGVYyYMHzIRjYxl/aOCStnar04e4/mMwRERGZKbUAZmw6hzRlvqRxMKEzY1/+fhXLDlyVOgwiIiKqhBDAqeTbksYgaUJ38OBB9OnTB76+vpDJZNiyZYvWfCEE5syZAx8fH8jlcoSHh+Py5ctaZbKysjB06FC4uLjA1dUVo0ePxp07d7TKnD17Fp07d4aDgwP8/PywaNEiUzftkaUp87FwJ3vmiIiILMHtvEJJ65c0ocvNzUWLFi2wbNkynfMXLVqEpUuXYvny5YiNjYWTkxMiIiJw9+5dTZmhQ4fiwoUL2LNnD7Zv346DBw9i3LhxmvkqlQo9evRAQEAA4uLi8OGHH2LevHn46quvTN6+R5GYmQshdRBERERkESS9KaJnz57o2bOnznlCCCxevBizZs1C3759AQBr1qyBl5cXtmzZgkGDBiEhIQG7du3CiRMn0Lp1awDAp59+il69euGjjz6Cr68v1q1bh8LCQnz77bews7NDs2bNEB8fj48//lgr8TM3Qe5OsJLdPzdPREREVBmzvYYuMTER6enpCA8P10xTKBRo164dYmJiAAAxMTFwdXXVJHMAEB4eDisrK8TGxmrKdOnSBXZ2dpoyERERuHTpEm7f1n2+u6CgACqVSutV3XwUcrz6VHC110tERESGc5XbVV3IhMw2oUtPTwcAeHl5aU338vLSzEtPT4enp6fWfBsbG7i5uWmV0bWM0nWUtWDBAigUCs3Lz8/v0RtkoA0nUnhDBBERkYUIDawtaf1mm9BJKTo6GkqlUvNKTU2t1vrTlPmY8dO5aq2TiIiILJfZJnTe3t4AgIyMDK3pGRkZmnne3t64efOm1vyioiJkZWVpldG1jNJ1lGVvbw8XFxetV3VIU+bj6NVMxCXf5g0RREREFqRGD1tSmaCgIHh7e2Pfvn2aaSqVCrGxsQgLCwMAhIWFITs7G3FxcZoy+/fvh1qtRrt27TRlDh48iHv37mnK7NmzB40aNULt2tJ2j5a24UQKOi7cjyErYjFx/WmpwyEiIiIDZOXW4GFL7ty5g/j4eMTHxwO4fyNEfHw8UlJSIJPJMGXKFLz33nvYtm0bzp07h+HDh8PX1xf9+vUDADRp0gTPPPMMxo4di+PHj+PIkSOYMGECBg0aBF9fXwDAkCFDYGdnh9GjR+PChQvYsGEDlixZgmnTpknU6vLSlPmI3nROc0cre+eIiIgsi0wmbf2SDlty8uRJdO3aVfO+JMmKjIzEqlWr8MYbbyA3Nxfjxo1DdnY2OnXqhF27dsHBwUHzmXXr1mHChAno3r07rKys0L9/fyxdulQzX6FQ4Ndff0VUVBRCQ0Ph7u6OOXPmmNWQJYmZuRyehIiIyIJJfZerTAjBVKIKKpUKCoUCSqXSJNfTpSnz0XHhfiZ1REREFmpC12C8HtHYqMs0JP8w22voahIfhRwLng+B9T/9tdYyGfo/8ZjEUREREZG+Pv/tKtKU+ZLVL+kpV3pgYBt/dGnogaTMPAS6O8JHIUeQuxM++vVPqUMjIiKiKqgFkJSZBx+FXJL62UNnRnwUcoQF19HsDP1D60ocEREREenDSgYEujtKV79kNVOVbqruSh0CERER6eG5Fr6S9c4BTOjM2tJ9l6UOgYiIiPQQ3sSr6kImxITOTKUp87Hvj1tSh0FERER68HOTrncOYEJnthIzc6UOgYiIiPSUV6iWtH4mdGYqyN1J6hCIiIhIT0euSHtWjQmdmfJRyDGkrZ/UYRAREZEepB6HjgmdGZvYvYHUIRAREZEeSsahkwoTOjO2NiZZ6hCIiIhIDxyHjnRKU+Zj2W9XpQ6DiIiI9DD+qWBJx6Hjo7/MRJoyH4mZuZqbIdbHsneOiIjIUnSs7yFp/UzozMCGEymI3nQOagHIAAipAyIiIiKDSHm6FeApV8mlKfM1yRzAZI6IiMgSXbyhlLR+JnQSS8zM1SRzREREZJl2nE2TtH4mdBILcneClUzqKIiIiOhRBHvWkrR+JnQS81HIseD5EFjL7md1zO2IiIgsj421tCmVTAjBE35VUKlUUCgUUCqVcHFxMUkdacp8JGXmaS6qjEu6jUW7/kDKbelGnSYiIiL9WMtkODyjq1GHLjEk/+BdrmbCRyHX2glCA8FkjoiIyEIUC4GkzDzJxqLjKVczlZiZK3UIREREpCc+KYJ0yi8skjoEIiIi0tNzLXwlfVIEEzozdY09dERERBajgRfvciUd2ga6SR0CERER6envO4WS1s+Ezky18KuNJ/xdpQ6DiIiI9JCVy4SOdDiTehunUrKlDoOIiIj0sDX+BtKU0o1OwYTODG04kYK+y45KHQYRERHpSQA4lXxbsvqZ0JmZNGU+ojedkzoMIiIiMpCUj2pgQmdmEjNzoeazO4iIiCyKDEBoYG3J6mdCZ2aC3J1gxQe6EhERWZQZvRpzHDp6wEchx4LnQ2AtY1ZHRERkKeq6SpfMAUzozNLANv44PKMrnmroLnUoREREpIekv6V9IAATOjPlo5AjyN1J6jCIiIhID5k5HIeOKuBoZyN1CERERKQHd2c7SetnQmem0pT5+OL3q1KHQURERHq4fvuupPUzoTNTHL6EiIjIcnx/IoVPiqDyOHwJERGR5VALICkzT7L6mdCZkTRlPo5ezdRk+KM7BUkcEREREelDJgMC3R0lq59X3ZuJDSdSEL3pHNTi/mjTwP3nwhEREZH5iwwLkHRgYSZ0ZqDk+a0l18wxkSMiIrIs9T1rSVo/T7maAd4AQUREZNmu3eLAwjUeb4AgIiKybHVqcRy6SuXk5GDKlCkICAiAXC5Hhw4dcOLECc18IQTmzJkDHx8fyOVyhIeH4/Lly1rLyMrKwtChQ+Hi4gJXV1eMHj0ad+7cqe6mVKjs81tluH9xJREREVkGFwdbSes3+4RuzJgx2LNnD/73v//h3Llz6NGjB8LDw3H9+nUAwKJFi7B06VIsX74csbGxcHJyQkREBO7efTDA39ChQ3HhwgXs2bMH27dvx8GDBzFu3DipmqRTyfNbvxvbHkeju+HojG4Y2SFQ6rCIiIhIDwnpKknrlwkhzPbqrfz8fDg7O2Pr1q3o3bu3ZnpoaCh69uyJd999F76+vnjttdfw+uuvAwCUSiW8vLywatUqDBo0CAkJCWjatClOnDiB1q1bAwB27dqFXr164a+//oKvr2+VcahUKigUCiiVSri4uJimsTpM+f4UtsSnVVt9RERE9HCsAByJ7mbUO10NyT/MuoeuqKgIxcXFcHBw0Joul8tx+PBhJCYmIj09HeHh4Zp5CoUC7dq1Q0xMDAAgJiYGrq6ummQOAMLDw2FlZYXY2Fid9RYUFEClUmm9qtuXv19lMkdERGQh1ODAwhVydnZGWFgY3n33Xdy4cQPFxcVYu3YtYmJikJaWhvT0dACAl5eX1ue8vLw089LT0+Hp6ak138bGBm5ubpoyZS1YsAAKhULz8vPzM0HrKpamzMeCnX9Ua51ERET08GSQdmBhs07oAOB///sfhBB47LHHYG9vj6VLl2Lw4MGwsjJd6NHR0VAqlZpXamqqyerSJTFT2lufiYiIyDAd69eRdGBhs0/ogoOD8fvvv+POnTtITU3F8ePHce/ePdSrVw/e3t4AgIyMDK3PZGRkaOZ5e3vj5s2bWvOLioqQlZWlKVOWvb09XFxctF7VKcjdCbzJlYiIyHKM7Bgoaf1mn9CVcHJygo+PD27fvo3du3ejb9++CAoKgre3N/bt26cpp1KpEBsbi7CwMABAWFgYsrOzERcXpymzf/9+qNVqtGvXrtrboY+Df96SOgQiIiIygKOdtMOWmP2jv3bv3g0hBBo1aoQrV65g+vTpaNy4MUaOHAmZTIYpU6bgvffeQ4MGDRAUFITZs2fD19cX/fr1AwA0adIEzzzzDMaOHYvly5fj3r17mDBhAgYNGqTXHa7VreQxYGZ76zERERGV42gnbR+Z2ffQKZVKREVFoXHjxhg+fDg6deqE3bt3w9b2fib8xhtvYOLEiRg3bhzatGmDO3fuYNeuXVp3xq5btw6NGzdG9+7d0atXL3Tq1AlfffWVVE2qFB8DRkREZHlWHUmStH6zHofOXFTnOHRpynx0XLifSR0REZEFkQE4ynHoqETZx4ARERGR+RPgOHRURsljwN7t20zqUIiIiEgPMhnHoSMdfBRy3C0qljoMIiIi0kPUU8GSjkNn9ne51iRpynwkZuYiyN0JAGBvw3ybiIjI3PkoHPB6RGNJY2BCZyY2nEhB9KZzUAtoBhXmfRFERETmL115F2nKfD4poqYrGXuu5M5WASZzRERElkIAOJV8W9IYmNCZAY49R0REZNmkHgSOCZ0ZCHJ3ghVHKSEiIrJYoYG1Ja2fCZ0ZKDv2HHM7IiIiyxHk7iTp9XMAEzqzUTL23LjO9cAxhYmIiCxHYmYuzqTyGjoq5evD13g9HRERkYU5mcSEjv7BmyOIiIgsk5RPiQCY0JkV3hxBRERkmRztbCWtnwmdGSl7cwQRERGZPxmk76HjkyLMTJeGHlg8qAWsZDIcuZqJ9bGpUodERERElTCHq6WY0JmR0o//spIBEc28pQ6JiIiI9JCUmcdHf1H5x3+pBbDzfLq0QREREZFezl7PlrR+JnRmgne4EhERWa5FOy8hTZkvWf1M6MwE73AlIiKyXMVCICkzT7L6mdCZCT7+i4iIyHJZyaS905U3RZiRgW380aWhB+KSbmPid6elDoeIiIj0NP6pYN4UQQ/4KORwq2VnFrdAExERkX68FQ6S1s+EzgwFuTtJHQIREREZ4JaqQNL6mdCZoYN/3pI6BCIiIjJAtyaektbPhM7MlIxHR0RERJahmY8LWvjVljQGJnRmhuPRERERWZYGXrWkDoEJnbnheHRERESWZWv8DUkHFQaY0JmdkvHomNMRERFZBgHgVPJtSWNgQmeGBrbxx+s9GkodBhEREelJSHy5FBM6M3W3qFjqEIiIiEhPoYG8KYJ0CG/iJXUIREREZCGY0JmpFn61EVhHumfCERERkf6SMvMkrZ8JnZlKU+Yj6W9pdw4iIiLSj6OdtCmVjaEfuHz5MrZu3YqkpCTIZDIEBQWhX79+qFevniniq7HiJL5bhoiIiPSXV6iWtH6DEroFCxZgzpw5UKvV8PT0hBACt27dwowZMzB//ny8/vrrpoqzxrmdVyh1CERERKQnqXvo9K79wIEDmDVrFmbOnInMzEykpaUhPT1dk9DNmDEDBw8eNGWsNYqQ+v5nIiIi0ttft6UdWFjvHrrly5djzJgxmDdvntZ0Nzc3vPPOO0hPT8cXX3yBLl26GDvGGsnNyV7qEIiIiEhPWbnSnlnTu4fu+PHjGDZsWIXzhw0bhmPHjhklKAJCA2rzaRFEREQWQibxj7beCV1GRgYCAwMrnB8UFIT09HRjxES4/wiwGT0bSx0GERER6cFVbidp/XondHfv3oWdXcXB2traorCQF/Ibk6OdtdQhEBERkR6kflKEQXe5fv3116hVq5bOeTk5OUYJiO7bcCIFs7dekDoMIiIisgB6J3T+/v5YsWJFlWWMqbi4GPPmzcPatWuRnp4OX19fjBgxArNmzYLsn5PVQgjMnTsXK1asQHZ2Njp27IgvvvgCDRo00CwnKysLEydOxM8//wwrKyv0798fS5YsqTA5lVqaMh8zfjondRhERESkp7ik23i2hVyy+vVO6JKSkkwYhm4ffPABvvjiC6xevRrNmjXDyZMnMXLkSCgUCkyaNAkAsGjRIixduhSrV69GUFAQZs+ejYiICFy8eBEODg4AgKFDhyItLQ179uzBvXv3MHLkSIwbNw7r16+v9jbpIy75NjhoCRERkeXIzpf2sjODnxRRnY4ePYq+ffuid+/eAIDAwEB89913OH78OID7vXOLFy/GrFmz0LdvXwDAmjVr4OXlhS1btmDQoEFISEjArl27cOLECbRu3RoA8Omnn6JXr1746KOP4OvrK03jKsEx6IiIiCyL1D/deid0S5cu1atcSc+ZMXTo0AFfffUV/vzzTzRs2BBnzpzB4cOH8fHHHwMAEhMTkZ6ejvDwcM1nFAoF2rVrh5iYGAwaNAgxMTFwdXXVJHMAEB4eDisrK8TGxuI///lPuXoLCgpQUFCgea9SqYzWJn20DnSr1vqIiIjo0bg5SXuXq94J3SeffFJlGZlMZtSEbsaMGVCpVGjcuDGsra1RXFyM999/H0OHDgUAzTApXl5eWp/z8vLSzEtPT4enp6fWfBsbG7i5uVU4zMqCBQvw9ttvG60dhvJRyDGknR/Wx6ZKFgMRERHp70RiFno3l+6sn94JXWJioinj0OmHH37AunXrsH79ejRr1gzx8fGYMmUKfH19ERkZabJ6o6OjMW3aNM17lUoFPz8/k9VX1oYTKUzmiIiILMjqY8l4+alg+CikuTHCrK+hmz59OmbMmIFBgwYBAEJCQpCcnIwFCxYgMjIS3t7eAO4Peuzj46P5XEZGBlq2bAkA8Pb2xs2bN7WWW1RUhKysLM3ny7K3t4e9vTSP3uIdrkRERJZHCCApM0+yhE7vgYWlkJeXBysr7RCtra2hVqsB3H86hbe3N/bt26eZr1KpEBsbi7CwMABAWFgYsrOzERcXpymzf/9+qNVqtGvXrhpaYZjEzFze4UpERGRhrGRAoLujZPWbdQ9dnz598P7778Pf3x/NmjXD6dOn8fHHH2PUqFEA7l+zN2XKFLz33nto0KCBZtgSX19f9OvXDwDQpEkTPPPMMxg7diyWL1+Oe/fuYcKECRg0aJBZ3uEa5O4EGcCkjoiIyIK0CXSTrHcOAGTCjMfIyMnJwezZs7F582bcvHkTvr6+GDx4MObMmaN5DFnJwMJfffUVsrOz0alTJ3z++edo2LChZjlZWVmYMGGC1sDCS5cu1XtgYZVKBYVCAaVSCRcXF5O0tbQNJ1LwJk+7EhERWQwrGXBkRjejJnWG5B9mndCZi+pO6ADgTOpt9F12tFrqIiIiokf33dj2CAuuY7TlGZJ/PNQpV7VajStXruDmzZua69lKdOnS5WEWSWXsOJsmdQhERESkJ4u7hu7YsWMYMmQIkpOTyz3RQCaTobi42GjB1VRpynx8daj6h4khIiKihzO4rb+k19AZnNC98soraN26NXbs2AEfHx/IZDJTxFWjnUzKkjoEIiIiMkATH2dJ6zc4obt8+TJ+/PFH1K9f3xTxEMAkmYiIiAxi8Dh07dq1w5UrV0wRC/0jNKC21CEQERGRAU4m3Za0foN76CZOnIjXXnsN6enpCAkJga2trdb85s2bGy24mspHIceQtn5Yf5yP/yIiIrIEW+Nv4M2ejS3n0V/9+/cHAM3gvsD9U4RCCN4UYURNfKpneBQiIiJ6dALAqeTb6N3cQhK6xETefVkdBJ8VQUREZFGkHNnX4IQuICDAFHFQGW5O9lKHQERERAYIDZTuGviHGlj46tWrWLx4MRISEgAATZs2xeTJkxEcHGzU4Goy3hhBRERkOaQen8Lgu1x3796Npk2b4vjx42jevDmaN2+O2NhYNGvWDHv27DFFjDWSj0KOxl76PWuWiIiIpCUAJGXmSVa/wT10M2bMwNSpU7Fw4cJy09988008/fTTRguuJktT5uOPjDtSh0FERER6kEHaR38Z3EOXkJCA0aNHl5s+atQoXLx40ShBEZCYmSt1CERERGQhDE7oPDw8EB8fX256fHw8PD09jRETAQhyd5L8fDwRERHpx+JOuY4dOxbjxo3DtWvX0KFDBwDAkSNH8MEHH2DatGlGD7Cm8lHI0TawNmIlHnmaiIiIqib1KVeDE7rZs2fD2dkZ//3vfxEdHQ0A8PX1xbx58zBp0iSjB1hTpSnzmcwRERFZCKlHjzUooSsqKsL69esxZMgQTJ06FTk5OQAAZ2dnkwRXk32677LUIRAREZEBkjLzJHv0l0HX0NnY2OCVV17B3bt3AdxP5JjMGV+aMp/PcSUiIrIgVjILu8u1bdu2OH36tClioX/wDlciIiLL8mbPxpL1zgEPcQ3d+PHj8dprr+Gvv/5CaGgonJyctOY3b97caMHVVCV3uEp9Pp6IiIj0U9dVumQOeIiEbtCgQQCgdQOETCaDEAIymQzFxcXGi66G8lHIsbB/CN786ZzUoRAREZEepD67ZnBCl5iYaIo4qIyBbfyxL+Emfr2YIXUoREREVIWs3EJJ6zc4oQsICDBFHFRGmjKfyRwREZGFcHOyk7R+gxO6NWvWVDp/+PDhDx0MPbCXyRwREZHFcHW0lbR+gxO6yZMna72/d+8e8vLyYGdnB0dHRyZ0RnIz567UIRAREZGeXOXS9tAZPGzJ7du3tV537tzBpUuX0KlTJ3z33XemiLFGCm/iJXUIREREpKfQwNqS1m9wQqdLgwYNsHDhwnK9d/TwWvjVRtfGHlKHQURERFWQSR0AjJTQAfefInHjxg1jLa7G23AiBQf+uCV1GERERFQFgfuP/ZKSwdfQbdu2Teu9EAJpaWn47LPP0LFjR6MFVpOlKfMxg2PQERERWQxHO6P1kT0UgxO6fv36ab2XyWTw8PBAt27d8N///tdYcdVoiZm5fEoEERGRBfnrdj5a+El3HZ3BCZ1arTZFHFSKk5211CEQERGRAbbF30Dv5r6S1f/Q/YOFhYW4dOkSioqKjBkPAUjJkvY8PBERERnm14sZSFPmS1a/wQldXl4eRo0aBUdHRzRr1gwpKSkAgIkTJ2LhwoVGD7Amys67J3UIREREZACpb4wwOKGLjo7G2bNn8dtvv8HBwUEzPTw8HBs2bDBqcDWV1KNNExERkWGsZECgu6Nk9Rt8Dd2WLVuwYcMGtG/fHjLZg5FXmjVrhqtXrxo1uJrK3026HYKIiIgM91wLX/go5JLVb3AP3a1bt+Dp6Vluem5urlaCRw8vt7BY6hCIiIjIAFI/4cnghK5169bYsWOH5n1JEvf1118jLCzMeJHVYEHuTrBibkxERGQxpH70l8GnXOfPn4+ePXvi4sWLKCoqwpIlS3Dx4kUcPXoUv//+uylirHF8FHJ0aeiB3y7xSRFERESW4KbqrmWdcu3UqRPi4+NRVFSEkJAQ/Prrr/D09ERMTAxCQ0NNEWONk6bMZzJHRERkQfYn3JS0foN76AAgODgYK1asMHYs9I+45NtSh0BEREQGsLOV9tFf0tZOOgnBB38RERFZEhcHaYcc07uHzsrKqsq7WGUyGZ8cYQStA92kDoGIiIgMIPVAH3r30G3evBmbNm3S+Zo+fTrs7e1hY/NQZ3ArFRgYCJlMVu4VFRUFALh79y6ioqJQp04d1KpVC/3790dGRobWMlJSUtC7d284OjrC09MT06dPZ+JJRERERnP4z0xJ69c7A+vbt2+5aZcuXcKMGTPw888/Y+jQoXjnnXeMGhwAnDhxAsXFD8ZlO3/+PJ5++mkMGDAAADB16lTs2LEDGzduhEKhwIQJE/D888/jyJEjAIDi4mL07t0b3t7eOHr0KNLS0jB8+HDY2tpi/vz5Ro/XGBIzc6UOgYiIiAyw+59nuUp1p+tDXUN348YNjB07FiEhISgqKkJ8fDxWr16NgIAAY8cHDw8PeHt7a17bt29HcHAwnnzySSiVSnzzzTf4+OOP0a1bN4SGhmLlypU4evQojh07BgD49ddfcfHiRaxduxYtW7ZEz5498e6772LZsmUoLCzUWWdBQQFUKpXWqzoFuTtVa31ERET0aCzqWa5KpRJvvvkm6tevjwsXLmDfvn34+eef8fjjj5sqPi2FhYVYu3YtRo0aBZlMhri4ONy7dw/h4eGaMo0bN4a/vz9iYmIAADExMQgJCYGX14MRnCMiIqBSqXDhwgWd9SxYsAAKhULz8vPzM23DiIiIyKLJIO2zXPVO6BYtWoR69eph+/bt+O6773D06FF07tzZlLGVs2XLFmRnZ2PEiBEAgPT0dNjZ2cHV1VWrnJeXF9LT0zVlSidzJfNL5ukSHR0NpVKpeaWmphq3IVXgKVciIiIyhN7X0M2YMQNyuRz169fH6tWrsXr1ap3lNm3aZLTgyvrmm2/Qs2dP+Pr6mqwOALC3t4e9vb1J66gMT7kSERFZlpJTrlJdQ6d3Qjd8+PAqhy0xpeTkZOzdu1crYfT29kZhYSGys7O1eukyMjLg7e2tKXP8+HGtZZXcBVtSxpykKfORmJmLJxu44/fL0t4xQ0RERPqxkkl7ylXvhG7VqlUmDKNqK1euhKenJ3r37q2ZFhoaCltbW+zbtw/9+/cHcP/O25SUFISFhQEAwsLC8P777+PmzZvw9PQEAOzZswcuLi5o2rRp9TekEhtOpCB60zmoOa4wERGRRWleVyHps1yNP3CcCajVaqxcuRKRkZFaY90pFAqMHj0a06ZNg5ubG1xcXDBx4kSEhYWhffv2AIAePXqgadOmGDZsGBYtWoT09HTMmjULUVFRkp5WLStNmc9kjoiIyELFpyotb9iS6rZ3716kpKRg1KhR5eZ98sknePbZZ9G/f3906dIF3t7eWqdlra2tsX37dlhbWyMsLAwvvfQShg8fbpIx8x5FYmYukzkiIiILdkrCZ7HLBB8cWiWVSgWFQgGlUgkXFxeT1JGmzEfHhfuZ1BEREVmozwa3wrMtjHfjpiH5h0X00NUEPgo5Fjwfwg1CRERkoUIDa0tWN/MHMzKwjT+WDmkldRhERERkoAldgyW9KYIJnZkJDagNK+lGhyEiIqKHMLS98R9/aggmdGakZAy6N3s2ZlJHRERkQaR8jitgIcOW1AQcg46IiMhyOdpJ20fGHjozkKbMx4yfmMwRERFZqnPXlZLWz4TODMQl3wZzOSIiIst17VaupPUzoTMDHAqQiIjIsl3Pzpe0fiZ0ZqB1oBt4DwQREZHl+vVCBtKU0iV1TOjMgI9CjoX9OagwERGRpRKQ9tFfvMvVTAxs448uDT2QlJmHKzdzMHvrBalDIiIiIgNIeQUVO4XMiI9CjrDgOghv6iV1KERERGQgPvqLiIiIyII183Xho79IW2KmtLc+ExERkWEu3lDxpgjSFuTuxEd/ERERWRCpb4pgQmeGfBRyvPpksNRhEBERkQF4UwSVk/w3T7sSERFZChl4UwSVkabMx/Zz6VKHQURERHqa0asxb4ogbbwpgoiIyLI42lpLWj8TOjPkZCftTkFERESGybxTIGn9TOjMUG5hsdQhEBERkQFuZEs3ZAnAhM4sBbk7gaOWEBERWY4f465zHDrS5qOQ48lGHlKHQURERHoSAJIy8ySrnwmdGUpT5uO3S7ekDoOIiIj0ZCUDAt0dpatfspqpQieTsqQOgYiIiAzwZk8OW0JlyGS8go6IiMhSNPVxxstdpH3CExM6MxQaIN1I00RERGSYhLQcSW+IAJjQmSUfhRxD2vpJHQYRERHpQQA4lXxb0hiY0JmpJr4uUodAREREejpy5W9J62dCZ6bieGMEERGRxfj+RArHoSNtacp8bIlPkzoMIiIi0pNacBw6KiMxM1fqEIiIiMgAHIeOyglyd5I6BCIiIjIAx6GjcniXKxERkeXgOHRUodqOdlKHQERERHpISOc4dKRDmjIfy367KnUYREREpAch8Q0RABM6s8RnuRIREVkWRztpUyomdGYoO++e1CEQERGRAfIK1ZLWz4TODLk62kodAhERERng8OVbktbPhM4MtQ50g0zqIIiIiEhvX/x2lU+KIG0+Cjmef+IxqcMgIiIiPanBJ0VU6vr163jppZdQp04dyOVyhISE4OTJk5r5QgjMmTMHPj4+kMvlCA8Px+XLl7WWkZWVhaFDh8LFxQWurq4YPXo07ty5U91N0VuaMh+bTl2XOgwiIiLSkwx8UkSFbt++jY4dO8LW1hY7d+7ExYsX8d///he1a9fWlFm0aBGWLl2K5cuXIzY2Fk5OToiIiMDdu3c1ZYYOHYoLFy5gz5492L59Ow4ePIhx48ZJ0SS9nEzKgpA6CCIiIrIYNlIHUJkPPvgAfn5+WLlypWZaUFCQ5v9CCCxevBizZs1C3759AQBr1qyBl5cXtmzZgkGDBiEhIQG7du3CiRMn0Lp1awDAp59+il69euGjjz6Cr69v9TZKDzIZr6AjIiKyJAL3T7lK9fgvs+6h27ZtG1q3bo0BAwbA09MTrVq1wooVKzTzExMTkZ6ejvDwcM00hUKBdu3aISYmBgAQExMDV1dXTTIHAOHh4bCyskJsbKzOegsKCqBSqbRe1Sk0oHbVhYiIiMhsWMl4yrVC165dwxdffIEGDRpg9+7dePXVVzFp0iSsXr0aAJCeng4A8PLy0vqcl5eXZl56ejo8PT215tvY2MDNzU1TpqwFCxZAoVBoXn5+1ftcVR+FHP1a+lRrnURERPTwxj8VLFnvHGDmCZ1arcYTTzyB+fPno1WrVhg3bhzGjh2L5cuXm7Te6OhoKJVKzSs1NdWk9enSwNO52uskIiKih9Oxvoek9Zt1Qufj44OmTZtqTWvSpAlSUlIAAN7e3gCAjIwMrTIZGRmaed7e3rh586bW/KKiImRlZWnKlGVvbw8XFxetV3W7W1Rc7XUSERHRw5HydCtg5gldx44dcenSJa1pf/75JwICAgDcv0HC29sb+/bt08xXqVSIjY1FWFgYACAsLAzZ2dmIi4vTlNm/fz/UajXatWtXDa14OC39XKUOgYiIiPS07liypPWbdUI3depUHDt2DPPnz8eVK1ewfv16fPXVV4iKigJw/27QKVOm4L333sO2bdtw7tw5DB8+HL6+vujXrx+A+z16zzzzDMaOHYvjx4/jyJEjmDBhAgYNGmSWd7iWyL8n7TPhiIiISH+fHZD2SRFmPWxJmzZtsHnzZkRHR+Odd95BUFAQFi9ejKFDh2rKvPHGG8jNzcW4ceOQnZ2NTp06YdeuXXBwcNCUWbduHSZMmIDu3bvDysoK/fv3x9KlS6Vokt6E4Eh0RERElkTKYUtkgplDlVQqFRQKBZRKZbVdT3cm9Tb6LjtaLXURERHRo4uJ7mbUhM6Q/MOsT7nWZDvOpkkdAhEREenJy8Wew5aQtjRlPr46lCh1GERERKSnDFUBzqTelqx+JnRmKDEzV+oQiIiIyEAnk5jQUSlB7k7g01yJiIgsi4tcuntNmdCZIR+FHAv7h0gdBhERERlAlV8kWd1M6MxUl4bSPkKEiIiIDNM6sLZkdTOhM1Of7rssdQhERESkp14h3mjhx4SOSklT5mP98VSpwyAiIiI9hPq74vOhoZLGwITODJ1MypI6BCIiItLTqZRsSR/7BTChM0syGe9xJSIishQCwKlk6YYsAZjQmaXQAOnOwRMREZHhkv6WdgxZJnRmyEchx5C2flKHQURERHpKycqTtH4mdGZqYBsmdERERJbCyVa6QYUBJnRma8MJ3uVKRERkKZr4OktaPxM6M8RhS4iIiCzLX7d5lyuVkZgp7YWVREREZBj3WvaS1s+EzgwFuTtJHQIREREZoHldhaT1M6EzQz4KOcZ1DpI6DCIiItJTXqFa0vqZ0Jmp3s19pA6BiIiI9JRXeE/S+pnQmancwmKpQyAiIiI9JWVyHDrSwcnOWuoQiIiISE+B7o6S1s+EzgylKfNxPClL6jCIiIhIT3fvSXsNnbTDGlM5G06kIHrTOaiF1JEQERGRvrJyCyWtnz10ZiRNmc9kjoiIyALFJd+WtH4mdGYkMTOXyRwREZEF2hp/A2lK6Z4WwYTOjAS5O8FKJnUUREREZCgBae90ZUJnRnwUcix4PoQbhYiIyMJYyaS905W5g5kZ2MYfKyJDpQ6DiIiIDNC1sSd8FHLJ6mdCZ4bkdrz5mIiIyJK08nOVtH4mdGYoyN1J6hCIiIjIADKJr4FnQmeGfBRyRPdsLHUYREREpKeUv/noL9Lh5SeD0belr9RhEBERkQVgQmfG6rpKd3ElERER6a+2k62k9TOhM1Npynws++2q1GEQERGRHuytrSWtnwmdmUrMzJU6BCIiItJTcz+FpPUzoTNTvNOViIjIcqQp70paPxM6M+WjkGNIWz+pwyAiIiI9XL0p7Zk1JnRmzNaKm4eIiMgS2NtIOxAdMwYzlabMx+pjyVKHQURERHooKBKS1s+EzkzxpggiIiLL4e5sJ2n9TOjMVJC7EyR+iggRERHpKcBN2psZmdCZKR+FHAv7h0gdBhEREVVBBiA0sLakMZh1Qjdv3jzIZDKtV+PGD55xevfuXURFRaFOnTqoVasW+vfvj4yMDK1lpKSkoHfv3nB0dISnpyemT5+OoqKi6m7KQxnYxh8x0d0wpK2/1kN/m9d1gVUF3XeyCv5felq7oNoVzuvayKPCBwzrWnbJZ0rHU3ZeRTGVjaOi5Xeo56YVU2XLq2i96LvOmtd1qTCOlmXGGKo0Xt1V6R1T6eVWtJ5K5lUVU9n5ZbdJRZ8vuy5K03fbVbb9y67bisq19FNUuH+F+rvqvW/o0+bKtndFKtvvyparLL6qYtIV36MeM2XXbWlVbf+qjid9j5mKPl8SX0WfaV7XpcJ6H+aYkaHiNle2TOhYZkXLr2h9V7XNSk972OO37Dp4lO+esssr+52nzzaUAXjC31WvfULf47fsPlFRucq+UzrUc6twXtm2lLACsLB/CHwU0j7dyUbS2vXQrFkz7N27V/PexuZByFOnTsWOHTuwceNGKBQKTJgwAc8//zyOHDkCACguLkbv3r3h7e2No0ePIi0tDcOHD4etrS3mz59f7W15GD4KOeY/H4KJ3esjKTMPge6O8FHIkabM17wHYND/K/v8wyz7YZenb13GKGcuy5AqJkteF9UZhzm20Rz3d1Oud1PHV93zLO2YsuT9SMp4pU7mAEAmhJD2toxKzJs3D1u2bEF8fHy5eUqlEh4eHli/fj1eeOEFAMAff/yBJk2aICYmBu3bt8fOnTvx7LPP4saNG/Dy8gIALF++HG+++SZu3boFOzvdFzAWFBSgoKBA816lUsHPzw9KpRIuLhX/BUBERERkLCqVCgqFQq/8w6xPuQLA5cuX4evri3r16mHo0KFISUkBAMTFxeHevXsIDw/XlG3cuDH8/f0RExMDAIiJiUFISIgmmQOAiIgIqFQqXLhwocI6FyxYAIVCoXn5+XGAXyIiIjJfZp3QtWvXDqtWrcKuXbvwxRdfIDExEZ07d0ZOTg7S09NhZ2cHV1dXrc94eXkhPT0dAJCenq6VzJXML5lXkejoaCiVSs0rNTXVuA0jIiIiMiKzvoauZ8+emv83b94c7dq1Q0BAAH744QfI5aY7X21vbw97e3uTLZ+IiIjImMy6h64sV1dXNGzYEFeuXIG3tzcKCwuRnZ2tVSYjIwPe3t4AAG9v73J3vZa8LylDREREZOksKqG7c+cOrl69Ch8fH4SGhsLW1hb79u3TzL906RJSUlIQFhYGAAgLC8O5c+dw8+ZNTZk9e/bAxcUFTZs2rfb4iYiIiEzBrE+5vv766+jTpw8CAgJw48YNzJ07F9bW1hg8eDAUCgVGjx6NadOmwc3NDS4uLpg4cSLCwsLQvn17AECPHj3QtGlTDBs2DIsWLUJ6ejpmzZqFqKgonlIlIiKifw2zTuj++usvDB48GH///Tc8PDzQqVMnHDt2DB4eHgCATz75BFZWVujfvz8KCgoQERGBzz//XPN5a2trbN++Ha+++irCwsLg5OSEyMhIvPPOO1I1iYiIiMjozHocOnOhVCrh6uqK1NRUjkNHRERE1aJkHNzs7GwoFJU/vcase+jMRU5ODgBwPDoiIiKqdjk5OVUmdOyh04NarcaNGzfg7OwMWUUPOiUiIiIyIiEEcnJy4OvrCyuryu9jZUJHREREZOEsatgSIiIiIiqPCR0RERGRhWNCR0RERGThmNARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4cw6oVuwYAHatGkDZ2dneHp6ol+/frh06ZJmflZWFiZOnIhGjRpBLpfD398fkyZNglKp1JQ5c+YMBg8eDD8/P8jlcjRp0gRLliyRojlEREREJmHWj/76/fffERUVhTZt2qCoqAhvvfUWevTogYsXL8LJyQk3btzAjRs38NFHH6Fp06ZITk7GK6+8ghs3buDHH38EAMTFxcHT0xNr166Fn58fjh49inHjxsHa2hoTJkyQuIVEREREj86inhRx69YteHp64vfff0eXLl10ltm4cSNeeukl5ObmwsZGd74aFRWFhIQE7N+/35ThEhEREVULs+6hK6vkVKqbm1ulZVxcXCpM5krKVLaMgoICFBQUaN6r1WpkZWWhTp06fJYrERERVQtDnuUKYSGKi4tF7969RceOHSssc+vWLeHv7y/eeuutCsscOXJE2NjYiN27d1dYZu7cuQIAX3zxxRdffPHFl+Sv1NTUKvMkiznl+uqrr2Lnzp04fPgw6tatW26+SqXC008/DTc3N2zbtg22trblypw/fx5du3bF5MmTMWvWrArrKttDp1Qq4e/vj9TUVLi4uBinQURERESVUKlU8PPzQ3Z2NhQKRaVlLeKU64QJE7B9+3YcPHhQZzKXk5ODZ555Bs7Ozti8ebPOZO7ixYvo3r07xo0bV2kyBwD29vawt7cvN93FxYUJHREREVUrfS73MuthS4QQmDBhAjZv3oz9+/cjKCioXBmVSoUePXrAzs4O27Ztg4ODQ7kyFy5cQNeuXREZGYn333+/OkInIiIiqjZm3UMXFRWF9evXY+vWrXB2dkZ6ejoAQKFQQC6Xa5K5vLw8rF27FiqVCiqVCgDg4eEBa2trnD9/Ht26dUNERASmTZumWYa1tTU8PDwkaxsRERGRsZj1NXQVdTGuXLkSI0aMwG+//YauXbvqLJOYmIjAwEDMmzcPb7/9drn5AQEBSEpK0isOlUoFhUKhuYOWiIiIyNQMyT/MOqEzF0zoiIiIqLoZkn+Y9TV0RERERFQ1s76GjoiIiMxDSkoKMjMz4e7uDn9/f6nDoTKY0FmYkgOqoKBAM7SKroNL14FnjIOxZBkV1WtouUf9THWw5C8xc12nplJVex9lWxr6WXNd95a8PwPVuw0tkan2u5SUFDRq1AR37+bBwcERly4lmN061Hf7GrucuWBCZ0FKH1CANYBiAIC9vQN++ulHuLm5wd7eHmlpaejffwAKCvI18wBoppU+GCtLEMt+MQAoVT8qPKi146y43MN+5mF+tB/2wHzULzF9YzFGzFVtr5J9ISQkxODllewfpo75Uf5AqGofKj2/ZF34+PjoFWtF+0FF7X2YY6B0O031g2TIOqisjkdNGh72D9OqjsfK4jJkG1bnH8T6fp89zHd02d+Gij6rz/GdmZn5z3Jn4e7d95CZman3/lxVvaXbpisWfdetPt/VD1PO0O8LyVT5LAkD3b59W3z77bdi5MiRolu3bqJ9+/aiT58+Ys6cOeLIkSPGrq5aKJVKAUAolUpJ44iLi/vnMSCj//l3rQAWC8Dqn/fWZR4XMrHUvJLXLAFAxMXFieTkZOHg4Fjusw4OjuLo0aOl5t2ftn379lL1rhUAxNq1a8XRo0dFXFycZpkP4tQul5ycrLNdycnJYu3atVV+Jjk5WWzfvl3Y28s1cdnbO4jt27drYig938HBUSQnJ2u1s2RayfLi4uK04i/5f0mZB22ZpYlJV7mK2lW23qqmlbRHVztKx6zPelm8eLHO/aSkjoraoWt5JfuHoe0oveyS2EvqrWhbll2n2vup7nL67EMPtqX2cVE6/tL7cemYHyxb9/FTdhvpiiUuLq5cu0pvg9Lro7L1V1W5yva/qtZBZZ+t6his7FioeHtal1tOZcdy2eOx9Dqtaj/R9dlHOUYrO370OaZ0fc+WjdmQ7+jKjvmy6/nbb781+Ph+sP5WVLo/V3R864r5QVzWFcZS2To15Lu65F9dx7Iu+h4rpmZI/mG0HrobN25gzpw5WLduHXx9fdG2bVu0bNkScrkcWVlZOHDgAD766CMEBARg7ty5GDhwoLGqroF8/vm3CYAEAGoAowF8A2AtgEQAswEo/plXeloAACAhIQEA/vmLq/Rngbt3X8K+ffv+mfdgWnZ2dql60wBY4aWXXkLp3kIHB0f8+OMPOsvp+iunbE9GRZ8BHvQw3rcWQCYKCqbh2Wef1Yrhvvt/RR46dKhUOx9Mc3V1LbW80p+9//+Seh+0uVap9pYv5+PjU+6vzYSEhHL16orlwbSJKChY9k97yrejdMz6rJcpU6aUWqcl+0nZOrTboXt5JfvOg7/My7ZDe5p2Hfb2Dvjii8/x6qtRpZZbep1rb8uyvSeHDh0qtS8+KFdxzLr3oQfbsvRxcX/f3rx5M958M1qzDN0xAyXHD4ByPRbl96uSWO5LSEjQ7Bule9HL77v6rL/y5UrWW0lsFe1/Fa2DQ4cOoV69ejr33ZLtq32s6t4epY8FoHwvzINll/7e0f9YLrsdAOi1nzzY/pVvw/vrQ99jtOLjp/Jj6v46v3btWpUxV/Qdreuzuo/58ut51KhRpWLRPr51rYOS7V9ayW+Irp7B8se3rphL6tX126V7v6tsPVf1XV1+v9L+Lay4Z7D8saJP76QkjJVFenp6iunTp4sLFy5UWCYvL0+sX79etG/fXnz44YfGqtrkpO6hq6iXAIjT/PWv/7SFoqJeu/vltpeZH/fPC+Ldd9/VsbzSvYUPekXKl9P+K6fkL9EHZUdX+ZmKy5WOoSRGXe3UNU3XZyvu2ay8nK6/Ng2JRVcdusoZul507RNVtVfXZx/8ZV72r/W1a9fq2D/L9hKUrbfi+NauXaujl/Bh9o3KtqWu/b2qmHWtg8r2q7J1lN03dO1/+q6/0uXut3fx4sVl1pmhx3zZ+HRtX33Wc/kel/LL1vX9pO+x/CAuw/cTXW16lGNUVx1V7Z+VfadWtc/GaeI37JivqlzF67my/b18z6Cu47uy9uqKT9c20nc969pG+uxX1pr2aP826V731dVLJ0kP3cWLF1GnTp1Ky8jlcgwePBiDBw/G33//bayq/9XK92A9qjso32tXWja0/6oDSno7Zs8uWxbQ7i28LzExUUc5Ral6S/81XnY5FX2mJFZd5crHoLuduqbp+qyueqFnOV1/beobi646dJUzdL3oUlU7Kv5syV+09/0N7b+Gy9ZRtpegdL266ij71zWgvS8aGnNl2xIov79XFfN92uugsv1KVx1V7X8oNa3qWEr3SD7oodF3X6sqPl3bV9/1XNVxoYu+x7KuuPTdT3R99lGOUV11VLV/VvadWtU+e5/u79nKjvmqylXc3or3d109g7rqqKy9uujaRvqu5xK6Yqlqv9J1lqS0Bz3/5nhjiNESuqqSuUctX1M9OCVQ1RehoXT9MJRW2Q9SRfQ5aEv/SOnbpqpiNfSz+i7vYcpV9QNtzFgeZb3oW0dp+v4Q6qLvD01VyVFZxtqW+ibEVSWw+tTxMNutqvWXDf0SP33qqOpHrzJNKvj/o7Rd1/IeZT/RN1GrbFpVdVT12WxU/Z1a0WcNTY4MVbpeQ/9gq0i2nuVKmGob6aLvH/PAg3bof2NIdTLJwMLW1tbo2rUrsrKytKZnZGTA2traFFXWAE0ABEkcgyE/KvowhzaR/kp/yb5bZp6xt6W57huVrQNzoG/ibChz3R6PEpc5tOlhtlc2DPuefRT67u+P0jNYGam2UVX1BlRXIAYxSUInhEBBQQFat26NCxculJtH/3am+lEh82AOP4RS4zogqVXn9yz3d0tgkoROJpPhp59+Qp8+fRAWFoatW7dqzSMiIiIi4zFZD521tTWWLFmCjz76CAMHDsR7773H3jkiIiIiEzD5kyLGjRuHBg0aYMCAATh48KCpqyMiIiKqcUzSQxcQEKB180PXrl1x7NgxpKammqI6IiIiohrNJD10usbHqV+/Pk6fPo2MjAxTVElERERUY5mkh64iDg4OCAgw7HbfgwcPok+fPvD19YVMJsOWLVsqLPvKK69AJpNh8eLFWtP//PNP9O3bF+7u7nBxcUGnTp1w4MCBh2gBERERkfkxakJXu3ZtuLm5VfkyRG5uLlq0aIFly5ZVWm7z5s04duwYfH19y8179tlnUVRUhP379yMuLg4tWrTAs88+i/T0dINiISIiIjJHRj3lWrpnTAiBV199Fe+88w48PT0fepk9e/ZEz549Ky1z/fp1TJw4Ebt370bv3r215mVmZuLy5cv45ptv0Lx5cwDAwoUL8fnnn+P8+fPw9vZ+6NiIiIiIzIFRE7rIyEit9xMnTkT//v1Rr149Y1ajRa1WY9iwYZg+fTqaNWtWbn6dOnXQqFEjrFmzBk888QTs7e3x5ZdfwtPTE6GhoTqXWVBQgIKCAs17lUplsviJiIiIHpXJhy0xtQ8++AA2NjaYNGmSzvkymQx79+5Fv3794OzsDCsrK3h6emLXrl2oXbu2zs8sWLAAb7/9tinDJiIiIjKaar0pwtji4uKwZMkSrFq1qsInUAghEBUVBU9PTxw6dAjHjx9Hv3790KdPH6Slpen8THR0NJRKpebF4VaIiIjInFl0Qnfo0CHcvHkT/v7+sLGxgY2NDZKTk/Haa68hMDAQALB//35s374d33//PTp27IgnnngCn3/+OeRyOVavXq1zufb29nBxcdF6EREREZkro55ynTZtmtb7wsJCvP/++1AoFFrTP/74Y6PUN2zYMISHh2tNi4iIwLBhwzBy5EgAQF5eHgDAyko7d7WysoJarTZKHERERERSMmpCd/r0aa33HTp0wLVr17SmVXRqtCJ37tzBlStXNO8TExMRHx8PNzc3+Pv7o06dOlrlbW1t4e3tjUaNGgEAwsLCULt2bURGRmLOnDmQy+VYsWIFEhMTy90RS0RERGSJjJrQmWKw3pMnT6Jr166a9yW9gJGRkVi1alWVn3d3d8euXbswc+ZMdOvWDffu3UOzZs2wdetWtGjRwujxEhEREVU3s7/L9amnnoIQQu/ySUlJ5aa1bt0au3fvNmJURERERObDaDdFLFy4UHO9WlViY2OxY8cOY1VNREREVKMZLaG7ePEiAgICMH78eOzcuRO3bt3SzCsqKsLZs2fx+eefo0OHDhg4cCCcnZ2NVfW/VkpKChISEqQOg4iIiMyc0U65rlmzBmfOnMFnn32GIUOGQKVSwdraGvb29pqeu1atWmHMmDEYMWIEHBwcjFX1v1JKSgoaNWqCu3f16/UkIiKimsuo19C1aNECK1aswJdffomzZ88iOTkZ+fn5cHd3R8uWLeHu7m7M6v7VMjMz/0nmRgP4RupwiIiIyIyZ5KYIKysrtGzZEi1btjTF4msYH6kDICIiIjNn0U+KICIiIiImdEREREQWjwkdERERkYVjQkdERERk4Uya0F25cgW7d+9Gfn4+ABj0xAciIiIi0o9JErq///4b4eHhaNiwIXr16oW0tDQAwOjRo/Haa6+ZokoiIiKiGsskCd3UqVNhY2ODlJQUODo6aqYPHDgQu3btMkWVRERERDWWScah+/XXX7F7927UrVtXa3qDBg2QnJxsiiqJiIiIaiyT9NDl5uZq9cyVyMrKgr29vSmqJCIiIqqxTJLQde7cGWvWrNG8l8lkUKvVWLRoEbp27WqKKomIiIhqLJOccl20aBG6d++OkydPorCwEG+88QYuXLiArKwsHDlyxBRVEhEREdVYJumhe/zxx/Hnn3+iU6dO6Nu3L3Jzc/H888/j9OnTCA4ONkWVRERERNUmISEBp06dQkpKitShADBRD11KSgr8/Pwwc+ZMnfP8/f2NVldgYKDOGy3Gjx+PZcuWad4LIdCrVy/s2rULmzdvRr9+/YwWAxEREdUUfwOwwksvvQQAcHBwxKVLCUbNbR6GSXrogoKCcOvWrXLT//77bwQFBRm1rhMnTiAtLU3z2rNnDwBgwIABWuUWL14MmUxm1LqJiIioprkDQA1gLYC1uHs3D5mZmRLHZKIeOiGEzuTpzp07cHBwMGpdHh4eWu8XLlyI4OBgPPnkk5pp8fHx+O9//4uTJ0/Cx8fHqPUTERFRTdRE6gC0GDWhmzZtGoD7d7XOnj1ba+iS4uJixMbGomXLlsasUkthYSHWrl2LadOmaRLKvLw8DBkyBMuWLYO3t7deyykoKEBBQYHmvUqlMkm8RERERMZg1ITu9OnTAO730J07dw52dnaaeXZ2dmjRogVef/11Y1apZcuWLcjOzsaIESM006ZOnYoOHTqgb9++ei9nwYIFePvtt00QIREREZHxGTWhO3DgAABg5MiRWLJkCVxcXIy5+Cp988036NmzJ3x9fQEA27Ztw/79+zWJpr6io6M1vY3A/R46Pz8/o8ZKREREZCwmuYZu5cqVplhspZKTk7F3715s2rRJM23//v24evUqXF1dtcr2798fnTt3xm+//aZzWfb29nyiBREREVkMkyR0AHDy5En88MMPSElJQWFhoda80kmXsaxcuRKenp7o3bu3ZtqMGTMwZswYrXIhISH45JNP0KdPH6PHQERERCQFkyR033//PYYPH46IiAj8+uuv6NGjB/78809kZGTgP//5j9HrU6vVWLlyJSIjI2Fj86BJ3t7eOm+E8Pf3N/rwKURERERSMck4dPPnz8cnn3yCn3/+GXZ2dliyZAn++OMPvPjiiyYZeG/v3r1ISUnBqFGjjL5sIiIiInNnkh66q1evak592tnZITc3FzKZDFOnTkW3bt2Mfgdpjx49IITQq6y+5YiIiIgshUl66GrXro2cnBwAwGOPPYbz588DALKzs5GXl2eKKomIiIhqLJP00HXp0gV79uxBSEgIBgwYgMmTJ2P//v3Ys2cPunfvbooqiYiIiGoskyR0n332Ge7evQsAmDlzJmxtbXH06FH0798fs2bNMkWVRERERDWWSRI6Nzc3zf+trKwwY8YMzfv8/HxTVElERERUY5nkGjpdCgoK8PHHH3O4ECIiIiIjM2pCV1BQgOjoaLRu3RodOnTAli1bANwf9DcoKAiffPIJpk6daswqiYiIiGo8o55ynTNnDr788kuEh4fj6NGjGDBgAEaOHIljx47h448/xoABA2BtbW3MKomIiIhqPKMmdBs3bsSaNWvw3HPP4fz582jevDmKiopw5swZyGQyY1ZFRERERP8w6inXv/76C6GhoQCAxx9/HPb29pg6dSqTOSIiIiITMmpCV1xcDDs7O817Gxsb1KpVy5hVEBEREVEZRj3lKoTAiBEjYG9vDwC4e/cuXnnlFTg5OWmV27RpkzGrJSIiIqrRjJrQRUZGar1/6aWXjLl4IiIiItLBqAndypUrjbk4IiIiItJDtQ0sTERERESmYZJHf9HDS0lJQWZmJhISEqQOhYiIiCwEEzozkpKSgkaNmuDu3TypQyEiIiILUqNOuS5btgyBgYFwcHBAu3btcPz4calD0pKZmflPMrcWwLtSh0NEREQWosYkdBs2bMC0adMwd+5cnDp1Ci1atEBERARu3rwpdWg6NAEQJHUQREREZCFqTEL38ccfY+zYsRg5ciSaNm2K5cuXw9HREd9++63UoQG4f7qV180RERHRw6gR19AVFhYiLi4O0dHRmmlWVlYIDw9HTExMufIFBQUoKCjQvFcqlQAAlUplkvhSU1MRGtoGBQX5/0yJA5D8z/+T/8XTzCEGTuM0TjPNNHOIgdM4zdTT7rtz545JcoSSZQohqi4saoDr168LAOLo0aNa06dPny7atm1brvzcuXMFAL744osvvvjiiy/JX6mpqVXmOjWih85Q0dHRmDZtmua9Wq1GVlYW6tSpA5lM9kjLVqlU8PPzQ2pqKlxcXB41VHpE3B7mhdvDvHB7mBduD/Nj6m0ihEBOTg58fX2rLFsjEjp3d3dYW1sjIyNDa3pGRga8vb3Llbe3t9c8j7aEq6urUWNycXHhAWlGuD3MC7eHeeH2MC/cHubHlNtEoVDoVa5G3BRhZ2eH0NBQ7Nu3TzNNrVZj3759CAsLkzAyIiIiokdXI3roAGDatGmIjIxE69at0bZtWyxevBi5ubkYOXKk1KERERERPZIak9ANHDgQt27dwpw5c5Ceno6WLVti165d8PLyqtY47O3tMXfu3HKndEka3B7mhdvDvHB7mBduD/NjTttEJoQ+98ISERERkbmqEdfQEREREf2bMaEjIiIisnBM6IiIiIgsHBM6IiIiIgvHhK4aLVu2DIGBgXBwcEC7du1w/PhxqUP6V1qwYAHatGkDZ2dneHp6ol+/frh06ZJWmbt37yIqKgp16tRBrVq10L9//3IDT6ekpKB3795wdHSEp6cnpk+fjqKioupsyr/SwoULIZPJMGXKFM00bo/qdf36dbz00kuoU6cO5HI5QkJCcPLkSc18IQTmzJkDHx8fyOVyhIeH4/Lly1rLyMrKwtChQ+Hi4gJXV1eMHj0ad+7cqe6mWLzi4mLMnj0bQUFBkMvlCA4Oxrvvvqv17E5uD9M6ePAg+vTpA19fX8hkMmzZskVrvrHW/9mzZ9G5c2c4ODjAz88PixYtMm5DHv1JqaSP77//XtjZ2Ylvv/1WXLhwQYwdO1a4urqKjIwMqUP714mIiBArV64U58+fF/Hx8aJXr17C399f3LlzR1PmlVdeEX5+fmLfvn3i5MmTon379qJDhw6a+UVFReLxxx8X4eHh4vTp0+KXX34R7u7uIjo6Woom/WscP35cBAYGiubNm4vJkydrpnN7VJ+srCwREBAgRowYIWJjY8W1a9fE7t27xZUrVzRlFi5cKBQKhdiyZYs4c+aMeO6550RQUJDIz8/XlHnmmWdEixYtxLFjx8ShQ4dE/fr1xeDBg6VokkV7//33RZ06dcT27dtFYmKi2Lhxo6hVq5ZYsmSJpgy3h2n98ssvYubMmWLTpk0CgNi8ebPWfGOsf6VSKby8vMTQoUPF+fPnxXfffSfkcrn48ssvjdYOJnTVpG3btiIqKkrzvri4WPj6+ooFCxZIGFXNcPPmTQFA/P7770IIIbKzs4Wtra3YuHGjpkxCQoIAIGJiYoQQ9w9wKysrkZ6erinzxRdfCBcXF1FQUFC9DfiXyMnJEQ0aNBB79uwRTz75pCah4/aoXm+++abo1KlThfPVarXw9vYWH374oWZadna2sLe3F999950QQoiLFy8KAOLEiROaMjt37hQymUxcv37ddMH/C/Xu3VuMGjVKa9rzzz8vhg4dKoTg9qhuZRM6Y63/zz//XNSuXVvr++rNN98UjRo1MlrsPOVaDQoLCxEXF4fw8HDNNCsrK4SHhyMmJkbCyGoGpVIJAHBzcwMAxMXF4d69e1rbo3HjxvD399dsj5iYGISEhGgNPB0REQGVSoULFy5UY/T/HlFRUejdu7fWege4Parbtm3b0Lp1awwYMACenp5o1aoVVqxYoZmfmJiI9PR0re2hUCjQrl07re3h6uqK1q1ba8qEh4fDysoKsbGx1deYf4EOHTpg3759+PPPPwEAZ86cweHDh9GzZ08A3B5SM9b6j4mJQZcuXWBnZ6cpExERgUuXLuH27dtGibXGPClCSpmZmSguLi73VAovLy/88ccfEkVVM6jVakyZMgUdO3bE448/DgBIT0+HnZ0dXF1dtcp6eXkhPT1dU0bX9iqZR4b5/vvvcerUKZw4caLcPG6P6nXt2jV88cUXmDZtGt566y2cOHECkyZNgp2dHSIjIzXrU9f6Lr09PD09tebb2NjAzc2N28NAM2bMgEqlQuPGjWFtbY3i4mK8//77GDp0KABwe0jMWOs/PT0dQUFB5ZZRMq927dqPHCsTOvpXi4qKwvnz53H48GGpQ6mxUlNTMXnyZOzZswcODg5Sh1PjqdVqtG7dGvPnzwcAtGrVCufPn8fy5csRGRkpcXQ1zw8//IB169Zh/fr1aNasGeLj4zFlyhT4+vpye5BBeMq1Gri7u8Pa2rrcXXsZGRnw9vaWKKp/vwkTJmD79u04cOAA6tatq5nu7e2NwsJCZGdna5UvvT28vb11bq+SeaS/uLg43Lx5E0888QRsbGxgY2OD33//HUuXLoWNjQ28vLy4PaqRj48PmjZtqjWtSZMmSElJAfBgfVb2feXt7Y2bN29qzS8qKkJWVha3h4GmT5+OGTNmYNCgQQgJCcGwYcMwdepULFiwAAC3h9SMtf6r4zuMCV01sLOzQ2hoKPbt26eZplarsW/fPoSFhUkY2b+TEAITJkzA5s2bsX///nLd3KGhobC1tdXaHpcuXUJKSopme4SFheHcuXNaB+mePXvg4uJS7seQKte9e3ecO3cO8fHxmlfr1q0xdOhQzf+5PapPx44dyw3j8+effyIgIAAAEBQUBG9vb63toVKpEBsbq7U9srOzERcXpymzf/9+qNVqtGvXrhpa8e+Rl5cHKyvtn2Jra2uo1WoA3B5SM9b6DwsLw8GDB3Hv3j1NmT179qBRo0ZGOd0KgMOWVJfvv/9e2Nvbi1WrVomLFy+KcePGCVdXV6279sg4Xn31VaFQKMRvv/0m0tLSNK+8vDxNmVdeeUX4+/uL/fv3i5MnT4qwsDARFhammV8yTEaPHj1EfHy82LVrl/Dw8OAwGUZS+i5XIbg9qtPx48eFjY2NeP/998Xly5fFunXrhKOjo1i7dq2mzMKFC4Wrq6vYunWrOHv2rOjbt6/OYRpatWolYmNjxeHDh0WDBg04TMZDiIyMFI899phm2JJNmzYJd3d38cYbb2jKcHuYVk5Ojjh9+rQ4ffq0ACA+/vhjcfr0aZGcnCyEMM76z87OFl5eXmLYsGHi/Pnz4vvvvxeOjo4ctsRSffrpp8Lf31/Y2dmJtm3bimPHjkkd0r8SAJ2vlStXasrk5+eL8ePHi9q1awtHR0fxn//8R6SlpWktJykpSfTs2VPI5XLh7u4uXnvtNXHv3r1qbs2/U9mEjtujev3888/i8ccfF/b29qJx48biq6++0pqvVqvF7NmzhZeXl7C3txfdu3cXly5d0irz999/i8GDB4tatWoJFxcXMXLkSJGTk1OdzfhXUKlUYvLkycLf3184ODiIevXqiZkzZ2oNb8HtYVoHDhzQ+ZsRGRkphDDe+j9z5ozo1KmTsLe3F4899phYuHChUdshE6LUcNREREREZHF4DR0RERGRhWNCR0RERGThmNARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4ZjQEREREVk4JnREREREFo4JHRHVWCNGjEC/fv0kq3/YsGGYP3++yZZ/8eJF1K1bF7m5uSarg4jMA58UQUT/SjKZrNL5c+fOxdSpUyGEgKura/UEVcqZM2fQrVs3JCcno1atWiar54UXXkCLFi0we/Zsk9VBRNJjQkdE/0rp6ema/2/YsAFz5szBpUuXNNNq1apl0kSqKmPGjIGNjQ2WL19u0np27NiBsWPHIiUlBTY2Niati4ikw1OuRPSv5O3trXkpFArIZDKtabVq1Sp3yvWpp57CxIkTMWXKFNSuXRteXl5YsWIFcnNzMXLkSDg7O6N+/frYuXOnVl3nz59Hz549UatWLXh5eWHYsGHIzMysMLbi4mL8+OOP6NOnj9b0wMBAvPfeexg+fDhq1aqFgIAAbNu2Dbdu3ULfvn1Rq1YtNG/eHCdPntR8Jjk5GX369EHt2rXh5OSEZs2a4ZdfftHMf/rpp5GVlYXff//9EdcoEZkzJnRERKWsXr0a7u7uOH78OCZOnIhXX30VAwYMQIcOHXDq1Cn06NEDw4YNQ15eHgAgOzsb3bp1Q6tWrXDy5Ens2rULGRkZePHFFyus4+zZs1AqlWjdunW5eZ988gk6duyI06dPo3fv3hg2bBiGDx+Ol156CadOnUJwcDCGDx+OkpMrUVFRKCgowMGDB3Hu3Dl88MEHWj2PdnZ2aNmyJQ4dOmTkNUVE5oQJHRFRKS1atMCsWbPQoEEDREdHw8HBAe7u7hg7diwaNGiAOXPm4O+//8bZs2cBAJ999hlatWqF+fPno3HjxmjVqhW+/fZbHDhwAH/++afOOpKTk2FtbQ1PT89y83r16oWXX35ZU5dKpUKbNm0wYMAANGzYEG+++SYSEhKQkZEBAEhJSUHHjh0REhKCevXq4dlnn0WXLl20lunr64vk5GQjrykiMidM6IiISmnevLnm/9bW1qhTpw5CQkI007y8vAAAN2/eBHD/5oYDBw5orsmrVasWGjduDAC4evWqzjry8/Nhb2+v88aN0vWX1FVZ/ZMmTcJ7772Hjh07Yu7cuZpEszS5XK7pUSSifycmdEREpdja2mq9l8lkWtNKkjC1Wg0AuHPnDvr06YP4+Hit1+XLl8v1lJVwd3dHXl4eCgsLK62/pK7K6h8zZgyuXbuGYcOG4dy5c2jdujU+/fRTrWVmZWXBw8NDvxVARBaJCR0R0SN44okncOHCBQQGBqJ+/fpaLycnJ52fadmyJYD748QZg5+fH1555RVs2rQJr732GlasWKE1//z582jVqpVR6iIi88SEjojoEURFRSErKwuDBw/GiRMncPXqVezevRsjR45EcXGxzs94eHjgiSeewOHDhx+5/ilTpmD37t1ITEzEqVOncODAATRp0kQzPykpCdevX0d4ePgj10VE5osJHRHRI/D19cWRI0dQXFyMHj16ICQkBFOmTIGrqyusrCr+ih0zZgzWrVv3yPUXFxcjKioKTZo0wTPPPIOGDRvi888/18z/7rvv0KNHDwQEBDxyXURkvjiwMBGRBPLz89GoUSNs2LABYWFhJqmjsLAQDRo0wPr169GxY0eT1EFE5oE9dEREEpDL5VizZk2lAxA/qpSUFLz11ltM5ohqAPbQEREREVk49tARERERWTgmdEREREQWjgkdERERkYVjQkdERERk4ZjQEREREVk4JnREREREFo4JHREREZGFY0JHREREZOGY0BERERFZuP8DkYHjeI7VTFoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHVCAYAAAB4wWYZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eVxWZfo//j4PigIqi6AssokpLqBIqCDi1qSoJWql0pQ5uUyQNr+pFGpsWiyxms9Mbi067YlO5TauLVqKmKK5K5kIggopgaiAojzn98fhPpzlvs/yAIrzPe/Xq4XnnHPvy3Vf93W9L47neR4WLFiwYMGCBQsW7lrY7nQBLFiwYMGCBQsWLDQMlkBnwYIFCxYsWLBwl8MS6CxYsGDBggULFu5yWAKdBQsWLFiwYMHCXQ5LoLNgwYIFCxYsWLjLYQl0FixYsGDBggULdzksgc6CBQsWLFiwYOEuhyXQWbBgwYIFCxYs3OWwBDoLFixYsGDBgoW7HJZAZ8GChWaDkJAQPPHEE7clr5ycHMTFxcHNzQ0cx+HQoUO3Jd/GxMsvvwyO45o0jyFDhmDIkCFNmocFCxYaDkugs2DhDuDjjz8Gx3HiPy1atEBAQACeeOIJnD9/vsnyPXHiBF5++WUUFBQ0WR53AhcuXMDLL79sWCi7efMmHn74YZSVleGf//wnPvvsMwQHBzdtIS0Yxssvv4yQkBDZb9988w2efPJJ9OrVC05OTqrnUtjtdrz55psIDQ1F69atERkZiczMTNV7+/btQ0pKCqKjo9GyZUumcFxUVIRXXnkF/fr1g6enJ7y9vTFkyBB89913hspuwcLtQIs7XQALFv5fxquvvorQ0FBcv34dP/30Ez7++GNkZWXh2LFjaN26daPnd+LECbzyyisYMmTI/9Smc+HCBbzyyisICQlBnz59dN/Py8vD2bNnsXz5ckybNq3pC3gX45tvvrnTRQAArFy5EqtXr0bfvn3h7++v+e6LL76IjIwMTJ8+HTExMVi/fj2Sk5PBcRwmTZokvrd582asWLECkZGR6Ny5M06dOkVNb/369Vi4cCGSkpIwZcoU3Lp1C59++in+8Ic/4MMPP8TUqVMbta4WLDgCS0NnwcIdRGJiIv74xz9i2rRpWLFiBZ577jnk5eVhw4YNd7poplBZWXmni2AKFy9eBAB4eHjovnu31a2x4ezsDGdn5ztdDLzxxhu4cuUKdu/ejd69ezPfO3/+PP7xj38gNTUVH3zwAaZPn47//ve/GDRoEJ5//nnU1taK7z711FOoqKjA/v378Yc//IGZ5tChQ1FYWIiVK1ciNTUVzzzzDLKzsxEeHo6XXnqpUetpwYKjsAQ6CxaaEQYNGgRA0CAR1NTU4KWXXkJ0dDTc3d3h5uaGQYMGYceOHarvV61ahejoaLRt2xbt2rVDREQE3nnnHQDCNe/DDz8MQNigyHXvDz/8IH6/ZcsWDBo0CG5ubmjbti1Gjx6N48ePy/J44okn0KZNG+Tl5WHUqFFo27YtHn30UWadiJ1Xbm4uHnnkEbRr1w7t27fHM888g+vXr+u2yZkzZ/Dwww/Dy8sLrq6uGDBgADZt2iQ+/+GHHxATEwMAmDp1qlivjz/+mJreE088gcGDBwMAHn74YXAcJ9qIadWtsrISzz77LAIDA9GqVSt069YNb7/9Nniel6XPcRyefvppfPnll+jRowdcXFwQGxuLo0ePAgDef/99dOnSBa1bt8aQIUMMX39nZWUhJiYGrVu3RlhYGN5//33mu59//jmio6Ph4uICLy8vTJo0CUVFReLzp59+Gm3atEFVVZXq28mTJ8PX11cUfGg2dNevX8fLL7+Mrl27onXr1vDz88P48eNl49Zut+Nf//oXevbsidatW6Njx46YOXMmysvLDdVXCX9/f7Rs2VL3vfXr1+PmzZtISUkRf+M4Dk899RTOnTuHPXv2iL937NgRLi4uumn27NkT3t7est9atWqFUaNG4dy5c7h69aqJmliw0DSwrlwtWGhGIJu7p6en+NuVK1ewYsUKTJ48GdOnT8fVq1fx73//GyNGjMC+ffvEK8Zvv/0WkydPxvDhw7Fw4UIAwMmTJ7F7924888wzSEhIwOzZs7Fo0SK88MIL6N69OwCI//3ss88wZcoUjBgxAgsXLkRVVRXeffddxMfH4+DBg7Ir2lu3bmHEiBGIj4/H22+/DVdXV926PfLIIwgJCcGCBQvw008/YdGiRSgvL8enn37K/Oa3335DXFwcqqqqMHv2bLRv3x6ffPIJHnzwQXz11VcYN24cunfvjldffRUvvfQSZsyYIQrFcXFx1DRnzpyJgIAAvPHGG5g9ezZiYmLQsWNHzbrxPI8HH3wQO3bswJNPPok+ffpg27ZteP7553H+/Hn885//lOWxa9cubNiwAampqQCABQsWYMyYMZgzZw6WLVuGlJQUlJeX480338Sf/vQnbN++XbPtjh49ivvvvx8+Pj54+eWXcevWLfz973+XlZvg9ddfx7x58/DII49g2rRpuHTpEhYvXoyEhAQcPHgQHh4emDhxIpYuXYpNmzaJQj4AVFVV4b///S+eeOIJODk5UctSW1uLMWPG4Pvvv8ekSZPwzDPP4OrVq/j2229x7NgxhIWFie388ccfY+rUqZg9ezby8/OxZMkSHDx4ELt37zYknDmCgwcPws3NTRzXBP369ROfx8fHN0peJSUlcHV1NTT+LVhocvAWLFi47fjoo494APx3333HX7p0iS8qKuK/+uor3sfHh2/VqhVfVFQkvnvr1i3+xo0bsu/Ly8v5jh078n/605/E35555hm+Xbt2/K1bt5j5fvnllzwAfseOHbLfr169ynt4ePDTp0+X/V5SUsK7u7vLfp8yZQoPgE9LSzNU17///e88AP7BBx+U/Z6SksID4A8fPiz+FhwczE+ZMkX8+y9/+QsPgN+1a5esrKGhoXxISAhfW1vL8zzP5+Tk8AD4jz76yFCZduzYwQPgv/zyS9nvrLqtW7eOB8DPnz9f9vtDDz3EcxzHnz59WvwNAN+qVSs+Pz9f/O3999/nAfC+vr78lStXxN/T09N5ALJ3aUhKSuJbt27Nnz17VvztxIkTvJOTEy9dxgsKCngnJyf+9ddfl31/9OhRvkWLFuLvdrudDwgI4CdMmCB77z//+Q8PgN+5c6f42+DBg/nBgweLf3/44Yc8AP7//u//VOW02+08z/P8rl27eAD8F198IXu+detW6u9mMXr0aD44OJj5rHPnzqrfKysrNcdtamoqb2ZL/PXXX/nWrVvzjz32mOFvLFhoSlhXrhYs3EHcd9998PHxQWBgIB566CG4ublhw4YN6NSpk/iOk5OTaMNkt9tRVlaGW7du4d5778XPP/8svufh4YHKykp8++23psvx7bff4vLly5g8eTJKS0vFf5ycnNC/f3/q9e5TTz1lKg+irSKYNWsWAMEwnYXNmzejX79+Mo1KmzZtMGPGDBQUFODEiROmymAUyrpt3rwZTk5OmD17tuz3Z599FjzPY8uWLbLfhw8fLtNo9u/fHwAwYcIEtG3bVvX7mTNnmGWpra3Ftm3bkJSUhKCgIPH37t27Y8SIEbJ316xZA7vdjkceeUTWj76+vrjnnnvEfuQ4Dg8//DA2b96Ma9euid+vXr0aAQEBmhqsr7/+Gt7e3mL/SUG8RL/88ku4u7vjD3/4g6wc0dHRaNOmDXU8NRaqq6vRqlUr1e/Eyai6urrBeVRVVeHhhx+Gi4sLMjIyGpyeBQuNAUugs2DhDmLp0qX49ttv8dVXX2HUqFEoLS2lbkaffPIJIiMj0bp1a7Rv3x4+Pj7YtGkTKioqxHdSUlLQtWtXJCYmolOnTvjTn/6ErVu3GirHr7/+CgAYNmwYfHx8ZP988803ohMBQYsWLWRCpxHcc889sr/DwsJgs9k0bcjOnj2Lbt26qX4n12lnz541VQYjoNXt7Nmz8Pf3lwljWuWQCl4A4O7uDgAIDAyk/q5lV3bp0iVUV1er2g+Aqm1+/fVX8DyPe+65R9WPJ0+elPXjxIkTUV1dLTrgXLt2DZs3bxbtClnIy8tDt27d0KIF22Ln119/RUVFBTp06KAqx7Vr11TjqTHh4uKCGzduqH4n9ppGbOa0UFtbi0mTJuHEiRP46quvdD1uLVi4XbBs6CxYuIPo168f7r33XgBAUlIS4uPjkZycjF9++QVt2rQBIBi4P/HEE0hKSsLzzz+PDh06wMnJCQsWLJAZoXfo0AGHDh3Ctm3bsGXLFmzZsgUfffQRHn/8cXzyySea5bDb7QAEOzpfX1/Vc+Xm3apVK9hsDTsPNjUhrqNojLqx7M9Yv/MKxwpHYbfbwXEctmzZQs2LjCkAGDBgAEJCQvCf//wHycnJ+O9//4vq6mpMnDixUcrRoUMHfPHFF9TnPj4+Dc6DBT8/P+zYsQM8z8vGWHFxMQA0WACbPn06Nm7ciC+++ALDhg1rUFoWLDQmLIHOgoVmAiKkDR06FEuWLEFaWhoA4KuvvkLnzp2xZs0a2Qb197//XZWGs7MzHnjgATzwwAOw2+1ISUnB+++/j3nz5qFLly5MIYoYsnfo0AH33XdfE9RO0NqEhoaKf58+fRp2u12TDy84OBi//PKL6vfc3FzxOdD0wmFwcDC+++47XL16VaalU5ajKeDj4wMXFxdRiyqFsm3CwsLA8zxCQ0PRtWtX3bQfeeQRvPPOO7hy5QpWr16NkJAQDBgwQPObsLAw7N27Fzdv3mQ6NoSFheG7777DwIEDG6wRM4s+ffpgxYoVOHnyJHr06CH+vnfvXvG5o3j++efx0Ucf4V//+hcmT57c0KJasNCosK5cLVhoRhgyZAj69euHf/3rX+IVEdG0SLU4e/fuldEvAMDvv/8u+9tmsyEyMhIAxCsoNzc3AMDly5dl744YMQLt2rXDG2+8gZs3b6rKdenSpQbUSsDSpUtlfy9evBiAwMXHwqhRo7Bv3z5ZXSsrK/HBBx8gJCRE3LBZ9WosjBo1CrW1tViyZIns93/+85/gOE6zDg2Fk5MTRowYgXXr1qGwsFD8/eTJk9i2bZvs3fHjx8PJyQmvvPKKSuvH87xqjEycOBE3btzAJ598gq1bt+KRRx7RLc+ECRNQWlqqaguSByAIirW1tXjttddU79y6davJ+gkAxo4di5YtW2LZsmWycr333nsICAhgej/r4a233sLbb7+NF154Ac8880xjFdeChUaDpaGzYKGZ4fnnn8fDDz+Mjz/+GH/+858xZswYrFmzBuPGjcPo0aORn5+P9957Dz169JAZtE+bNg1lZWUYNmwYOnXqhLNnz2Lx4sXo06ePaOvVp08fODk5YeHChaioqECrVq0wbNgwdOjQAe+++y4ee+wx9O3bF5MmTYKPjw8KCwuxadMmDBw4kLqBm0F+fj4efPBBjBw5Env27MHnn3+O5ORkTZLYtLQ0ZGZmIjExEbNnz4aXlxc++eQT5Ofn4+uvvxavRsPCwuDh4YH33nsPbdu2hZubG/r37y/TCDYEDzzwAIYOHYoXX3wRBQUF6N27N7755husX78ef/nLX0QNZ1PhlVdewdatWzFo0CCkpKTg1q1bWLx4MXr27IkjR46I74WFhWH+/PlIT09HQUEBkpKS0LZtW+Tn52Pt2rWYMWMGnnvuOfH9vn37okuXLnjxxRdx48YNQ9etjz/+OD799FP89a9/xb59+zBo0CBUVlbiu+++Q0pKCsaOHYvBgwdj5syZWLBgAQ4dOoT7778fLVu2xK+//oovv/wS77zzDh566CFTbXDkyBHR3u/06dOoqKjA/PnzAQC9e/fGAw88AADo1KkT/vKXv+Ctt97CzZs3ERMTg3Xr1mHXrl344osvZFfRZ8+exWeffQYA2L9/PwCIaQYHB+Oxxx4DAKxduxZz5szBPffcg+7du+Pzzz+Xle0Pf/gDlULGgoXbijvlXmvBwv/LILQlOTk5qme1tbV8WFgYHxYWxt+6dYu32+38G2+8wQcHB/OtWrXio6Ki+I0bN/JTpkyRUTd89dVX/P3338936NCBd3Z25oOCgviZM2fyxcXFsvSXL1/Od+7cWaS8kFKY7Nixgx8xYgTv7u7Ot27dmg8LC+OfeOIJfv/+/eI7U6ZM4d3c3AzXldCWnDhxgn/ooYf4tm3b8p6envzTTz/NV1dXy95V0pbwPM/n5eXxDz30EO/h4cG3bt2a79evH79x40ZVPuvXr+d79OjBt2jRQpfCRIu2hFW3q1ev8v/f//f/8f7+/nzLli35e+65h3/rrbdEqg4CAHxqaqrst/z8fB4A/9ZbbxkqBw0//vgjHx0dzTs7O/OdO3fm33vvPbFtlfj666/5+Ph43s3NjXdzc+PDw8P51NRU/pdfflG9++KLL/IA+C5dulDzVdKW8DzPV1VV8S+++CIfGhrKt2zZkvf19eUfeughPi8vT/beBx98wEdHR/MuLi5827Zt+YiICH7OnDn8hQsXdOurBJkztH+UY6a2tlacM87OznzPnj35zz//XJUmaX/aP9I6k3Zm/aOkAbJg4U6A4/lGssa1YMGCBQpefvllvPLKK7h06ZKKbd+CBQsWLDQOLBs6CxYsWLBgwYKFuxyWQGfBggULFixYsHCXwxLoLFiwYMGCBQsW7nJYNnQWLFiwYMGCBQt3OSwNnQULFixYsGDBwl0OS6CzYMGCBQsWLFi4y2ERCxuA3W7HhQsX0LZt22Ybf9KCBQsWLFiw8L8Fnudx9epV+Pv768aYtgQ6A7hw4QICAwPvdDEsWLBgwYIFC/8PoqioCJ06ddJ8xxLoDIAE4y4qKkK7du3ucGksWLBgwYIFC/8v4MqVKwgMDBTlEC1YAp0BkGvWdu3aWQKdBQsWLFiwYOG2woi5l+UUYcGCBQsWLFiwcJfDEugsWLBgwYIFCxbuclgCnQULFixYsGDBwl0OS6CzYMGCBQsWLFi4y2EJdBYsWLBgwYIFC3c5LIHOggULFixYsGDhLocl0FmwYMGCBQsWLNzlsAS6uxTFFdXIzitFcUW1qWeOpmk0XTN5N9W7jryv9Z30N0fSbYx2bez0zNSpMcuvfFfvb7N53O73DheVY/muPBwuKjf9bWPMp8aeQ425rhgt++Gi8kZdV4y+35jrWVPU5Xavx3rfml0HG3Mu3u69p6nbtqlgEQvfhVidU4j0NUdh5wEbB8wdGY6ITu4I9XbDzlOXZM8WjI/AxJgg02kuGB+BhK4+yC+tVKXLAZg+KBRT40Ph5+6imYY07+KKamp6euWUpssBSEsMx8zBYao0SVn06iIts1Y+0weFon3bVli4JVf8DQB4qMvhSF/5ubto1k2J4opqfJiVj39n5TPbTa8PaPXUqpOZ8pvpRxsHjIsKwNqD55l/k37Tq7ORupsde8q2po35Z/9zCF//fF78ZkLfAPzjkT6G+sFIWY+erxDHHiuNtK+Pin2XMcF42yvnBADNdjbaz1plZ60nBLTxZSZvgvd35iFjcy54GJsDZt9RrjnS96R1ob1vdN2jrUXSsdeQ8iv7irYmKvNP7OWLrcdLVGuGI3nrtYdyrdZbg8yOkfd35iFjSy54RtmMrDdmx+TtAsfzPK//2v/buHLlCtzd3VFRUXHbI0UoJ11xRTUGZmyXLR4E0olG4MRxyEobKn5Lm8C0NDkAHAfVBFbmRxYaAKo0pHlLNx/yLaucyvrT6ps+KhweLi2pi4FeXaRllm5orHbVQurQMAzs4k1dFLX6iixMC7fmUuv2YG9/1Wa7Yle+qg+U/avVB8UV1dhfUIZnVh3SrGfq0DA8PyJcd6xN7heIVTlFqvzWpMSisqZW1ibFFdWIW7BdVX4tsMYdLQ+tuisPI8o0bQAWJUchOtiTOlaVZUpLDMeAzl4YuzRb9fzfU6LRw99dVVeOA7LThpkqqxLScgJQ5wEgO32Yam7T+lw5J2h1JWUC1HPDBmC3Ii+aYCPND5J8WHmK6WvMZ9ZaAQBvbcvF0h15qt/Xp8ahd6DQbrSxKO0f8g6tznNHhcsEVdYcJuV8akhnLP0hDzxj7Bkdy2bbhFXHdSlxqKyp1TwsaM17GoysMazxrRwHynGZMiQM7/6Yx1xDzY6R93/Mw4ItufJ0IIzlnacuUec9rW3NjMmGwoz8YWnomjFop4BAL1fmRKP9XMvzOFBQjsoa9skwv7RSlSYPgIj6rHnNA/hgVz5WZOVjWnyoKo1ankdBaRUAqCaKMk3pu1Khk1Y2AFiwORe2uokPCP99Yc0xvDO5j25dPtiVj+W78sW/bRyo5TeCpTvysHRHHvWUxio7Ke/CLbmwU55lbM6VaQW1ikXazc/dBR/VnSqVzzcdKUYtz4tpGqlTO5eWiAhw1xxrK/cVUcuTtCxbdfpd/P2vpoQ5kgcNtTyPpKXZMg0BbV6QsS/dQGhp2gE8vfKgbIPWGvMLtuRieLgP9fmTnxzA8HAf1fc8D/x8thyjI9n9pCyrVjknxQSq8wBwoKAcY3qrtRa0eujNb1ImrzbOqjTsAD7KKsALo7sDEDY5rbLTyqoFrfksHfNSvP9jHlWYA4CxS7OROiQMz48Mx4Gz5Zr9A9Dnrh0QNX+kjBlb2GOlluexRFIe1vqsnC+sNZ60ycR+nXTbhFVHMm9o6SZ09WGuI1ogeWsdRljjmzYupONy6Q/0/iTlTv/6KF4Z29PQGCmuqEaGQpgDhH5d/P1pZO4rZPaRdG/aeOSC4TF5u3FHbeh27tyJBx54AP7+/uA4DuvWrZM953keL730Evz8/ODi4oL77rsPv/76q+ydsrIyPProo2jXrh08PDzw5JNP4tq1a7J3jhw5gkGDBqF169YIDAzEm2++2dRVazCUCySZdG7OTrDph3STYVbmQaR9rU6L3P2HervBZJIy2Hlg+a58VRocB4R4u2J/QZnuAm7jgCPnL2NgxnYkL9+LgRnb8f6Pefj92g3NfKWo5XmgbmHUAw/IFuYVu/JNt6uyLNI2BfTblSbMkbJpCSBSOHEcQrxdUVxRLQqpSszfdBILNhsT5ggWbsl1aKwB9QsyaZPDReVU4a8hkPYda144cRzAqccJC2SDNvL+97mXTD/jeTD7iav7l5G87TyQyWjPy9U1oi2XloBlFLNXHcTRcxXUcbx81xnRdlDr8OIoanke5ZU11GdVNTdlf7M2aymW/pCHlC8OoLyKnqb0d9bcNSuYGoFyvmjNu1qex8q96r631a21BKw6agmfBaVVmusIC04cB1dnm+Z4MzsXjcIOYN7649Rnpy9ela3H+aWVzPqvZAhzgFB26d5Ea38O8va/U7ijAl1lZSV69+6NpUuXUp+/+eabWLRoEd577z3s3bsXbm5uGDFiBK5fvy6+8+ijj+L48eP49ttvsXHjRuzcuRMzZswQn1+5cgX3338/goODceDAAbz11lt4+eWX8cEHHzR5/RoC2gJZy/OoqrFjwfgIYYIYhFR4kaZFTh1+7i6Y3D+wQeWl5UF+MBJUeFJMkEyDZOcFTciszEPMb5SpOnEcokM8TbcPICwM0+I7N0iwJadQAj93F0wfFKr5zROxwQ7nZ+OAN8b3EjWZjblW2nmgqsaOuSPDG5ROLc8jR9ImSpCNy4njMKFvgOl+k+YxNzFc/N6J4/DG+F6IDvZUbY4c2EK/mTZMuMfbVDnP15k8sPII9HQxPP54qMc/ALy0/jiSl+9F0tJs5ubJMb6lwc4Db279hbo+8ACSlmVjdU4hQr3dmG3akDnFwrRPD2B1TqFomE7TSNGw+WgJKqpuUp95uDgDqDdzacia6GidpWs8bXNmbdjT4jvLtEMHCspM5UsOhmbXETLPKmtqNYW1if06IdBTW3ulJYw4crCct/44BmZsx+qcQgDQHKNa+c4Z2c3Q7cbOU+xD3u3CHb1yTUxMRGJiIvUZz/P417/+hb/97W8YO3YsAODTTz9Fx44dsW7dOkyaNAknT57E1q1bkZOTg3vvvRcAsHjxYowaNQpvv/02/P398cUXX6CmpgYffvghnJ2d0bNnTxw6dAj/93//JxP8mhvI4FPe04d4uyI2rD0SuvqgoLQKR85fxptbfkEtz8MGhmBFATlVZeeV4uj5CmRSTh0NBQ+goLTK0ESO69IeK/cVmkp/cr8grM4pQi3PiwuLn7sLJsYEIdy3Lb4/eRGLd5wWT8B6ZZgaH4LIQHc8vfKgqXJIMSvzIM5frhYdC6bGh2KFxhXGiF5+8PN0kV3lGIW0XrTxogUOwKzhXdC7kzv+e/gC1h0qlj0nY21H7m8mSyWHE8chJsSTWrah4T4YHxUAG8ehb5392nMjumHTkWLM33TSVD7zN50Ur0wjO3mIp+X80krMTQwX5wgZJwldfXCgoByzVh2kjg9y1W0DEBPiib0KodSJ47DwoUicuFCBaZ8cMNR3b275BWtSYqnX6DyAorJqpCWGq2x8iPaOV6wFI3p1xOajJbJ3jWp2x/cNwLqDFwSttg5qeR5xnb2xal+Rqg/5Oq1SVtpQLBgfgRfWHBPbec7Ibojs5IGqmpuG20gJT1dn6tjhecGMg5M80zNPICi7ptZecQCiQzw1r6nN4NWxPfH3DcdNp6Nc4z/KKsCKrDOw88KzPw/ujGU/5KnqOTrSV/z/4opq1XzWy5OsnQAMryPzRnfHvSGeqKypFbWKrO9W7i1i7jEcgCXJUegb7InPfzqrujYndoZVNXYcOX8ZCzfTTVVoUF4nD+nqg+2/qAUv1t65ts7mUK89eMjzuVNotjZ0+fn5KCkpwX333Sf+5u7ujv79+2PPnj2YNGkS9uzZAw8PD1GYA4D77rsPNpsNe/fuxbhx47Bnzx4kJCTA2dlZfGfEiBFYuHAhysvL4enpqcr7xo0buHGj/qrvypUrTVRLNvzcXVQLpHTS+bm7wM/dBbFh7TEg1As5BeVo1cLGVD8D9RPVieOQFOWPccvYp3gbB4zvE4CvDp5XPeMUmwsLRFWdsZl9FaLUpJhZACfGdMKs4V1QUFqFEG9XqscTC8rFn4dwwkro6mO6HFLwEDSL4ICZCWFiP6Z/fVS1CHEAXJ1tiAhwx6tje2r2HSsv6SIyN1FisA32lS45pC76/rTqdx71fQKAef1ipI1IOr0DPTF3pFpQ2ZF7CTtyL8ls7fzcXRATop6TRkC0SUrjaxsHPDU4DJ5uzogJ8RSN48f0dsHhc5epdSQasLl1Xr/v78wT21Y6F/3cXZAxgd6/ShDtC01oA4TrzXFRAbLfOA7IGB8BACphSe+KEaD3Ew9g3cEL4ib52U8FKsFQCqnmm1ZPou2fGBMkHjTJfCRz0ZHpRIQsVr485OsQ6TPy3+5+bXGi+Koq3Y/2FMj+tgFYMEFo48YQ5pw4DlU3a1VrZH/KwUCJOYndZGv8C6O7Y2p8iHh4Zx38kpZmi85e+aWVhsqZ2MsXj8eGyNZOAHgyPpTqgKWs4y2eF/cQ4qW+5ufzmvanNEwf1BmjI/2xOqcQ7/6gFubIGgJA3O+I3aERkPH56n9P0IW5uvVnX36Zymu9d6AnlZJIKx9LoKOgpERYYDp27Cj7vWPHjuKzkpISdOjQQfa8RYsW8PLykr0TGhqqSoM8owl0CxYswCuvvNI4FWkAaAukEkr3ctYplYNw2qiqscPV2aYpzAHCFWgmQ2NmSOMlUVWzXp83ujtGRfqJ9ZIKsEYwblm26MJOoGecTaA8QRPhiKZpSIryx9qfz8MOtuelEgu35OLB3v4yjaHSIJmvq4Ne32mBXPMePien2JibKFyVGtH2SPHM8C4YFt4BvQM9kZ1XSi3PjEGdMTrSl7mo2gAsrjtxk76V9pESxLg5oavgaLDP5HWRFDTjaztfb1ytpD34U3woU2jlIfTjgM5emJkQhgd7+1PnIpmnr288iY1H2ZoRYucUG9YeV6/flBnMk3JKNxQA4HiIArt0LfjuxG+G7CvXpMQip6BcpfEkwmWItyu2HpMLc1JPQ6Xm28YBz391VJWXq7NwYUaEXMD4XGSBB3DxyvX6+WNwE1+aHIVOni6orKnFip1nVJu4Mo2nhoZhYkwQsvNKDZVV6YnZL9QTOQXlYnvR1j0bgBmDO2NfgbamMjLAQ/Ubac9HV/xkyEFt7shwqiCvXF++Of4bXnqgh6mDMEC/hrTzwiHB7MGU3IzQxooNwAeP94WLcwsUV1SLXrSVNbVIU2jdk6L8mcKkE8ehquYmthyjH1oWTYpCoJcL0tbIx/W6gxfw3IhuqKypNVwfMg/uFJqtQHcnkZ6ejr/+9a/i31euXEFgYMNszBwFmWzk1KX02lF68LEEAx6CTVRsWHtDCxfL48coFk2KonrHEThxnEyYA+QCrNZplIDY2QH1dCRaXsDSvD3d1GUjwkCgl6uovQjxdsXOU5ew9uB5gBcW8sFdffDDqUuCZxromjA7D5lnVFllDd3DUtF3ZCFmpavUjnIQrnmVgmLGllzMGt4FT8QF49M9Z8XN5sn4EHygIcC88/1pLN5+WqQDUG4MHIDIQHcUlVfThbm60+7oSH/Z79U1t6h5iu0AYO5XR5B12timyoINgkG4lnexdMykJYYjnaExI+VKWpaNDIkGEVDTCfm5u+DFMd2x+VgxM29i57Q6pxDLNLz3lPkLnqZCXrFh7bE6p5C5aZLxodRs0FBVc1PTw50D8OfBnRHoJTjd7Dx1CXO/VgtzAHD0fIUqLz1HiXmju6OsqobpmQoImifCr5cxPkJ2eKUlzQM4XFSBWZkHRc1R6pAweLk5w5lxg/HuD3n444BgkSKIBmW7Xq6+iQV169PefEGDMyMhFFMHhjI9ZKd9qi3M2TiIZjBKGiSjTifEsUeJ5H6BKsck4gE/OtIPgHHt5CsP9sT1W+pryFqeh6ers+bBlHVYoO1JYpvxai48mnnFmro1WgpiZ3yGobXkOMG2VbmGkvoUlFZRzVlY63NVjdHL4KZBsxXofH0Fm4DffvsNfn5+4u+//fYb+vTpI75z8eJF2Xe3bt1CWVmZ+L2vry9++01uB0T+Ju8o0apVK7Rq1apR6mEGNJ44FglicUU11X2aNZFsqD89uDk76V6bGt1TaRorJ45DoJcLVuXQbSbICY8mpApp8RgQ6mX4apfkzxJUlHm/Mb4XXFrST1LEpoq0dYi3q0rbs0Ny4h/Ryxd9Aj1UAoETx2H36UtIXpFnqg5je/ujV4A7Qr1dMf3TA6pFJCbEC3vzy2TfsNIiV6rkasXV2YbCsird61KiMVubGifTVpK+fnrlQerBgYOw2BNNGwHhddPDzl9Ldd9RQrpBAMIi+9L644a0nTwE4S59VDjSR4UzDxB8XXuE+7ZF70BPlVackDGTa+8FFBMDLU2EXv3IZkPyWriVfdXK88CYCF+M6xsgajZYGoZpnx5AGkObA9TTRiz9IU/XyP9v646j8PcqGfmtll0nx0E80LVzacluewBpawTt7eXqm7K0Env5UrUuy3edkXlBv/fjGaxJiUVhWRW17HZeEJqjQzwxto8f1lPsz1Y8Hg1X55ai8BC3YLvqnQ925iOyk4fo3KI6VOv0+chevjKN/eR+gYjr4o3oYE9TNrLKV2wAJsaoOSMBwfb0jc0nDdM2cQDTNtCJ43C+opq9B9UJYf4erWV2swB7rEgpTDZL+lpqXuHn7oI3Np2gtu+iSVEY09ufeW36UFSA5i2Sq7MNfu4uGBcVINOe3xviif1ny6k27ncSzYZYmOM4rF27FklJSQAEpwh/f38899xzePbZZwEImrIOHTrg448/Fp0ievTogf379yM6OhoA8M0332DkyJE4d+4c/P398e677+LFF1/Eb7/9hpYtWwIAXnjhBaxZswa5ufo2KCTfpiYWpnHOXa66SRUU5iQa87pRQsnG31CQcgJQXVGy1N/J/QMR3N6NSmqp3Cgbc2DaAEyrO0GzCCSVcOI4vDO5j66TxNNDw2TXZxwHjOxJ32wMl7eur4jhekPb4+mhYVj2A52gkwViv0UcCGavOqjS1tHIp5UHD0cIm82CJlxyBjdAGwfsThuGi1euU8mCxTQ5IE2DDNrDpSVzXBGy5uy8UiQv32ugRtp2kEZBNlGWBpKsJ+T6qqFQ8jEqo2lIsSddTuS7+PvTTMeocX38sfbQBVXZHxsQhI/3nNUtl97hUM+UQlpWvT50dK5qmctkTJCvs2aROX0ACssqmd/b6jLSszsGo4yAIGBvq9OgKZHcLxDB3vR1n2B1TqFYPqNjf8nkKESHeCKWImADckJprbHIQub0AQjxdqWuYVLzFaJtbIpoEXcNsfC1a9dw+nS9YXZ+fj4OHToELy8vBAUF4S9/+Qvmz5+Pe+65B6GhoZg3bx78/f1Foa979+4YOXIkpk+fjvfeew83b97E008/jUmTJsHfX7jySU5OxiuvvIInn3wSc+fOxbFjx/DOO+/gn//8552oMhU0zrl0xsZQy/Oixs4saDY6DcGiScJkyi+tFK8oiX0eq3g9/NrhpfXHZXV9Yc0xeLdxRtqao7pkp2bx2tie6NKhrWj3RNraSPqCyl3fwFh1ZcRDZZdkFsQmZU1KLIrKhCuBhkBpr2UERDO1NjWOen3OA1g8KQoAZMKe1LOsKfjJALpTi7Jsrz7YE2cuVeKj7ALNtMj1OK8zKnieTSSbsTlXEBoY3y77IQ9BXq5I6OpjaMOfN7o7nFvaMG+d+orQjMDAuoIjqOV5BLi7ICttKFVoNwtp3wMQTBUYkJIg7zx1iWmzC0AlzJGyd/IyphHRWy/1qiw1dndzdmpQWma/4yFch+5OG4Y1KbHahw5KOoQPNDasPcJ921K/twNIjgnSZBp4+N5O+M/+c8zn246VMIUwwpso1Zymf30Ubq1aiBFapCY3rs42KgmyErNWHcTkGLY5FLkCLa6oxpBuPqb2P2LzylrDeAA2vt5D906TCgN3mIdu//79iIqKQlSUsCn89a9/RVRUFF566SUAwJw5czBr1izMmDEDMTExuHbtGrZu3YrWrVuLaXzxxRcIDw/H8OHDMWrUKMTHx8s45tzd3fHNN98gPz8f0dHRePbZZ/HSSy81K8oSls0F67TWHHSqRL1OyBbHLctGYVmlrot33kU6v96Tnxxg0kcY+Y2F7LzfERvWXmaLaGbDevubU7rv0IQJI1kk9fHXrAsxXGc5JwByTjUbgBE9OjDe1Aa5QlXCDoFlf/evpSoOJ3Kqp53sif3J0XMVDpVHC4RiQAschKtXPWGOpPd75Q1DRMpam67WuCL0HhsOXzCkGR4V6QdPV2fq8+T+QabmgF5+s1cdxM5TlzCmt79DHI5KkL7Xm2skGzOHLClsHERKHGYeJtOk5gO5sbsZI/nGAjl0aOXNtCuU/Mj63sYJ1FFa+FJDmAOEtYI1dGhrIol8IuWKI8wNvQM9kZaoz4HJ82ySbSKQrc4pxMCM7ZqcpjTMTQyHn7uLJn+dHYCXW6tmIcwBd1igGzJkCHieV/3z8ccfAxCuYV999VWUlJTg+vXr+O6779C1a1dZGl5eXli5ciWuXr2KiooKfPjhh2jTpo3sncjISOzatQvXr1/HuXPnMHfu3NtVRUOgDRgb6GSKKUPDmItUQ4Ufo5B6cim1MtU1t5iTGgA+NrDBSvNZlxqHGYM6ywho0xLDDRNEbjlWIrOfcIRcUguJvXwdSo8DdDd3whXIirLAccJVzO60YcicPgBzR4XjmxMXqe/SIG3TjAkRWJcax+y7pT/kYWQvX3GzJ5vH0ysPijZ1tLJr2XsZxaiI+nydOA5zKf2vFGz1hGpO8l9Sj3HLsjEuKkBWx8YE0a5rwQbgyfgQABBjtkrBAQhq79qo5ghk7hZXVGNiTBDmJHZTjQMzGwWxJdKba508jR+yaMnMTQxH70BPJgkvIHizN3S+2yF4oxOhQ09DRwOx05SOUWWxWIcq8kzv0KHVhB9lFQBgr39zE8MF2z9G2ka0wmRtNk3qzquj7ADAzMFhSB8VrjsPWeUinv5GbFaT+vjL+iY9MRwzEwQuUUI9RRtjzcFuTopm6xTx/xJYnHMAZDYFTw0RAsGXV9VQw4/QkDZK7d7NIhS1ARhLsVWRYvbwLhge3gFF5dVUrQzxSlJCz/5CVRYOopdeh3atEdGpncyQ1sO1pWHj8re3/YLnRnRD70BPVVs7gqQ+/ogIcMe9IULZOnm66PI2SUHaQunwkDI0DO/+cEbs7zkjtV3mH+7bCW6thCkc4u2K5OVsWgMaFk2KQvs2rWQ0HBnjI5h2YFuPlWBtSpxwBawg5JW+TwT+fQVlhm3YtDisRvXyqxOc6/v/8LnLMu608X0D8NyIbigorcLpi1d1qRNWTIlGdY1dVg87D6z9+TzWpsaJHs4fZeVTnW2S+wWZ9gRnadcJT17B71XYfKxYRj9Bu1qm8TpyACIC2uHIeTVnppHNWBo5ZqHCpMMG4BUGHUVyvyC0adVCdESwoT56SXFFNZ7UoIUh12EkzJZeGYnRPHEYeLC3YFbDojWxAYjs5I4FGmOaBpHA98c82dgg1DpF5dXU77Ts9CIDBG9Mf/d6h4Cdpy6p1vxw37b4YGc+Nh8tVpWXHJyGdPOROWYZwQe7ziDQywX39egoW/9sqBd8aO03LSEUkZ08DJGtz0nshpkJYfBybUmlttGya2VxuM1MCMOAUC9mm2jhwd7+xg4LnNAGUweGIKegXMZVSUCug6VEz9JIPc0FlkDXTMDinJPSeCzckivyaSkXQJYR6fYTv+Ffk3rLNsOuvm1VdnhkQTl87rJmORd9f1pFSCsFS5ibTHGb18LY3v4qRwmlIa2SvoM1b3ed/h27TmdjQt2mL6UlkUbaMLSpoF4VvzqnUJfPTwotodYOYGAXH7R1aSnGE83YkouUIWHMcv3nwDn854BwDUILCK/MW/n8fEU1xvSupxcRPKfZi6adF6IZHDl3mblxCQePzlTHARYWTYpCZc0tqn0Lh3r7PA4CNU3LFjYVEe66gxfweGwwtuf+hhUGvJ1dnVti75nfVPWwA9h0pEQMOt+/sxdVoHN24vD0sDAs3m7cNnFIuA9+/OWSql1ShoRh6Q45+7+UXkUJWrMurjMOj1uwnWoCYARHzl0GD55q/gGoSYo5CNFGdp66JAozPIC8i9dkRMw0SGOPkhB5Wl7qPIT0IwPa4eiFK1i5rwircorE9aB3oCcyFAc1ollbMD4CK6ZE48lPDui2gQ3AmpRYVNbUqgLDkyDusWFe9DIy6koI1h9d8ZNsHE+NDxV5AmNCPJFbclXm5ZrcPxDVN2qx9lC9Jp8HTAtzBPPWH8dL648jY0IEstKGinvNhkMXVJ7ZHAQh/r4eAmerEQ/byAAPpHxxgElSPX1QZ0yND8F3J37DS+uPq8Zl1ulL4MHLWB6UjnLJ/QPBgUPmvkLd8hgx+eAgODopiciVDhuEgaJ9W+d6O+9mYPqkRLPxcm3OuB1erloorqimLtRkkyYaEdYGANQP0oSuPiqPHRuAtalx+OlMmWYatxM2TiBCVgpMhCzVjCAlBdl4lJ6YH2UV4INdZ3S/zXDQe9OIhjJ1aBjepXiijorwxZajJY16zQYIbUnc/lfnFDI5xqQwIvSaMdpvaH86Ao4D1qXEMY2uOQDZ6cMMe0MbBfEopdGaNDTdrLShAEBdJ4yCA5iCD8cB4xVaVA71NCpm++7R/kF4fVyE+PdbW3NVApQRSMcwABwuKldpmszeDmROH4Aj5y4z18LUoWFYtkMdfosF1ryWlotWxoZ4OWvNQTK+iRZVa8xImQy0oqFwAB6PDcYnDI9jG4DddXNK72ZFa68yOoc4AOtS2XNc+S6gvmWQro2sMnMckJ02rEm1dGbkjztLa2zBELQCTy9NjkJW2lDMHByG4eE+jLfq7RQOKLhzAGHRKCqrbrAw15i2aXYeIvu6FCQQu6Obv/QKRWq3sSJLW5gTPgbCfdsCMOdcYYNgy6P3+rs76LQiW4+VYF1qHJZMjsIzw7sYy9QAyDUHMUo3goYKc4/2D5LZwxkJ7N3o4CEQI7Mf4/uTvzkcsoqFWp6Ha0vz9ldakF77mA2srgQPgZSX+owH1vx8XmbkxQMO0ScBQGznegP84opqw0TLShAycILKGnXILR7mTD30bD/f/SEPaaPCDW+enq50gnVpuWhlbAhlzfRBnZm2ZzyAn88KbaY3ZshVc7hvWyxKjmK+xwNMYY7jzIVWI3nS9qpanjd0IBpWZxZkpN9pba9cG1ll5vn6tmwOsAS6uwAsJSoPwcMGELiRoihG1FLU1t2J0ASvtQfZHkx/GhhiSFibFBNk2iCWBZYHGwn23hi5EKZ02sJBAw/BzuT9H/Nw+qI6RiQNtrrFLLKTu6azCMBewIlwGx3iiUn9zHk4aoEY9DYWtYiNE67WtRDu2xb/mtRbPIhMjAkSbaiaArQFjgeQffp3ze9o3thamDe6O9anxuFvdVe1rLKcuWQszqaWgbz0nbUpceLVUGM4/LRqadM0uqddUTsy5c9LDOAbKojOyjyINzadQHFFdYPbYG5iuO4Bw84L14tr6/r7ufu7Mt914jiUV9U4VBZHq8FxAon1q0k9me+QfjTSXsTT/eSFKw617YrHozExJsjUOmOHMEepnvUG8H3uRaz9WdsrVwvEs9lImZvTHacl0N0FCGJwLXEAdp++JFKH/GObNsUGieAwkcLb830u2y5jbB9/TU8ygsx9hZgzshsypw9A+qh6byeaR5ce5iaGo0O71gjzkXss9w50N+zSbgTzN53ELIqXJgt8nW3TS+tPGHp/bUocAMGWx8jETx0axiznwIzt2HnqEjImRDi82Es9W4lmR8vOxKgXb71woS3Q/X3DcczKPIRZmQJVRnFFNfY3IHYrB2DKgGBqGTkI44hW/FU5bL4twJw3NgA4t7ChQ7vWGB3px+wbO2CIRgUQHGQyJmjPubRRwhzJzisVNc1Pxoc2SKD5xzenMLKnr+HxJXqdm8wnY0uuWOaGCmE8hCgxZH5IqVfMJMsB8HBpqWt3RWzikpZmY/6mk0xqIxIRRxlwXit/IhzbOOE626FmqVtn7uvekfqYAxAdIhz+d9aFMFQ+p2HpD3mICWErDWjfhXq7ooe/O4orqvH7tRum+nlVTiFG9pJHc0roxr6FUoK1pz0/oqumlzxQb3+5Wyd6jbQtmwMsGzoDuNM2dGbY5VkgNjCORImQ2jQYCUC+O63ePoMY3mrFgVQiPTEcHq4tme+vT41Dh3atG2QvpARZTBvz6o84YZixtUsfJQiqrKssqb3UgYJyrD14Ht/nGqcqAepjTpI+0irf+tQ4vP3NKezSWdhmDOqMsA5ubFuTuv/yit8cbfM+ge44XFQheFZywAhGZA6z9k6kXKz3x0T6YuMRutG3XlQGMyA2QB3atcbCLblYR/E8l0b/UNpjTU8IxbnyaqaBOiB4a68/pM+Lx4LSDvUvqw7JwtLpYWlylBjzVxolQFoXIxQ0Ukjnh9Qj0Sj0IiYQe2UawTQZN6T9SVxXR9fuhZRrSqP2qSTCAW2NHBXhi2WPRlPnvg3AyAhfzXFjFno2jJr2flzja8CUUXikHsZK+0s9pI+qpzdpKtw1kSIsGIOZOH5M8HA45BexN8tKG4rpCaGaAp2dr2eAJ0HLAajie9JANjFAuNpkYX9BObr7t2tU+ybadVJDsebn8wjwdDHV5gu35GJ32jA82Nsfm44UY/6mk7LnxGbIq40zokM8ER3iiR0mQ2ut2JWPqQNDAejbAmqx0hPYAIyO9FU5NtgALK+jBzl18arKO1qvzRN7dsSW479Rnx2S2HrZeYGlngatwO80xIe1R1Ye+zp205ES5lzUi8ogxWtje6L06g28s53uMU6u9zPGR6BnQDuqQCf1jOUV367YmY+1qXGYmdAZn+wuwBrK9/d174j7enTUpKTQ2mxfHdtTvO7dcOiCKWEOkPe90sv/4pXryCkoR6sWNl0KGimI7VOIt6tpYQ6oM3tgHEhIRID9BWXUNnn2/q6IDvaSsRQAxjxEaSDRIXanDUNBaRV+r7xhiD6ERIZgXWVvrePmpNEK2QGHQhZqOXDoVV1T0GsCdZM0Cg+hJ/JzdxEI3E3mFxng0fgFbACsK9e7AIQ7rSH2aTwaJhCShdIIS/qszIN4/8c82VXQAR3DUXJ1szqnCGOXap+SjJCW3k5oGR/TKF607KMII7yfuwtGR/pRrwZmrzqI5OV7ZVdMZpqCCN3ZeaWGoiNogQMwbVAolZfQDmDvGSGclBbVDQssYY4GMwbkWtXNyvtd0yaMBxAT4uUQuSuBE8fB36M1SitvaL5HQq95uLQ0nZcdgkCYW3IVUwaGqJ6Tq6LoYO1ICzyA4eH06CM8L9weHC4qNyzIShHopfYM5MFjw+ELGLdMuM6ct/64qbFNnBo2Hrng0HrHMg8h9sp+7i7gGAPkH9+cQmFZpUyYa8jaLV0LYsPa6/aVWFaJfRztdTsvjI3XN9H5DB0Rokb0Mn5NbxRNeXVYy/M4cq5CFkXI7J7S3EiFAevK1RDu9JUrwfs78zQ9fAhx8Nqfzxve4GhBr2kg7tkATF0h6pHGAsLVy7nL1YbpHMhVz778sgbFpjWrzifkv1LNCMcBIxnXfcx8IdjHnP29ShU7kUM9pQCgH1DaUSoMonkh/WNmzJDvB93jjazTpeKVH60ptbQTRq+PjJaH9E2jpGdwbJitgxPHoXegO34uvGyqLIGeLigsq3ck6OXfDieKrxiOsKB8beGEep4t6XUnDf+eEo1pnxxQpSEl+nWkH6VXtlrUEGYwKsIXW4/RA8QD8mtR5Svk6u1y1U3qtTm5Xnv/xzzmtbqSRoWguKIac786gp06pgu0+ix7NFr8e3VOoSZ9CMGSyVEY09tfs6wsONKfThyHEb06mr6qNXul3tiY0DcA/3ikDwD9/VWJ23HdCli0Jf+TKK6opjLEA8CU2GD8bXR3rEmJxT8e6YPd6cNk4bK00FfHM5aArPXKE6cNwEAG0SYgLPhfawhzCydEoG+wJ7NurDTTvz6qGfjbCHgemJ9kPDRQytAwPDciHNnpw7BkchSWJkdhXUocth03t4jxAN7c+gsmxnRSnWql7VRcUa1bRy03/vWpcaIdDq0MQP31w9q6EGtGMCbCD+tS40RhTlluKZjEshDa0yj+FBei+ZwHcH+Pjoa1BHrvcbxw0Ogfqj0/aNVjpc0ByJjQy5QwBwjjVCrMAcDJ4qtIGRJmKPYszdZLagIxMSYIa1JimWlU19hlDhpEw6zX93ogphyHi8oNCXM2CHaDUocHUn0OQOqQME1hjpT1TwNDVJ1ECIUnxgRh5uAwqnPSws25+OynAk1KEyndhfSG4uKV66aFOQDYfFQeunBiTBDW1pmlaIEoBFl10YPUeSo9MRzJ/YI036/leWwxKcxxEMiL00aZDxdmFmMi/Ki/f/3zeRwuKsdb23JNH4oDmlGECAJLoLtLoOXa/+lPZzF/00kx3qCfuwteGN0da1Pi8Mf+2hPRzJUGiQc4MSYIWWlDsWRyFF5J6glHHezJV3q0Ba+NVbvf22H8ClmrdCcuXDXsGSgNlu7Vxhl9gz2pV41GQPj0aJ+SdjZKp8JCTkE5Err6YIkGfxQpS1WNHS+M7o7k/tpeqoBgNO1ovQnsAC5cpodQUsLGAX0NeJIt+v60YeGCh+AUwLpOtEMQpPbla5sKsNIeF+VP/f3rAw07hBDU8jyWUshqjYAHxDBfRPBghbMCgD1nfsfEmCDsThdiBi9Ojmo0jYoZXkkSTSUrbSgypw9A2ii5p/vNWruhdD7cXUClXyGhyABgYBdvav7z1h3XJcU9cv6yyDxAAs8bcVy6l3G43l/Hs2ekrwBhvZMe1Lv7mbtVIuY5YyJ98cHjfRHRyR1xXdob+s5sPvPWH8fCLbmYM7IbZg9rPI5NKWwAXhzTHbMZHJ5vbv3FIc3+7FUHxfi+zQWWU0QzAQktIg17Qn5zc3bC79duMFXhSrLchK4+hhi5pTBiuLsi6wymxofAz92lUVj0eQjl/fMQtmaIgxCP0VHDYi2vNADilScHIazMqn1FzHzuDfFUhaJxtP6ET4+GFVln0L6tMzNmp1HP0PmbTuKNzSepMUGVZQnxdkVxRbVujGAO9TElG3pluvag/lU/IFCPEPshrXqzNk1WOWmOBgROHAdwjtePVbefTDoOaKEhxjKuzjbVWGYhc18hnh7WRXRyKq6obriTVh2kvJJGkjty/jJiwwTh4tEV9bGLeUAzdJiRckjtofSoS1h4akiYzEPdzsPwOrmfYWdMW3eMYnVOIdIMsgsosfFIiejR3ZT6MzsvCFVrUmKxeLvxQ5lR8BDoWYaHd6Da8u7WcILSgnS/bS7xXC0NXTPA6pxC1YlO+tvYpdmYlXnIUFrEC9KMMMdDiKe5ZHKUpqaKGOkWV1TrLlIkGSeOw4S+AUyVei3Pa7LE8xBOzo4YFs8b3V2MoqHHW8cDWLWXLcxN6BuADu1ay9rV6MJjq/teGSGhQ7vW1PeJtyTNZiljQoTIbWcEZLGcrKF5m5PYDX7uLpqOK0oBjvxXejUzoW8Ac0EZE8HmZ9PKMz1RsFNx1Lg8uX8gstOHYcagUFPfzUnsRjVC13JoMYqEe9TaHz2MivCVmTkYBausRWXVhscymfcEpC+02sEG1F3VsccdmQe9Az0x3WD/LKzjrzNKUsuKu0orh/QgrXWtykLq0DAM7OKtKldDBBTWuqM1DokGlkQ5aAwBSS9PJWwA+pvgZyO3BHrci2L6dQUxUh6iOOjQrjUm9A0wXCYjIFfszQWWhu4OQxlahNiH0biQeNSFkUrqCU9XZ3TydKHGOtXiUQLUGgsnjkN0iKfuIimNLKC1SJDYsFKX8OdGdMOBgnIx0Lr0Xb0rjBBvV8SGtUdCVx8qlQerrKMi/cRFOqKTu+43hPVeGQdyxZRoDO/ui+y8UtNaieT+gZg17B6xDQilAnGTp4HlabZokmDozPoOEOyDPtxdIPutlucR19kbmXuLqP1GXO9Z/lGzh3VBV9+2KsoEHsDiSVFo36aVWKfHY4NVXE5OHIcXx3THyAhfJu2CckySMdQ7sH5TkFJbuDrbDMVpfCAyAH7uLpgaH4oVWfmG+y8ywEMUXIjDQEP4qgicOA4LH4rEdyd+M0XH8diAEMwb00Osu9HYt7RXjKwRyveV3nwTY4JQc8tOrcMzw7tgUr8g+Lm7YOORC1i5T631lb4DwHD/EOHSKJXT8PCO2JNH14raACyuoyKRalgcjZwS38UHId6uhsr13P1d8X/fntJ877WxPfFYbAh13eEhOD6UV9WoAt2bjQBD6IWmfXpAc0yTPAFhnaTtPzYAk/sHIXNfIfZKQrIpQduDjK7zJP4z2V8uXrmuS69EBK9/PNIHfQI9TM09gtfG9sTfNxxX7bfNydPV0tDdYdAmnZZ9mB2Ah4szPN2c0aFda5nWgmw4Wu7tThwnM0KVnk613LaV72kZfs9NDEfvQE+ZS7ifuwvG9K6LOFH3sY0T3tXSCj41JAz5pZUorqhmUnkoQRjayXeAMZd0Qp0ibZuMCREY3t3XcBpKrN5XH36G0A+QNnFzdqJSZKQMVRu721DPSM4qR+rQMExPUDvDEIFdybpO0v298gaKK6pxb4iXql85AMO7dwDP88x0pXXqHeiJDIXTzJPxIQCA6GB6yDYOwiYg1fYtmBAhE+YISBt2aNcak3TCjEmvkvNLKzE30ZjxtXSRJvaimdMHYE1KLAK9XNGhXWtkGIicoqonVx939b4eHQ2PJRsgCsyxYe3RO9DTsLbSieNkUVuMrBGyvCVllqK4ohoeri3V44WDTFBj9bn0HYDubMUqD2kL5fvKfMh1Lq2eJCTf6Eh/Vd1Y81JWT2V6EOYRAEPlmhDdSbMPnTgO9/UQIj3Q5juZe4/FhiBjAn2+GVmvSDsM7+6LDB2tK8lzTG9/jI70V41DJ47DU0PCsHJfoe4hPU0RSWjOyG6yvYK1zpO1vbKmVhwHvQM9ka5zAyNd57TmHgcgqY86b9IftP22uVy3AhZtiSE0JW0Ji62bdYKW2lBJIzhINT9Ane3EmqNybRMHZEiY3ZXfiN8prlOlkQW03hPLz9XTESgh/Y6DcIUIQEWbYAMwuJsPfqgLTaOkOJCxytdp1WwApiWEon2bVqIdi9Z30rIbaRtSfhbFQ78QT+yjnEozpw8Q7X6k6SivxW0QBNyZg8Po/TAoFFPjhX6glYPUVdqeZNFJ6OpDpZsh7SD9ltAicBBCf209XlJvu1PX1iRdWh8DwriWMvVzAKYPCkX7tq2QsVl+nUzKwKGeYV9rkVS2nfR7ZfmAeqZ9EskhspMHjpy/jDe3/KIaQ6x6vb8zT7gGV8w7aR0JbRBhoKdhj4SSRtqHxNYzwMMF2Wd+R+bewnpqHAjzRFkmMk6PnL+salNAXhflmFaOLxJJhpSdAzA6whfTEzqrBGuaPZd0DCnLqcqLUR+9OinnKLEvJpqat7f9IqP4IZQU0nYmawRrjBmhTyEHkFV1ggutDaRr8s5Tl1TzkdSd1PeznwpklB9SOg2xXHXz0gZBCJO2n3K+0dYC2lopbQetNV1rvuuNQ1nbSfqQNqek6dP6Tbq2kzWFrInv78yTPSN1pfWPtF3I3Pv9Wo1svWKtCVr7Q1PAjPxhCXQG0NQ8dMqFnWxENCGHh/pqalFyFKIl1wYkPubszEOqd3dLNhTyrtQZgyZgEhV3ZU0t3JydUFlTi1BvNwACQe33J39TcdnRrsy00i4sq4KN49DJ0wVVNXZknb6k8jyShvXZX1AGG8eJ3lzkKqqwrArPrDqkEpRIWYorqplXv6RtaA4q0rZyc3ZCUVm1Kg0aaLxUtHaQXu2y3gHqhRJ/j9Y4W1aFf2w7pbq6IG0kXXQ2HrmgyzJPvv3ip7Myrj0pONQz5uu1lVb5AzxccLlauC5Sjgdae5E8ADUPIgfgtaSeGF4Xu5LUm/auciwXlVUDnMDzJjURkILG5SWdd8o89xeU4WDhZdXVNyAPdwUAh4vKkVNQjpgQT+SWXGUKE1r8ZvsLyjB71SGVqcCrY3vivh4dqd/Q2jA7XeCZpAkGCV19xLFPu2ajXV1q5afVz9U1t1TXfxyEKDK9A9UOAtMHhWJ0pB/V/ETa17T+NTK2tKZ4Uh8/bDhcbKhuZI0i66d0vdYap6HebjInN5rww1IMrE2NE9fWvoqxamRNevOhCHTydGMKL9I1Uc8MILlfIGYNvwcXr1zHdyd/w5IdeSrTDLJ2SftEaz6TchLBDhD2JDKnaeu0MnwieVdvXLPWuqaGFfrrLoMy7I00XBZZBKpq7NTQL3YIXodkkl+uvimeepSwo555HJCfRslGa7OpNYO1PK+yGZIu9LMy1YKCHULYqPQ6jRNAv16Wpi1Nc/JytaNELc9TN5uJMUGaXr12AElLs0WtgFcb+jV3QWkVc+FUnianxYcaInVVquSLK6oxf+MJqk3MtE8PiKdXlv2LnYcmUShxihnT21918tZDLc9j8fenVWTHynIeLqrA6Eh/1fiRbjJa5ScebcUFauoTYuvCGqO0ducB/G3dcVTeqMXMwWHitzTbo1qeF23vpCd3DgLZs1KTWlxRTW1v5bwzSo4rnUMsTRcNynZRfq/KBwIlxN83HMfckeGI6OQubkS0vuEhCHKjI32xPOuMzHM+7eujmp7VhOIlv7QSAFSbHWves/qZBh6Cc5TS5piH4N1K83ClrS3S/lWOrUkxgdR20SKZXndIHQaR1ld+7i7YcPiCbA0h/UKLaiEtu3Js0LwraRRHZN1Tak9pwshHFPtFHsDzXx1F6pAwxIaprzTNevyv2leEkorr2P7LJepzsv6syimkriksG2YyBpbvypeRnbPWC9I/hWWVmuW3oz46CO0QQTSDzQmWQNdMII17yvpNiy7AzoMZzJ5AalO0v6BM5YyhJSioeJvqFpV3JvfRnMgLtuQCHDAzIQxuzk6aaZM0IzvRTyEcIIvPSN4P922rv5ECSFtzFAldfagG1TYAVTU3VW3ywppjKCyrkmkL7bwQD1VvEeMBhPu2Ff/WutIg7UAW6obE75296iAqa26JV1NGPd1sECgq9LB81xn07+wpu9JXbjJa5ZcKVTS4OgsWVDSHoRW78pnpSscawI6BzCv+S/5f+T2gH7LOzgtX1DW1dvx9vTZHGYd6O0ilp7he/xDbMQJl22iVj8xr6YGJNnaX7zqD5bvOqH7noU2RwgGiFoSmPaL1g9RO0YjXPLGB+r3yhqk5wRqftLFFc94gkVgWbs41HElFWbf80krsPl2qWkP0IjiQstOqKxUatQ5sWkIgQXFFNZZrUL4s/SEPJ0qu4KMn+sm+MevxbweYwhyB9DBpZk0hZZCSN7PWCyeOg6uzTbf80v2SdohYkZXPNC26U7CcIu4iNCQuIDGW3XD4AgZmbMeszEOGFkatAUK0QXqGt4RqwEgc2Fqex0FJ4HUpJvdXn6BreR5f7j9nqC48D3x/8jeqgbwdwJOfHKCmTyOdtMPYIpa0VCB7NipYkTYlfe3IBCUL4eGicsMxLW2cEJPVSJ14CG2l3ORJ2QHoll8rn+25F5nUFHYA0+I7M9PNqGPz33hEMAGQzhcjsyZjc66Mmb+8qkb3G0OEsxA0gMRR58BZOqk0C9PiOzfYE5OMiw2HL9D5LOEYxQYPyASjF9YcE52RAGEsSJ2fpGYl2Xml+O7Eb7oUSDwEjeisOg5ERyClmDDafklR/piZEIZFOuTcBMTAHwBe33RCpJ5qrJB0BEphw0i/1fI8Nh0plvUNoE/sDgA7ci/h7W31Aiir/USHNzQOd520zxxZE8l6oXRkqKyp1e1/QuekddugHOt3GpaG7i4DuZ7N3FuIRdv1A55zAJL7B2Hl3kLTxJvzRnfHvSGemrYRH2UXCPloXEvYeWDTkWLR48wRrdPw8A6YNeweKvHv53uNs3XPW3dcvGJ7fEAwPt17VlP7YAM98LuRKwagXjO4eHKU4XpLNWzebZzx5CcHjH0oAe2aXAvP3t8VQV6uDSYLlpZ9YkwQwn3b4oOd+dhyrNhw/d/5/jQWbz8tmABQTtdT40PQv7MntV14CH0M1BvfZ6UNRUFpFU5fuio+Y4FHvamAh2tLvKTzvhE8NiAInbxcZQbbw8J9dL8j4ABMrfNclNossfpKqw+1QsWx8oZGeqw8lNep0roTgcdITGipcbrZcijbQSoE/X7thqG1aN3BC3huRDdDxNYchLUiY0uu6fipemUH6snfpQKx0QMbASEbl2qWCGuBXjJLd+Th0QHBTG2Zkk5kw+ELuk4SRiAlkyb73+sbT2LjUfV1txJOHIfRkb6I6NROtCM0So5N6Jz0bhuU1+t3EpaG7i6En7sLJvcPMnQCur9HR6yUeMwZBeFxM0yRwAsG36y4gSQ02bgoNsmwFmYP79IgDaWkmOJ/P/lJR5jj2LQqNGoRZp48cLmqhvo+LQlit/T2tlxDwlwqoyy0urGK/Pa2U5ilcKJxBFLt4OubTmDcsmxsOloMnhdCCZlJ582tv8jaX0pHU31T/wKMh+DhCgCxYe0RGeBuOP8FW3Kp14AcBA9EM/Q1Q7r5yKIH8AC+z9W+epJicl0cTanGZ9yybCoNjZKWqCGwQXDUmTaoPjSekVSlgtN/D59XXVdlbMlFmpHYrRwwuV9ggyJiKLWCO09dMnVDId2w9dYeo9fneqDFTeUArE2Jw5LJUXhnch9crr6JgRnb8fom84IjMRPYeOSCSAelRTxOwAP4+Ww5lQZISpZeeu06Fm8/jYWM6Dxm8eaWX1BcUS2GPgOEUF56Y9HGCRrWccsEYv5ZmQex89QlsfxPDWHHuCVUQQRPxodS82tuPHSWhu4uAxmMR8/TryWV2HbiN83nHIBh3Tvg+5PysEmEywgQTkWXq29qnux5CAakz48IRzuXltSTmZ0XTrxrUmIxb90xHDl/xVAdAGB1ThGKyquR0FWI5cg6oZGTJqGQWPPzeYcXFTsPeLi2xILxEarNPcjLFXMTw2UbtRY8XJyp6aQlhiPA04VK2rvE4DVNkJcrxkUFyCgbaJg3ujvKqmqo1z9G28iIxqaW51VEnzyAzUdKTGloa3kev1+tkV3nsUK4sWDn651daHZGo3r5YsuxEuYVpBLDwn3Q1betYSFjSDcfnHGQqJYg2NsVcQu2y8pj54Gtx0rQpYMbTl+sFH8nV4QP9vbHR1kFVJs4I7ABGNc3ANM/rTdDMKq9nZPYTdNJiRf/pY2UIWENuqrkUU98zfKAN4Ks05cQG9Ze1A59lFWAD3adcbhcANA/1BP78unX7nmXrlLtGFfnnBMdBlig9dGYSF8xhBeB1KnHyNpBsPv075iVWW8vSWiACD2Lcpwqwbrx0EItz2P+xpOilp/YaaYlhmtqQu08ZOs/OSgr6Uyo30IIFwZA5gzRP9RTjD1s8dDdpWhq2hKjMOJFZwZ6C7TUiDp2wXbNtGwcsDutnvZDa2K/NranQ0zdpMxpieHMjZ2DQGHh4eqM85erDQlcWu1ArhGU187KqyA9rE+Nw09nylQLkBPH4YPH+zp0rUqgxVsozYdWDzMgbe/h2lLGD8XDuECY3C9I04tWCrNp08BBoLugOWFwEKg6jDDN3y5IBWbCS7hwq7FDAyCnZDBypWmkHGaR3C9IV/AwWga9JDgI1BrPf6UW1smaZDauNQ3po4QQdCw6HjMg9eIgcFdqRVRoSPrSv7W8lM2Ads1KxpueMDcmwg+Du3lT++qJ2GDcG+KFWZkHDY05ku/ndRRLTQXWAZSshQ/28W9yKhOLtuR/CFKbmcYU5uYn9RRCxmikR67PXn6wh2ZaHATBT+pCr1XMYwa1izSQKxtW+jwEugajgpaNE64yVuecQ+Y+9dV0Lc+LJzJlPmZ2u12/luLtb06pfq/l+QYJc0DdiVenLHMSuxkyBNYCj3rKkb8/2B2l12owPLwDckuuGg5AHtelvaZARxZQQiNB8zw0i6LyaqYGbtORYoyO9EO6zmn/doFsEoTCiEYnoQXimFJ8RU0JYwYNWWZo86ipysADmEMREABgVC8/XLxy3fC6qSVALticC9eWTvB0c25wWtKr2ZxGFuak6Uv/HtTFG7tP/84kvDYKFgUID163vzYdLcYmht1bJy9X4YBssBwk3+5+DVewaN0aaHnUZmzJFQ9bWmT6txOWQNeMYZbnxygm9A1AZ582hm1ILl29YSp9PaXv6v3nqL/fG+yB/Wcv66evm79uEiJG9vJFbslVrMqhb0I2oEHOHAQ0Yc4shof7mLK9kiIywANHzl1ucBmU16mLvz+NtMRwTacYKTYd0TZkFo3fG2mw8wDKK9meqlIj8ahAd6aH9e3Cwq258HBtKVLOaNFJ0CClELlTYGXdmGuYkfw21gkQjZUnuVXQvdmAEBv1i71F2J57UeNN89ePjmLXr6VYlyocXI1qyI3AjA2ZVpsZic+tzJdEptCDXn89NSQMVTdqRQc/o+DBpsW5U7CcIpopzPD8mDV/XvPzebg5OxmO5Ti8ewfNPHjI3beDvBwzEjUizDU2th4t0SU0zS256jCFSGPBBiCqjundLAjvUkYTaKB4CA4ERgWILcdKMKJnR830yH8zG0E7ZwR2XuBwpAlzHBqHfsFMWchcMkInoQQP+sHDBmDKgOBGKKFj4DghfuftbEvAnADZWILf4G4+ePKTA7rC3O0ED2D9oQtYldN4whwA/HlIPZ3O7epbrs45yojTBbmS18KyHXn42KQwR4OUYuVOwRLominM8Ey9OranKa87HkBRWbUhIWVuYrgQcH2C9qQgVz3ZeaU4cs6YluO5+7s6tAhEBDSeHaMd2po3IqyG+7bFy2O1r54Jhod3wGtjezZK+QjsAPIuXjP0bnK/ICrvkqMbFnHsa6zFIsDgCbaxNthLV2+Ymh9STO4XhEWT++DR/kGG0kjup+8tqAeyMbCIuAGY8tgldBqf7T2LQfd4N7h8joDnBS3xrOFdGpwW6QYzXGdmvHT1wAOa83uHDnmuWKZGKIsqTY49Bj/cXdDomttlP+RhdU6h7uGjMQ9Grz7YExGd3I1xjwKoqL6l+05jNEtz8Hi1BLpmCsJ9I4UN9Zur9Lf7enTEgvERpibMnjO/Y2JMENamxjHfGdfHHw/29kd2XikuV9/UTI9c9SQv32vI4YHjgBBvN4cm0lET3rF6MLIpkGvGl9afMJTm97kXMW/9cWa6NgBJffwZT9lYe/CC7jscgFnDuyArbSgypw9AVtpQTIwJEuMiOgKeB2YkhGJtalyjLMof7SlAIoVyo6mwaPtph69wV+UUYlbmIWTuK8TckeHInD4AryWxN3MjNn9GFt3PfirAuGV0Rw0njsOgrsYFM1J1Oy9cvd0JkM1ueHiHBqdF6jO4m49hA/qUIWGCWUCDcxeEpvt6dER6ojoclhFwEGiYlk+JblStFgdg+ePRqvB1ZpDcL0gcnzYAqUPCtG9n6jTKhBeRVa51qXEY3zfA4XJJ07qvR0fq/kieS+HEcQhtgJBlAwzfZDUHj1dLoGumUPIeOXEc5iaGI76LfCEn7tUJXX1Uwp4WMvcJ0Qs6tGuNpD5+1Hd4QOS90qIsIYPI1OmPFwIisyaLXlX6h3qZyIyeHmnTpjI3oqVL8lx/SF84czTPj7IEu6vYsPbiArNBJz8OgpDJavflu/LRoV1rpI1ybBOTlZEHvjn+G56INX4FKGWgH9rNOCmvmKfpL+o0WxIbmYVbcvF75Q2UVFw3nZYTxyE9URAIHzQgzG8+WkL3rqu7bnr3B7pnHwdjG5Aj4Dg4pOEjmx0AVNbUon+ovulAemK4rtBP04Qp6+7EcZgzshuW/ZCnyzk5xMC44uqM3wEgopM7npZwQBrZTEnxFn1/GtM+OcD01Hd0jE/75ABmZR4y/S3BrOFdsDt9GDKnD8Du9GH4Y2yw7typ5XlU1diRxhBwU4aGobCsCmsMUqMQjIrwVa1H5KaIxSPHQ67BnTOyG1ycHXMVcOI4LJgQgbkj9de8RZOi7rhDBGA5RTRrEN6jgtIq0QCUNrnS1xzFIhORCABhg5IGuqdhnY4Q8NrYnujSoS1+r7yh4lHTg+BhyNi0yL806vPYgGC8MCoc+wvKcf1mLd4y6XRgA7AmJRaFZQ2zeSAG0PmlVUzDXvKOq3NLhHi7mrKN+tPAEHy4u8BUmZRxBosrqnXt53gAGw5fQFpiOEoqrqsMhHkeWLL9NFZqROUwyzF3b4gXPt5zVvVM2fVOHIenhnTG0h/yYOeBHwxeaTUEY/v4q4Ruwt1lFmMi/PDimO7wc3fB+z/m6c4rLXA8cLZM2xxj7shwBHi44OlM82XVyzuykztVy6c1XRdNikJlzS2R7oPTeR8QPAiz04chzMcNS3WEMSlI+ilDwhB/j4843/TGpd64iu/SHpP7BaFvsKdITqzkYnN1tjFjFP97SjSqa+wyhxUtL9gfHRzjRtcVWvtzEJQDE2OCxIMgCaGnB1dnG2YODgM4iFRRNghOZ+/WzVszSB0Shnd/zJOV0QaIhMqkn2kgQp0dgpMRLeIMC+QAQLj1/NxdRDJjFmxcfYzmOw1LQ9fM4efughBvV00DUDsvePKZOZnbAE1hTg9OHIf7enREiLcreJ43rRUg+dMg9R6igYMwgXoHeuLJQZ0R1F5fpa5Mzg6gqsaOy1XaV8laICe44d19MTrSj7nA2AG4OrcUNWYk1I4ROHpVSNjgzRjXEy0Uq3Bf6EQcWTQpyrDtoI0Dyqvp3qeTFTaASg1LUztwpg4NQxojQogj2HxM8Ow1IljrwQ5g5V72tS4PoQ9PXbzaoHxYeS9jaAZZfeLEcQj0cjEdyJ0HcKCgHM+NCEd22jA8cm8nw+XkAbz34xlxQzYz31jIzvsdfeuckqR1IRFNQrxd0TvQE5MZ9mvXb9rh1cYY5QnA9n5tLOUrrRhK5zZAn7GA4Fy58M3MhDDsThM0fGtT47D1OP3QrgUOQHf/dtQ4zhmKiCssSM0MxIgzOvnOT+qJrLShmDk4THa7oWeukjIk7I5ftRJYAt1dACMnzL9vOK4bVkt6NTCpnzrQvVGQKxRpGB2teT97WBekj5KHidHLX2szHR3hJ5tAjnjVEpseD9eWpr8FhDBnxD4NEATv6YNCqe/aOHkYGa13ldBzpU/uxzbWt0PQwrLsTZjfmNQIAkJ7Rod4IqxDG0PvPzUkDBev0K8uB3ZpL7MBZBlAN5VXXXwXH+w8danRqFNItAqWYM1BIK41shgbeccO4UpPD04cJ4QxM5AmUKfVMdEmZJ0oKldz4vGArj0dWcp2nrqE/zCojlhQBnWnhUkzA2kfsrjYiiuq0b6NM/V7nqfbRbPA6pPGOsywtolansemI8WiUHdviJeheSYdF37uLogNa+8w7yVf9y+aDbkjc7KW5+HEcVibGkcNq0Zwoy6cYHZeqUyo9XN3QapGmLBw3zsXbEAJS6C7C2BkIZCG1VoyOYr6PlFT2yFQQjiyIdogEPEmdPVRnbpZ6Q3v3gERAe5YkxKLzOkDMCexmyYlBQfBu5aV3ri+9TZIq3MKVcbjevWSGrAaXbCU6OTpojqVTY0Ppbb74G4+yC+tlC0SWho9o+AgEPVqnT6JFnRclNog2ajnmQ3QtWeakygEXCdBz7Uwqu4aZvF2urandUsb8ksrZRoWmm3UulQhtuWjBuIacwbqAAh1raq5ifQ1xoiSORjzAj598SqTKigxwhczE8IEpxONipDYwg0N02pD/YHkH4/00c0X0L8ildru2SA40exOGwYAmMW4pt6ee5FtQ8sBfYM9RfomvbLR4Oos9EhxRTW2HS9hvCVPR6sZXJ1tzLF45PxlDMzYzhzT0SGeKrtolkMWB+HA7YiGmPSjE8cxaWpsnEBgzUp+/qaTGJixHatzCuHn7oKMCdoOd+TGRIriimpDawEN5HCobCtamzhxHJ6ICxbrrVWnpKXZCG7viikM293yqhrRZnxgxna8/2OeKNz9UcPed/aqg1jdyHQwjsIK/WUAzSH01+qcQjHcEgcgLswLu/PKVO9lTh+A2LD2SPniADYf1V7EyGZkhrh4Qt8APDeiGzYeuWA4MLSU/X/uSHbYLin+Nro7YkI88Y9vTmGnwmaHpOPv0VoVm5EDMCU2mGqbRbBkchTG9BaEwtU5hZiriPE5oW8A1h28oMmqzkHg1ZqZID+5vf9jHjPiAGETB0Dlvkvq44f1h4sNnULJwsWjvj325Zfhewr31exhXbBkx2lVO62YEo3SazWq+iuR1McPGw4Xa562ZwzqbOgKXzrmmO9wwkmctJcyjjDHARkSVvbDReW6obvWp8ahsqYWycv3qp4p7WuMzIXUoWHo7tsO4ACXljbkl1Yh1NuVaehO0h1ZFztWChKWrbKmFkfPV2Dh5lzqlduSyVHY8ctFw3E3abBxgnZ0YBdvWbgi6fpiFhzUES5ICEC9MFkzBnXGv7PyZfmS8RzRyR1llTVMu8WBYV5IjPBDRIA7tf9JuSI6uVP7XQpi76V1RbhkchS82jjj85/OytbWxF6+2KZztbgnfZjY1sUV1WI77Tx1Sbau95PECiW2xIaj3gBYmxqHorJqcYGgtV3CPd4YeI830yabgIzLwrIqzF7FvoVJ7heEMb394ObsVD+G665GpXUwMq9IuLuZg4V1tbiiWmXrTdJR9hkHYHI//egy6aPCcbjosuE+NBK1hoQia4qrVzPyhyXQGUBzEOgA4P2deYIwxMs3dAIyqDYcumA4jNFrY3vC09XZcAw9wJzxuxJGBUfy7vRBobinYxvM+cqYxkQP0onHEgT21MX3zKlzuNCK8pAuWXwAQV2vtXmYXaSVSB0Shu5+7VTRAMy0q/gNB6SNbJyQVw2NpGEqLwC76zZImkBOQ+b0AYLR+rJsVdtPiQ3Gp3vOmmo/WrxSR/pA+S0H4PEBwfjkp7Oq5yumROuGiTNTBmW4ouKKanx94JxDUU04CB6IUk8/vbkACIJ2h3atUVBahaqam8gvrcLlqhosM2FI3y/EE/s0QmhNiQ3GZz+dVaVndi1iHUSMBJyXOsYQu1YiUEvXdVraz47oire2GesTowcrJVhtYSQCjN7ctwGY3D8IX2g4VEnLwNVpEB2JnWskrjWJ8XvxynXsLyjHvSGe2HSkGB+YjMqiBFGmNDasWK53KaQTHYDs//cXlAmOERoGoUlRgtbJzAb99w3HMSkm0NRGdLtiRPIQPDYbslEqcW+IBwC6Zo7g5Q3H8c2J3wwJXRlbcjGgsxd6BwpXDrtPa3tE8eK/HMOyH/OwmOLR7EiSPG9urGjBzJgwGiaMmRcg2kfpXccB9VdiCxmb5ica2lwWaOGTGjJGecl/lcIc+X2jTtg0s2UgjjMkXNHOU5ccDlHHQ+gLaeijUG833b7OKSjH6Eg/FJZVOhyrWkuYA4T+jevshT1nymTtY1jwBTsCB2AsfBcJQ5Yo0SgRTeTCrfRxSdI2KszZACzPOuPQ3GJ9YiQtXQ9i0OcLqww8L8TOBQ8EeLqYY28AkNTbX9OTnNhDxoa1R+9ATxwuKm+wMNccSIUBS0NnCLdDQ6eM2wrI7dKMdJITx2Fiv06aXnC3G40pjDUmGrNc5ArwctXN2xLgfX5ST7y0/vgdjdephJn2jAhwx9HzFQ3KT+sKVYnUoWFYtiOv2YxDI9fOtxPJ/YIwa3gXU5oQFpRaire35WLJDrpdGYGZNe52w+g1nqMwot0zikDP1igqN8+R+L8GI2vR+tQ49A70xOqcQqR93bDbH6Wmu7FhRv6wnCKaAWhxW6UndqODrZbnm50wdyfiNxpBY24efJ2moylipdLg4eKMuQ6y1DcV+pkgem6oMAcIlDNHDYaYc+K4ZiUs8AAe7G0+UkhTYeW+QvxtrWPaMSWkjgivbzrBpDmRwswad7vBw1j0D0ehJcyZ3ZwtYU6AkbGUU1COw0Xlhp2fWOAgROdoDqTCgCXQNQuYiduqheYmOPEwHrfzbocdt2dT4gCcr6hGhkbkjjuBnAK1g05TwcYJnqgZW/XbwInj4NOulek8kvr4N9niaIM+abceGnuuf5/bOGTN58qrsTqnEHELtmP5rvxmo4W8G/HYgOBGjfoxsIu56DpmKG3uNhCv14aOTx7A9E8PNBsv1//V/rqrYIafSAsNMchuKmSfKW22p+/GhB7lQWMhZWiYJsm0FEbL09Byh/u21V0Y/zQwpIG51CMmxEvwJjVgrP3G+F64r3tH03lsOHwBc+tCdT13f1cHSypAGh7KieMw0IHwWTSMibx98XCNoqyyxiGth5T2hIWBTWBwfiehN+8++eksRvby1eQWBYxv4rtPl5ma677urfHO5D6G4u82N2WCETTWviQlcb/TaPYC3dWrV/GXv/wFwcHBcHFxQVxcHHJycsTnPM/jpZdegp+fH1xcXHDffffh119/laVRVlaGRx99FO3atYOHhweefPJJXLt27XZXhQklPxGxsVH+f1MhTUL629hYtdcxvru7CQ2xATIjyCf3C0R3PzWDOgtGhb6GLmy5JVc1+zi5XxCmJ3RuNG1DTkGZoTJLBT6zWZOoGUfOX8Y/HHQUIGjr0lJkz1+TEossSugss+ABbD5S0mRxWx3FpWs3HNJ6TB/UGbvThmHJ5CjmO7vzfm/SteT5EV2bfK2VQmojzcLWYyX44PG+mu88xuCbY+VpA9An0F333aU78jAr8xC2U6iQpJgxqDPWpcYZLkNjYkpsMDKnDzAUH7ghh0q9fiIk7ncazV6gmzZtGr799lt89tlnOHr0KO6//37cd999OH9e4GJ68803sWjRIrz33nvYu3cv3NzcMGLECFy/Xm9P8Oijj+L48eP49ttvsXHjRuzcuRMzZsy4U1WiYmJMkMiOn50+DNl1GwD5/yWTowwvNtLoASQouBYC3F2QlTZUczF1FHYAvQL0Fw8WbBzQvxHj5I2JMEbo+8zwLkgdymYHF98b1kXw5HOgLBwEkmYWEbTy3ZX7ijBr5cFG29TMpEPG0ZgIP+pzrfr7tBXY8wkHn1HYOIGEmJTTBmDGoFBTAu0La47hwNlyh/rHDsHbTutbI224sM62krDns9IjhL/pBg9YdgDT4s0LyjYIV8pmPtPTQJPnRiJU0DA60hd+7i7wYkRaIGgqbT/HAeP7dkLG+Ijbvilq9Z+dB/JLteNN07yiAXZ/2QEcNmh/CmgLnjYAU+NDmDGxh4d30B2fRoRLFj7bcxZVNTexL1/b0xkQ4jM7MlfWp8YhbZR+KMAVWWfuuJauWQt01dXV+Prrr/Hmm28iISEBXbp0wcsvv4wuXbrg3XffBc/z+Ne//oW//e1vGDt2LCIjI/Hpp5/iwoULWLduHQDg5MmT2Lp1K1asWIH+/fsjPj4eixcvxqpVq3DhQsPsWBobJGSKn7uL6v/H9PbHtPhQ3TQ4Dpg1vIuoEchKG4or17XjlXKckPeRc5cbqSZyNMQIflJMEJOWwKxg48RxeHFMd2SnD8OMQZ01v/du0wrLdLzznDgO9xi4bmSBh2DcbyTGoyNOMlKQxUi5MRvV4s0Z2Q0zB4fhxTHdme02ogf9avOd709jYMZ27Ms3bmc3PNwHKUPCsPV4ibihzE0MZ0bjYKGW56lhhAiMRHlgwQa5dpuVBqFJAMB05LBxwIIJERgd6Y+ZCWFYkxKrm78Tx6F9W2eZJnJGQqjuQcQO4QC5LjUOoyP8DLUnDyHGLg0jenQQ33EUVTWCe0BjmZ9MGRCMv43ubuhdW52Xup+7CybGBOEpAwe5xoIWHQog9HFMiKepNtF71ZEQWjShjoxZP3cXcIwDiK97a1HzyirXoSLH9wc7gCc1yLyl2HS0WBV9QgskVnduyVWRKBnQEJQl8/xOoVkLdLdu3UJtbS1at24t+93FxQVZWVnIz89HSUkJ7rvvPvGZu7s7+vfvjz179gAA9uzZAw8PD9x7773iO/fddx9sNhv27qVTHty4cQNXrlyR/dMc8Kf4UH0hpm7QEYHw85/OYqmGYCINsbOcwcVjZC1x4jisT43DjEHGNAZG0rQBWJWjDgjPQdi41qXGGY+NyNWH+/Jzd8HU+BBdjSdtkZBqPt8Y3ws5JoQUVVoQYry6OTtpvtNQ2Lh6TaBUm2h0Tech8NVtPCIcgNJG0TW+2078xkzDzkMzwgEn+S8HwUh/yY48mef3m1t/wcUr1/GkkXlQB0I0ygqPxvMCDczu9GGYYTC+LiD0/9zEcFlIu7WMaycSy7e4ohoLKY4c4b5tsDYlTuYpx9J4SPFAb1+VPeW/dxXgjwOChdiwGo20+/QljFuWjU1Hhcgkyf21Q005cRxmMbTW205cbJAwJ+Xw8nN3wdyRDffg/uSnsyivqtGsE1lHdqcNk0Ud0VovWekA7FBejoKsMbklV00JYNL5zQHo6S+nuhjRy9choVlZBGmZooPptyiZdfxzY3r7I60BnvmNYaO8fGc+Err6iDdhrPlKsCYlVhXiEmCvm82Bi65ZC3Rt27ZFbGwsXnvtNVy4cAG1tbX4/PPPsWfPHhQXF6OkRAjd0bGjXDPQsWNH8VlJSQk6dJAbdbZo0QJeXl7iO0osWLAA7u7u4j+BgYFNUDvz8HN3kdGA0AY4j/pTwvs/5mkuTtKTKStwOCDwMGmBCEsd2rUGD96QxsrI+jSpfyA1rcn9gvDCqB7oHSjE+5Nqn1j46x+6ItDLVVSJa3kWcwBOFtOF+CmxIViaHIU1KbE4VHTZIVJaAjuADYcuoLKmlvr8jwOCsPChCENX7cPDOzDrPy2+s0B8zDGY7iVaquT+gZjKsDV5euVBDMzYDg+XlkjWGRNmwTP+X4pankfSsmws35VvShh9euVBLNySiwf70K+L/7buODYcuoD2bbS9Ycm185LJUZjYLxAZW3KRvHwvkpZmo7CsktmPo3oJ+bLGXG7JNSQtzcYLa45g45ELKK6oZmo8pFh3SB2OjQSKn5kQhrUp7A1rqUJYXrm3iDkfiGABAAWllbrlMgMnjsOckd1ksY7PljVOHu/+kKcZ53hsH3+8MKqHLPxZkk4IORaWJkdhbWocJvcLNHfYYGDe6O7IShsqChSOCsw8gOMX5GvZN8d/Q8qQsAYLSDyAtK+P4nBROXaeontJ23ngQN0NS0Qnx69WeQCLJ0chmaElNprGR1kForKjqFz7enTTkRLDDBRkjjRF6C8zaPaRIj777DP86U9/QkBAAJycnNC3b19MnjwZBw5oh8BpCNLT0/HXv/5V/PvKlSt3XKgrrqjGh1n5WCHZzMgJTDrenDgOrs42/PfweV1etKcGh4lCDolIQUPmviLN8C5//UNXHD5X0WCCRiV+v1pD/X1VTiEmxnRCZU0tLlff1IyeQfCPb06JcU8XjI9AQlcfpkMAD2DVviLq84+yC/BxdoF+TEKN9pJiwZZcpNZ5QSrf//ynQnyunwQAUGO4EvTv7InXN53ACooG1gZBe1dUVo3sM79j1b5CzXLbecEubU1KLDL3Fenal5kdD3rvO3JVBAjlXn+IHWlhwZZc5gbHAXgtqSeGd++InacuqcLk8QDmfn0UryX1pPYjiRKQMoR9lcdDsJFcWTfuyIbryHwiWgKWgEnyU0KZnw3A4uQodPJ0wcYjxY0+vwHgsdggLNyaK0ZOGNFTHevWUdh5wT54bWocNcTfukMXEODpgoFdvOHm7OSw4MQDOFxUgadXGg+fmNTHHw/09mOGciurqkF+aSXKKmvMRWGB/pip5Xks/aFxiLZ5AGOXZmsKh7NWHURlzS2E+7Z1OB8njsP5imqsaiA9yIqsM5gaH4Kdpy4hTSdk4IqsMxgd6WuoTdekxIrRgu4k7ppIEZWVlbhy5Qr8/PwwceJEXLt2DYsXL0ZYWBgOHjyIPn36iO8OHjwYffr0wTvvvIMPP/wQzz77LMrL6+2wbt26hdatW+PLL7/EuHHjdPO+07FctdisOdSzzjtxHJKi/LH24HlTi4CRhXTGoM5YsetMo7GaNxQNCR9F4rnO+eoIdml4HDpaZw7A+L4BWHfwgqFg52QxvBMTkZR1zc/nTeWfOX0AduT+phkypzHr1ViM+o4KSdIwTVpzi6v7F6vb+wS6O2wzZLTs6aPq42DGLtjuUF5SrVxTCHK3CySKS97Fa7pjVauOyf0DERfmTQ127yiS+wc2OhH8qAhfbD1a4vBc6RvkgYOFlw0J/GbAcYKGzZH2IzGn9eaeUSyZHGU4dnnm9AH4dE+B7iFjaXIURkc2DVn4/2SkCDc3N/j5+aG8vBzbtm3D2LFjERoaCl9fX3z//ffie1euXMHevXsRGysYFcfGxuLy5csyjd727dtht9vRv3//214PsyBRJFiDjwewaFKUSIlgVpgDBGFQa8ByELzQFiVHmUu4CdGQY0gtz+NAQbkmfYSNE7y3dqcPM2xcLZYNwLqDF0TbqtfG9tR9/05tmDwE2zYz+RNbkak6tmyNVaf5ST2x1oS9JAs2CNdsjsDOC3F7jTivcLzgJU3D4QYYgHMQ2kKvHTI25+JwUTn83F0cuhq3QW4/5Eg/xndp3yzoivg6jXL/ztqkunp1fCAyAIGejXudtnJvUaPTpGw9VoLlU6Id/v5Q4WU8y+BdnJFg3MZUCZ4HLlfVODQmON58TFcWnDgO5VU1TIFVChuEyCfbjutrjJuLWqzZC3Tbtm3D1q1bkZ+fj2+//RZDhw5FeHg4pk6dCo7j8Je//AXz58/Hhg0bcPToUTz++OPw9/dHUlISAKB79+4YOXIkpk+fjn379mH37t14+umnMWnSJPj7N5/wOyzo3eHbOCDQywU8eKzez7aDaQh4AOOWZeN8eXXDN9VmsMo7cZygRdF4Z25iuOhAMTrSmCegFLU8j6oaO0K8XeHh2rJZbG6NAaVziZ59JauNCXWGEcxbfxy5JVdVHmpm2pRoF/QiNEjtCZUwOrXsAC4xzAV4CJpfR2AHEObTVtYOrDySlmZjdU4hJsaYF+jsAIrKqnHgbLnD60nfIE+smBLdLMZ9Lc8zrzaNgINwja11hc3C8O7apLyNLQjYecDVuSWTqio2zEubJgXA6Yt0jtb3d7I1nEbg4eKMjAlq6qJe/tpaJzsE202awPVof+M2dRyEtcvDtSX1ubIr7ABW5xjbU6MbkVqrIWj2NnQVFRVIT0/HuXPn4OXlhQkTJuD1119Hy5ZCp8yZMweVlZWYMWMGLl++jPj4eGzdulXmGfvFF1/g6aefxvDhw2Gz2TBhwgQsWrToTlXJFIgbP21QcRwwLioA45Y1PISJHuy84GU4pKsPtv/iWJggGwc8NSTMtBdZY4C0IblKOq9jECuNtenn7oI+gR74ufCy4fycOA5Hzl/Goyt+0u2bhlxl3E4k9w/ExHsDUVlTi+KKatG42GysS6PCFQHRsmSlDUVW2lAUlFYhxNsVO09dwgtrjhm61gb025iDMEY4COP03R/zHJ5XLFsfJ45DyxaOiTlEYzAxJggJXX1woKAcK7LycajosupdYrDuqAbo6cyGXS0u2n7a9LjmOGB8VADW/ny+2Zh2ABBPDlre6Ky6fn9Sm5RX61tHQLTnsWHtceX6TdVa+1OePin3+kYIS6fMg4Mg9GygpH3sAt0BTYq3FeTeNgCT+gWKXrRGy5XQ1YdZRhpWMmyplek2FzR7ge6RRx7BI488wnzOcRxeffVVvPrqq8x3vLy8sHLlyqYoXpODRJEgG5cNgvfnwDBvdPJ0uS3CHEEtzxsS5h65txP+s/+c6veYYE+8ayBYd2ODg2D4X1Vjh6uzDYVlVUhfo20Qu+lIMUZH+sHP3QWHi8pNC3NzRnaTcRdpwYigMbaPP9YfuqD5burQMFTdqMVH2QXU5zYA0xJCcfHKdazTcBBgoY1zS3G8SZ1LjEKohx/WHyo2vYER780Qb1fwdV8TwaagtApHzl/Gws25TEHASBuTd3gIHpKPxwbjY4YXMwdgSlwwPsk+S02begAD8OfBnXX5DVmwQ9C8ZUyIwOXqm1igE8+Xx529CjKbNccDXX3bNki4Se4XhHPlVdhpIBpHUh9/Q4cKnheYA3hGyYgTi6MHgMbqIqn2HAC6+6k1X0byamh5eMjtZ20Q+OoA6DrqEZADONNxjYPpg6Sg6atCbFh7ZEyIMGwbSuqjZfZUUFp1xz1cgbtAoLMg37hCvF3FgZOdV9osg19/SRHmAGBfgWOM/Q0FD4G4tLCsUsUpxML8TSfxxuaTWDA+AufKjZNFchBIeBvL5gOQa7O0Fpaj5yqYG9nsYV0wuX8Q/NxdsPHIBdMCHQdgedYZUUAg3q5ZaUORnhiOBToLtQ1CHNqlOxzzrlNqPIlAOTEmSNQUDgj1QtKybIeEGNp1C0uYI++P6OmHe0O8DBt68wCWNdC7kIfgUdsYaG6aYTuEDb8hZZoY0wnjlhmjHnFtxda4SUF4BGnaJaBx+rWhIN7qxNNydU6hw+OkMRyQSFtwEMxXJsYE4Y1NJwy1kQ3A8sej4ercEnvOlFKjjzgyx6U8cRNjghDu29bweqH1SnPgnyNo9jZ0FgRII0cQuDk76V6pNJbNmplktE4yjl4BcSbLIIWNE66qjApzBERoad3C2MIPCHXM2JKLWQY2eUfrw/pOSyvRVUIZEB3saTpvmrZH5DwbHIanNdj1bZywqJvZ9DhI7Nk4qDSepG8Id1lxRTUqa2o1qUEaE2QRjw42x+J/Ozf9prwK0rI1dDhNNEyjyAEoKq82PMeNxpmeVEc6TCOFJrijwhwnaMCIMHe4qNxhYY6YG5iNTMF6nYdgqvP9yRJNL2Mp7ACmfXIAR85dxvBwbRtEoyBriJTvsHegJ8ZHBTQoXQ7CIaK5wBLo7lKszinEOAOni2nxnR3uZCeOE2Jp6jgQsKCc5E4ch7REeaikezq0MZQWD20D++dH0D2zAKENKmtqmQs9IdSleSbW8jxu3DJ3XtUqK+BYpAtp2qwQTFogpMCrcwrh5+6CjAlyQmZHBG0i1KzOKdS0i5w7MhwRndwNb7QcgEH3eNfzC/LA75Sg70SgXJ1TiIEZ25G8fK/D15kkXyOQkogSkwgjsVebGhyEcUziwerBUSGEmDAQtn1HD41jJGHHSOSNhhxA+bp/GU3DDmA0IzaxFKtyCvFRVr6h8csaBkarZab6NqgjXby/M4/KuWcURNsY38XbUDuOifDT3R8ccUrhIXBD/pRfhgl9GyZ0jYnwRcqQMCzcKhCBk3WwuKIaaw+yo9doQXqlvHJfEeIWCGneaVgCXTNCcUU1svNKZVoH6d8Eh4vKkWZA2ySl3jDLsD1vdHesSYkVYmk6sPIr1wKuzr5jZkKYLPRK3iW6R5VRkNNpcHs2MfLU+BBqjEgSDH13+jC8MS4SwxinwUXbHQs4zkLK0DC8MKqH6ZA+QH04NEcg1WpNjAkS4/1mpw9Ddl28RTPlmDOyGwB9nrKMrbmorrllKF0i4O/8tVRm00Y73RMSbanm1YitHAtGvl2aHIWstKGyMF0TY4IMxV5Vwgbg6aFhojDoxHENjsDRu5MH+gZ7qkKC0eCwDMoBHdq1RmxYe/QO9HQ4VNf0OmGExJyeOTgMC8arvSDN4PzlasMCthPHYXqCfmxgOw9mWEQlaPNZGfOXBRuAFVOiDQlS46P8sTY1Thbp4v0f83TtKqXoE+hOzYtH3fzjgTGRvprl3XxMHa3EkWHFEkQWbsnF47HBGNvHz3S6/UMF7fnGoyWyMIJ2Hkhbc7RBXtzKz3gA6WuOqvbq2w1LoGsmkGoZBmZsx7P/OST7m0j/JDyNniDAQdCM5NeF6hnTW/8kKkVZVQ32FZRRB/yYCGOTS/opxwPhvm2RnVeKi1euNxrNiriRazTIgbPlACBb6EngZUIGmZ1XqhsKxij02ubdH/JwuKjcMMeXVIsxbVBog9qMaLUIiKG3n7sLokOMX8XaIVxBLf7+V9068DxwhBGUnoMQSH3e6O7495Ro5F26ZlhzNKJXR6bmlbUpNtR+zcutlcr4ubiiGvsKzMf0tQMY2KU+tuSalFiUXLmu+Y2eQPrCmmOGNypHrzeJkwCBoyGdNh0pUZmSkAgujmLBllx4t3FGVtpQTf5IomUVwwfqpNuQcWMHEBnggay0oRijoRF8amgYXJxbYG5iuG4brDl4AeOWZYv7QnFFta4dqxKHiyrwytieTM5EHsDmIyXUuWTjwFyLeECm/deDDcDCh+iCvJ0XIlGYcaSyQVhT9hWw5wHhxTMiPBulSLIr5sWdgOUU0QxAyIOlJwhpIHOiWQn3bWtYCCC2XGRyzR0Zbiq6gtYVWjvXFnh1bE/MW3+c+pxmbG0HHDZY10Pa10exTiPQ8tMrD4pG9FLaCz93F6zOKRTbntiCNKSINgBzR4XjzS2/MOk07DyQo7HYSOHEcViTEity2l28ch3Ls/IbFCWDXJOSepO2CfRyNVV3O2/c08y7TSsq/Q4P4NOfziItMRwuzi1MCatbjpbA2Ym+FfM8kETxqG2IwTfHQWb8TMLx/dvgdZwSUmPq7bm/ycL6UfMHENvZC9ln2MJjLc8j+/Tv5gtjEluPFePYhcvoF+KlSa2kheW7ziAy0B3RwZ6iQKcVU9oonvzkACb0DcBzI7rhjc0nqRqkOSO7iVrWiTFBOHzucqNHbZDiyPnLCPF2xaajbGekZTuE2NtG1yA7D6R/fRRurVrgsz0FpsvEA5i3jr6Gi3kAmBHfGf/OyhdZFqYlhGJ0hB8+2s3WWhrVmJM85nzVOI4+yf0CEezthozN+hpqDxdnLBgfgfSvj1LXhOfu74pQbzfwgCHHJ5tifbgTsDR0zQBGAgDX8rxhIYCAvEo45FIbyWB85d4ivLT+OPXUYuOAkb3oavqmolDgAazOoXvWEhChmGgHAbUgTYrnqB0P0frNTAjTvIKzcUBMiL4xvVSLEBvWHjtPXTJkN8kCB4jhnJQHiBfWHIObs1OTED9zAO7r0ZF5FUbsZXafLjXtYMCinRCeqYW5Sf0CHa+jJLHVOYWIW7Ady3c5JswRE4Sdpy6J6egl83hssKYwR2CGm4tZPp3nn+w5i9c35WLs0my8ve0Xh+wIyUYpvYGgmUYo8RwjkoEUX/98HhevXKdq33gIV3lS0xazwtzw7h1MaRIXbs7Fdyd+0+xjXvFfI7BDaMO9+eXU5xyAhRMimETDenDiOEyNDxG1yLvThyHMpw3GLs12iPqIhcbaGlbuKzIkzHEQePEmxgRhbWoctS/f/uYUZmUeNESoz9Udiu80dYkl0DUDGFnEnDjOkBDAQi3PY2AXH6QbUOcbgVL4IQa6a1PiDIVKcRTjo+jRBYxsYrU8j6Rl2UhevhdxC7bj9Y0nqBojEkot3YDdixQvP9hD5GXTYpWfmxguXvVopf7nIZ1FLYJS+HQUCV19qAcIcmCYm6iusw3A8HDjfHNScAAyJggLnZ6t2bs/5Mnyt0HbhsdsOQh3lcNXjRCuVIgNa0O6gpggGNG4cwDSE8PhzmC4p5WTloZeHxJnnT3pw5AxwbiA9vXP5xHu21bc9M3OG6ltpxEnEyXJLAv7C8oxMSaIGrLQDuCjrAIA9SYZZrD95EXTgtc8xiHYCIjDi5n1v2+gB7LTBYeJmYPDkD7K3NqvjAoTG9YeAHSD2mvhtbE9kdwvqEFOIjZOmA+sK3W9frGhfk0ChLWa9Q1RhjyloQyZPawLsiWOKXcS1pVrM4CSPNiJ45AU5S8Gd5dqasZFBciuY42CXO+EeLti4dbcRtGW8QAWT4pC+zatxCvMpuTGswGYEheCtQfVBLtGsxQ9JyEYyyrhxHGIDvGULWBGDY3nrT+Ov284LhLu0q6hUoeG4cHe/sjOK0VCVx+smBLN9ABbtiMPfxwQDD93F0NaXD0QgYR1RTZ/00nxej6ykwdcnW3iVe/+gjJ8n+tYhBAptARdO19va0SuxQFg89GSRqk7JH3vyNU64cIzogHQgx361+4cBMeBqQNDsfPUJdM2UtJ0wEGz/8ZE+OHFMd3FTY7wdBn1mNxfUI4n60Ka8eCxJiUWRWXVhiNOENtOIvgndPXB39Yew/e5+pEWWLi3LhxTdLAn9fmKrDOYGh/CtL+dPawLfNq1ol5LNsgsw+T1tA3A8inRcHFugeD2bprmHFL8/cEeMo3RzIQwBHi46F4fkmvVqQNDVRqnhlyJO3Ecqm7WYlVOoaE0aMLcDEm5iiuq8fqmk4bLs2SyfK8iOMqw7yUgezCrjITfsznAEuiaCWjkwc+N6IaC0iq4OttQWVOLw0XlDrtZ/3lIZ0MC1zPDu6DWzuPdH87IhMs1jADuuSVX8NyIenU+4cYzIjDaoE/xIQUPILfkKtJGhZvy5gKMb+BzEruJk7O4ohoLTW6ixK5lbWqcKsLH3MRweLi2xMCM7aLN3vRBoRga7oMdlM2WB3CgoBzRIQJthyN2SlJwgDi2pGVTln/hllysTa0nKQWAe0O8DIfAkb7DQ9C+JHT1gZ+7i2b4JHLoIBoBgpG9fLFZInz36eSOQ5RFmAguRolCk/sFYaWGZpeDcJVCQsb9eXBnTeJbM0KiDUCotyvzm+T+gZg17B4xUkmaTmQTVlnEOaZRMBsgE+YIzDgJ3Rviifd35gntw0vsdqGuX1IfP2w4LPeOpJGzbm+AMDehb4Bs/NJAjNhZY3tyXZzQl9YdN9WvWmsaOQQDwKzMg7pjiay/0z89INq7PjU4DE42Dot3nDZ9MA/0dNFcn6UE5IRlIdTbTRwbod5uhse5dD7K5o8DZkMkvchOHuLffu4uSDNAag7ID+rSegHa/IIEixmh7JpId+EwLIGuGUG5kfm5u2DnqUsyo33aABoT4Se6j7PeWfZDHoK8XEUvMta1zDvfn5ZpacgGOzS8A/Vkt3RHHh6t0yIRQ3sjE3aGRPPAMkpVgggH70zuY+Dt+kWk4PcqTWNkKSIDPMT/Z2nFknTCcBEHkIw6J4wDBeUAJyym0lBtPAQ6DhsH9PBrixPFV1Vp7TnzO2avOljvtGHCsYWGnacuYWJMkHiA2HSkGPM3nWSWn1wj7Dylr53jIWwISpoXqfZl0xF6PyjDFhG8/2OeTJgD2B6zs4Z1wfDuHVBVY8eR85c1NRlOHIe4Lu2ZAh3HARl1mlYSWoylmSOatJZONsNxiu0Apn96APH3eGMXhRD6gcgAcU6xSGK1NlaihZzUL1DXcWVc3wCqhoGluQr0dJEJexP6BuCnM2WyjZUcDGgpTIwJhpPNJrtpSIryl5XBUU3QgFAvpI8KlwlzH2XlU98lRuyEl1FJv7Ph0AXMHBxmOEzU0uQoXQN6qWBRWXOL2beL67RJrs422Zph54GldeET9dYD5Rw2sj53822rchZTRmUx0h7zRnfHqEjBo1dv/tDAEp6kDm7kKvlsWaWmDaSUN1JZr2nxxlgDyHyi4aOsAryg4VF9O2HZ0DVjsIz2pXDiOLw4prvI58QiqyUBzgEgjWEgS9IndgPkxJydV4pAT7pKmQfw89lypo0XyxTm37sKAAiayd3pwzBjUGdDru61PI/ySra7uQ3Av6dEI3P6AMxJ7IZlP+QZFuYAIaIEAUubNHVgCLLTBd62+Uk9Ndv7i5/OYtaqg3h65UEkLaXH3bXzQG7xVWq9M/cVyvqf44E/DQwxXB9ZmSCPruDn7oLRkX6a5S+uqBb7Vm/dc+I49A50pz5zdbahuKKayee1NiVOZYNSXFFNjf3IEv4XbT+NccuyUVhWKTqmsGxw3hjfSzPKA8dD1CqGeLsyhRMbgHWpcZg6MJQap1hrLNt5YPevpao5QrRVWoz/Thyny23GA1i1r0jX7mrdwQtU/qx7Q7yo758rr8ZbD0Vg3ujuWJ8ah+dGdGP2E61urs421U2DsgxEE8QCa+P6KV/uNKI15uYmhsvpUhQZLtiSi/d35mFiTJCmFz0Bz0M3coj0BkCLouV8RTViw9prEqKT9UBvDZLOYc0rfg7oG+xJZV2QrhsTY4KQnT4Mr43tybRxvbdOaNWbPzTYOGGPYrWjsjyzht2juR+sSYnFxJggar1W1B2ojYBV/hVZZ+44/xyBJdA1Y7A0RFJHhCfjQwDUhwbT4lUimpIH+/gjWeLtx3p38fenEVfHhTduWTb6hdCvMMoqa5hlZZ0GpXxofu4ueGG0IJQumRyFWQxeJIKX1h9nLkx2AK7OLXUXEdYcrqqpFxdY9l5FZYLx9pje/vjjgBDN9l6yI09mt8eCHcB0hVCb3C9QVU87gA93F2ikJKC7b1tqHaXtTmg39PrIKK/ZnMRucHGmK/2rauxMrQsH4SpdCUe0NNLFftMROnfVpDoNJbl6pvUdCeQNgFl/EtKssqaW+c70QZ1lTh60fKbHy9+ZM7Ibdp66xLRfI2GM/N1b4+WxPZgbOkl/UkyQ7lyX8meRK6kTF+iaUB7AnK+Pok3rFujQrjU2HqFrq8nGLOV+fGN8L6qQUsvz2HSkWHbYmNyfTrI8b3T3ukNgKPV50tJ6fjbWGErq44+ZCfWG7qz+I96wvQM9mfkRzF51EDtPXdLkkQuoM3sprqjWHN9vbvkFxRXVug5zdgBhPm2ZzAKkb3X3kjqNNMteVzlGdp66hJfWH8fGI3QHOOk6atb+d9GkKMwcHKZJWK3cP8YxQnjZIazXrHLYYTyaEgdgRM+O6jz4O88/R2BduTZj0IzXnTgOHzzeF2t+voDNx4rxwa58rMjKF1XQgHCC8m7jjGmfHFAtGB/szMOPpy6JV3jJ/QIR7tcWL29Qe3xKr6PsvGD4TMNLG44jbWS4KRsvms2M9HpZC3pZHDl/GTtyf9NMZ0LfAHxFcS4hGrriimqm3dqszIOorLkla28zgZ5p1wlOHIfRkb64duMmMvcVgQeQaZDjjZb+L79dZWqUXJ1tWJ1TqHttQpwAjNor/n61hjlm9YKbS+3syGZXXXPLoSvmWp7HgYJypmYmc1+heGgI9HLFcopjCrE3JO2khA0QwwmRuir7lVA+TI0PEW1hk5Zmq9p8dKQv2rd1RkZdrFqatkuKB3v7q2z5Eu7xZsbyzcwpBM/Xx+l898c8Wf/YAFTV3ER2XimOnq+QxcxlgecFb0dOY87PTQzHg7394e/eGjaOQ9/gehsm2hyYv+kk3th8EgvGR+By9U3qNZoTx2FUpB/83F0wNT6USvfCQ6DlSejqwzR4X3/oAmLD2mNiTBCzjwGhbgcKyjGmNzs/6bukTVgHF6n5RMqQMOa1ORFwR0f6aXKlcQCyTl9SmSUQ2ADm3FNyXBJ7zT15papySTkYiyuqddeOrNOXUHrtOjiOE+z2GPWk/R7oJWgw9QirSXkOF5VjjYZt+exVwnrNclRr39YZa1PjdNdvHsC247+pfqftZXcKHK9FsW8BAHDlyhW4u7ujoqIC7dq1a9K8yGZGDFFX5xTKDOtH9vLFlmMlVIEgK22oyk7ADKSG1I6Qryb3D0LmXn0PJuIMMDW+3ltpf0EZZmceMjzptWCk/Kx3MqcPQGFZpW772Thgd9owmd2P0Xb/95Ro7D1TjhVZZwRbDrD71SyMOJrQnBdoSB0ShmU/5Jm6KtmdNgwbDl8QhQKilUno6oO4Bds101oyOQqHz112mKhXWo5Fk6M0bZke7R8kXmfTxhfHASsej8a0Tw+oFnliYyoV5mhYOCFCdo1cXFGN2AXbVe8Z7Q/p+442jxPHYU5iN8Oeko7ABkFwrKm1i30ptXsqrqjWHQs0cBDoJqRUPvM3nsAmhjCzZHKUKECx0luXGiezUaO+J7GndKTcgHkHMPG7unbTIj7WGg8cBC0pzZknfVQ4ZiaEiXvO5z+dZQqGHIDs9GGiY13y8r2G68ABTFtRFtITwzGgs5eml3X6qHB4uLQ0ZN9ICN9ph1MbIGh8P92Po+evGCofEQzJ+taUlCVm5A9LQ9eMwDJEvVx9Uzy9bz5Gn3BEKxHodV3gyHJg1eFh3JCahpV7jROaEs3iyJ6+2KIRL/aZ4V0wLLyD7qIrhRFhlNj3SPO1ATh96Sr+rnGlK34vUbMTAXxfPj1UmhLFFdcxJNwHzi04LP0hT7NfzYAD8Oz9XfEWhadLuugbHRpLKTZhWrDzgoHw8l1nxDwIIz/rWk4KoxQXepgUEwSXltqXKCslBw9auXgeTDqZRZOi4NXGWbevD5+7LGodAeC7E+rTPSt/FvqHejJJZI2AeK5nTOiFOV81jEuPBg5CrOKlO+QHAXIVTngQHcmXB+DWqgWKK6oNafOPnr+s+ZwHqDcTqvd4Ifbn4slRDpV7eHgH9Axoh0Xfm48JTbR+WvnqPWN5gXbycJF5JmuBB0THJj2aD9q3u+psRY3uSwu25Opy1WVszmVqQ5Wwg00/ZQfw5Mf7caLYmDAHALOGdsGAMG8VBcqdhqWhM4DboaErrqgW6SwIiErcqDDTkJN7c8WSyVEY09tf09vPERD7J6KpcERLkjpU0GA5qgm9XWhIuCszYNVrT/owfHuiBC+tP3EbStG07WsDsCg5Ci4tbUyBT/Z+nTav9NoNwwHe73Zotf/fRndHeVWNYW9gR/JoKsxP6ol5JihMmjuS+vgzI60oQW6AAKj2KaN4tH+Q7CB1N+PpoWEyuq6mhBn5w3KKaCbQYu83Onn+FyaKFByE8CwAUPh74xqdpgwJw8yEMGSlDcWSyVGGT3oEPIAlO8wLc+Tb2wUOguDaFCG9lOjs40b9ffH3p+Hl1qrpC1AHvfbtE+jhUHsQIeLplQcNCXOAoGFZsCVXV5i7Dd1z26DV/vM3nWywMKeXR1PhXHnV/9Qau96gMAcAI3p1bDDBebhvW8c+ZMCGOzdv3v2h+Xi2SmEJdM0ENG+mhob7uptB7GWIjZ3Z6z89DOwihEHyc3cBTDhz3G3gATzYx9+hWJtKjGOEXSPIu1RJ/T1zXyHKq2oalHdj4si5y9QQZ0bQFMPEieOQ1kgh+RoDT8QGI3P6AKxPjRMOO3e6QM0E7/2or2G9G9qKAzBjUKipsbz1WIkhr1s9NNb8sXHAggkRmK7jedxUUHr9NhdYAl0zgTKGoTTcl/T3xu4wDoIqXEprYHS+vja2J5NnrqFYPDlKNDTNL6ULCiz0D6XTqxAQQlFAsFucpRMKpzHhaHNxqKcYcOI4JPejUzrQ8FFWASbGBInaSEcWZCeOwxNxIdRvyQbBAg9QwyfdKUhDjL02tqfh75pCmJs3ujuy0obCw2CcVrMwwu2oxIhefiIF0pje/kzeyqZCQ5eUh/oGOCx0mJ1bBBwEsvRsDToVGhxdz1OHhmm2k9azV8f2xNT4UFNtRGyGtah+9ODp6txoAu8rD/bExJgg3Xo0ND/W99I9pDnBEuiaEcimmzl9ALLShspoMcjvaxnEwVqwAcyNOGNCBF4fFyESE+82GJjbiePg6eZMNXJN7kf3+LFxgmcSGXRaObhICH71SEaVeGwAXfAABEeIBePrNX9GCHOlaAxtqVQwS2UEfZYK2YIRe30fZaUNxazhbDJNJQjxJeHO09PW2Sj5k8OF9PrWhvpNzOwGQZDcL0gM6K43LqTv2CB4wrHGNScpo/IVaYixx2JDMKEvncPKUfQPNaZVtwEim75yHNoA3WDqHAS7rqXJUcxDzKJJUcicPgArpkQbKjuNgoEEdjfbv9JDiNY75BUynljk6DQMD+8gG4/pieF4+5E+poQODoJHt3Rumalqcv9AZKcPwwujeohk3UbzM7qeS9sodUgYBnbxRspQ9dphgzAmWNObA3Bfj44qBQJpu4UTIqjfSccFjQxeDzZOMJ/JYKQvxbzR3WVznVUHAJoCphPHYV1qnKlyKsu8Yko0tS2lpNTNCZZThAHcTtoSI5BSmThxHOaM7AYnG6cK4QTUe8sCEL/hAEzuF4hZw+9hDsriimrBYzHrjCi0ERsiKRUFzZEjK20oNhy+IAv1Qlz/CW0BiVl74Gw5k15ihoTahMablp6opo4g+e88dUlG9zKpfyAGhnmLXFgATLnf2yCo+KXtSNo+spOHLNSUHkWBMki0tG5EyFa2E62fpONAD5nTByA2rL34N0nb1dmGTUdKRAoVqRu+Mn+pRxyhQ5g5uH5TMVMe0qa70+upX6T57Tx1SdbfpF2U8Y6lnuEc6oPZA5ClJe0zGs3A4aJy7C8ox70hnsgtuUrl/SKCot71fOb0AQjxdhVDHkkdb6SfkjoFerlSx+GSyVGIDvHEgYJy7Dnzu8ygXDpOSPmVHHfSuaD0CCVt1b5NK7F8yr6X0idJ++fI+ctYuDlX09FGukYo28GJ4zCiZ0fRu13ab+Sg9WFWvkh5QuaZknqDg0ClAYA6T8gaJqUHir/HG1mnS8Xxgro+Iesk8cI9er6C6RVJ+pE2BwD2ukK+kzIYAFBRU0nLSGJAP9jHv77t6xgPbBwwsqcvth4vkc1d1nhSjhnSRsq2K66oxuLvT2NVTqGs/SM6ucvGg/R7vVB7MwZ1FsNjkfRpYfek9Fu08UbaQ1kWZV8r57k0LWUIsmQGqwMps7J/5lL6vClhRv6wBDoDaG4CHaCeiDQvWQ7CCWN4d1/qN3rp07yZpEHDAbpwSSYbIJBykpAytDxZ+RAo+auU6enlr1VfvbwJlAs3qx0PF5Ujp6AcMRpCgXTBImAJdEZwuKhclxCTeGZGM/pAq04E7/+Yp6I/oNVFKigWlVVj1qqD1LLp8TexvL712i6NstgbqR8tf+kGYRRabVJVc1NF9q3lya7c+IsrqvHz2XIhxFSIp2wOKgU2rUOXDcDa1Dgx3qmybVj0Scr2OVBQruJ54wAsSY6iznfp2FDWlyZ8KgW993fmiZsxOWAZmSe0tZJVdiKw2zjgqcFhVNvdf0+JFqPROLquKMfJ4aJyfLAzH5uPFauEXEAwO3FzdqK2m5IcmJV/6tAwPG/CM1MmUEmESOV4IMK/m7MTisqqVe1KO7jtLyjD7FWHVGsD4cZrSFloAio5nABqL10boLKjVpZZurZL4wTfDlg8dP+jUJ6apYsJUT1LNSQ8hADg0sDKRtXELG+mVfuKMGvYPeLfJMi7kcnGwpPxoVjBYGCX8lcJV4b1kQQamr+yzZQaFAIeQmzbB/v4i22obEfaJrg7fRj11CiNhuDm7CS7buMhr68eKmtqqQKTVItAPDO12kRrbLBiqhLDYOU4JPXbeKRY1qAcB6SNDEdkJw9dwUor/JCUjFrZdkToVNaV5EXGjV7bknB0/Tt7UiOu0CDtX2VaSo2jtE5VNXYsGK8OeE7GfrhvW1TW1CLU2w2jI+WOKbQYnTYAHzzeFy7OLbB4+6/UcEfS0EzSvmfF8VSORzIXK2tuqcp97cYtavuSfLLzSql9e6CgXBW7+t+7CjB1YChW5xSKofw4CFoSvbVFul5KtdMAUHylWlUGHvU8aXYeeO/HM0gfFa7SRpI1NcTbFdl5parDg3JdodEGSccy7faB1L19m1bimkZbn8j4kdbPz90Fc0eGqw5g7+7Iwx8HBBveA8h7j674iTkeaOvegvERqt+0Dh9SRAZ4OFwW8h6L7N3GAdPiQ6nzYUZ8Z/w7K1+mhaNpi83sa3cClkB3l0B5tURT9YshqCRXL3ZeIMUkg/5wUTn2FZShX4iX5kmD2K0p553UOBaQn86kIYPsPJD+9VGE+7Zl5mM0soJy8WO1g3KyS/OnXSGRNkvo6sO8AqCVQZkWaxPMShuKF0Z3x+hIX9npTlkH2iKtFJSUbU02eFqoLSjSlI4FIiAUllWB4zhNrR3BgbPlTIHG1VltvcIMK8YDAzprjztpHZX1koYt0xs3pP/dWrVAdLCnTPNDuOFYmjzStywhTAkbgMUaWiml4CkFsU0qLKOT7dbyvKiBVV4Lujk7YV+BmszaDlAjXEih7DdS77LKGk1BWonLVTdVY025ySrnC2vMZp+hC3qZewuxZMdpmaBHDlgAqPOapfU2SqRL8o4M8FCFhSJkv6Qsyn4J9XaTHTRpGkkbgN8rb+BwUTlzbNTyvKysrPHj6mzDfw+fl81nWtgsO4DXN57Ei2O6M9sNkPcX62BFI7En68ucxG71Zebl6WrNW5r9Jpk/XJ0hm94hT7o+ksOydF1esSufuq6I4ffqhPeFW3Nx6rerWPPzeSZBtmVDd5fiTl+5slToNPX0xiMXqDZp85N64mDhZXwtiV86oW8A/vFIH2qeLCJfKcGk9OTC0m5JbeeM1IkGov4G6KSW6aPCERHgzrSHm9A3AGsPnmeesGjXiUrQroRIWnkXr+EDCs+YMowYB4H/ThlLkwZp3ypPiWK7UOwjzUJ5xUsLPacl1CiFIwCa4ZGU40EpQEnbdlxUANYdvCCrl9TuyUwdWd9Ix4NS0DaSj5bdmZ7gKbULNDoXHKk/DUuTo0Rtn145adfIADuUGVBvs8m6vmXNOTPxoGcM6lxvH6cwzaCNQS0iXZrdK6l3fmmlrq2t8rpWKeBJ7TilfchaN6HxTBp2KinKXyV0pNfZ3LHmIc12kLSbUhvFunbWbAtOLsiRdvwoK5+6TpJ3iImA2QPV+tQ4/JRfphLUWe03Y1C9Nk7vXRaUNslNCevK9X8MrOvPhVtyMSDUS9TWAMAvJfTwJX+j0EZ8/fN5jIrwhYtzC5WBafoaelSGpCh/bDh8QWUwzJoMJIh3zS276F2lVSdqGgB2nrqEQC9XZjusTYljbgZSIZamudMLhs4BeDI+BBevXJctMHYemPv1UapHnI0TAp5LT7A8jIfTenPLL3iwt7/moibVBK5JicWX+8/hcxPh10iZ0uo0WecvV8uudyb3C8SqnCLNhc7O119zchACx2u9z0vaP7fkKlOAsvPAuoMX8MHjfWXaJkcEGb3yE62l8rpPD/OTemJ4d8Hb7vVNJ7AiK1/UpBmJ9cpDIFv9iBG7lrbJ6JXL6MZUVinwAuppTQBgTmI3AFBdLx44W84sQ4i3Kw4XlVM1OAldfeDv0Zr67dBuHbDjl4u6a4MNkNk3knnt3cYZh4ouU9uAJcxxAJZPicbH2Wdl8Ubv71m/XukJmjyg1uDVCTZEaMpKG6qy3dOq5rBwdVtIbeZcnW0qRxhAmI9Xrt/EqAhfapxbmsbpcvVNlbOAnQeWmRTmbKBr0Q4UlDPJtTkIIQIBx6JQrM45R71dYWk0p8aHYHSkr0zraiZLqSaRdfNzp2AJdHcB3JydqL/beYiD0tGTO2G8l57UtIQtqXBkFDyAeeuP46X1x0VtEOtKl/X9C2uO4c9DOlOf23mIdkhGwoPZIbRbxnjBw9BIGT7YxT5d0r6P7+Jt2PaKBqlNkVYatTzvkPG+FDyg0urygOl4vjyA9Yf12eftAMYuzdaNL1vL88gvrXIoLrEZmI3IQuDh4owPs/JV9p9SIVcPrODjxKFp+qcHDJfLjJbh7xuOw7mFjXlIkmL3r6VU21TW5Q4PqLzcCcgVGblCU+L73IvgAIR3bIPc364xyzSpf6AqWL0d7Pi7WuAZ3205VoL3d+ZhZkIY1cZRL03yMjF7WZcSR7XdY6bB8zJbPCl9ECAI2KykzETjEK92GfUwOq5sHDCipy+2KOJSO3GcINwyvuMhHModIXi3QSAuN4qkKH8x4oWj68qcxG6GnYduNyweursAlTW1zGfSE0ZD9j1yUmsMNnAWeAh8W4QTLYXBwUZDLc8zFymiEZgYE4SpA0OMlaXuFH2+vEqXc8qRdt11mr3YAsb47Mqr1PZMSnBAg4S5Owm9Its4INQB8s4HIn1NvW+DkI+ZIc8BeDrzIJYznHnIO45icr8guDi3wGMDgg1/Y2YIkPnu5uykW86dv5bKNGEvrDmGw0V07RwBTZgD6rUb0cFsO0oe0BTmAMDbrdVtiaCzcEsuiiuqkdDVp0Ek6jwPJC3NxuubjAn6ALD9l0sI920rcpCuSYlFoJerGHKKddB3tHzMZwbTGN8nANuOqzWCcxK7IdDTRbP97DAvzHEcMM1kxIt1By80eI+LDPBg2k3f6XBglkB3F8DRwWf2E6mB6YLxEU0SxoY4VQDAwHu8DX+nNVB5CFeygGAnYxQ8gOe/Ooqe/o1vF6m1QDpxHNamxGFMhDYBKetKS4qIgHbNUpgjY8cGwYbRkYVmWnxnuDibv0QI9W5j6n07BM/FeBPj0ahm2REhgAOwKqcQycv34pM9Z80nUAdC0MoikSYekmYOVuS7pGXZmJV5iPkOrX1sHGRewA1ZXxZtP93kmlugfr3SurXoF2KMxsKR4u4vKIefuwsKyyoxblk2kpfvxcCM7VidU4hNR4odSFFOvN2Y+KrOTlmJ36/WYJwOtZIj4HhgdKSfqb1RuceZDf9HnFkOnFVr9JtDODBLoLsL4Ei4FSeOQ5pkMTfyrZINfF1qnPnCGgDxsDMqqNo4wY1cC+R0lFty1XR5jl24gifigm9LHEZybdKhXWtsOqq9ILNsfqQ4ev6KQ5FD5if1xPyknqa+5WBMs2jjgHWpcWLkkX880gdrTY4lDsDU+BDTUUI4AMO7dzDdJnYeyJLYTylBonqY3ggNbGLSdiXztKFCuhPHYVSkH2YmhDFDvpH5buZgRWB2c7YBWJsSJwvn19D9nVwHanUJB/1Dntb3pI201qr9BeUOHbifGd5FU+AGhJsHmjYo/eujTJs0LdggzM11Kcbno5lwkLRvm+oGgdDvzB3J3htYYx6oj8BkNPwfuXp+euVBJhk+zev/dsIS6O4STIwJwqLkKOZz6amLCA1kMc+cPkDzW+k3UsPO3oGeWDihXpA0Mqkf669vQ0A4sGjhZ2hYNClKCD+kIdRJbc6UMBLPMtDTtS4OY32YGCeOw6hevszvaL+z3iUhrkhIt8bY0ABhgZkW31n3pCmt04IJEfjjgBD8cUCIqVOqMi9Wf02L74zegZ6IDWsvjqfegZ6mYlxOH9RZ5JQyGkvUBsFrVBn/2InjMKFvgKzctHidrP4g8VYH3uNtWpAx8nraqHAxrNui5KgGjwulJkzgjPNXtQl5x4zQrBWOSas8C+r6hcDMrQMHIdzV3+oiDUjBQxgrrDHMA7ive0fNvFjtLW0jrUO1HcKYN7uZ3tOhrbhG0+oGAK7OLanaQbtGuVkgc793oKemGU9yvyDZOFkwIQLTzcSnlaw10waped8aC0Q4o1G0EEjXK9oe5+duIvyfhh0ggZTf8U7Acoq4ixAd7KnytuIAvCbxtlOyZEuJXmnGrRzYzO6AnLiXhFFiecU5cRweurcTvthXaJhrSI+vyYnjEF13pTFzcBjAgRqShxje0vJdNEkIteXqbMPOXy/hH9/8qnrn3jrm/RdGd8fU+BAZUTHLFmhOYjdZuK9pCaEYHeFH5ZyaNbyLrH1ZXFxasAHgOTUlwNT4ELHMWacvqWwNaWzyBKT9acz5tDpL82Lxa02NDwGg9gCbGh+KFUrqFYDK0j460lf0qpw5OAxXrt+k2lDaOEHzo6ybctz6ubvg8dhgkQ+wQ7vWWJVTpFsWoukCgN+v3aD2GQeB1b9/qJcu/5vyu7TEenoaMk9pPFl/HdEVN2/ZEdnJXdNRgmjCaFx/hKdSyXhPhGYtRw7CtdfJ00Xd53V9wIoSsDYlDh3atZZ5ySrJd504Dn8e3BnLfsyTtZ80qsXhonIqJQYZkwcKylWRScj6YdRhimDe6O4YFemnmivhvm1VkVnImFd6TpJny6dEqxykOACBXi5im4yO9MMbm0+qxh5ZK2nrPji2ppS8TzyuAzxcAA6i7SLLKc3GCWvVrOFdVNE1lHOXBuVaA0DzO2UZnDhO5dkOCO04uX8QMvfVhyNTXt/T6iJdr6R1UXqm/uORPhgV4ct0qkmmOOHQ6q7k0bvdMC3Q/frrr1i/fj0KCgrAcRxCQ0ORlJSEzp3pHogWGhdPxofK+Mh4AC+tP46WTjYxGgQNfu4uGN83QOalykHQaNDY55URKWgb5Wc/FWCzxC0+KcofHdq1xqSYQHGzlC48Wkz6xGtIxiOk0DQAwMyEMDzY258agYEm8JIFXUsQndA3QLYB0ljJpSDlmhgThAd7+6uEaCVL/DTK6Za2odHiVUrr8cb4XgAgo/qYM7KbTHgvLKukllWLzFfK+s/is1P2Ha2u0ndYHmBzE8NFj0lpnaRpJEX5i0ID+fb5EeFo59JSFR94wfgIZt2kFDkbDl+QeWrOHRkum0ussrwxvpfgsSmJYUuECiLEk9BUgMCxJ+17HvRTfURAO8xPoveLtFxko3p72ykZE7+M00wxv5Rpkvl89HyF2H5k7pMrUHJYktLWSGk35iaGi+vEgvERcjoeHsgtuYqJMUGyMUTKk1tyVdafhLcwoasPstKGyuZPUHtXqlcnGU/KTf7JusMDbQwrxyxNGE/s5YttdbFQCYgQT1tLO7RrjWmKyDbEhndiTJCq/6cNCkUPf3dkTIgQQwFyAAbd460a47S5QZtnJE9O49AsFap2nrokCtrSuZgxQe65y9X1DS26hnK9koKMUdb4m5sYTnWSUR6KyffDu/tifJR8rxrRyxejI/3wyL2dVIc3P3cXal2kESpokSqUnqnDu/ti4QS1NzPrZoisBbT+ulMwRSy8YMECvPTSS7Db7ejQoQN4nselS5fg5OSEN954A88991xTlvWO4U4TCwNq8k/ayYZG/klAI/JVxqtT5kOLJakVE4/caignw4DOXrpx8FhkoHsU5VN+o4xBqZzUaSPD4e/RGs+sOqQq6+zhXTAsvAO1TG9sOsGkKaHFJqQFMpcKnRyA6YNCMTU+VFYfaR0AOinv0joNKiCQOUttZ6Qbs5E+ljKv06JEvLUtV6UJU8b+VMJIXGGyeEsFBlp8XK04nyRtaTxfgM54zyJjVoJo16RCGckDHHCy+Aq1PV5N6gkPV2dqG0rbY+epS9SYvoB6fkmjGHAAJvcPxKp9RdS2ACAbN6w4tXqkwetT40QeS9K+JK0Nhy6IBww94l5aUHVSNha3GCtih5HxBEgEa8o6ZTTOdQ9/d9k40YoxrNWWyvorqYRSh4Thj7HB+CirAMt3naHelBDhQDk3CA4Xlat451iaK2lbaMVEls6ncwoeStp6xYodndTHD/f18FXNB9a+pSTkNtLfgDY9yOGicnx/8iI6tGuF4d07Uuclqy0AyPY25RpDK8+oCF/MG9PDVIxoR9AkxMI7duzA3/72N8ybNw/PPPMMPD2FipaVleFf//oX0tLS0K9fPyQkJDSs9BZUoJF/Kse6VngegE7ka4cwcL3a1A9kpfFtGoUE1sYBk2ICVenR9oyMLbkqBnXaZGSFl/r5bDlGR8rrJA1fRk6RpI1kafBgkrvyAAZ09pYFKJdOaJYwBwjttulIMUZH+qmCiUsXYumCzteluSIrX9UGpdeu4/fKG+J7qrLyoPKdkfdJH1XW1Gr2sVRDA6i1NIeLyqnXmsrYn6yYwiROKitckDKM0cItuar4uKw4n8R7jAijfRXhvKQbkFGGeVIOEi+UQEubS9pj3vrj9UHUFRufUqPt1qoF1YiaUB0kdPXBhkMXZFeePIBVe4uYMUCl9okkTyWMkAYTHjzp3CSb6sKt9WNFWlaa/SexYeUhPyzQ+lNafykptbQdpfWheRQCciJfaZg35fe08cgDWLm3CNtzD4gayxkUwV66Jmi1pXKMKh0Blv6Qh5+LyvHTmTIm35t0bkhjRxNsOlKs+tYOYEykPx65txP10Myai2T9AgCvNs5wc3bCrMyDuutVUXk19Zp33aFirDtULOtHWpsREyEPV2cEetZfOUu1gSyibUBODC89iCgVEeTGiuBwUTn+s7+I2hbKg7dSmGaN4S1HSzAqws9Q+MTbBcMauokTJ8LDwwPvv/8+9fmMGTNw9epVZGZmNmoBmwPutIYuO6/UUOiZ7DpNDEtjRNP+SG0tpsWHMgUZmo2CI2BpEpOWZOHQuQrV+/OTeuKPA0LEv5/9zyFV+LLnRnTDxiMXTHE8AcDTQ8Pw3IhwVcinyf0CDZHq0jSSgH4oMmkYMaXgoWxnVh6qstRpI5UCrPTkT4ONA3anDdMUgoiNVGVNLY6er1CRzAKQLaYJXX3wwy+XdEosYMagznhhdHdZHEaahm5OYjfVtQ1tTBptLyVIKB8zIemkUGqwpPNPL7TckslRmJV5kFpmpc0YIGgGlj0aDUCbqd7IuiGFdG6yNNSZ0wcInrE62nlyWAj3bcskT6ZBeejTCz2n9z1gPMygVBOtFBAmxeivCaN6+WKr4vq2IZCGl2Kt34AwHrYeK2Fqvll1l/aZ1vouXa+M2iFq7SfKMa28ZdAKHSj9hmiOaVFZpGNZuWco0wHoa/jMhDDxRmN25iFmmZqaVLhJNHT79u3DZ599xnz+2GOP4fHHHzdeSguGYcaA3ix7tVQbt2JXPnNiN9IaJZ7kiVbQz90Fh4vKqcIcILDxExwuKldNzK9/Po81B887xHG07Ic8/KFHR1XIJ6MRElhZ6oUiI22gJUDZeXp8SWZZeDDt77TGjZ2HbkSKkb18VUIW+Ta9LsSRdBwZFeYAQYvZvq2z7Kpn0D3eyDpdKl4hzRmpFuaAxh2nu09fQmxYe1Mh6aQgGqzL1TdVtnoLt2o4G3Bges/ZOOCxAcEqLrrNR0twuKhcpTVXznWzxLNSLRONEsPGQbxaUtqJKjWJPAQhf9Hk/5+9N4/vqrrWxp/zjQYSlBAkmIGEhDCEIUCYAyEyeAsBf8jQVsBWSgUsIPa9HSDxrba2VoK3fa8yWQVr8baA916ZKoJtQUWIAiIQRAYJCQkQJjOgSSSS7/n9cbJP9tln7X32CSCx5fl8rDXfc/bZ49prr73Ws9J81YG3BKK+DD/Dwb/PW0xl/l+Od2FlkBEPRkFTTya8+bGbVPdawFNgqKLieT9mE/VWT8PyN1a13ZT8fxG8vNIF208oGSgOgQnrlkFm/aXAW44XbTkqtWRfuPylUplTyXD2by95QM25mwXtSOvz588jMTFR+ntSUhLOnbu+E/oWLOiQIJpo2Jh5QZTz+iG8kX9WeqXJIwhgcCMTDj82oqPWcwaAx9butwkyX3y3AP/9oUJYGpYil1dwCduOXiAfoWR0/T6pRNAEth3xzhvpF0Gznh9JQbdRXl0rVUieGtcdj43oiGmDE31tZpS1yut9plDITvDTBrXHlo/lVgddhncrLdDd7vfrFVFeoWaZCWZlJmFn9nCktou4bgcKGZa/U3DNDPLsWplff7keG8LwLm1RXl1LfnNBVgrataY3iMXbTngy1auoKSgEYCkRsk11cj3dTmllDR7on4B1c9Lxi7Fd8ZSExytYfxrx251MgXgj/2yj1ibbzEsra5BXcMmu787s4Z5yyjT1NvGvA7ybQ4vQEF8ciIu2HLXlJgs+0ZHR1CcCAI5f+Nz3GmR0LjpcqCaANbuL0SI0xD+HJNxEyQasubynqIx8J6v73erMFaaV7US0Qsvq1hRIhQEfFrovv/wSoaGh0t9vv/121NbWXpdK3YIbPL2E7Hom76T7rj8IiwiRKThei3JXwWe+6xYA0Cs+QsuKaMLp+6K6ijLgzjGqAz/Xw0u2n/BdvhdCDMOmPJEhMjxUemX45MbD142jjrqy4zG6RzQZHRwAMGd4Mpa9XXBd6tI9tiXeOnze9XcqmTfDSzsKMX1Ikq+8vxR03g2asH3TvKxPsjIN0NYHFbYdvWAfVPjo2QX1dCayFFvbj17w9KPdpSBKZvXlqS+CACYsz8OC0SkkTcbavcVYvacYAQOYkBaH9fWZAWT7YsAA+iZGYnQPd35PvlyqH70odFRg649FqfOuATrrnSkIX0cmChmMemsoADLC1wtBsyHPNxuvdR55uFl07Ob8cw6fMhPWAcIvdCiVeCzefgJLtp9wulVIXEnE74guGSasVGuyLChbCFkkgroRWDI5DXkFn2G1kD+2KVCWAD6JhVeuXInFixeT/6xcufJG1fEW6sEIQnMnpZK/r91dIj1BsMnJkz4O7xJ1XeoVBDBj1T5kdGxzXfMrNlaeXotV61rBrghVp3xGpZI7yZ1eTXXFqmN1FDF3WLJykb/1sSXYRNLZ2cOSsewdtTInY5Af3iXKkflg2qD2OHTmsvt9w1JcVHNm6fYTNi1BYxCARdyrMy/ZFRez5qyZOQgrpvV1PWfAYtufNbSDo/0m/I+PA6YV0bwrZ4QrwpF41GVhYBY2wPKdWvaOfPOclZmEvJwR2DBnsKPOQdNyyF+Q5c4yw1sDX//ojMOqSoFZqKn8noA1z1g/XkumDOYnysoU1x8L7tL1xQsxDGRnqTM4XE+QX6mv6MGScmQTgQU689kUxsur7YM73oW2LZvj8bFdsSt7BJZOSbMUW791h5uUObFNOF5QzEe7zsQfBnVo7ZBP4ng/M7EHxvVyZwMxAbzwbgHGpPrL7SxDiGEgvnUY1u4tdv02P6vLTb9uBXxY6BISErBixQrPZ64n6urq8Ktf/Qp//vOfce7cOcTGxuIHP/gBfvGLX8CoH1HTNPHLX/4SK1asQEVFBYYMGYIXXngBnTp1ssspKyvDvHnz8Ne//hWBQACTJk3C888/jzvu8Jfz8WaDOUBndo7C0qlpLutVEEBmxzbYITmZmwB+Pa47rlwNoqK6Vnla4k/OtgMqaGsFK3vHp5dgALivZzTeyL9x1+8yi4uqfl6YOiABa/fKCZF1wMhIVX5YPIs/b3V9/+RnWL27WCo8fzgkEX3aR5IWy5EpbaXX0UM6RiElpqXU0smsOjzpLJsbVF0MWEEjQzq2gQnagvrO8Yt2BOiCrBRU1V4lvz1veEc8ck8yWoXfLt1s/7K7GN/t1w4P9E/AwdMVnuSeIoIAjpy9rDWu/BVXTESY1AncrH92ekYiVrx30vWbCr+531p/T28+QpbbukUzAFZAA4tKlmFESlu8fbTBZYBZ2BZOTEWLZmrRziJ7qcjJOtNEXEQYnpvcCwHDQFlVLZ7YeNijZW7ERYRJr00DhsWhWFxWjZ7xETY59GdVV3xb5eeN6IiRXduipKzG1jB0IvDF+jC/1YczEjGuVywGJbW218ML75xU+t9dC6YPScQfdxW56vv0G0fw5iH3+DBL0bnLX5LzSBeiHH3v00sYkrvd9sVsfYe3Pyn1832pMZiZmYSq2jqUVtYgJiKs0b6pJixLY+7EVKybk+4gBufpQvIKLkn9h78/KBHdY1riP/523H8F6mEA+NE9HbCnqIxsR8+4Vo0u+3pCW6ErKiq6gdWgsWjRIrzwwgtYtWoVunfvjg8//BDTp09HREQEHnvsMQDAs88+i8WLF2PVqlVISkrCE088gVGjRuGTTz5B8+bNAQAPPvggSktL8fe//x1fffUVpk+fjlmzZmH16tVfe5saCzHYgboWAaxFKYMB4JebDntHexnAHGahqX92liQLgggTuKHKHPsGj6we0XgoPZHkMNNBiGFg3siOaN3idixVKLleZfBkpNLgEuGPMRFh6JtoXTGpqv3HXUUorfySvBp9+xitzAFA/pkKz90sPDTgyVcGNFzRrd5TgrV7SzCqO33y5ekXZIEaADCia1uUVtYgvnU4Vk7rK2VpH78sD9lZKVjjocxRmR4AvZy44pVJaWWN0gk8/0wFTJhKayogRCwbwL3d7saFy1+S7wQMOK4KvbDtiHvcmTXKC8xPjQp+4K88G3vVrbo2DcCSL/zcMGBFOmZ2jvKdQYVd1QHuQ6gOxKvGl95r4Ho0YY3L7HuSlRZPHXyr29342yfuqz5Z0Jss1zOfPUfMLuEHMgWIOfg31tVh86FSvPlxqeO6WzauveMjcKCkUl3P+jmtor9i1DIi2Jr63TUoc4DVB7LxbyrXrUATz+Wal5eH+++/H2PHjkViYiK+/e1v41vf+hb27NkDwLLOPffcc/jFL36B+++/Hz179sSrr76Ks2fPYsOGDQCAI0eOYOvWrVi5ciUGDhyIjIwMLFmyBGvXrsXZs96CvimASs787NZjmE34B8gWn+5VBmMLX84pcyasE33bls195f6kEGIYyMlK0UqIrHt9+7fD55HYJhy94iOViZpl9XlmYg9sOnC20coc4Da5D0+hr7NNuJ3XdU+vWz4+hznDkh1Xo165Ehe9eVQZZQkAJWXefGW2gsLNQZlfFA9ZkZP6xOHouc8xJHc7pq7YjZmv7kNWD4mCCLViCDTkC5Xl21RBzH0KWFxiqu89u+UYaiSWR1Zn6vpo08GzmLDcTePB1t31cMhXXdszsFR5sudU16kBA47cuDJQ7QgxDCzISnFZgE3AzsO8cKLbFYGha8ydpFwQ2+xHmXtmYg+0bdncxRvJygiakF4XZnZqoy0P//7JeVe7DFhKvuxwJIKfqzERYVryTlY72d+v1cHfhPN6/vF1HwMAWVcvZU5VJi9DAbo9s4clS9M3Xg80lQwRDNoWusWLF2s9xyxn1wODBw/GSy+9hOPHj6Nz5844ePAgdu7cif/3//4fAKCwsBDnzp3Dvffea78TERGBgQMH4v3338fkyZPx/vvvo1WrVujXr5/9zL333otAIIDdu3djwoQJru9euXIFV65csf/78mW3/8/XCRk5ZGS4PEiFgeVglF2P8fhuv3b493/rLP3evqJyhIeG4Ff3d8PR0s+VV4QUvjcoAd/p2w694iOx4j218hQAsOKhvggPvR0nLnyuvPLhncHDfVA1TEyLxbTBiWjbsjkGL9yu/R4FZnLXsXSJzut+aGkiw0PtdEnhoQEUl1UrHbiDgHJ3U+XAZTAA/Pr+7lrXbjon+t/c3x33drvbwY8VNIGtH59Dv/aR+PBUuesdE2pH9cWT03BfvR+NjMiXx/jesdh44KwjSIehtLIG+4g68KgzTRQqNj0ZlQdPrszwdH0uZi/F3gDwg8GJeCWvSFk3LzClID4yjOQE8xq/R4d3xJSBCfjZqC5kDmBZGbxLgsw6xK7/a+uCeGKDe77NHdYRfRMjsTm/VOu6kbKUivUB4BlRSwVKGAB++q3O+E6/apy48AWe9wgcMGHxLq587ySCsObIwnrf0K0ahyM+Ty9zv4mL9FYk5o3oiMWSYBBqrJjFSZdCxAtM3qW2i9B6/jf3d8eTmw4rg0BEGSpjcYgMD22UP6aOdfqxEdY6aCrKHOBDofvP//xPz2cMw7iuCl12djYuX76MlJQUhISEoK6uDr/97W/x4IMPAoBNk3L33U46hLvvvtv+7dy5c2jbtq3j99tuuw2tW7eW0qwsXLgQTz311HVrx7WC2vADAJLahJOTjj3LTg9je8aSSb9F/M+Hp5EcdQfG9Y4lo9xk0bWOb0Pux/bnD4qxencxFk5MxYDE1spyggBmvroPCyem4t5udyuvipkAkhFIyvjc1u0/iw0HzmJGRtI1CS72fR1mfvF5lmNTzGE7R3LF0y8x0vbv0vmWistOlQNXRHVtnbbSyeYktZmGGAbu7UYrLyZAKnNAQwDFQsKnjL+CAqDVHv4a1oRF75PZOUo7y0SIYaC8mo7ql5GdGqAV0uLPajyv6hlkBxbdsWFKwQeFZa4UTnZAgSKiELCuOJe+fcK+9hLzp1I5iQ1Yc5eRR8vkFru6urfr3Xhygzva+0xlDe6LiEWd5i5twvKPpaISxwiZXlSQRVLypMleYydGfTL/r2c2f6Ll48fyFotE6KrvhhgGRnZt64oeZfVfOiUN+acrbeukaK3WvXLlfRBF+c9H7HrNUyYfQm8LKNchf8354o4CqVzon+gtC3iY9f+j42K09O0TiIsMu2GEwo2B9u1EYWGh5z8nT570LsgH/vu//xt/+ctfsHr1anz00UdYtWoVfve732HVqlXX9TsicnJyUFlZaf9TUuLPEft6g+KhY5Gl4lwzYAnsNTMHYWf2cMdkezgjyb6uoMzTJiwakU0Hz1pXV9yzOtc4T4ztil05I7CIiN60611vLm/bsjkm9YlTlseb611RTvXPMAEkI5BkisCMoUnkVU3QtFLcyK53QwwDc4clSzmLeJO7ztUpe37H8Yv2deNCMQOCCXwvvb2rf7J6RKOqts6KfHud3oQMOCOZZVx4y6am2fNjR30Qg1gOgwl35GOIYWBSnziXABHnyUTuao7vK798bxPS4jCuVyz5jnjdrcPbKCIIYMm2E9JNhJ3cAUtoPtC/HXkNN3VgPHZlW1Gq4pyVTY2VO0/azuMzhyZJ62gC+MO7J8moPdO0vk31D/tTiGFg4aRUfHCyzJpzgrK5bk46HrknGRPS1OsScF578VHB6+akI7ZVc7LuE5bnYeqK3ZiwPA8T+8Q55phhuJOpzxnudil5dssxHCwp93QjYAgYwLyRHV0R/ePTLGuuTJnjx5vN20FJ6kMof4ih6sFflbLUbaWVNaQfo6OuvWOweEoaMjtH2b6d4tUwL6vFeveKj5TSd8S3DkNy2xYN7jWNPNk+Na471swchPVzB7t+Y2WK65LJEEo+ZHaO0pK5L75LK3Osv3vFRzq+qaPwmLBcjD4oLFP2R9Bs4HkVr39vFrQtdDcDP//5z5GdnY3JkycDAFJTU3Hq1CksXLgQ06ZNQ3S0JdjOnz+PmJgY+73z58+jd+/eAIDo6GhcuOB0Hr569SrKysrs90U0a9YMzZo1uwEtajwe6J+A4s+qHVYbaq6ZsCLw+Nx44jXgyJQoPDayE0rKa8irqUVbjmLOsGRPWgIefFAAi958fd9pfHDyM+w84eS2Y+by33+3N8akRpOKqfgsK7PoUjXyz1TY0X9swcmiPHvHR9gWB6O+7duOujMZDOciBg1YTtsZnaLsqweZQ+xLD/VBWOhtDlJamVL34xEd0Sn6TsRHhrmSbPNg+Vcn9W2HManRKLpUjfLqWix/p8DTb82EFQF31x3NlNcmrVs0szcUio1f/O8600TPuFb2dS+zLgxPaSu93jQBrP/oDFZMs67Ow0MDjsi3CWlxUhZ3ERv2n8XwlLZSvyxWJgOL2n1pR6HUuVzEmj1yF4IlU9LQNzHSzvsoyxwwuEMbRx7XzM5R+Mcn5/Gk4rqaXTXGRIRhekYSVipyWdaZJsb0iEHXmDvx//72qcNaROV+Bawrty7Rd9qJxin3AhPAa3tPo7isGuv3640Jc8O4r5elpGw6eJa8Uubbyf69Yf9ZbJg7GCVlNaioqXXl9txx/CKWEz6tdaaJvUV0blcKk/snYNOBs3hbyF6y/qMziIsMI8vhr2LZXN9x/KJyzTLIrsQfHd7Rzn7BQ+dac+NBK08qS0FGPf/r+7sjOepO22q1r6gcMCxrNQB0jaVTRuWfrnTwXpoAFtTnxWX/rYNfbjqMBaNT8MWVr8jftx05jw5RdyCzc5QjWrVXfCR+NqqLK8G97HDMX3OWVtYgV8L1+dS47rYxI7NzlB2x3S4yTCtwrs40yew0IhjP641O/6WLJq3QVVdXIxBw6tQhISEIBi2xlZSUhOjoaGzbts1W4C5fvozdu3dj9uzZAID09HRUVFRg37596NvX4pTavn07gsEgBg4c+PU15hrhxSvFY2d9GiP2nngK3Xb0IrYfvYjsrBTSchA04TtAYHxarCOP7J8/OOVIScMjxDAQHhqwsz94LZr8MxX2ifbC5S9d1x6q/IIfFTc43ZoAthPKHOCOGEy4K9yhFMssLEwZZQt6QVYKKQgMAEvePqG9ET26xlKS2PXd8ncKtN5lXEksS8AhSUo11qcywUm1N/9MBRLbhDtiO4+Uqv1LgwBmvLoPE+uJTZkVIzsrRVtxACwBC5Ou19Obj+CZN484cqn+cWchVr5X6OsqXfasAcuSAcCVdF3EY2v3o6r2qi3Ydxy/qEUUzc/xhRNTpXPagDx6VObqsHj7CXt+xrcOl9Zl9Z5i19WkF1h7K6q/UpKEi6gzTVTXBlFVexVPbnS6U6j83gDYmTW0fE5b3E5u+kHIyXKvmqbDUsisYjpzyTBoX0/xmprPXezVFj4QSXaQ+OTs5/jeoER77r9cfyhQkQobgNQv1g8ZPaubavyfqL8+58eWyYFH7kl2+aHJ0tYt3n4CLZrdhkfuSVYqw7/cdBjVtXW49MUVR18snJiKBaNTtOaqH9nBRwffTJ86wzRvJh+2Gj/4wQ/wj3/8Ay+++CK6d++O/fv3Y9asWfjhD3+IRYsWAbCoTXJzcx20Jfn5+Q7akqysLJw/fx5/+MMfbNqSfv36adOW+EmOe6PwRv5ZX/xMUwfGY96ITii8VCVN0K27WHVgZxbgomNl3+RzderAgHUCrf6qjjSv3wjwyZ1f21uslZSad6hl/y0KscZAl19PxuBPfZdRNazdW4I1mrlrRYfhQR1a4/2TdGqd6w1WX1Wid8rPyS9ka0KVbJyqx87s4QCglRSeYePcBof39GsM0qEQAPDU+O6Wgnkdpb7X/JTNw7nDk/GC5kHFUZ5hEWbrHHIaw00ZALB+7mC0bdkchZeq8NreEmzUoL7RLXvO8Ia6Bwzgns5RLguiXxiwCLT9zH0d+S/KtBsBtlfxilBewSXpvgUAOWNSMK5XrK/1BVhr81fjujWKV1EHa2YOchgCrgf86B9NWqH7/PPP8cQTT2D9+vW4cOECYmNjMWXKFDz55JN2GjJGLPzSSy+hoqICGRkZWL58OTp37myXU1ZWhkcffdRBLLx48WJtYuGmoNA9vi5fO2k8g5U/U552p7F4oF87vPbh6eta5teFEMPAqB53S62HPNbMHITENuEYvHD7DQt7v54Y3zsWmw42Lv9lU4YBYObQJFz4/EtsOKC+Pr2RKZtkPHcU1swchLePntdSAHnMHZaMrrFyIuhvIqYOSED7u8JdVpFrIQL3cxht7MHV6z1ZRPY/I1iQwN6i8msiM5ZBvLI8WFKuPLwZsLK1HD33uR2Qc7PBGwGuJ/5pFLqmgput0JVW1nxjlIqmDFn0IQW2OJds+9S3In0L19f6ez3LulbMGtoBL+8s9NxA5g5PxvJG5sHVIVv9JiFgAIunuDPbADdWAQfUUd7/6vCzrhprdfYD9g3dyGPDAHLrSYv/8cn5G2Z10wEL1LgRPnR+9I9GEQsHg0EcP34cO3fuxI4dOxz/3ML1x/XiAxLhI8jwGw8WfZjaLkIrU8YzE3sAkPus/KvBz1zZOHcwcif5iyxTwc/cv9HpN8f2jMbO7OH4xdiuyudkqdN0cLOVuevdhUETKK+iKV68cg1fKyYPpIMIePSOj2iSsvBGs/7f3ztWOxKc533zS96uCxZko6PMAdZBgLEgJLe9OWk8A3AyBtxs+J4zH3zwATp27IiuXbsiMzMTw4YNs/8ZPnz4jajjvzz8Ujx4IaPjXQgY135qbYpCUIb/r2ecFl1GWnwrrJ8zGA/0T0DhpSpf3xiZ0lb5uwFr8eeMSflG9R1gzRVZJgcR1bVBm8pi6ZQ0TB6oJ+iutU9YUvVrhaoe1bVBxESEYWzPmEavSZ09tGdchC2cAwByslK0vjd1QMI1yYonxnbFrzWyuAD64xUwgMgWNAn6kI5RJNXF9cLgDm08+yP/dKWv69vGwO97y6amYfHUtEZ+zfre1IHxyu9uOngW80d3wZqZg7DRYwx43jddgmBZvWTw49LAwBRNnT3yZ9/qLP3NgJPuae6wZPSOb6Usj2WnGdsztsmQC/tW6H70ox+hX79++Pjjj1FWVoby8nL7n7Kyr8dB+l8NIn8PNW8NWJaRWUM7KLnmAGDnic/0CGJ5biPhtwCAKQP1Ng9+sfDvTx0Y7/0yURaPEMPQUpDCQwN2ZNmCrBTpxN9fUoEJy/Pw4rsF+OyLK9qbowEgLaGV53NfXLmKcb1itS1JAdAp0G7UxkKNNcNbH5/DqG53S361wJMm/3FnIeat2Y/Vu70jJ0MMA9ljUhxzfNqg9p79z34PwEr2Pq5X7DUphgHDyik6l+BAA4D80xUArDW5IMu/Yh4AMEVD6Tp0phIrpvXFmpmDsCtnhBY/HMtJvCt7hL1JPzaio37dDGBMzxjc2+1uqYzh/382oWSK84elNCurukKu3cQ24Wjbsrmcvw3u+a+aoyLiW4cpU4kZ8FYgWLrCNTMHYcPcwcqyKJnGAhZ0rGGGASyqVxLiNbJAyGACaN+6BbLHyA84QdOiqGJpE3MkhyGRbFgWOa+DucOTpfuYCeDIWX9ZmRhpsWqPDMDq06Gd2tBlwJrLbN3Mz+qCF94twIGSCuW32cG/KcE3bcmnn36K//3f/0XHjvqC4hauHQ/0T0BFzVc2zxPv/8BSyPSKj8TRc587fFKyeugFRWR2aoMdn15y/I19JzsrBa3Cb7edT9m3V+8uVnK7MYzuEY0xqdE2D1BJWU0DR5IiFJ/BAPCb+vRIv3vrmIO7bHxaLB7JTMa4XrHYV1SOTy98TqbgYYm3WWTZgqwUfPZFLVa8d5KkbWEO3CzKy8vPxwRcCaAN7jf278fXfYxfjevmmeLJRINfBurf4/22GmtdncmlHhIxMCkSe4rKlWnE3qpPLs7qyLeRJ032onkY3zsWfz1YijrTRADAwxmJGFefuovN8f/afQoT0uKwYf9Ze96xbzEnarYmgiawaOtRfPbFlUb3zdQB8Zg3shN2HL8ozd357NZjGNc7FjuOX9TOEcnmj7huZmUmYfqQJPyftfuxu9DpXG/CosTJnZSK9OS7UFpZo6R5MYRNl/27bcvmZJYACv3bW5kcktq0QO6kVMfVl+hvZdb/ceHEVEeWiGcm9kBm5yjsKyqHYQCnK2rIyEueHDav4JK0fgvGpKBV2O2Ob4xPi8X6/WfsPp2ZmYSe7VqRPnrVtUG7f/h5HQAweUC8p+wJwCJc7hUfCcDi9KTqysYyJiIMvdq1Qs7rhxzpvR7on4BBSa2Vjv5s/rGxY9RDMjw4MEGZfnHhlqOYOjDeiiZ+u4Bc80EAr+wswuNju+KRe5IBA67xWjA6xVZcSitrSFLnucOTkdExCjtPXMQyBeXVkI5ReHBQezt1Ic8JZ0KeM/fHIzoiqmUzm/7EBvcfjPeRcUWy+bEgy6p/XsElUDBhyY5W4bcjs3MUHlz5gbf/HoCj5z6350VTge+giBEjRmD+/PkYPXr0japTk8PNDooArIUkOqOyPK192kfafEnUM16RZMwZ9S8fnCL55wIAFk9NQ3y9Mqabu1GEAStzAKPVYEEKOpxALOJUbJ8YWSTrA9GUz967cPlLpZBl7/+6nu5Bp90GgKWa+XN5sJyeAFxEmwdLyl2pmmQwYBEjv/BuAdnmfafKrzmKkp97rL4st+yP1x7wTO/DHKyZ8JXRrDC6kuraoH3lw/oGcDtoG/X/o9NPItWObtDM0ilprjUQAPDTUZ3xu7eOk/Wn1g3fD4Nzt5N1NgwgL3uEkn6ItXtDPe2JiNf2FmvzqAENyjLbHKlDD3tuV/YIAO75CsgjFcW6qmhalk6xcvSWVtaQSgDQ0Mfi3xlNyy+FdcvTkug4+DMqCllwGstNzLed1ZfvEy8qDiZn+yrkOYMBIC/H6nvVQRZomNdxrcLI9I1sHGXf5GWsrA2sj/7jraNShU6U1V79wWPj3MGoqq1Tfhug5T8v61Xk0CGGgeen9NaWjTcqqlXEDQ2KmDdvHn7605/iT3/6E/bt24f8/HzHP7dwY0ARwAbRwPivekZl6ecDAJZLTkeMDXvC8jzkn64gc3DqXIGYAF7/6IyDMf7Zrcc8r175ZNHit5kPBQOVXmbG0CTpe16nYMBqf3LUna5yZWmaTFjjwnKK6iI56k5XaiCGqto67WjAJVPS8PPRKa76MotI3/aRvvyfKPBzLyYiDMVlVZiwPA/z1qiVOfH6hifqpaIRGQEt6w++b2T5YE3T6S4gQxBw8CayKygvZZTy8wkC6JPQ2hEMwqdean2HO0k472ieK7kWNE3go1Plnj5CJoDxy/Pw2l739fYD/ROsq0LNQWckqRcuf2lZOhTPsfqL8/W1vcUYLzkomWiwnAHWmp06gJYBrM7sG1W1dWQ/VtcGyVRrT2xw54AOosEXcuHEVOUmyPuOfVhURvbFExsPY0judkffU32S1KaF53x8dPV+uyxV/Uw09P19vWIxeUCCtGwmZ/smRpIyi40jQO8hvIyl5iHroxffLZAqc+K6l5UlG4vq2qDy2wyy+r+ys8gz0wcjL9eV2eLe0xTgW6GbNGkSjhw5gh/+8Ifo378/evfujbS0NPvft3BjoDOZZc9kS3zGWKJuFgDgdVINmsBKIu8p839qjDN2nWkqHZe98n+KfQDAkVtyZ/ZwTM9w53Fl7+k407JnqXKpV1mScVG5VC02PjE5Bd3AGD5RvVhfdm0SExGmHTzw1LjuWDolTdnvVDYSEeyKcVf2CLseurlvZf2i6hPDtBzLVT5PAbgteaoDEJuLlKIumyOsrV5z94H+Cfj1eDoYwTT18tOyqD8qr2Sv+EjkCnNRNZ10UmzJxkaWTo6BmuvzRnZy1ccwYFuAGVT9yAfiGIY6YT3f7+slyq4rUb2i74OKvmfQXXdinlyqfmLfe5XNlA+VLAS85yl1YGYGAVkaLgO0vxlV1gLCL5N9X/ZtHSVRdTDhv9M3MVI7D7RKNt0s+FboCgsLXf+cPHnS/vct3BjoTGbZM49kJmNXzghHwARL1M2uPXQVhiCAGRkd6G/UO5U+OjxZW7mjFhHvhCwqIl59wPcFM8OzQAjqPUrpGtMjWvoN/uQdExGG3ElOy4oBZ5JxfoNfr1AuZmR0UJruqbbnZKW4xpSaE6KlAAAeuScZOZwSrhIE1Pjw31EpZgFYilxezgg8Pqabp/A1AGV7qD6h6s4siG1bNseMoW7FW7V5ZAtzRZyLLCBCVk+qz3Xm7r1d6WAElnaMn0s5Y+hDmspqwL+/K2eEw5ooIsQw0D9RbmFWjY2Xor5gdIrrPbaW7PloWBxj1HOqfoyJCCOtoap6U8quePgA4GnZ1rHYiOtOpyyxfrK+Z2WTh0wAn1VdAQDP/vOap9ShRUWtlT0mReprJpb1yD3Jyu/LDkwAHEFvXjc0Ivjv8N/g9zIDDYc9L9l0s3CLWFgDTcGHjqG0sgb7ispRXlOLyPBQ299CfIb5b1y4/CX2FJVhQGJrO60Q79vBFgFLiM0sLQaAKQPjsXZPidTvh/m0VNXWIalNC8REhOHFHQXKBN0A7NyFbFGw3IZ//+QcLn1Ri5EpbaUCoLSyBh8WldkBFvy3Rfyu3p/DRIMfSc92rRx+Lay8ipqv0Do81OGPKOsnAPb/Z23mU5LNHZaMIZ3akPV68d0Cl88g84fxEg4HS8rxjyPncXfL5hjZ9W5HG3TrSvUnG8c38kuxgshsYMCK/EyJvhPbjlxA1J3NHD5DlN+KAWDeyI7o1S4CYaG3kd8XfbvYdzI7Rzn85Pj6821T+RcGYDnUsytUNp+7xrR0jPNre4tdTv0P9E/AwZJyRwJx1TrJzkrBuN6xnvVkdZWVy+rDHOrtttTP3dhWzWEYhr3mZe1mfliqsRfn/emKGjy75ZgruMGRFxTA7GHJyOgU5fKXE8umfM3YNSifFUBsv9g/rDxxPrcIDbH9KsV6yPplydQ0h8yg5hYl03i8trdYao32Wsd8/tbismpHkBjlX/nSQ31w8lKVVHbLvvFhURk+OFmGNXuKXb6pvH+kqq3bjpzD28cuYHiXthjZVU1XxL5J+c7OHZ6Mn49KcT3Lz2NZmbwM8HpHHJfxvWPwb92ibQsv5YsYMIDvD2yPOtPE8JQoVzvFMqcNao9+SZEIGIYtP74O3PBMEQUFBXjuuedw5IiVAqRbt2748Y9/jORkOtT/m46mpNBRDs6zhiZhekaSa4L99L8POCJCs3pE4/vp7Z2bR/2E5ZM4M5+43ElWFCHbFPkNj9WF39iGdVHnJOQ3P14wUW3KqU/aLLadirwT08YAwOw/73NF9wYA7OIELqVQZGelILVdhEPAqb6rcqLnhaeoAPKRZLLv8hDHcminNnj22z09NxxVH7EN5tCZSk/fMb4s9v9zJ6U65gIfBQ04r7zEvmgRGuJyYgecG4A4v/gcwGJ7/Dj+G7BSibE1I24eVHJzVX5co/5/TOJ5vt2qcvn2bDtyDjNW7ZO2hZ8vh85U2ooYXzdqE5f1FaVIy9j6qXnEwCssXv5KIYaVd5fNO1l/AHDMAVmbVHOZyS2RJYAva8Hohv7k60R9o0VoCF7bexqr97j9FZdyQQ08KEWQL1+Uxb3jW+Gj4gr72Ul94vD77/Z21EOUFbrymAWRvJFf6kpc/0D/BJes4b/Ng1ETsTJEZPWIxgvf62v/t3jwFWWIWDYbT1FWiu/IAsb4Z3n5FAAwIzMJp8trHCkgxT6WBaSo1sCNwA1V6N566y2MGzcOvXv3xpAhQwAAu3btwsGDB/HXv/4V//Zv/9b4mjdRNBWFTpUCzE8uvIABzL4nGcvfLVBa0piJmbdEMCVLNeFVoISkrE05Y1LwSGay3R5VlCcfcaRq+6yhHfD42K6e6dR45VPVTq3E5NxmzzZ3P8Ji25FzeHjVPnfZ9ddSfF+q6soEeVVtnbYSpwIfHce+/49PzlvJ34nnxfkk+7Ru4m1+zBszH0VL0R93FmLle4XXPSsLpQRSYEqO3wTrc4Ylo2tMS5eVR8TG+shOKqLUQEPkqc48EqP7RGVCV7FWPeeVtovVY9PBs9JbARbR+sHJMq1oeqqO80Z2RDBoYvk7BVrto2ScKlr11/d3R/VXdZ7jvrE+dymv+PHz91pTcjGrICVrNgoR1DoHKH6eUDcTgDNSminLvKJJgZc7XvXgrabizRW1R7CI5Vd2FirzMIvGgRsJP/qHbx667Oxs/Pu//ztyc3Ndf1+wYME/pULXVKDyU2COtJmdoxATEYY9RXKS56BpRfd5wUSD07iJBg4uWYShDsR6qtq0aMtRjOsVq8VrxkcMqtq+cudJTM9I9EynZsLicdp+9LyynV6UMKb9Pw1tf35Kb2mZYv+8trcYC14/RJdN9KWqrnWmqU19ogM+yhEAdhy/qMynKM4nGRZtOYq4VmGe84sf88bMR9bXFTVf+VKi/EK33DrT9F0PE9Zanjow3rP945flYYokmtSEFSWbOzEV8a3DPecRP+5iUMz1UOYA77VVZ5pYsu0EaSnjyygpq5E67HvBBLBYoAPxrLePdWkC2jlItx+5gCVvn3CwBLDvNFYe86gzTbyRX0p/++gFxxW4KuiFL4/5Acr6P2g6qYt0wEfletXDRAPPHvN7BoDVu0+Rzz+x8bD0QOqoA1duU4LvoIgjR47g4Ycfdv39hz/8IT755JPrUqlboOEV9s4voAGJra/79/nyW4SGXJdyVG0KmsCa3cVawoOPnFO1nQkDr75kEAlfqe/KsgpQ0AmNZ/3DBKdXeTp9yXA9PWYNWI7WpZU1KK2sQbZE8fSLoCnP/clDjM7TGU8RdaZpWXca8e6NQGPrsWZ3iaejvQlgjYJI1zSBnNcPoUVoiGdfnrjwuT3ub+Sf9W0Zvb93jOdzXnUIAFijUOYAa46UV9d+7ePrd13qoM2dzUhKjn1F5dflGyGGIc2J2uaOZvb/33dKHf3Ml8foplSPr/ChzAENsl5XiV2586Q9V/MKLqG0sgZtWzaXPq9bFVZuU4JvhS4qKgoHDhxw/f3AgQNo21ady/IWrg1UVCUPtoBKK2tQVVuH1Dj962HDAIZ3iXJEPYrf4TfQkvLGT+QArFRcgGXVUWHx9hNai3b2sGT79NUrPhJjUmlHXj4EXtWXupg9LBlDOrbBo8OTtcs6cu6yMjSe1fEVxbUDA6/I+qEjuV5gvFmv7PS+qqTm0+AObuU7xDCkuT95PNC/HfadKkdpZQ1iIsIwWjPXLA+KuoSHAaCnj3UUMCxfHC/aA/aczpwZ39s7nZkJIKMjndpIfE6FIIDX9p7GZIklj+GJjYeRvnA7Bi/cjt9u9mf9WjA6xSbQliHEMDBnmPygxKIXva78xqfF4kmJBexa1r7h8X6IYSA8NIC8gkvYdPDsNSuUk/rE4d5ud5NK+6Nr9mPTgbPXvPbHp8ViUp925G8920Ugr+ASfvfWUS3iXZ7OxCuFop9DpoEGFgFtZoZ6K+CQ3O2YumI3huRuR/UVb/5RnXL3FZXbSmJTgO8r15kzZ2LWrFk4efIkBg+2Evru2rULixYtwk9+8pPrXsFbaEBpZQ1OXPjCcV/B/i9bQDJnZi+YJmwHWgNWuhQ+3Rcfps38FlQwDPlCDQKYsDzPDii4HqfnF94pQELrcNsBdisXECH2Ee/30NhvB2ClNHvhHTmZpgzL3i5AzpgU7MwejqJL1fivD4oczrnj06wUWFTEqYgFWU4KiFbht2v7MDGEGAZGdb8bbwpBJGN6RGPr4XPK6yKggZ9Q9V0WdcpHUs4f3YX0q5mf1cXmelPN49V7SrB6T4nt7/jWYe8UdzxCDAM/uqeD1P1gYFIk9haVI/+MXn7JqQPjMW+Elbqpc/SdDgdwBgPA2NRozMzsgLYtm9sprFSYPiQRXWNbkuUxBADsPEGnNuJhByO8eVR6pam6whTRmPWTu/UoNswZrJwvmZ3b4IV3neMSgDXfWaT6pgNnyXeHp0Rh1tBkO6sE9Y0cLjhLXH86yK7381yy7QTW7HGm32LrqbHuDUxOpUTfiQ+LytGPi/gd1Z1O5bhwy1HkjElBDhfZLVvXMqz/6AyGp7RFzpgUx1yb1CeODGCSwYCVVxloiC5l/rN++yNgAKO7R5NtiIkIw4S0OEcAB1kGnATmjGhZbKfq/ckD47Fmd4lrLjG/1a87UEIG30ERpmniueeew+9//3ucPWstqNjYWPz85z/HY489piRf/KaiKQRFyJw/xRRM1+oYyyDSk/CUGDrfoPIMigJcJy2Z3zrLUgDxKdIAdTCGjrP2iml9MfPVfY3ua94ZmEpVo5uC5v0cZ1CCn/HP6hGNh9ITER4a8IxK1MHUAQlKZYClb2Pz6e+fnMOTG91uGr+5vzu+n57oiEzzgl8lFlCnEwL8b0A6ATeszIABzMhIUjpe2+/U/1uqLGuWxUf9MQfxv+afwerd6nymfvDE2K64apqOyFuq3sumpuGLK1e1I5NZcAPvxyWb60x2ydKliY7yjZGZy+rlCZVm8KH09vjT+7SPFsOobnfbeZF5sPR/MoohVSCXmIqNSpOmA3HMGrO2qHSLTA6b8E6JyCJRx6bGkKne2N6kEzj1cEYiuTaoFH4inhjbFWN6Wu4Bqr7n63W9AyVuWOqvq1ev4r/+678wdepUnD59GpWVlaisrMTp06fx4x//+J9SmWsKUDmh8imYdH0bGLz88fYVlbtIUnX9FlKi73Sxm4uvXU9lDpCz24sp0gB1gMmszCTld4IADpZUXpPizMz1lP+RnxQ0PJGpX8fovx0+j8Q24VZaMf3XSAQMYHDHu6S/81fdbD7tKaSDVz4+WwmggUSUylQhwoQ6xR2F7UcvSP3FDPi3JjCfGtXc4tOMMaumF0yoN9TFk9MwtmeMVvszO0fZdUxsE455Izo1KsMLhRDDwJieMRjXKxbPTe6FZVPT8NNRnclnCy9VIb51OJ79dqpW2UEAe4vK7ast1VyvM02s2V2Mgotf0OnUoE51pQPTpH3JgoCnMhdiGOgScyf528kLVSi8VEVe4Xn5ovHBAiZMlJTXNK5tHv+tgyDo9Hg6KRENWMr742O6SVO9FV2q9hy7B/q1w/NTemMg4dYBAOXVtZ7K4JieMZ7Be2K9biZ8Xbnedttt+NGPfmTzz915Jz0pb+H6QjVx2UbpdQ3KrgjfOnzeceWlSkT+2Nr9qKq96gi/Z/4QqoVgAIhsIWdrv1Hg2e3FE52YomWX4nrqxR3eVpMl20806uTKYADS02EAVnaAhRNTlRYqsV3Mp0S335kAYg7Vnj5wCovVgqwU6TUpny84r+CSTU3wRj59FdTi9gaxFBMRhvt6heHtYxeUVysBw6oDswzp4PltJ7B42wk3Aa4BZCv4BWVgSnpZ9RW95+Ft1fRCiGHgTKVFTOvVbBPAv689gN1FZQ4aHa95pgM2xrzLR8AAJvenffF+/7fjvtfO05uP4Jk3j9jUP6q5vng7nageoFNd+T0In6msQS5xXadDYzR/dBcM6tDaFT0LAH/MK8If84rIKzyvdRoAkH+mAg+u/MDB26eqi+Gz7bqgLHTMr7DwUhVG94iWXnObsCKTq2rr7AOXaDFk46cau//+8DRe+/C0tB8iw0Ol/SmmfWsRGuJpsTcMdfrGrwO+gyIGDBiA/fu9r4Ju4fpB5vwZMCzh8GFRmWckaBDA1sPnMH90F0ealQWj5Y60LCy+tLIGr+0txpDc7d7J12Fd6/hNTK+ClwMye4YlQvdKXaNKIq0L1gU6TQwxDKTGOk3lJuSCiPkYVlR/hV+O6yq1IFGpZx4mcjWqUF37FQovVSFbkjLIUWfFuA9Kau1KxWWgIYUSANsp+f5leUr/wCGdnJa+0soarPPwkxnSsQ3G9YrFujnpvix1VJPmDEsmUxBleQRdGLAc1KlrZAohhoF5IztqpYKSvT9/dBcXn6BqvXxQWOawEua8fggp0XfaqY78RGzzWDA6BZmdoxz+u0ETWFvv4yjCS4cYk9qQfo8Hk0kXLn/pa66zxwIAHs5ItP8uprrSwege0VhEREazQ4UyAADAoq1HcfTc55jUJ076HC97xfel7wDIfbNhLnj1MZNB43vHXDdZDTSk1ePHhwWoTFieh6krdit9Ftlhd+qK3bQrSH2ZLAWfDKbwb7GO8a3DPC3pgOXuNIHIPCL94E2E76CIOXPm4Kc//SlOnz6Nvn37okWLFo7fe/bsed0qdwsWmNARma5DQwLI3apOs8WDOYPy9/yp7SKU77CrV91AC97PZcHolEaReYow4c+S8UD/BAfrPa/0lFb656SSneJMWP5eKh6pJ8Z2Rb/ESExYThMdyxA0oew7E9b1GQOV+mbjgVJPGcMyEgQMK7AgrlUYDAOOVFA6+LCovIF4tL7DDANIjrJoEPwE6jy8ap8jU8i+U+We7Xjv00sYkrsdMzKSyPXgx5r6wjsF+N6g9q559I9PzpMO6Qx+5DlvAXgkMxkdo1qQhK4iDAArp/VFeOjtUuoGE5Z/UP7pSk9+ryAa+Oce6J8AE2ajDjvPbj2GuEg3d2AQlm+hH56xqQMS8MzEVClBOM+nyA4NY1NjsLeoHE9vPiIt98GBCVizpxgvvVeIlTsLbQsYG+fN+aXK9xm2fnyOHOvFk9NwX69YRzAZBaas7cwejrqgiQ2S4A7+Cq/wUhUKLnzhWbfG6BQbDpRiTGo03vr4/DVZaQFL3pVX19pUQPz46PjzMTJplVJq1l8t7zh+kbSS6mB+VhclU4MJa4xSou90Z/gA8BQh99lV/s3M7+pboZs8eTIA4LHHHrP/ZhgGTNOEYRioq7v2cOBbcEPcXDYdONsoZUkkBfXikwsxDJfpXIXN+efsjd1LWdRFiGFgcMe7lAodW4CMzJMnkeSh4wvBw4DF5E4pbQEDSnqNgAGM6RlzXUg/KTBiS5HYFbCEtA7YK0HTij7M4zI/jOsVq73J9UuMdNVDh0hZhoVbjgIG8EhmMnTjtphfmngNwxzqS8prtAJNeMJk9o+YDokv+9fju+OJDXIyUvGqJgBg/ZyGg4+KPFqECSA89HakJzdYMSkXg76JkbivVyymZyRi2fYT+PNuxdoxG9aO7vW7iDrTlHIHht5maB86A7AyMwBAVa18L+EJql9+rwjThyShTjHJTFjRu6YwN3l5MbZnDJ5584jnXJX9HN+6IYF8Rc1XyghKdlDeKFHmAGsc+SvUG4mtH5/D+jmDUV0bbHQwRYhhoKy61nEgMGFF6/ds18qzPAO0okR9Jzw0oLyV8roe3fXpJez4VB0VrvLJjgwP1XLt+brh+8q1sLDQ9c/Jkyftf9/C9QcjRARgC3KVlYnikGMQJ51KaLLrSj/XpyveayBb1OUJosCb6lkdvIrScUr1W6fsMSnoKVFM5wxLVtZrRkYHX3xJfsE74V8PgW+awEenyu3/ZpucTt3btmxO1sNPgIeIRVuOorSyBv0SW2tzhgVh9Tt/VbpwUip6xUdqz2Oe2w+w0s6RypwBLJyUig5RdygjD7OzUsj6APBNyCzWTbwyFF0MYiLC8J1+NLcYD/6gp+J/k9ZL8duydwqUCiIbEtY3uodNBqYcLdoql4lUkIsoL0SXAa/6iqiutbznSitrsMjjsM0OytJ5A5DX6V4w4JSdXm4CDEHTqn968l0utxXdb80f3YW07pomUFFdqxXYxBQlGZhlmwqWYAgxDMeao+ClzLFymE+2+Pe+id6uPTcDvi107du3vxH1uAUJxKTNC+tT81Bz2YCVHLpP+0jsOH7RZfanJh3lFEzRfIhXvibk15B8qpWFE1OR8/oh0lF46oAEDE6+yxUcwOhHqmuDjivT3EmpSpoDnRMSq5MXXYKB+ty1mcm2Mi1iSMcom8xXtJYGAEyv99URr8xVofR+HLTFrBfUa6w85sOy/qMzSqdtcdOjrvup91k9ZNYiyvGeuQ7ER4aTp3LWvvTku5A7qWEeGQCGdmqD9z695GpziGFgekYipmckuq7cxbYwOS2WIXL7yVLJzRve0aYAocbNQINj+7hesaQLgF+LsVg3QO1iAFhE25P6qPm6+LUzpFMbrdSAPIIAntx4mKYmkjSQ8coxPjix7rLDpmh98bpFkAW5UPLigf4JaNHsNqklV6csrwOWeFAmnzUsQl7qN5UFlfHjsf4svFSldBOg6g8451T+mQqX+wVrAz/vCi9VSctvFRbqyRnHywrZnsGutWVrjil8/JprDDUPax9Tbik+Vq91dzPgW6F79dVXlb8/9NBDja7MLTghu8JaNyednMzZY1LQp30kCi9VIbNzlE1cGx4acClHDJSy8czEHhjbM9bxXGbnKDw3uRcChmErjLJFt+K9kxjbMxq94iPxQP8EpETf6SLZDMBi+q+qrXNEJ/ILSQRbQPuKyl1+XpSyyqxXSW1aOP6e2TlKaZIf3zvWsXHKFBUmAB+5Jxkw4CD05OtSWlmD+NbhDiX1wuUvSYVu0aRUVNZcRUV1LV5456QyIpmnAqGUSkox/tmoLvacEB2ODQB9E+X9LuO24uuhI/zE+VhaWUMqdAYaMoqwebS3qBz964lWSytrHHkgKesU6382D0QhzB98mILxSKbTQiVLJdcz3mLPT2rTwqUoThkQj3kjOznqwtr614NnYBgG+raPlCrjBqz1zOa3rG4MMhcDht9/tzfGpEbjnaMXMSwlCpe+qHUcFPl+k0V+yhRgcH9nVhs2HtS8ZdfUrcJD0bf+0CjWXRZRz4iRxXUfHxnmWtMGgN9wvG4yonQRlKLFykqNi5DKLFX/Me7K8NDbER4asJVVWYRx0LSuKsW5wa9pXtES5wery4XLX3peP8r6go1LYptwxEY0R8Aw0C4yzLWX8O/JlM2w0ADW73cqcwYaomxFWUHtGUzhY98U19yIlCgMS2lr+xbz9V+7p8Tbf88AZt+TjMgWobaMAWjZI/ZRU4FvYuHISKfA/+qrr1BdXY3Q0FCEh4ejrEyeGP2biptFLJxXcIkkxlwzcxCKy6pcG1Gr8Ntd1jxd5mpGNEopfZSVkFkmfrH+Y2w7esFVnmHAdrRmZfDCdHxaLNbvP2OXuWB0AwO8nwUiq7eszoC8XxmovhN9qCb1icPvv9vbsy58PdhGP7g+RRNlBeCJZ8U+8arDizsKXEqlavy9ypMpxDrv+T21Somz68cCgHQ8GzN3eejUV2xzn4RWOFBS4SjX67QuttGAZXUG4Pw7t3Ya05cUxH6YkBaHdR+dsZWw3EmpdpL3pDYtXIrujMwk3HVHM+S+6Z3ZZemUNNx1RzO7zl5rXxwTcc2gfk3wc/pgSbm9wR4997nLh1Q2/3X7k5rjA5JaO/pQJbPENrO6UPNRNyCDapPu3KfKmj+6i6fM1Vk/qn5jkCl64lwRv031IQ92qFvx3knXuhLnlDgHN+w/65rfTH7ybfXbB9cbfvQP3wodhU8//RSzZ8/Gz3/+c4waNepai2tyuFkKHcVizrNkf1hUZlvMADdrtgFgAxd1qoODJeXYU1SGAYmtbSsIxYa+eGoazlTUKAW8yJzNhI/MyiM+yzYXAKRiIYK90yI0RFm+Djs8//zBknLytChjBVfVg4eX87lXndk49BUyYLA+rqqtI/ustLIGHxaV4bG1B6RtenFHgRWpRijx1Dz79f3dcW83muFe7BfZOB4sKceG/Wfxp7wil+VQ5Mtilgq+jWL5qvUjfl+c9xS2HTmHt49dRK92EVjwujvyjUV4U+2Usfzz7P77ispRUVPrsFw1ti/FZ73mO9/HTFmJbdVcKV/Ye44r1vr2iJZyJqvaRYaRa5ONJbVmRBcQlaLCnleNBauT7O8fFpXhx2sPuOpAZT5Yr5CvvNKpkqXr5w5GcVm165s8dGQ5L3eo8ngrIX893FgZQX3XTzCF7jip5JlsXRloyAYilsWUR3582rZsTsoKWeYh1bhfb/jRP3xfuVLo1KkTcnNz8b3vfQ9Hj147TcUtWJBdYYnkncyvjqIvGL8sz3VakYE6lU7q246M8tGJFhQjapl5Oq/gEuk8z551ndDr26I6HYnviAucL3/H8YueUXfs+R3HL5KWI7FtuvUQofKZ479B+eWwceD7hbVPdqJUbYbse2IENR8RKKPJeGLjYTy58bB0rnmdclX1MkE7tDMlm1mcRKtPwYUvlPOMQcf6ytfvL6CznoxfnoeJRD0e6J8g9ZXj/QSrai/iyY2HPS0Bfi0GOkEzfB8HzQbKHJV8Ye85/tsEdhy/SM43lqKMGhNV3lM+0wsV0U09X10blPaTzt+pMsXGipQvPGS+z9QaZq4PTKmm+sGEk0FAhJeSy77FIqRVc0hHRshuIPzIO8a3Sa1dVhcveSZbVyYafLkZ+OtRsf1DOrYh56UsylU27jcbvqNcZbjtttvs3K63cP3A0h8xMmCKvPPxdR9LUxiZsK6qqFQyPKhIvtc/OoOa2qvXFKF5utztKCuLXgsPDbgEtgkntQZFtkm941W+l+DxCo2nHKp168FgwnLyXToljRw7PqJRFfHH94vM75L6jfpeeGiAjKDms0rI5oNsrqnqRP2uC14Bef2jM47yc14/RJIX60Swvv7RGRwsKZfWX1ZNk6gHa6ds/Fh9vPpIVhfqORYVz0ebNxa8fNGRAybUc5HRyrjeU4w9P2Y6yim/dsV+OlhSrvV3EbKmm5L+9yuj2b8N08rnSj3HotpF6K4fJrOuVUawsfAr7wIGsOKhvg7ib2rtqmSD+Ltqbuv2V9C0eCyp+iZJguyocW8K8K3Qbdq0yfHPxo0b8Yc//AHf+973MGTIkBtRx395xEQ05L+UUUNU1wYxc2gS+T6zAqggi+QrulTtm0mdx/z/PYTX9jo5sGTRa9W1QU+BTVGT6NJ26JQPeIfGi07kfuvBl9M3MRKt7wglhSGjPQHU9DKAOr+hbu7DGRkdpHldmSD3onag5pqqTrLfKTBFQGcmBkFvMHyfAvJ5/2FRg0Inq59OPVg7ZePH6uPVR6q68M+xjC5TV+zGkNzteG1vMWIiwnBfqpy+QkVzxMqvrg1qywHVfBNpZXQ2IH7MWBCJCuPTYqU5QCmLi+zvDCGGIZWt7H2vnMpeMpohCCA56k7yOZkc11Vymcy6VhnBxsKvvJvcPwFhobdp347IvsH/HhMRhlk+9z3des/I6ICwUPklZlPI3SrC95Xr+PHjHf9tGAaioqIwYsQI/P73v79e9boFCVQRl9MzkrDivULSn+CzqisorayR+tt0kJx0+tX7f7DoUln+URnYiZ0ReMraYAA4ceFz9GwXobyGpCxjOnn2+PdU5fOkr1RovEgKy8NPXkij/uqA9Qn1nelciiKvsln7qKg23bbHtw6zLTHiM3zUb2bnKPzq/m5kiivRAiarewANc1Kn3wyo2eNd9ah/SdWngHree9V/0bdTMf/1Q42ed3x9VOua9y/yeo6yZmR2jsKEPnF4g0i39HR9FChFcySWn558l5YcCECea5PRyoztGY29ReVIahOOma/uU5Y1tme0HU0si+jmsWH/WYxJjSbXgSzXM/V3Aw1RsgCwcmchWU+dnMq8jJaV4/VcAJYFne8L2ff4d5j/IdCQS1kVta9ai2N7NhwMZO186aE+ZNYTRhjttda9cu2K/e1339ORN/zalD3bFIiERfi20AWDQcc/dXV1OHfuHFavXo2YmJgbUcdb4BATEYYJac4cgOPTYm3/gNxJqeQJ9tHV+zF44XY8s/kTl5n4tb3FmEEswKGd2qBty+b2hkKRKeZkpWDW0A7K65g608Tm/FL7u8zKw5/2TVh+WOOXWT4V7De+2ADcljEqz16IYWBMj2gXOTHro4UT6T4SSV+pvh7VI5pU5lgfLVAQWgYATB0Yj2VT05CXPcIOMii8VIU5w5Id9eUJVgGQfn/sK7xvJdUX80d3sTmiVFYWWf/PHZZs0yEwCxClzIlKKg8+ryPztXl09X4Myd2OHccvuubVpD4NdWC8h15g5bOob2rsCi9V2fPwtb3FmPmqe95P6hPnIP5l48rP8SCABa8fwkSur8R68/NOHD8DwIIxDUqybflkbTAakt3zFjeqr9g39p2irU+v7Cwi25nVIxrfG5RoU0XMz+pC5sFl8oX1RXzrMNd48jBhzVdxnYvz9OnNRzDz1X2YkBbn2Ij4eT2hT5yd/5NZHB+5Jxk5itzDdaaJGa/uI9dBcVk1Jg9IcMkGikzXhMWtx9pC5WkVc8MCtNz4Vve7PdegwVn+KTnF/O2mrtiNwQu348V3G7gCqby2TI6M7RnrmEfMb40fF1FGyBSDzfkNhwLZXnTpi1rX2Cyql2fUOz1iW5KyGqDlnrgHsH1PBC9j+FsicV4GAFeu7Ql94pT+1nyfNaVr10ZHudbW1qKwsBDJycm47bbrElvRZHGzolwp6ETulVbW2BFzzMmahxi1SEUJMbCFaXLv8fQMAB39RkF0aJXlagwYsNPQ5J+pIEPJZX0RADBneDKWv1NgO+pmc3lBAeDFdwtIImAxckkWHZgzxskHJjrYzr4nGcvfLXCnexLKp5yPqfrK6mEAmJmZhOlDrCsHr74Qx6+69ivyJB0wgIfS22NV3inXuMvGeqrAu8bAR8vKwEdu81FoLCrtlV2F+Nsn5+UF1Jcxe1gHKyuBqeZMM2DRx6zdW+Lq+5XT+mJkV8sKoePwTXH9idF0qvHjx5qnNWG/UdyDVF9JaV/qPyRzHVBFL/PfnJ/lzlrA5h+Vp1OM0FbJC6pvZfk/xXL/8cl5PLlRnnaN9cGc4clY9rYzY8V9qdGYmdnBsSZlEe18+w1YWWK+qjNtDkTdvmTPybg5d3GRmaWVNRicu125dsakRmPrx+fsb7G+5OeWbM/g+exEGZsSfScpmw00RI/KIt4B93gymanqG3E9yPamnHryZK+Idh5UdK5KNskiXA1Y5P2nK2qk+9L1hh/9w7eFrrq6Gj/84Q8RHh6O7t27o7jY0nznzZuH3NzcxtX4FrTh5VPAW9M6RN1BTnDesdSLqd6EOygBgO3TR1kFZBAdWmV+RUET9gbJbyLi+9S3g7BSDfHXc89uPeZwsqWc/llkHA+ZrwVLScXKE6+5XninwCUkggBKyuSO0wxifVX1MGHlsZQ9I/aFOH4y/5CgCfypXpnj31ON9Wt7T7v+9uK7BVj4plqZA5zz1+RmIyMFlSlzvCVn/uguWM71Oz9vRZgAVhNEoyasKEBA3+Gb+Uax9dBQVsMbqvFbuOUoXtxR4ArWMQEy7RMfZci+KQv0CRjAjKHuqFKGoGkFj7yRf1Y5tnWmiVyiLmz+5Z+u9PRzYikL38g/S5YjYuV7hSgpryHL3Vfv3xgTEYbvpycid5LT2uJqJ4Clb7vTj71x6BzGL89zWG+qauvIiGq+/SasNc6UOcAtU1V9/vi6j1FSXkPKiKJL1XZQy5Ltn3qunTcPnXN8i58/TI6ofPpkMrZty+aYOiDe9T0TDekBZRHvVJWZzFT1jSj7/vHJebKs3DePuvxE/fpel1ZaCpmsf2V+lSasa3zVvnQz4du0lpOTg/z8fLzzzjsYPXq0/fd7770Xv/rVr5CdnX1dK3gLFniuH5lPgWgpWjA6RXr/z0ctyqwPFNj16dieMTalhwhVefyGJItQYn5YKuVV9m0q1ZBI/0HVjfK3kNUvaFqcYa3vqEJZVS2pSFE+ffPW7MeZiho8ck+yUgCJ1ACHTlfSD8I5jtRYU5sTGz8/Y8/nZFXNJ966oMo3zCPEcCYhF+k+ZFjJMe/vKSrTPlio6uEnmlJ8B6DpKjI7Ryl9dhZtOYq4VmHkPPL6nqquiyenoW9ipNJni1HfGJCvW1X6rjrTJLN8qPpFB8F6zYDqt8fW7kdV7VXbIuKVyUQ1x00TyF53yPbxlflLkmMjkTOq9cqeO37uc1KO8+vgWsHWev/ESFcfGBoytmssbQ1iMsWPz3DQlKcHFL+9r6gcB08XklHqgJtiR5U9iYH32ZUFhojPN7s9QI4RZfGW0Vh93fBtoduwYQOWLl2KjIwMGJwfQPfu3VFQ4C//3y3ogY9co/wfnpnYAwBclqJntx7DgqwUskw+XZPM706GpzcfweCF28krHi8FgRf0f/7gFPkMc8CnKDICAE5c/FxqkRhFJKOmnGwpUP4WFAxYm8rUFbsxr34zFL+XnZXiWly8RUYVrccrl16KET+OC0bTYy3i6c1HMCR3OzYdOIsZQ5O0x/5MZY3Uv0bcwF/Z6XZSphAwrCTkuW86T7zZ9fQnsvEakxqNbrER2H70PCYsz8NvN18b/6Xou6OTGN4AXCneqKCETQfPKi0tvPLihflZXVybBtVHLE0S5bNEgVWPWm/9iXRwKohR4KWVNch+nVbmZBtQwLDmG9VvlEWEWQFFXzidA4tpNlidxChu5o9JjQ217sNDA1i01XsuLt5+wnIN4Pw+f3RPB9Iqey14evMR3C+k+ANgd4ps7uSfqcCTG+h0fGL6LZ3IZ15Oqd4xYB18ZcocBWZN4/2XDTT0LZsDvHxX7QPs+Sc2HHaMEZMR8ZG00sbSFN5M+K7BxYsX0bZtW9ffq6qqHAreLVwfUJvEhv1nsW5Ous1NxywZ1KkhLiKMnLj8xvBA/wTk5YzA0ilpUg4kETLTugr8pvniuwVY9jZ9AOgZ1wqAW2DwC40Sek+N6463Drsj+VhbqcAF0TIhXp3IwF+/iCffZyb2wCOZyVg8NY18d1G9gpYtUbaBBuGzZNunykwc/MaZ2i6CfI4a/6BpKZdMcLJgjd/c311ap2e3HENm5yjsyhnhCIQR61FaWSMVyKwqAVh+UuvnDMYXV74iCWo/OlVOzoG5w5JxT+coDF64HSvek0ceyugMqDqtm5Pu8IHxoolh77G8kYClxFJrMHeLOl0WU750FHK2NnjERIRhtHCQ4QMZxByaMpiwrHprZg7CxrmDMWtoB5gAdnMULjpYPDnN0Zf7TpWT7f/xyI7YlTMCi4gD5YLRKdaVmOQbKsoIxt25dEoaGeRBwaU4Gg3/bhV+Ozk21LpXUR2R75v1EdyA7evqBVWTdHdgE7AtSlQAB9X3zMeNDwRgff3YiI7Sb4kKPs+tmjOmQRYzZcSrC6g2Pr35CBZtOYr5o7tgzcxByMsZgQ1zBmNESlup2xAV4MfmDHveRAM34PNTeiOzc5SSdutmw/eVa79+/bB582bMmzcPAGwlbuXKlUhPT7++tbsFpf8D80sB5ObvvJPurAyAe2OIiQjDfb2sBXd7SAA5rx9CENYimz0sGR+eKsfuQnWe3gDoa6Lf3N8dHdve6XASV1md8k9X2G1j1yleVAkhhoHIFqHStlLX0T3btcJnVVdcWS9U15heJ37DbNjkz5TTPhXsyvaRe5IBAw5na8ApfNbsKZF+a/7oLo6NUxbiP3tYByyVKM/se6/tOY15IzoBgNTJnPVLevJdeHxsV0zPSCTzSMqutacOSMC8kR3td1i0o9Snpv7v4pUaS2skG4cnxnbFmJ5WxL3qupFvvyiMda6TmM8Tm9PSKyKiDDaPeGVYppAzyGgSXny3AG8KlCQb9p/Fz0Z1kV4tjUxp68rBzFv1SitrsHLnyUYd2voKFj1Z3F2ntnfaEbYVNV/ZaQQDBvDZF1eUfa+ijLAPY5rXgYBlDWTvUlbW56f0Vr7Pr3tKRqyfMxh7i8pd+VpNyf9X4df3d8eTmw67oqZZzlsd8FQ3osL/1sfnSDk+ZUCCHaTDu0XERIRhysAELN5+gvzW4slpuK9XrONvTF6YMO3gDEoW8xjfOxYLslKkFDvsVmpn9nBphh+gQY7xcoXJMCqLURAWAwDLSkO5MjUVChPfFrpnnnkGjz/+OGbPno2rV6/i+eefx7e+9S288sor+O1vf3sj6vgvDZlJXJw8siu3tbtLtN7n8UD/BOzKGYE1MwdhwZgULH+ngFTmDMBhpaGuJkIMA/d2u9vhNO4ViCEGBcREhKH1HbSyxr7xzMQe6Ns+kvw+xRr/7NZjSGwTLn2Huh6wr1IVx2DesVl19fLY2v0WBUNmMnZlW329ZGqa21Il/xTZT2J9WbCAF3gfEIoCgIG/VuAd83nIrsrnjezocJD3YubnFYOYiDAUl1VhwvI8zFtzQDkXxvSMcVA/iKdw3fUkUhtQV2y8z51f5WdWZpJtYQfU7gCiFZRBdjhSZfYIAHj72AXXO7zV3i9pLFUGQ7/E1q6+48fXdlCv/y1oyjNKAPK+AJzuKTJ3iLnDk13vPbtFHUDgdSXO1r0MHxSWYWzPGK1rdZ5+h6r/vd3uRu5EdyCIH2VORTLMfIAddQKwdm+xNBAgJiIMOcSNA6XgA243xYikTAAAxKBJREFUouKyKlIW8/jrwVIADRa+X3BpvRiYD54qGxDPlSnKMNkaNIW9g7/lUc3Hrxu+FbqMjAwcOHAAV69eRWpqKv72t7+hbdu2eP/999G3b98bUcd/aci4nKjJQ53wRWZ26n0xVRD7LouAki2MmUM72MrIzuzheOSeZK26MiJgGajrFNnGtGxqmr0pyvpKFi3HFBhVncXUa2IbRbBN3mtD5AUiEyoy5VLGuUX1k1jfuEi3s72q3qyMpZLr4r1F5Z7RXFSfirx6qv4JAMitf57NTa/UTACdwcNr/FTr6YH+CVg3Jx2/GNsV6+cOdkRTiu+plDGA5mpjEcoMMgWUd60QIbvOFDN78GXKIl/juD6QtYe5KMjQM66VS56wQwLvl5bLzQedjBI6fSGLTBZdA4Z0bON6V6UAM6VExc/Gr3tqPJibhc4hYf2cwVgzcxB25YxwzTnGfZbZOcqe14uJgyAFUV4CcoNBtqCwUHNGlD+MH1DmisEgs4KK/SNCjJymFOQQw0B5tTtQjQdPki6COshR9egZ18ohV5pKTtdGEcglJydjxYoV17sutyABZRqmILtyG9szGqntWiJgGOjTPtLxvipJs9emOz0j0baEyOoKwMFszr6ny67PwBYaM7Uz4RbZIlTZVzuOX8Q8wowvKjCqOlNtrKj+yuUbJSoUXld2YmQU1cZnJvbAA/0TMCiptZ3EW9VPrByem0wE4+V64Z2TqDNNBGBd3/JtZMqlWP+nNx/BM28ecXBu8XxQfB+p5qwsmvDX47ujVXgo+raP1E78HQAwo56Pj/fj4+vlp24M4vdnDk1ycc7xfb5wYqrtqsAjxDDwq3HdXNGgVGTcA/0TkBJ9J/YWlaN/fZYWGWTjCzg3LerK2it6VJyLfB/vOH5R2k4+SpP12fSMJGWfy+TW9IxE17U+79sqjpuMRmPJ5DTcdUczRxmyKzN7HDmZ6FBK6icif8UpKi7UXGVRnpR8Etc7P+b88zJOzoMl5WRWjNnDOth+eazssT3dV58ymTOuV6xDJoruC5T8eSQz2fEetbZkBNh8/1AuNvz3eH/oZ7ccs+s+Pi0WTxJR12xcsrOcHKIUMjtH4bnJvRAwDLSLDCPdQvLPVJC3EzcbjSYW/ldCUyIW9sJre4sdi3N8WizW7z9DKmxeJMUyskZdIkXKb00kShWVC16gUGAkpSrCYf5Zv/VXKbhe5RqwLA/seX4sWLYDUSETyS75NvICUSSONQwgVzEGOm3niTWptvL1FxFiOMlWG0OuqZqroj8hBT6tke4hRReNnfullTV4ZWeRzVHG5jNFykyNv27ddcmKeegSJYsk5dTmTLVz/ugurvWt02esbpRSIas/VaYO6brO90SC59xJNKm2bP5RxOUAkCMZF1kfi89QbaMIn/n26JStUwe/8kcGGQG2bC1QYyTzh6YoawAnAbuXAkbNsYrqr1zjKZtXNwJ+9A9thS4QCHhGsRqGgatXr+rX9BuCb5JCBzQsTmqCBwAsnpqGvu0jUXipClNX7Ha9v2bmINvPSVRKREuIqg6UAKScbdfMHITENuFagkdWNrXA8gouke1bOsXtpAvIWeJ1y2XPr5uTjqraOpvHTnUa1xGIsr7kWeVFyOr4m/u7I7ntHWgRGqJk4ee/vTm/1OXMDbi59hoj5FRzlQKzrMj6z8+mroLXGHuVJ1PKVePvp+5+57aM1Z/qbn79e4Fvp0yeUO2gLLsqpUK3b3QUQ6rufB2o7zw/pTfpsC/rq9+9ddQViHQtSoBsvMUxpDLSXCsaI390ywG8Dy5eWVdYv8rmn2xN6NRPNfa65V4r/Ogf2leu69evl/72/vvvY/HixQgGr3/YbmJiIk6dOuX6+5w5c7Bs2TJ8+eWX+OlPf4q1a9fiypUrGDVqFJYvX467777bfra4uBizZ8/G22+/jTvuuAPTpk3DwoUL/2lTlrErJlnEzqOr92tH6+heT4mgKByCcAsg/qpDt2wVGabOVY7MSZc6OfJ+G6oE6fzzTCkUBVVj+1LmY6QispRF6P5y02GphYbqQ+ar8sybR9zKucYYeEE1V0UYRkNKOFn/6c4NFUora/DXg2elv+uUR81nr/H3U3c/c1tWtglaKfcbrceyYnitC9YOmaVNJQN0+8bPGqO+pwqKENeMwTnXixjcsY1LobsW8lkpcbjwnJjxRuYS4QeNkT+65QDA5P4JUqVbHCPVPPC7JnTqpyJUFwmumwK0gyLuv/9+1z8pKSn405/+hN/97nf4zne+g2PHjl33Cu7duxelpaX2P3//+98BAN/5zncAAP/+7/+Ov/71r/if//kfvPvuuzh79iwmTpxov19XV4exY8eitrYWeXl5WLVqFf70pz/hySefvO51vVmgghoAtaO2n2gd5rTvZ0NUsXwz6AZoiPAT+Ss6uIq+Yuybsqgo5hdEJUiXLR6RxZwiQPUjCHXby0Pm3Cs6jOuWySf/DjHoiGbAopyh4DWuXkEFrNJtWzZX9h8VcONHSXltbzEGL9yupIvRLU8WbCSrv59xpoIdZA7oeQWX7AwzYtmi87ssQIRqCx+p6LUuWDsOlpQjm3CI9wq08ds3fFo0L3mi85341sR8UxxAdOvrVT/2OwClzKG+IY6PF2G6rD6ygDS/RLoyMvW1e4sdqRT9ygnR/1GczwC05oDfgBjduft1olE+dGfPnsUvf/lLrFq1CqNGjcLChQvRo0ePG1E/F/7P//k/eOONN/Dpp5/i8uXLiIqKwurVq/Htb38bAHD06FF07doV77//PgYNGoQtW7bgvvvuw9mzZ22r3R/+8AcsWLAAFy9eRGhoqOsbV65cwZUrV+z/vnz5MuLj42/6lSt12pKddtmzf/7glIujisfSKWkwYZIBE7Jvev2uuq5i4K8GWBmHzlRKfbLE7+hcrbB38k5cspO2U+b9N/LPkiZ1ld/frpwR2HTwLBa+6c0Kr7rCkl09sb8BIMdxUp84/P67vaVl8OUXXar25Hjiy+TL23H8ojMwoD5pelVtHfJOXJJeKwHAh0VlMAwDZzwSWfPjzxycVdfzsr6k0kvJrjap/pJdCYnt0ymPCqiYnkG7Koj9zbs4LFD4XbFUgDKLpSgbJqTFYcP+s641Q11riWuNSmcmu/oC4PCvY+1oFX67lBvsF2O7Ymw93YwMovuHrG9Y//xxZyFerr8p8JIn/DfEOi6alIr41uGe7iliuSoXC1X9VPKw9mqQTLXG+p99Q8d9RGecKX9gBtValu0Xz2z+BC8Rh/01MwehuKzK5RuX2i6CHCNZPUsra/BhURkqa75Cq/BQbdnjta+UVtZg9e5TWLLdTQHlx0WhMbghV64AUFlZiWeeeQZLlixB7969sW3bNgwdOvSaKusHtbW1+POf/4yf/OQnMAwD+/btw1dffYV7773XfiYlJQUJCQm2Qvf+++8jNTXVcQU7atQozJ49G4cPH0ZaWprrOwsXLsRTTz31tbRJFzKhSoV/V9R8pZVCxgDsSCKZU7zKCVn2u06OUHY1IMvxyNqS2TnKoVTw31FdreiUCwB/3FmIlYSACcC63qOY34MAlmw7gbXCiZdy5Fddy1D9B8ChCIjlMaz/6AyGp7T1FFjsyqK0ssZzTDbsP4vO0XdKiY5NACt2WP3F/86jzjTxys4irHiPJqXl+5/aRHgHZzGq1wBsMlRKCabG+0fDOmjPaR3utXVz0h3+STrr0gTw0nuFWLmzUGsNzc/qYieDX7T1KFqF3+75jrihlFbWOBSToAms238GG4gra/5ayyuQiY3f81N6k9dTLE/w42O74q47Q+12MK48WfeK0dMUbAJiRd+wNohKWdAEcl4/hBbNbpOuGZmlvqLmK2RKrvO88vjuzB5O+lIuEKKTvWR30IQ0olkMzvByH6HW3ex7krH83QLX7QJbpyz6ml+TQdOZB1cnoGd6RhJJ9r3zxEW8wGXKCJqwAxGoslg9eYVV1m6xj73qK+4rqjzEjXFRuJHQtpk+++yz6NChA9544w2sWbMGeXl5X6syB1h5ZCsqKvCDH/wAAHDu3DmEhoaiVatWjufuvvtunDt3zn6GV+bY7+w3Cjk5OaisrLT/KSmRX798HZDx9sjCv3M1lDnxCk40H8u+qfN7TEQYZnqkXQoxLMJfWY5H1hZGEin7DnV9Jdvc+XJf2Vlkp44SHwsYwMJJqegVHym9Jli9p9hVvgliw5LUgeq/nNcPuRQBqXCC5Qu58E33ZiteAbBTqxfEuUN934T62jYASJU5/juMfFlG+Ny2ZXP3iwaw6eBZ8hpJpowtf7tAe07rXPue5rJ/+FmX1Pdkc2BRfeSx7jvUmFP8dKZp1V925UuVTSkXdaaJ8qpasn9YnuAX3y1wtEM1l2X9Q9VP1Td8G8jDBNRrRjaHeA45m/TX0MvjC8DR30zRpuAlu6k+ZLJqbM+GVG8q9xF2IBLrym4wxPrwPHMl5TXSFH268zImgibAf+Ftedozvix2Zc8fMh9f97H1d4UyJ7bJa//ir+xVylxTIRRm0LbQZWdnIywsDB07dsSqVauwatUq8rl169Zdt8qJePnll5GVlYXY2BsbWdKsWTM0a9bshn7DD/w4axpQM4az05wJSFNexUTQDOJ+fpedxICGhZB/utIzxyWVvocKVPBynBX7YIUirRGfqoYpp9Q1gQjKAmaCdh6WORr7TjcgQHS8Vp0uRVCBDjrgI08fzkj07CuehFU2tp9VXSE3j1xiQ8/sHCW1CpuwrKn39YpBWZWbcJTvL+aDI6NqAYCyqlqbo9CvEzX7fV9ROVrfUUXWh5oDdaaJf3xyHslt7/BsQ0Nf0fVXyQZpIBMROKGCrQgqn6JBtYUpWzptb0yGC96pnppDQbMhCwRlGZJ9l7dYsvp9WFSm5FP0W3fxeVn7eQVUJwAJcFufVHPKT0CPjABfdYOgsvzXmSa2HbmgJTp1ZI/OXsLSCzYlZQ7wodA99NBDnrQlNxKnTp3CP/7xD4fCGB0djdraWlRUVDisdOfPn0d0dLT9zJ49exxlnT9/3v6tKUK8UlJF7/AbkNeVGk8uWVopJ9cEgEOnK8n32e+yOvEpVRaMTnHx9wRgXVsdPfe51BeErytFcCsSmIomeVW0XYhhYHDHu/Dep5ek3xWjolTKKQ8T8iheETq5QhsLRnrpZak0YG3WTBmT8YixNsm49HiyXQCk1ZN/XkW+zMY2l/BNVEXWpiffhews93wDLGvq6j3FdpYD1fjwxKbz1ux3tYNFCauixNm6lFkM5q3dD9MEWZ8AQB5i2FrRaQPQkG6Lf84ApBF/skCmgAFf5K0MlCLIzzcZVNeYOm1vzLrineqpOWQYsNMHipYhdn1HyUvAfZUs20Nl/ro64OshI+xeP6eBykSnj6isK/0SW5PPsjnldSXNIIvAVyEASHMLhxgGou70NsAYQptc64Nwj5Htc01RmQN8XLn+6U9/wiuvvOL5z43CK6+8grZt22Ls2LH23/r27Yvbb78d27Zts/927NgxFBcXIz09HQCQnp6OQ4cO4cKFhtyFf//739GyZUt069bthtW3saAik1QRbSy10dIpaWQ6rYABMmWOqszSSjoPqZinUYx8FAWA7CRWUia/dgC803nNH+0k0xTN+9Q7rA/WzUnHTokyRwkxqjwviH0CuKOsWJmqBcg2QL4NS6ekeV4LqvJSMoQYBnInpbpSt1HXIQasMaFSETFme3ZFERNhpXniq2j4mINsbMVqM8VCFTn4yD3JmDowXtovrEyv1EQxEWG4r1esI10VUybE62FZlPgD/ROwRJI+jb+GFOuzcFKqOoLaRxtU6bZEyFJWzcjogEcyk+00R+vmpGP9/jOe1hAqgpbNNyoHJ2uT6hpTp+0660oEL9fG9Y51p2kzoUwfKJOXDOwq/Y38s4iPDCOVl/VzBpNp6eYOS1amSeTrAcjT7vF+n159xBRAypdRrAr7b92oa+pZOxetUC4/zrJ0dWzO3Nvtbk+l0DBh+06TIMr3066mgG8EEVswGMQrr7yCadOmObjjIiIi8PDDD+MnP/kJWrdujZYtW2LevHlIT0/HoEGDAADf+ta30K1bN3z/+9/Hs88+i3PnzuEXv/gF5s6d26SuVQG5H0Zm5yhlEEBMRBha30Fv3vz1oQgxJVBVbZ1SEegZ1wqA+9Q8S0I2LDvdwJBbEg0AX1y56ihLbLuOuVzWX3kFl8hv35cag/97X1fpQmUO2V5RrSacqYZ2HL9oRwNSvHQtmt1GRp8ykz4AVxuqaq+SqZfEvpCd1kV2ex0lvHWLZrai4sXzxVu5DANk9LT4rGpsgYZ53Cr8dlcUGl/2vBGdsHZPidIPSUwFJQNfNypKmM/pSPWHLH2aTn1k88JPG/xwssnmyvSMRADefIFTByTgtb0lyvRR7PsUr6EB4Klx3R0brm4qL6rdqv4TweQa+yY1XHknPpNaoHSueXn+z4l94lzZe5jCRa2HZe+4Iyt5NJo7tN5EZdT/fz6NGUVMTPWNiQaXEj/zzWttieMMuFOPiZbH3EmpyhsJnjtP1hbmDsG78TSWP/Rm4Buh0P3jH/9AcXExfvjDH7p++8///E8EAgFMmjTJQSzMEBISgjfeeAOzZ89Geno6WrRogWnTpuHXv/7119kELXgpKnw0mojGkirGRIS5okhVhMPUqfnl94owfUgSWf7DGUl2aD5/jSq7HhavMvh68v+tMu/zV9Zi9J9s41Ipc6zMRcR1ngjW55RDLa+gs2/JrpR5k75YLzviTKAlEPtC9Anjr9xl8LpKZ/XxEmqWlUtP8OmMLZvHXsLVyw+OHx8/dVO5KMj6Q8cnT1YflTIozjE+77Cs/jrtpOaK7iFt3siOmDeyI/YVlQOGVX/Z98VvMcvKExsP45ebDjui5WVzwatNOso0K0+8sqVk09q9xa6rZz95mxmCphWh/tT47mgdHkoedrzWg+gqIbPQyvqIkuEBE1hKpDHjcb1kg/isbG2J48znSg4ALsujaKCgMuGoXIYMyFkf/LTrZsIfM+BNwre+9S2YponOnTu7fmvevDmWLVuGsrIyVFVVYd26dS7fuPbt2+PNN99EdXU1Ll68iN/97ndNMktEYwhkGbyuUGXEirJIwznDksmrDZXSyYNdHa94rxCmaVnx+GtU8VqOKk9Wb1VbqStrvhzZlYTXYpWdwqcOSJCa43X6qrEm/V7xkZiYFuf6u/j+A/0TsG5OOn4xtivWzUn3ZDXXrY9fwlZd7Dh+0el3VX+lAsAxhipyYeaGsGbmIOSM0SPOFSG2r7HjxLtEUFflohsDg+yanyfHbgxxrKqdfL/xV+OqevH9sOP4RTy2dj8eXb0fgxdaka5e32KuImzIxWhD/prdz/hR9Vw0KRWPDk92uDFQV7ZUhH7QhG2NlbkOsHp6Xf0FATyx4TDmrdmPHccv+mpHABan4fo5g5XjJENpZQ3eyD9LBr8wK7xuXaj+a4xc8LW2DOHfBEyYaNuyubJM2bWvzI3nm4JGEQv/q+HrzOXqJxchBZEk1IsbSJoj0Gjw9Zk6IB7zRnaylUOvnIpez/CkqPmnK13BEQaA7DEpnonfKUJUKl8lO82KnFMqE7oYmKJqE+C+FgXoJN18Ll1REPox6VP1ofI4ynjSvNIBqeqjS5rrRTKq26YFGnPBq1wqZ6esbl7EpY25epGtMy/S6Q+LyhAwDBwpvewgx6Yc6MV16AUd3jBWD6+8qzJS5pwxKXgkM9k1Z7LrSYFV/cITzfLv+AFfz00Hz9pR0qryvNa6LiGxDrzGjJeVm/PPNZA1N2IdqCLe/eRmla0B3fmkKpe38Iry0Wvfkck6LzmvIl6/0aTBOrhhxMK3cONxrff1vGlY58pPmiOQ++/Ve0qwdm+JvUAXZDVssNRpSmaZ2ldUjoOnnezoC0anuK44TIAMehCvYa1nG96U+dzIyDJFgUFlR+AFk9eVVOGlKnsMZI7SJhp8afyY9MVNVUZ7IuZxFMc/+/VDpIJLfUMmAHVIc1/cUWBvnrrCXUabIaMq0VHOAHffeilsFDdcSvSd6BUf2eirF53rKh6iAgQ4rVi5ROCIn1yhOrIBkI+j2A8qDrdBSa1dc2bhlqOAAYzrFUtGG7KoUv6dZ7cew7jesZ7KDz8PWD3Fw5WqPNn1s0wuqLjfvEBRmzB4zQGZTPRDvM33x47jF7UUMGoN6M4nVT1l/Qt4uyPJvr9uTrpjj5C15WBJOfm7mN7M7yH168Ytha4Jws+moZpgOsEDovCSpVxiC4RnMjdgXf+IQkDmnyDSQARNkBGN7DdVvalNOSX6Tlk3ScsRy1IJTpmyTbHrBwK0T42OQGZgY0ulAMrsHOWpIPhRcFXClIds4+bL2nTgrGPz1G0rRZthACThKXNeVqWLk31HtfHIFOXxy/OQ69PiwH+z8FKV0gdLVUdqfVB/03XPACAlJefXhqgEqcZRxeG2t4gmWl605Sgu13xFknHLokp1lB9KSc8l/F/F9vKyVFzrABwWIr4vVNxv7NA7f3QXxLUKs320eDBqEz7VFQDPOSAqNKr0iV6BGyb8KYgi/PDQAXoZSfiDlNeBSPZ95mfsdTtRVVtHtos/IF+rBfLrwC2F7hsMrwmmaxXghdfOExex7G06qooxmfO0C9Qpl1ISTdBCieKrori4xKAHalN+fkpvRW/R7dfZPFWBKVRdKC40CroCjwdr687s4Z4WQx2+KVU2DtnG7UWaS7Xfy3okiy6cMiABa/c6s3Lwzss8dBRHr41HSlCsUTYFWWozlfXdDzkuq6sf/zJ2PShCXGM6ShDDjuMXpUpm/0Q6CCpogpQ1Zv3/UPOMShGmo6RTdQsYDbxjMlnK2klF96qiyUMMJz8jK6eq9ioZJMPLjYABzMigaTp4sPHSSXOoKwtUh12VEtMiNIQsc+eJi2RaOjIjifCueJBSyTuvmyav2wmvvbIxFsibgW9EUMQtuKGTasWPs2lMRBjCQwNYrgiRD4C2logBEYDTMX1xfWYKskzD8mXhU+owLi6/wQZsE5DW33DzzOlsnirLh+7mG4Dbj1dWrtf1COtz3rH8+Sm9XRxL4viT9TLgmY2DKpMSHCGGgfJqOiUUv3lSoAKCAgDmjeyodF4WIdZbdNK+lsAjWZ/IIAs40qUQ0QXP26hbJ7H7xLWhowSJZYowADyckYi2LZsjO8vNbyjlQTNgkzNTc1eUdV7BR7L+XJCVoryu42Wpat7ERNDBGzw/IwNbszIuPvb9le8Vur5nwM3Bd+Hyl8jWkBVUEICXPNJN5wXILVwvvONMvZdXcIm0DrODvQiT+6YqaMeWS4rAFBPyoAevvVI3GPBm45aF7hsKXRO3rk+el1MvuzagHLFlmyGzZpVWyhPDz8jogFZht7tS6qjq7ZU5Q8bRRnHyya6HvWgBVO+LYJxyO45f9KSFALyVRL7Pva5KWT9uzi/F05uPuMqakdFBSp0iG1dW5is7i2wnbdaecMlJfTJn7aAg81uKiXDyW8mcl6l6y6wLqpO+TJHx6hMKfq+hVH0xf3QX0m/OhHd0oledAPfakM1rpgTplAk4/Stzxjh9b2WZSdg3VHNXtKqq5i91Y7AgywrWkNXfyzVFjKz3ckPhERMRRnLx8QgCmJXRAS/vLHR8j5eJO45fxPhleZ7ZgVg/iDLVSx75mb9eadN4OVV/hnRl/Jif1QWL3nRb6nSpuwAnabdsz5G1pTF7jh958HXglkL3DYFuOjCKi021CFgkXTZxagcaiGjbRYahqrbOlx8Qi86qqq3DnOHJruuVAICxPaMxYXmDUDJhmcapwAUGSkA/XE+Amtk5Cr+6vxt+ufETl8CgOPlkm2dsq+YIGIaSl4nh4YwkrJSkuwoYsDnlMjtH4bnJvVzlin3VIjREyUHG09HIHPirauscY09tIIw4llkYVIEuPFh9p2ckYnpGoivakRKk80Z2VPYhQAtUkVOQ4qwS+wYA/nrwjC+Sbn4MqPKZBQuwrt/YWKn8impqr5J/P3Hhc08rnWyuiNfZqjXPwP9dl6/SSwnyKhNw+ovmvH4I6+cOxvo5g7G3qBz9EyPRKz7SQRTNf4Mvv39iJJlPVqaw8fOAcfRRPnF/PXgGhmEgPjLMl2sKH4lJuWyIbiji+mbj48WXyK8vRvwOwJHWz0uZmz+6iyNYi5epjM+SHw8eLUJDpP1O7S9U2rQAgOrar1x9xKyN7LDF2BwGJbV28WsG4A5OEKGyPAdNOm1hAMBnVVdwsKTcJS9FUDJS7NumgFsK3TcAMkvDhLQ4vP7RGfu58Wmx9olRx+/BK3E7e/eLK1dtkkYdPyCq3IABjOkRja2HzzmUhqraOnIjWPC/+Xj14YHSPhGtRC+9V2g71TOBwYSRl4LCC/v8MxXaTvY6ie9nZHRQjomsryakxWHD/rMOJVPsc6kDf/2pXfQFuh4WBq+5RflSTeoTpy3weIGqO++zekTjofREV2YOEbKTvvgdvu8DAGbUZ0KhypbNEZmfGuAm0BUha/cj9yQDBkjFW2d+sb/L5IYI3SCghRNTPQOrggDuX5bXkBeYq6P4DVWQEkCvZ8r6RGVoYeXztxEGrOwN/HqTyQvRIk75uvHzTLa++baLSecZ9yL7PmWFj28dTs5xXj57yTLVWma/icqcKtpXnJ9s3Ges2kdalsVbGcDi18wVFN0ggAnL85SymIqQN+HO2iPmPeet/V57JS8jR3W/27YuN6UAiVs8dBr4OnnoRMj4d9bNSSeZsGV/F7mOZLxRDAaADXMHo23L5p78P171FevHOwqXVtYgfeF2sg4bBU41P98C6DRXKuhwHel+G7D6MC9nBABoj6H4u+hULdZh8MLtnqd0kSPQiz/MT5tFfkGqPgED2JWtx3Hl9S3V/Abc/azqC6/viPNUNa+9eBivtT6NGUOqr2QBR7r8dTp8jBRL/7W0nwfFtei3jrI5un7OYM/1RvEkyvoTkM9H1TM8J5ysLS891AcPr9rnKvflaX0xsmu01lpV9ZGM41JnPzhYUi7NYiODThkquaQrdxjXHRVUJfuGznr2ywHpB370j1tBEU0cMj8GigpA9ffN+aUOZ1YvP62ZQzugV3ykklNOt778e9W1QYejcExEGEam0AmTP5R8Q7cNQQCllV8qy/AqT+ZkTzn2ipg51LLO+RlD/nexr0TERNCs9qr6x0SE2VFnsnbInH29+kfmf8b8aPzA77zfV1SunA8yq4vsO2xjL7xUZV8vqcaKb59uoIzuupSNoZfDNtVXQegHwDDwgSVeflXpyXehV3ykMvm76rs6a7qkTJ2NQFVH1RwVx1yn3CAsKzzvTM+u4lQygq8PVSa/pqi2FErGKzz0dpRW0tkgxLUq2ydkQQvVtUGt+VlVW0cqc3bgG1FvnTLYOhfHXjam7HaER0xEGFrfEaq9lln5Xuu5qQRI3LpybeKQ+bz0T6Qd2am/A+5wf5UzP/NtY75C1HPz1u5HVe1VLQ46vn7hoQFH7snX9hZj21E6/U0/RR7a0soafPbFFc+ABL7dXhkSZH3N6sxzPAFqp1sDVh8Ccl8U2VgxyPxGeP+V6RlJrqTVPChfIK+rYplflpffpoy6AJBHuMr8vmQ5d2V99tja/Zh9TzJJgaOy0sralH+mAg+u/MC+UqHK5r9RXfuVPa9lgTYg3tdZl6LfkuiLJeurpDbh5BwV/8Z8iUora1x9xF9PGmiISBe/Jb7vlW+YIf9MhX3A0FnTBpyUNXwWGwaveSrrk10nLuLBlQWuazSVf6Xo68Zfc8q+xfossU04Llz+UumnRvVHiGFYY0vMdb4NInhZJpPrLPiEClpg/UfN7erar+z/lu0Bs4clI6NjlGeeVYCWmfzY8+Mjm//T6/2qgQZfcZnPJP+eOJcPna50PyigqQRI3Lpy1cDNvHIF5OnAfvrfBxy+MJP6xOH33+3tGbH6fr05n3rOMICs7tHYcvicTcg4IS0O6z86Q0aOLiXSWIn1YuiT0AoHSiocm+TydwtIgd8noRXWzRlC1p9nr+c3Si8Fi0Wuso1JTPvj8q0xgIlpcVi//4znCY3asA0AQzu1wc4Tl1zCi43hnL/sw5uHzpFl6vq9AJA6V3dq2wKvPjxQ+zqQr5vXt2TPUmApoHg4fKWM+jHhnqHm0aJJVh1kkcwi2JqQgVoDc4cl44V36U3RC7J+Gp8Wi3UfnZHT98BKCXemoga5bx51zMHc+vJUvli8jGBQrQf+GcDt1wZY1173L8sj3zGJ/6bm64s7ChwKjqssA8jLHuGKgqSUX1mbDAC5k5zflclGQD9NV4hhYPawDo6Ua73jW+Gj4gqyXN2rdlbniX3csoWfP1R/sLmkI5PEtvDv6c4NE06ZAICca0BDX5RW1uDHa/Zjj3DDwl9LqsaHl+9ebdqZPRw7jl90jWcOJ98pn8kszp+bby/gnMuZnaPI69wud9+BY+e/IOt/veFH/7il0GngZit0gD/fpwuXv1SGsz84MAG/nZDqy9fnJ//WCf/xt+Pk7+JpVleoqSDzu5LlR2WRuDq+OwxTB8Zj3gh5jlpeCVTWFcCKaX1xpqLGFV1LPct8gKi2iPDj9/KPT8678uICDUrBA/0TpLkzGeYOT8bPR6V4fouP9APUvmuAezxl84QJYplfDPPtLCmvUdKXiHX24+/ptdkFACz6dip+/r900ENjfcpk31o/d7DS15K172BJuSeNBQ9KcWK+d2/kl5KZO7zA10cMbhjXKxYbD551vfP0+O54cuNh19rz0138/JLNnfdznPPvH5+cx5MbDzcqZRcD395nNn+ClxR9pqtEZWe58/Q2VsYBFm1SYptwzHh1ny+/Nr4+TDli1soz5dXk/H+0ns1A9pk1MwchsU24VLaIWWa88Jv7u+PJTYdd7WLBIbGtmuOxNQeUB/05w5LRNaaly68uxDDwq3HdSJkqoqn40N26cv2GQAynlvkyiBFTFNbsKcZ3+7XDnqIybV+fK1fl9pCg6Z0Gxy+Y3xUvgD8sKiMXexAWFxcVMavC6t0lWLunRBo1ZoK2ElDf1xWWzBeltLJGS3Dx/klLtn8q9V9JT74LX16lyT1N08kYr9pYXninAN8b1F7pK8MnTddltefHs7SyBk+/8Qn5zqItRzGud6zUL8aEFcU7Z5heknY+TZh4VSmbq17DyPy4VN9kYxITEUZmGdBFEPLUWfy3YiLC8NqHJb6UE9P+H2d5lFVOF6y/TZS5qCo2EcocALx99CK59vyA99NcvfsU+f7S7Sfw2wmW9SsmIgzJbe+4JmUOcPpOeSnAOt8yIc+a0BgZFwBQXl2Lp1cdaVRbWX3G9Y51WFFlUClzjJRaJlvW7C7Gku0ntOtmAFKFPGjqZewxAfzh3ZN4fkpvsk4XP7+iVRc/eZRvJG4pdN9QyPwGVu5UK3OA9Y6fKKSAAYzs2hZLtp+Qlq1Kg9MY8Iz0Xtd5BiD172C/y6rDlNEfDevgrkP9yzpt8XPyzT9Tgc+q9AQF88148d0CrN5d4q4j108VVV+5fmfglQyKL4qBbYwqf0L++iJoWuSxXtYH1g6v6y7mEM7yWVIwASxTZDThIfpcAQ0WZa/cv6p5fOozuQO0mE3hWtZEwJD7DTLkn6lA/ukKcn7cDMgiCGXN3370gnbZveMttw0RAQMOv0cKa/YU49ERHe1NVzUuuhZCNq9VhNR+QR2d2XcuXNYP8mJlLZWkcvRTxpJtJ1wp+Ciofp4zLNnue6rfF3soc/yNiSqdpF/UmSbyTnzm+nuIYXjuezx4f9CbhVtRrt9QMF4xPrpqxlBvSwmDHwVkQVaKxQ80KZVMqQI0bGKsXtc6sViEklcaLB5inwQAzMpMQl7OCOQQqYcY6kyTTHm2YEyKZ7qcxuDZLcekKbK6Rt/pSu8DgMyrCTj76YV35YKbd9p95J5kTB0YTz4njiM/v56Z2AMl5TWkcBvfO5b4q7sdOmSovPO6Cl6/y9KEMSW+pFxuZQsxDKyfMxhrZg7Co8Pd1sC/SqxNgDu6TuxLP5iR0cGOGpW9v+jNo9L5wcOAus+81mzAsHyF+PVAQbZWAwCmDkyw6xAAMGtokq9NOf90BR4dnuxoh1F/vaby1WP1EqOFxTmek5WCNTMH4aejOnvWhRHi8oEpuggxDEzqE6ctJ+dndUFMRJg0xRaPaentyTRaPJhyxOqyaJKVyUP22po93srcsC40WwHDkI7W741ZDyGGgdxJqdiVPcIznaRfBACs3Vvs+vv8rC72vqeDZ7cck0Zef124ZaH7BoNiPxcjHgMAHhrcHq++f8o+2eg4kzPMHZ5sO6o/0D8BLZrdRvou8ZuYLMJN99t8hJLOFa6Jhus8GRnqI/ck41RZFWnFMEAruD3jWiE9+S5pupwArMgt0YE+AGDKwASpEKwzTUSGhZJWgD9O7w/Ut4fVP6/gEim8DOj1E0XZMW9EJ6zdU+J6h0/tRPXlXw+6g10AYGTXu5ES29LFpM6TIXtdPfIbpKzNPKYMSMBre0tc5MvhoQFU1waVacL43L9inVg9GNeZCdNl5QgCmDogAav3ODcCMbqOwSsFGzUX+LJU76vWFGsfmwOy9fvE2K7olxhJ+mcZAGbWkyvHRIThZ6O6aKVho9q3encxDFgHrelDkgC4ZZYKQdNSDB4c1B77isphGECf9jS9kghV9gdRXuhY0Pl0aSJxtwxi1PXPRnVxpNCTycieca0AqK2KLNNGarsIrHr/lLIOjFNObPe4XrH47RtH8MahUsc7JkBG4770UB8UXapGv8RIVNXW4Z1jNGOB2Pde64HVc/awZGR0inLUkR1gr8dNUIhh4OGMRNL3kfU528+8XBGawrXrLYXuGw7Rt47KBsBYvP06aOcQkaBU3k9qExMZv9mGSzn7zhmejBfeOUmytOtcV1GC2iTUAZkSY33frZQx2hC+j6kNIOGucLLPHx3RkSSxDDGsVEu5kxryzgYALJyU6hBaDLI+mDM82U49I7uCl1F2iBuQmNqJf45/t19iazLKsW9iJO6LiMW4XrHSvMGydogKg+pZHvNGdsS8kR2l3/NKE8Zy//J9MEOoh6wuIYaBeSM7on2bcDJzA0XHEhNBp2BjgQib88+5cuOKbbq7ZTNynCnXgJwxKRjXK9YVwEK1haWnE/tj8oB4pCffhX6JrR3t0N1UAwB+LQQ9mABefq/I7mdZ/uUAAJNQIthY902Ecv7zV3Sq7A/iHAesvlJdu7L5w4NPDUZdOxsAZgxNcqzHmIgwPD62qyPFl4rSw+4vzodVzNyjkx6PHVYoufB/7+uKNz8udcvpYW45PbJrtP2M7Lv8QU38liwloRchvNe84fcUWdov9g3AfagQ95Re8ZGWFbP+e8y2yJfZFKhLbkW5aqApRLn6AWPDZkJc3GDEpMyjut/tCuH2TBkmKCKytCd8dK4YXs5HX7Lnqmu/wslLVRiQ2NoWOiJtC19fpiimtouw26ZKTcWXZSsx9ySTofjU+9RGzQI2ZLlfZbQzgEUNIculKCsjAOCeLlF45/hFm05BpDrQTUfD+p3lilTlJmUQKQeGdmqDZ7/d08WuTvHLie2gFCjqWQrUgUPEizsKHDQggHPe8X2gyq/K02/wY0iNvUj3smB0ij0/2e+y+UDVpbSyBn/cWYiX6zcdPjqVKV0wDKyttwiL89qLeoZfP0xWiJxqBoCZQ5MwPcM5VmK/jE+LdaXQklkFl05psHCVVtY4LFWsXpe+uGK3uzGUOqpcpey7Mm5KVwoyw5lKUCUX+DE2AAxIirSDW7zkingLMEPod9EPlVoHooxekOVO1+jVdkoeMuVRJi901reqr2R9yzjkRIqsF3cUYOGbDe4G1J5C3awsEPpMVgexrrIyqXpfL9yiLbnO+KYpdFRuSsY/xPPrUESYPGSh2Lq5YvnFAKhT3ABq7iiKtmVfUTnyTn5mb2TUiZrxXIkChdrA/+Oto1gmXK3JaBj8KlHUN3X7USxj54mLZD3nZ3WxlRcDbm4uGfzUQ0b14ZU/VBTQXgoUg1caIYrfjm8XFYAhzjsviBt7tkJZyuwcJaVwEel9dPpA1YYpAxOwenex47dZ3Aaqk6ZLlu/T7zjz/aI6xPHg32GQKpNCu0RaErbOWbvYt70Od17znm8LX7aoxFAKfN6JSzaHnQgvucLnqdaZX+I68GqbTttl6bfmZ3VR5ohVzW3Zd2XvUBxyTK7JUrGtnzuYVDZ5fjudevudHzfqqvWWQned8U1S6PzknQO8+cPWzBzkiNzRzf0pLoYZGUmknwIrX0ZiKsvnqksOCgDLpqZhbE+50z5rlywvqow76VryYvrJoapbT8rHRZb7UKVoq+qh4rFjV4c6uYR14cWbJ+Mr9FoH4ryWwW9O2een9Fb6lRkGsGEOveHofNsLfH/I+o61XTUHCy9VXfM469ZfVEa81sYb+WfJPubX+bXkMvUzT6+Fd1PFyeZ3fok8fNej7bL5oytnRPjtc68crbI5yurndUDxy1F5I7nmVLiVy/VfEH5yjKryCPLg/cgYdPOd8pGpQdPiaBKDmnifgz1FZWQdqHyurHxdGVpWVavM/QjI8wGquJOuJS+mVw5VPn+mTj2pwA6qLq/tLcaQ3O2YumI3huRuxyuEQ7osf21pZY0ymk+Va1U3V6gIr+jBoEnniVXNbT69jxf85pRlgRYymKbFo8f6/zUiuk63DRSCJuw8y1Tf8WtOtZa9xnnbkQue46zLSbloy1Ff+WxlNgj+z6oc1H5zGKvQWN5Nnu7E7/yihoVfBzo5l2V9w4OaAwHQckbMSUxBZ+8Qn6e6ls1xlhZNBKtf0LSu4FU5iGX19lvXpoJbCt0/AfhNet7q/Z50DkyYeG6WACYsz3NsOl6bBEAvBhP16bmMhnd4R9kBia3JOlD5XP0K0V9uOuzYQCkFQtYXLOqTyucXgHvzVjnGeo0Tz9XGK11e/Q8ADxFUBWJdKEV75XuFyjaIddlx/KKUlibEaMhPq9snL+4owGBJWwFvigNZ2bJ+Ytfyj67eL1WovBTYEMMgaWf4QAsVJQObuvyGQ0HWhoBhzUvZF+at2Y8X3y2QUs+IgSdiG3Toh5ZsP+H6vqgoMxJrL4hKuZeMYYE5PAzAEaRAlWHAykHttf78wC9dCfuOiu5EtY76JkYim6BgMowG7kOv/pPV+bG1++31wJSgBVkpjvmzoD6Xr4inNx9RyledeomQzR+jvq7z1hxw7CnUXPU6oPD15sFyyerWtanglkL3DYe4SbPNgucyE7mjHq6PSLWFttHwztxhyY6JLG46MRFhjkXNc4zpWHEM07oa2Zk93OGP0LZlcwzt1Mbx7KQ+cY7rViYoWGJpV9kAMju1sYWAUf8Pr8Bkv37IVlAGL9yOZzZ/goMl5S7hFUC9s3Gm5RO0aKub54vx1LFFFAAdzQVY/ijZHuM0f3QXfFhU5lK6xP4XufHG9IjGf31wykURM390F0ddKKtEEBblDLXpUwogyzixK2cEpg5IcM2DXvGR5Pyg+uTFdy2HZupEzVBaWYP41uFYNyfd5oQT+6zwUhVKK2scGwnVT1MHxlvXMaC/V1pZg99u/oRUYPn+mT+6C14geAt/NKwDCi9VIbNzFHZmD8fSKWmeCo3q1E+1YVZmEtbPGYzUdhHIlvCGmbBY8l/cUYDMzlF4bnIvcs1R5fNz5oH+CdiVMwKzhnZwfUecv7yiPHjhdrz4bgEuXP7SFzkvGz8ASkU0JiIMuZOc6y47K8WeB+wZUflgh0qq/uI3KKWE+pvXgUPE0+O74/kpvZHZOUqqND0zsQeOnvvcmRfagD3XB3VwK7Smaa1vau5Ta/DhjCRXGUHTypH8+PoGGbloy1HMH90Fa2YOws7s4XjknmSpUifKV1HBA+Cabw8TFD9Ag0Ipm+O8HGV7yvq5gz0PKNQ4MTlwsMSy3r64owATCMotmRxrSrjlQ6eBpuhDxyZ8WVUt6VPxm/u7o2PbOx1BBEu2ncCaPcWO5MMAbF80A1Ykm8rXjXcsNWAJ0lbht7ucgos+q8KaPTRzPe+/JEbwAcCgDpGYObSDIyRedMAe1iUK7x6/aEf1ZXRqg50nLjmcqHu2a6XNk4X69k8ZEI9usS3RKjzUjqhS+SIVl1Uhe90he/HLIs5k/n5Lp6ThrjuaKYNT2HMsIhBoiI5NahOOma/ukzrh8w7aFGO86CTPz5c38s/it5vdiuzSKWk4eLrCMWZTB8Rj3shOriTrlNN74SUrDZcs7yibH14O1LtOXLSdzpmY5ufx9IwkR7tkPjf2OBJjxPyZisuq7UjWfafKyXlF+e54+XoaAPJyGnyfqKhDPhL5jfxSu9/Z+FZduSpl2afqJMKxpg1rzMb1inXURea3tnRKGsqra33lRB2SfBfeP/kZgqabdJpvV2yr5tLIcaBhDVRU12J5Pe0QFaykwm/u747I8FAHI4Cf4Cc2ZjW1V1F4qRoV1bU2XQYFpvjy81WMHi0uq8aP1x4gA1JkwV98+VRwCptfoqzVAR9E5JW1h6oPuDnIxvWDk2U2Tycf8FF4qQqHzlQ6gi5m35OMkICBti2boVV4qHQetr4jFIfOVOLZLcek0ao1tVfx9tGL+PNut2Ve9A0Uf8uVrJ8bjVtBEdcZTU2hc4XTg4juhDPKUZbUXnTqV3FawXTnx/OTHgtwOu+qNjteaHpFOk4b1B7/tfuUy4H1pYf6NCohNQNTDMb2jCEdlNfNSSeVEt7JWxXE4Cc4hSmbgzu2wZmKGkcEYGMXsGyT9yu0VZBF88nqzRQcAGS/sSAZaj6LEDfeRVuOYsMBd4aHaent8apg4RTrxDbeCWlxWPfRGc8+Z+1WRXkCDdGZYkQmRXUii3ZdMa0vHl61z6NGbsd4pljLyIT5gx8VXRmAZaUWaWF0MXVgPAYnt0G8IuE8r5zLgq4oqDZnsXzAqVjlbnG3hwoE4KM9GVgZ4aEhvpRcWXmNBRX1qhtERmHW0A6YnpHY6AAQHXjJMqbcUWn/+Pkq8vJdL3kWALB4apqLOuVG45ZCd53RlBQ6mYJALQZ+c0xfuF37GwMTI7FbcJD1m2FCBiZodKNxeSoOv7gWZYcH28hFfq2DJRVYTVgheaX1v94vwhMbD5N1Ywq3VyTnjcLSKWnomxjp4lm63kKbRfPJFFsebM5KrWCwLBDUpkuBzSGeq+rrwtIpadK8prrPsQ1KJORuLH4xtivqTNPXgUClnF6vNeYFPwe8rwuqQwk0FUqd8hoDMepVtfa8yKHZM4unpClvPK5nflXVN7z2Ia+I3muug8LafSPgR/+4lSniG4Z9p8rJBfPdfu3w2oenHX8zAZtgWBcG4FLmAPUi0jkN21cB9adGncCGOtPU3rgpXK81HDSBDfvPYt2cdFTXBm3H2AWvH5I+X3SpGjuOXySVOQbmR/PZF1euWZg35v2j5y7bigQTUi2a3XbdhV9im3DpvBVhwuo7aSQjrKhI3SrWmSZyb4IyFzCgZbkOMQzlc0HTau/1OEwBcKVZ0ulH5ueX2TnKtda/Lp2K+TlV1HzV6APe9YRqvZlQ/KjA9WwTk0ExEWFYsu1TpTK3fs5gbNh/Fq/kFSnLU1Xw6fHdMbLr3dh04Kyn5fxaEIT3fsOn4KKi+Hn8cEgiXtlV5KvveV/ipuZTdyso4hsGWVJ3GazJrz9dGyNUZmZ08JxIS6akOXypWoSGeJZLhcgrn9dUXAMABibRUbUyMCoBZsZnKYdk9QgPDSBnHa3wAVY/v7KzCENyt1vRWpJydBBiGLi/t5pnj8IyLt0Zc2ie58PnUAcsx6+fORgeGiAjGRn8KDfMauAHBoD7ekZ7PqfC5P4JdvooGZilN+x29ephm9jNAnMs16FEupFo7AEvYAD39/K/PmQIMQxMGRB/3cq7EWAHqdLKGvIWgWFGRgccPfc5/qRQ5hjiW4fhvlR6XVz5KoiYiDCktotobJW1EGIYyOaCSGT4rOoKDpaUYwXhD87jjma3NWrPa6oUJrcUum8YWoXdTv69R1yEO5TfsBJX95NQgjiebWR9AgC+qL0K06OA+NbOk0xVbZ26XAMY1UN/U2UnzV+M7ap+Dhblw14J750KfIi7SiFdMDoFVbV1nhx/jAVehhkairIB4Ef3dCB9wwC5Ukgpy9f7usRAQ45flYImYsLyPOw4fhG5k1LJdwIAxmsosAED6Bbrz0UiAGDD3MH4v2O7+aaj4LF2b7F1RUlRTMCyaDD/SS//NxbFyTaxeuPfdYWsPBbV+8edhaSyb8AZ6Xoj4feAxxA0gY0H6fXhBwaAx0Z2xLo56Xigv3+F7uvUyRndkurgaQAY2zNam9OzujaImZkdyN+8KFG6Rt+BR4cnOyJc/cKAFen7SGayZxT5o6v3S4Ou+PJGdm3bqHXeVClMbil03zDIOJju7Xa3Fcpf/2OgPionJiIMmySbPYPKihGARWUim/RBwEo/5CERqmuddhUvjqqgCWz9+Jy60HoYsK4Le8VHYmzPGCmlCfs/LBq2MQiaQPa6Qygpl5NoLtp6FIdOV0r7LMQwMGNokqf/4PSMRCwY41YIeJgAlhNOwoDlyLwgK4XkU5JRD6jQ5e47pL/xdDFAfVTYpFQX1YTOJ/krjbx62gy+rkEAGz3mNAD85N864+Ozlz2fY0WHGAYWTrLmkV86ClkbxvWORc4YN33GkxsPY9OBs8iWXNvzMGEd5HZmD8eamYOQlzNCuy91MUCwWGf1iMaamYMsH9YtR7HivUKSsT93Uip2ZY+wNlfNChmAY3OXQbSij+oRfU1KNoUxkkNjAMCDAxNcyuribScwflkexhNZbVQIGMDEPnHSAwr1d92mTh2QQNItAfKbEObD63XwZGAKzNFzn5O/z3x1H17bW2zRxYx2y6wj577A8ncKbAqUyQP9K8QmgNwtR+3v3NcrFjOHJimfVyG3fq2r+BZlGJ8W2+SuW4FbCt03DhQHE9s4H+ifgF3ZI7Bm5iDsyh5hR/epfBpkm3sAFrfPrpwR+PnoFMwepk6CrgIz//uFrs5lwPJHA2heKN7fJWgC7316SVpPrXqZQEV1rVzJNYFntx7DQ4Pak3VdNycd0zOSlAofo3JYpOGPQl7Xwjp9L9py1MWntG5OOh65J9nBQUhZfUIMAy9P64snxnbFy9P64vj5L6R12HXiM6yc1hePjeiIp8d3R179/OPBfLB0wPvBPD62K9bPGex412tuBADU1ulfzvL8YAwP9E/Aujnp2mWIYOz7qXERWPFQXxe/40LN60MTlnIIAOnJd9lrfeW0vtp14S1pFPYUOi3Wfzt8HuGhAaW/4lPjuuOB/gmIiQhD6ztCtRWD3Emp+NmoFE8ri2hF/9vh85gzLFmp6AQA/HhkR++KAHh5Wl9sPew+NAYMYOGkVPRsF+HgrWPNEy3ZBryvxH+QniiNjl4xrS9yJ7n5BvNyRuD9nBF4bIS6PQ/0b2cr++vnWhyFjCtPdhMyb0RHZHaOUt40UFyjMjcSntNRdu3K5GJ4aABrdtPXwLZBAhZ7gQizvg6sfSo5qkIADT7M8a3D8dNvdfb1/ob9Z7UyzXzduBUU8Q3EA/0TkNk5ikwKHBMR5vhvlcn9h0MSMTOzA3Ycv+gisVw4MdXOi/ja3mIsJzjMZGDryxaAJrDj+EXHBi9L69IYBNHgAAxYC/WB/u2wZk+J9jUiC8tfsu0EVu+Rp2NiaBUWioUTU/H4uo9Jzqk608Sf3j/l+rsJYHP+OTw+tqvjfXa1xYfb5xU0zpJowNqQqNN3EE5rKV/1iX0aInkZySzjAswruKTsxzrTtCliAgZwe0jApdD5yfAhXmlU1db5um4zAdTV6b1gAnhi42GSr83LNYCH6ChvAHbQybUGvfAKLkNYqL74NqG+rhR/kqWf4vHLTYcReps1zuyqTfX89wclYM7wjg6r7X29wpB/uoLkvqRSLy17p0Dp4L9wYireOXZRXgkO6z86S9Z38WQr+lsnKhuw+m5WRge8vLNQyj9XVl0rLWvGq/uQOzEVO7OHkzL90hdXlN+vrrX810TqG0Y3Q43L4u0nsPTtE5iRIbdwPTXOyWXqJY/ErAzUs2xeUcXMGtoBd90Zitz6COxVH7jlJ+AM+GAHeJkcliEIy4fZy+1lfO9Y0p2FHdbu69W0rHS3LHTfUMREhNmndRVYAnYKd90Rig+LylxUBKbZYPHymzc1YMDlN8QsDDqptnh4WRXs5zgL4Gt7izF44XasrlfmtOqMBl+vtYrcmny9+iZG4oH+CbaVwc8pceXOkyitrLHf51nY+THVCRyRIbNzlLSP889UuMbVhHXqnD2sAwzDEniLth61U+LojJcq44NuGQDNbO83xZIJ4A/vnsQYiRO363lJ3XW/GzCA7DEpLh8hMTNIY0H57FzL/BBBWeib3R5Qtp3vK9lVG49v921HyqvpRNYCGWR7dgCWD21K9J3Youmq8cahUnc5hrW2daOygQb3CLaWh6dEuZ7ZdOCstI2m6bbAApbs/evBM1KCdvZtFvxAZXUBoMyQsFIRNPDkpsMoLqtypIpTjROflUE2FwIGyLRmshsFCgacNz68HM0Z4x0wwcrwUuYMANOHJErbzKdKayq4pdD9kyMmIgxTJRFZv3vruDTC8qNT5QDkVpWAAVdKsVmZSdiVPQKp7SLIEz8fFeSVK5L55ywgnMpdqP+YjvIppkJjflPMgdjLgsR8T5xWhlhXShsV+NyVKsXcyzpkAK50aUAD9YdMsD675Zg0OTnLvMDqyW/YfnxNqCgwXb+0+aO7uKx7jfFpqzNNfH9QIjbOHYwnxnbFxrmDsUjD94yvO5Uei8KMjA62s/aamYOweGqar0OQF+ZndXHNEV3roc6Y8enfmDXxiQ2HHbkyqWryfeUV4di2ZXPy7zERYUpfKC/wvo97GhHsxMNvVDZ/+GBreeZQd+BAEMBMIoUag7heWA5lmXwWv61KJs8UHipgLAjgvtQYsnzTdKcdlI2TAWdqLNlcmJHRwfZbE2Wwrj8fBdb3/BrMGZMinftjU2OkRNZAgytTVW2dtP9lB9ebiVtXrv8CmDeyk339yEO1dpg8o8zn7DTcKz4SPxvVhbwmEN+hLAwP9E9ASvSdLpJQVn7bls0xJNebENmExben8uMJAFgyNc1OI0TVW+faaAmXgotP1cRfg4eHBqTM94C+T6FXfUwAuz69RLLYs/IpwVpnmiivqiXHVbYpML+tlOg7cb+GQ7gsCoz1076icsxbu588jT+79RjG9XY7HbN3//HJeS0WftbPMRFhdk7gXvGR9vcNA2gnyVKQf6bCTk/nNba8hZdt7KWVNa7+FV0RWD8xfsP8MxVSjrV2rdwKv858vS81BjMzk5TzkVmYpmckuvrWBBAwgaVT08i+opK+y77zj0/O4/vpieRv0zOSsFLgDPMikRXXNAAM0Ijol8GAOypbNceYPyqfbxqg+0HVx+z38NCAnatamQUD1njw7ZZ9k41NTEQYxvaMwTNvHnH18czMJLz5can0ipS/6p+ekUQGyJgAKmq+UvYBs8LlFVyy8x2Lqcl0XBP4AysFXrkelNTatb8YACb0iXW1mV+LrE4HS8qVdaFcIW4mblno/gUgBlJ4GQTYlSJ7d0JanOP3CX3i0LZlczvhsmhh0kkOzdArPhK5xGmtV3ykL5+rx9bul0aWMp+ysT0blATKMuZlBQoxDLtf2AmaT0LNyvSKnGJWAC+w+qjGKwiLB1DW17Irw19uOozR3RuiBmXBMaJi1is+ErMkp3RZonOqXff1ikWupI9UHE87jl/ELzfppVRi1A2y74/tGYte8ZGkFTN3y1FXEnZ+bHmLHfUdcS7JlLlnJvZAr/hI27rw6/HdybZQiq/O/Hjz41J8UFjmet8gxmrH8YukohwE0LpFM9Kywo+zV32e3HhYekVFyYwFWXRidva7uKYBa35O6hMnecsJA25ZuOnAWVuueclM0R+VgfJJ5q14309PdARBhBgGxqfFYsLyPExdsRvjl6mV71yi3ToylxofE8DRc59L5ZW4/lVWukVbjtoJ7gG46jOhT5zdxiG527Hj+EWHDNa11PqhDBH3F9bmma/uw4S0OFd/sbXI6uRlBW9q9CW3Un9poCml/roW8Em+dXMnUqlTDFhCSkxULfsefwKjko9Tz7K/Ufkj5wxPxvK3C1ynd5bmiSVntt8R6qiqB1+XXScu2km/xUTPYr34dDMMVIoiPtG1DrxS1wQArJ9rWTOp/rOTXb8pzzZgoCGh92t7ix2BGqzNPA6WlJNWuv/4dioqa66if2Kky2ohw3+8dRTLhIAbqi9Ze2TzYdnbTmf5nPr26ECWeH7Z1DQ7MEicM3xCe681sK+o3JXai42b2E9UmiYDVjo0as7o5OgULbjs27wlQjXPxPGg1irfRzW1VzFj1T6yTrKx5ctgZQN0Pt9lgnWKwrYj51x14OUWC0KSpVTjgwpkMlM3N65szevIY76MJfVW0qraOk/ZJY4N/7tMdgHOQIEAgBlEHl1VKjE21/z2n6p+4rg9M7EHMjtHKWW4CEoWUxY5qr9Uubgp+Xi9cSv11y2Q4CNgqQjLz76oxcqdJ/HSe4VYubMQCyemIr51uEvQmHA7kVNpUPjv8QmSZRugKSwbMYKJX0ApMS1dm3CdaaJnXCusm5PuWLx8HalIML4e/MadnpyCBwe1dwlIlb+KaC3IJervxzzvZaUMwiLiFdsh9vfkAfFSxngTDdecqghqBtmpdf7rh5QKjqgUlVbW4AWCQ4/yF5P1RRDAkI5ReHBQe8c1alVtne375wVpmrH6P4t9yXKr6q6B1nfQ9aasO8yanvP6IQRhbaoLOZ9NHjo+o9Q1Ovs2u1IurazBG/l0xGfAAGnpEesj9tHEPnEkTYfsisq57qx6ySKrW7do5jmuI7tGI3eSe+3xc1u1ttiY7swebteHkkUxEc7k79SVoRiFz8D6URY9GhCUmC+uXLWVItkao8aGh0x2bc4vxdieMXh8bFdMz0i0FTt+L2DfiokIQ3ZWCkmHJa4J1n9UG6m5IJP5/LjtOH7RVvp086qWlNe4rNR1pulYB36gc6i4Gbil0P2Tgz858ic7ceMG4DgZsQW5bk66p5+OuDAPlpRjT1EZBiS2Rq/4SGkEFtsAVcqe6L/ENuq+7SNJH43Pqq7gsyr3FVWdaWLN7mIsfftEo+rB6F9iIsKU/iqi0pLZOQrPTe6FgGEoBYDMaijzS+I3DrEdVH+v2VOizIHIjyGvuLI28/WT1YkX5jmvH0KLZrehb3vLAvXHnYV4ud5HivUtdVgAgJ5xrci+qam9StY9PDRQf41qjSHb9ChrM9XHlL8Uczug+pLKrcpfE4vfkPkTUVc1jBdLtKBR0HFJ+LdubfG3Ty64rnr5qHCZv1YAwIqH+iIs9Db7+pnqP6qPNuw/i5XT+tpUNnyZzFeMlSNbd7rrTFYv2drjn1HJNn5NsHERLTpi26mimFxiBwxxHsraKeaOFuVzNrfGdBUL2dp9evMRPPPmEduqxkeAUgeWR+5JBoz6tWDS/o48tYeXjx8PSuYDlmuP114iorSyBn/cWUhG88pkNg9ZtHPrFs0AwDGPmwJuKXT/xKCENS8w+c1bdoKqrg1i4cRU5bUOvzB/+t8H8PpHZ+zfJvWJw6S+7aSnMwCeC5T594hCnz/JsQ350dX7bd8Ysb6Lt59w1d2rHhU1XzUILa7vqFOkWMcJaXFYv/+M50lSpUiKJ1bWLpXlg9rozfr/kSl1sk1e1o4JaXGOcRYR5MbCZbFQHBZEIa9SOBiYpYvaXJmFQTUWMRFhmNjH2Z6JfeKk1hMqQXiIYSD/TAUeXPmB6xtsDPk1ZMLNzUjNA5X1IKlNC89E5W99csHx37xlSewv8bnxabGY+eo+Wzlm9aYOO9T6Dg+9HblCu4OAnZKJt3bK1r/XOpPVS+dGQCxfBKNDUo2LigWAt9g9unq/UiZQ7eSv46l5yJerY6XyanPQtLLgLJmSpmVNeyQzGeN6xaLoUjV2nrjocp0ALN/mqtqr0jaq/GwpmV9w4QutugFqdwRmeVbd2LD3RajW+s1Gkw+KOHPmDL73ve/hrrvuQlhYGFJTU/Hhhx/av5umiSeffBIxMTEICwvDvffei08//dRRRllZGR588EG0bNkSrVq1wsMPP4wvvpCz3v8zQCasmcDU4Qhjm6uK4Z9fmAdLyl2b/OsfnUFN7VVp2arrS1lbeKFvs80bTiZ3QD/zQ3hoQFoPRnLJf5fikMvsHOWq4+sfnSHf5SFrG/8cz3enGgevfIoAYJjWdQHP16Ta5Kl25Lx+COv3y5U5HjJdgz8syBy5VQoHAx8xLNtcvcaitLLG1R7GBC9bF3xuVdsfSzJXAHeWDBPuOnjNAxHs6ksXBlCfh1SuiAHAE2O7Yt2cdFvxYPW1lTLTm6tPJTv4cvg+Y+DXv9c6o+p1sKRcuy8da0v80QQuXP5SWZas7evnDHbJJdU8FNspKgcqDjiduUK1mcpAIcuCI7OmxUSEIbFNOOk64beNPKj1kPP6IawgLG0Ua4CXO8LiyWmkzGZ1lb0fMOC51m8mmrRCV15ejiFDhuD222/Hli1b8Mknn+D3v/89IiMbTi7PPvssFi9ejD/84Q/YvXs3WrRogVGjRuHLL7+0n3nwwQdx+PBh/P3vf8cbb7yBHTt2YNasWTejSV8bVNcxzGdCjOKTba4qwc8vTBkHVNGlamnZqs1A1Rb+VEbRlZiwFi3FvSSiujZI1oNKBi5ylLGIKJ3rLyp6U0ehZd+S0bKIfk5sLKnFzSIWeb4mfgx12hEEfU3lh/iXjbFKyOvUhY8Y9kM+LF6RquYXNXfF/kttF6EcR9k39hWVe9ZBhUcyk5GTJefb4mHC6bcnW3tjesZ4coKpuPp0ZAcDs3by4K8oWfm660yW4ULVl2xticWagGdZMRFhjuhw3rqmkw5NJk+oOk5R5D/VmStieZ0kuZlZFhwdlgLAe516tbG0sgZ5BZcc+5HMX5b6DMUaoKoTYyuQcXEWXaqWvr94cprnWr+ZaNJXrosWLUJ8fDxeeeUV+29JSUn2/zdNE8899xx+8Ytf4P777wcAvPrqq7j77ruxYcMGTJ48GUeOHMHWrVuxd+9e9OvXDwCwZMkSjBkzBr/73e8QGxv79TbqGuAVnck/0yI0ROkfwnwmFoxOQWq7CBeXGlOoGC8SdTU2pmeMox4yDqh+9VGPVNmHzlSSIf7sd5nPlhf/FU8xInIv8WDlUNc7sii4nScuwoTp6SclgvKb8uNfJXuW93Ni9ZFx/Hn5jei2AxKfn5KyGldEp+t9QgFl1kHeJ8WrLjyvFXtn4cSGgAIVmC+Xqs07P7XGmeLMYvUGIF1vOhxt8+qvpKgUTV6UCGwMx/WOxbjesbbPUUlZDeat2U9aF0QKCn7Os3RvrF2qvhfrJvNX8xpDMTJdvKIUr7J0ymOZCKi+9DPvAwCS2oQrx4WPdjbgJMXWWUu6Y3zoTKU0/ykrR/RN9EJCa/d3me8o8/+VRc77lX2UzAQgjRanyjTq/0f0yZyekajllwg0WNi8/OrYs475YDTQefldq18XmjRtSbdu3TBq1CicPn0a7777LuLi4jBnzhzMnDkTAHDy5EkkJydj//796N27t/3ePffcg969e+P555/HH//4R/z0pz9FeXm5/fvVq1fRvHlz/M///A8mTJjg+u6VK1dw5UpD/rzLly8jPj7+ptKW6PiEUL5PLDenFyj/AVlZsnDt1/YWY4HgczC0Uxs8++2ejkXs5Yi9YEyKy28NgEvZYopoTEQY6bv3++/2tr8n85Nhz/GKMO/0/OK7BWQ0l6zP+DqOT4t1RPoZsLitqH7jfT1kz4nfCADI6NQGO09cks4LioYEgHIuvba3WKkUTeoThwFJrR31WMDRhKj6O7NTGywS5oP9TaJOL+4osOcCL9BZ/1L+SKWVNQ76BfasuBYMNNC1vLijAAvf1BtnWZ2pNcLTK+w4fpHsV8MA8rJHYMfxi56UMV79xSCuB9WcenFHgU1oLPqh8b6bfN/zdfOqi2o+ZPWIxvfT26NFaAipiLK+EeUHVZ5hALkKHzrAe96L5Yrjys91SjaIVByUH5ch6UcezJn/ZYFsmYJqLchA+lfDiqiW0Tupxlk1xjwca9uj/6TjDEvp95JnoqyckZmEu+5oJiXvFtvErwv2XbaGdOidrhf80JY0aYWueXMrVcxPfvITfOc738HevXvx4x//GH/4wx8wbdo05OXlYciQITh79ixiYhrSl3z3u9+FYRh47bXX8Mwzz2DVqlU4duyYo+y2bdviqaeewuzZs13f/dWvfoWnnnrK9febpdDp8J7JnmGRUuGhAazYUUjmLxTLvHD5S9+cPSoeK37j9OJVA2iHc8aTVHSpGvlnKhwKn+hYLesfKjsBsxBQgQ+AZSWcumK3Z58xC9OHRWW2lQKAFl+d7vjyUX2v7CzCivdOugSTrHx20paNrfiOjJuNf37TwbMO60Q2p9TJ+Nf8tJ8fF1Y+b4ny4rUSOc3+/sk5/HLjJ64+yxmTgtS4CO1xVtX5pYf6oPBSNfonRuLouc9dG03t1SCe2HjYVT7jvPPiEVN9m5+HFJfXkqlprohIkveOU6LYOMIA4iPDXOtfl5NRNh/4+o1IicK2oxelfcPDi+ORV6TY3BFlBMUFKOMrmz2sg50Wj8mc3C20YrBm5iAHJQzFnShmuOChwy0IAD/7Vmf0bd9am+ONQVYnvi9kVD066+2zqitS2cHeWzcn3Q6OEcH3HzUeDHOHJeN76e0914KMyUHEUi4LkGwMZGXfyCjXfxoeumAwiH79+uGZZ54BAKSlpeHjjz+2FbobhZycHPzkJz+x/5tZ6G4WdHjPZM8wnp3SyhpsVihz7HmZouDF2aPyWTAB6yRmAKlxbv8DHqr0U+zbLLoI8KaR4K/H8k8Xkj5xuVvknGJe1wnsO1S0FEXLQUVkeY0vJVxX7nSPkax8dqUpE1LUOxQtDP/8vqJyRyJtfowfyUyu90vS4+tTBaTw5TOuPF1eK77dquCKRVuOYv2cwdoUFqo6M5oO5hbGHmHz6lf3dyPLZ+3kI89leIWw2uhEOVPXmBQtg2lauZzH9qQjDXkZoMvJKJsPfP0oZY7VR0RVbZ3r74zvDYDDod0ELSOCAMYvz7OterJyqRzHiyTKnHitLfMFk3Hp6XALMvy/vx/3JWe86iSLFvcjY5mi47WW9hbRdCBi/1HjwbDsnQKU19Qq286vJxnfH+B00VGNgazspoImHRQRExODbt2cArBr164oLrbSx0RHRwMAzp8/73jm/Pnz9m/R0dG4cMEZun/16lWUlZXZz4ho1qwZWrZs6fjnZkIncMDrmcJLVd65LwGskCgKXj4COg7pi7YctX2NKIQY8vRTzD+EcmSlHKvF+pZW1pARUga8Ax+80oGFhwbIaCmqrVQ/qsZOKlwVgknGbyYTUtQ7qsCKEMNw+dAxLOJSZunMW9lzXgEpsndk0W6qQ0TQhCviVoToqC+b77wCSinOkWGhrmhF5rekA9k85jdC1Vpkc5O1Q0WqrBN5qzvGXvWSQdY3qu/KFBZqaE2zITKW9xfmQc1FWXliGjg//QPoBQLZdfApZ1R14n1KdftPFfm6cGKqUs4zP0cROv3HY83ukmuef6JPr2oMqIjapoQmrdANGTLEdVV6/PhxtG/fHoAVIBEdHY1t27bZv1++fBm7d+9Geno6ACA9PR0VFRXYt2+f/cz27dsRDAYxcODAr6EV1w5VFBmDKn8gQE9mAw2RiSGGgSGd2pCnIXHCq+qoktfUxhliGMjJSrGjBR+5J9n1O5/ncF49txkPikZCrK9MoZ0yIMFTIPCRmBTdBxURyCyaYh7c8WnupPN+owRlvm2qcVLxZcneeaB/AnbljMCsoR1cUXx920fS+S1NSJVhWbQc9ZxXXllqvpmw1oFOu6lyZePMfHYeXb3fkbdXzOnqBWYF4HOEBmD55eie9F/Z6U6MDjgj/bwOIbxizEiVeTAlSmUJZNAdY516iVD1jeq7KqoZWe7g8fXyZcLyPFeOT9lc5GVOAPXp5jKd6eZiIty5sCkZwKBSYAYQiq0O/Y8IahxYxpnX9hZrU/V47QnifsS/R+VElvWfKi+2CWvuN2b+BQDMykzCruwRrsAbGXTzcN8sNGkfur1792Lw4MF46qmn8N3vfhd79uzBzJkz8dJLL+HBBx8EYEXC5ubmYtWqVUhKSsITTzyB/Px8fPLJJ7YPXlZWFs6fP48//OEP+OqrrzB9+nT069cPq1ev1qpHU8nlqsqhKPOZiedy/1FO1zwjN+XTYADYQOScpOr2YVEZHlt7QGoiZ74TVbV1ruADqqyAYaBdZJjLP8SAO7cfc4aX+TTI8o9unDsYR899LnXwl7WV98v4sKgMP157gPRJ0fVtEdvMxgxw+30wBYNqS9uWzaVs/l5+M7IIQNE3kP2mk4eVvVtZ8xVahYcqWe3F8XM5NQt5JXV9D2W5GNnzstyQMr8vvt9YnSk/Jn6eBmClXxvcsY2dPUPH/0b0nZS15eVpVqSzTv3ZOrTSIZk4W/mlneuXOcZndo4ivxUwgF2cfx0LJCouq3bND1WbbF9YIsdwAMCvx3f3nC98WWI/8sE0fBBVTe1VV/YKEaIvZK/4SGlAgJcflcq3mclBMTerLCiJn098Xy2u940E3HOKWtN85hUqk8d6QSbqylhWNuWrKvMb5H00ZWPNZMj2Ixew/sBZ11gxv++9ReWOPNIqecbLbzGTEgCkL9zuqgcALCX8UG80/ml86Pr374/169cjJycHv/71r5GUlITnnnvOVuYAYP78+aiqqsKsWbNQUVGBjIwMbN261VbmAOAvf/kLHn30UYwcORKBQACTJk3C4sWLb0aTrgmyO3uVzwwDE0Iy+gVZ3sSZQzuQyhy/WHg/Gxl4S5vMHwdwO+POyEgi22aa1ulq+pAkRztkC62knCZ9rK4N4oH+Caio+comEV609Shahd8ujVqifLPEQ7UJYHN+qZZvC1WOCWdGDFWuSIbN+ecaEmsLvlLsdCpjo5dtWKro0+XvuJU5/nTslalE1q8MjEZHzCvJqHbKqtT+M0C95VrSX0+M7YoxPWOw4/hFW3kx0BDJJvP7En2v2LdkOSiZX+rqPSVYvadEGXHKQ5wXUwbES9vy8CrrBoLv35gIKx1aVe1VV/S1eHibOiAeQzq2sTdcmTxgFgpqbA04A2NkYONs50jloosNABP6xOHJjYe1IjapNf/a3mJHMM2o7nfbDv0BA5goRK1SvmEzVu1zrEGAu07n2uzlRyXzMXQFdHDtfKB/Alo0u80VWGACGNqxDXad+EyL4sUr0peSJfzcpvYKqx70LFQFc8j8Br1ya4ttGN4lCu/U30axNcYHZ+lENKt8a9meQ8Hg+pqn+2pKFrsmbaFrKmgqFjoZdCJHAXXkk8qCJSp0MgVEhqfHd0dqXIRWVCJlRZL5a6naI9ZXpFNheHlaX3SLjdCK1OOh0+cyvjavNvNg0Z6yUHs/32Lfo07xMisCNWY/GtbBZZmjrH2ydumOm1c5MmzkrGdedQDcVi8DQF5OgxXKTzvE/pVZCHlLl592qxR6nXpRlkS+TrzliVqLu3JGAFBHC+aMcV+dXUsbr/d8EaP/Zf3BEIDbJ5KPBL7W+vD14iMoKStRwADWzxlM8j16RTqrZKmqLgwq2hIdS7jf6H4d5gQALuqTa5W7fvpJhyLmWuFH/2jSPnS34A1mKVvA+TfIoGKzZgmQRfDM8oCl+GVLUu/IkBx1p9TPjK+PzF9sRkYHqe+LmPGCgZHUsjRAMshYwXkWf6pcKjhDRBBAVo8Yl/8ZE1Y65dSZprcyZ1jXkar+Zd8D4GJql7VfxpJP5WxkUXI67aJSu4lM8aq6eaGkrCGRvGwzYOPwYVEZmSGAH/uHM5JIf0E2R/i6M8sT619Zcm/e15CB7wcvx2wVZJlg0pPvUmaA4IMeYiLcGRAW1vuzeY1J7ptH8Ub+WeW6VLVR/JPOOme/6WZsKSmrgQkTbVs29/TrozIUmCaw7ch56bzl15uur6VM5jjqYlrrjMpC4ZWZRJbhRTa3ednx14NnlAEyqqA7mZ+uKlNDaWUN3sg/Kx1LE1YAVi7BEUq1U2ev4d/n/fK8/MKbStovoIlfud6CGhSdRVyrMCVTf/6ZCpJ6hOUKFC0VYqJ0HX4kHrwju6t8w1k+WQfDYgIf2zOa5CNiGS9kpMheFo1+iZFo27I5GWbPJ5amytWxlmw+VAoDzuthv+V4WebWz7F851a8V0j2rxfx66HTla5y+Ug03ZMqn7Ba1S5+TnjVjZoTXnhMkX0BgENCG5KN3DDcV8bU+mBrTXZdRCX3BtzRctRaptptApjSPwGr9xQreoBeFwA91jx4Gh7+2tJPBgQT9DWgbht120PNHemYc6DGbWf2cGzOL8XTm49o1MbCExsOu8iYZfVi15deFkE2d+OJLA4M+WcqMK5XrKud/LqixllmeTJBW0VF2SGCd2+QBRIYsOQTdcujk/heBVU2GFXfAGq5EmIYmJ6RiOkZiba7hAoqipivG7csdN9QUJQCz249hr6JkcoT57NbjumfJrgiVLQXBhqsBgbcEU3Sia4jyeuf6RUfiVxJu/hTktgvqk9M6hOHXvGR0kgqnXJ5C8akPnFk/UwAL79XBMA9bmI5fP95gVlNpAErpndy8dLKGiza6j7lzs/q4opEU2H2sGQHnYrYLr7OvJXSb0J6EUxx5MHKAUCOq8l9h4rWNQygXWQYsl93bmRs8wYaBKeqX6XrpX6T569/qLU8Z7j72jIAYO1etTLHoDvWPCgaHhNWfXgrpFdEu/h9P23k5Ymf8vgx56Me+XUpGzcAGNszxrNNPNjY6tYrPfkuzzXFnlfROz275RjZTn5dUeO8YEyKMmJUvEkAIFXm2HNMSdokBCswZI9Jcckn2doIGO7E9yoEQFvPDMBxY6UTkcvXgX9WxvfJQ0UR83XjloXuGwiZOZqdFJgzOXXilJ0mKJO5WX8tpLpmMQDMHJqEsT1j7KhVwB1tRZYPOOoie2ZfUTnu6xWm1S4TppYweHlaX4zs2sBDKHNEVpVrAlgyOQ133dHMbuvPRnXxXT+xHABSawGzbPRs18rhp/VG/lmy71TJxVXj2jOuld0vmZ2jsGZ3MRZvP+F6jvmypLaLcF3F8u0KDw24opp1CbNlw8kEtWrcVOO6r6gcre8IRTaRaq6kvIb87q/v747kqDtx4sLnrowPOv362IiOmDIwQevKu2t0S+RwdQsxDDyckYiXCB6639zfHVeuBpXrXUVdw8pX0fDw45LZOcqV0YWCat7XmSYyOkahZdjtjjayYJK1e4rx/LYTvsrj5R8vg342qguKLlUrxy09+S7MHJpE9i8PyrKjUy/Wd3z9ZPWprg1iQVYK6W6haicgv07sGdcK6cl3kdlKKFnmRcTLK5DU1Sf7phhtqkp8T10lA1YA01XTtHP+su8XXPjCNV5m/XdlQR2sj6imLZ7ckC1Cl/JIV1n8OnBLofuGQWUCF3m6xvaMcSWml50mZMmpq2u/chBu8r8b9f/Dog/5qFVxgquS0PP0B15Xnzrt0rkmDA+93fHfpZUWhYPq2pky47NE1qyMwktV6J8Yqbxe9ioHANlGA8CKh5yKqNd8oK5NeZJcalzEObLj+EUskShzK+vpMmTJ6cV28ZBd3f01/4wthFuEhrgUB5ECobTSzUzPLE15BZcQHxlGzl3+2k1Ukv/rgyKyzq3CQlFcVoUnifRdfL/J5nvn6Du1++GxtfuxcGIqdmWPcNAsrBT44UIMAz3bRdRTh/i7huMDBPgDgtecUB3w+D+r1iUbo9S4CNvRn9FX7Dh+EYu3ueecV3m8/OPnXUxEGDYdPEvm6+Xfm56R5HJd4PG9QQkY3iUKM1/dpy1/2G+iYhMTEYbw0ACZ6pClN6TqwRNoU1G2qjX92t5i6dwV16pq7TFqJdYmsp6CG4bqWpxdB1NyJADg7ojm6Ns+EuN6xbqCjqj1wH4X+4bfaygZzZNYe7kWfH9gAr7dr50npdfXiVtXrt8giOZ8HtRJISZCn9SSXaOIZJMPr9qHqSt2Y/wyJ+Eme0pMmSW7LqOuaUwAv3vrGIbkbneQeqquPhkezkgigw1k16ci8s9U2P//xR0FGJy7HfPWHHALJq7Csm8ClmLF2kHmKDSd/cBfAT2ckeiqHzV2JoAZq/bhxXctS5jOfBCveJgQYyS5O45fVJKSqq4OWX1khKw6ZNQLRqe4/r56dwmG5G7HT//7ACYQ+ToXTkpFn/aRKLxUZTvwq8ioxbpR127Pbj3m4L97coN70zMAxLcOk14X8e0Vib5Zf/HkxHw/qK78gYZAFlVb5605YPu8sd+8rCgPDGiHti2bOwI5vEjKAWvjpTB3eLKjbvNHd8GHRWXYd6rcdQ3Gj9H4ZXmYt2Y/Hl29H4MXbid9dfk+pvpBnLd8wMKL7xaQypwOaTqPP39QjJmv7pPOdVm9dhy/aMsHNv6v7S0m57fXtaMJN4E2D1kdACivOtl6AiyZSOW0XTgpFV9cuWqP25Dc7Th0upK8HhbdMGTX4rxMEtcqJa/4uaorTwF9GS32o+wa/r92F9tkzE0Ft2hLNNBUaEtkieIZnxZ1GvFLx6FKhmzAIhnenH+OzPcKOBMri9ClFPjVuG5kAvM1MwehuKzKocRMHRCPeSM7udqjSi7PvrMzezg2HTjrCnsXMWtoB5vfzQAwU+C/06UmEJN2M341yqneq0xVQnlqPqhIZhl9B3U9IZtzFChrjxf8lA9YysXEtDis33/G1W8qag6+brLk4WtmDkJim3Bpv0/qE4dJfduR9eUTe+vOc5FGYfXuU1iy3R1BTK0pLxqSqQPjMW9Ew7pQrQcvuhIDDTQuDLJxY33IiIP5K0N2Pd+zXSstuhARfB+L/cDPNyr4Ildi7RLL1J2PXnNdJK+lKERMuK9uDQOYmeF97atD5SL2jaxtUwckYO3eYru/RnWPxpaPzzmeYbREbVs2J/eU+Vld7OtQA8CcYckY0qmNdI6w/OJK4msPahaxrdciT8W6MegEAvqh1WkMbtGW/JNClpKFUuYAtY+SDKpkyCaA/NOVUkdR2XWuH6qPOtNEZHgo2U7RWRsAVu8pwZ8/OOWiD2DJ5VXf2VdULvX9YAgAtpAArD5YuaMQ+06V+6JKoPqGL1e0QnqVKcuLq5oPpZdrlP49Ip0J4C//JvP9ocpx1IOznvjN72mawOsfnSH7TUXNwagq0pPvIucGGx9Vv2/Yf1ba5/xVjS51BluHzHJAKXOyNeVFQ7J2T4njv1Xndr4PZSTlr+wq9Bw3/qorsU24y//LBJC75SjCQwNK+hQKYh8DDddnIqcilftYdiUolsmiH73gNdfZ+Fy4/CWWbv/U1VaKCgWw5vdL7xVqUdN4Uf+Ia1qWw5Upc4DVX6Iyx+pbXRuU7ik941ph9rAOtkXthXcLSMudeC0uo1+prg2SEbmq/eta5KlYN0B9O6Fbp68btxS6bxC8rhlEUMKJ9+WSvaMSJu8cuyh1rKbqwpu5qTysIpjgptop2wSWvV3guMoA9PJG5p2k2fD5ulD8bkE4r85k10+y61kAnnkyvcYhaNJ5cVVj8NvNav8hCjr9qFsWXxc2XuzK91oEkShQZX332Nr9ZB5Wvt9U/a6bn1dXSc0/XeHbjUKETAEJmk6eOypnKw/Wh7K6r9hRSI6bbO7J/KpMWJkIZNd0DAbU60ecR2zd6yaWB9yJ4AFrvs8cmiSvGBrq5DXXf/rfB3D/sjz8ZXeJ6zev6TFlQILjGlF8nv++rC9EUPOekm8UGM2OTJHfeeIilr5d4Ij8fXbrMc9oU1l5+WcqSIuyrN+9jBeU/6jXHNPlwLwV5XoLjYYsskkXpgn848h5REryJLJFT+USBIDtRy+QDuaisz5AU3QYgO1oGzCACVwaHn5Rie0ErJypoiMrj6AJ5Lx+CJmdo+wyUqLvxN6icpwuq8af3j/leH7t7hLS6XXu8GRkdIySOqHz33t83cd4fkpvsj5PjeuOjm3vtC0SzIpUWlmDFcSVCs9NxnzoXv/oDFk2EyLpyXcp54NKYdD1H2Jjsa+oHI+ukV/b8f5ashyKovUk5/VD2JUzArtyRjiuTPxAFKhsDovZQdh4pUTfifjW4a58nfy71PxnVuL1+51jsv6jMxie0tZeT5sOOiPQDQPI6h6NNwXLx7NbjyEuMoxs78S0WEwbnOjpcB0TEYY5w5Kx7B23dS88NOAYi9xJ8nXNW9cmD0jA6t1OpcCE01+WjZssklDF82XWW80mD0zAmt3F5DMzh3bA9IxE+1pZXD8UNUhm5yhpMMrkAQlYu6f+WhH1+Zrrs1mI83V6RhJW7CyU3lSo1s3BknLsKSpDq7DblWt3/ugu0mtgALirRajjSlfMw8183mS0REwGim2j5KpMvvHgld8FWVxUOIAf3dMBywmycWa5E+eIWCcxZd780VZmHAoPDGiHC5e/dMkXVSDIwZJy5BI0LtljUlxBFjxk3Ho8/Ppg3mjcUui+gaCidwBnBE9VbR3KqmpJgfFEvcO3ASunpJiYnClCz7x5FLsLyxzvmgBmZnRwXUPOfHWfy2eBolYx7f+xFt+ApNY2pYAouNk/qkhOEUEAS7adwDMTU5W5VtmzszI64OWdhXZexwVZKRjXOxaFl6oAuHOgiqgzTcCkI2t/uekwJhD+XvGtw8lxYXkyWf+JigMP5vgrU54YVKdM1hyvMgCrH/omAmNTo7H5kPtKhoX7q4iCZdaT375xBP/3vq6YnpGI1HYtceLCFy66Chl4h++8gkt2GzI7R0npJVR5NAF3DtmgqbYSM4utzP8IphXUICp0qrmzbv9ZrN9/1s75WlppJSg3DMN1EBvSqQ2p0PG+rsx/7fkpvREwDJyuqHFRQLC1tma3t5M3v86oOaNy2mfvi0ojQwAWmXhMRBiZ6zO+dbjUGpPYJhwPZyTh5Xolhc2B1buLXQTfgDzfqcp0/9S47ohvHW7LKcBaQ/P/Nx/vfXpJ2e7vD0rAnOEdERMRhlbht0v9sxZvP4El209g5tAkTM9IcihiLAKWbx/VF2Lf8flHmQ8byzK06M2jpKLP5g1Tfl/cUWDnTQWscVz+ToG0u8JDA7YcL62swW83f4KV9coyv+54JVNFVbR6dwlW11s8Wd2YvF6QleKY0/NHd8EfdxZipSRquWdcK8deKsrB3711TFILC4zUvSlFud4KitBAUwmKoMAm4aEzlS6fFabEqAaYWcxEgSYTNMwBVhb+vzN7uCNZsheYw7UsSbMsSENlqQOAucOS8cK7BUolkH0bqE/1ZABnKmpcnGSsHlSu24BhOQAvJU6o5Dfrn5flQq2qrUNSmxYovFTl6ZzNjy+VqQDwdgamxp9XypmA48eHalNeNp3jk+X/ZAJdlu+Rb4vOvGVlr587GB8UlrmSc8e3DvcVbKFytmaHjeKyamw7cgEbJCSqXhDnLPvmjuMXpZazgAEXH5l4EGsRGuIKMKCSzvNlMvoINu/7trc2Jb95c8W8rUzx/PHaA74trYA1l3I98sn+W7e78dYn513v/mBwe6x6/5QtK1Ki78DRc184nuHHWRYAAsjnHrXmAEhzRYsQc2MzZ35ZkBngXJe6ATdUHma+DRP7NBw0DQAPDWqPV3efckY3w6IlYjcvL75b4BlAJoIFycgUKyY7REu+Ki8s1R42Hox+SAzIESGud1Gxn30PbfVmkMnbGwE/+sctC903GF6WK7Y5eqXpEa9STMhTorCQegp1pokl2054piUSv79k2wmXY+7j6z5GRc1X0kXJ2jYgMRK7ifyHqlOjjXrpLFNW+OsLWa7b/u0jtZU5wOpr6npidGq0LYCZYPLi0+N/Eq9aGBg1iEwQi+PPyuD7xFPBqv9BZoF7ZWcRHh/b1fZPoiL4TMn/VyEI4LW9px3zjbXhpYf6aJZiQUa4zaxEflPeySCS+DKL+MHTFbblgUfQhOvwZMI6cPGKuOi60Ld9K+yR5AVlfTQ/q4vj8DIjQ8+fiseiLUcxrlesb0u6DIZpkRYD8vlEKXMA8Kc8p0uFqMwB3kTLXlUX11zO64e8HeLqwTLT8IiJCENyW/XVHr8uvfj/vPyNWRv462ATwKoPTmFMajTe+vj8/9/emcdlWaX//3ODgigCKiqooLhiiYpLipqTy6hkNpVjZmbmN20yssyalNZpxtSamZZJW7Tt228mrSm1vi02jlpKmgvuipYrpKIiAioICuf3x+N5uJdz7gUengWu9+vlTDz3cs591uuccy3ukwiGypOXwZ2bWxqQ6eG6cHcv+UlarowB24+fx+ju2jFrwdgk232O31PBgAWrDmDlQwOkhjCANpYzIFYFedNEmNPv8voTZBQRoJjpRqlhcB2HLZyQbOu9MuurR4Z2RMacIUhqEylNMwjAUokw9+jQjtJxb+mWbMM7yxkz1THBtXzKJi0G6xBajLl25szK0UxZXDFJ3zRdwW/f7s3VDChcodhJB5VZWyW1iXT0Dn2ZyAR8DgPcZSQq8nczjritzaaofPlVF1l7K2cMRx1anamdLas5VVjiMWGO98Wl0/ojY84QzU7oUoEwB8hlBQatH72VO05i+UMpWDqtP5Y/lGLZLnn/Ur/jXRvWlXq48YXVeGS3HVcAtg2DqoICo1NtO0wZ0E6qtmFHgFUAPDGyi+F3p5aUZla4i+5OdrerqpTdqr25WHxvL824yYXJzOPnHfUBdRgvSyFZcMP4vvHYmD4Uf/nd9Q5Sdb1r7YEzlnXCFw2AeOFg9ri/CnMACXQBixMLnN7tmuCWHq3wgA3rLdkY0CWmsakVoALg5qQYqXuAu/rFY8HYJOG7RcKXAuuwQvxZGWk3VTo5lVmKiUzj9fngeiB6C7FpNyZUaaLX50P0rVyh+Mf0oXjgxva2BmeZtZWTwT0IcB/F2EWtUC+yEFRbXPJyrO7AE6QAUyXlH6TAHSFDjawI+O6GyOmvmT6PU3hf5K4k1O58RGlwHSE7VVfOGLYeO4920Q2lu8lqgmBscxVw6XE6qRs77l6CFcW1OLHxIXrDILsW1k7QO9W2ersCl3sTWR3Z+S6+6NFjdxzn0SFkfYwBaNooVOpw1w4VDNiVUygci7iupx0UuIzkzBb/6nv1rmM4rt3LcHuJqogODzXNq74ueEQMNcGKgn4J4nz5i4sSESTQBSh2Jmm9BY7V7oiiyCeQNk3knrkHd4qGogBfCZTlgUoLqfF94/FF2gChYDVHZd4OiAU1ru+l+UbIB5qF6w7jyVFdsHRaf/yYPhQLxhrdLFj5q2MAblvk8gY+vm88lj+UgmdGd8Xyh1Kk5Zk2pAMWTkgW7hAq167z52S6gGoh6anRXfHjnKGud0ryyT3My3xiyYQo9YSkwDWprzlwxvI+/m16c39ZmWQcOuv2kzW+b7xbUOW3qt9pFnSbwxjQTDJwz05NFAZBt9plBIz+q8ws3fR5Trupg7Qt6etH7WriYYE7HwUuJ95/+E0HLBhrFDpEycz9OgsD5q/FV7tOShddgFzAClYUTBnUDivSBkjbrv5+M3cvCoC5t12PjDlDENWwvlAPVs/0mzpo2vD4vvHImDMECyckW7o5sULd19RqHVbPzElNlI4Tc64FvFdHNhiW2FzqLkrvL87uYouh0tBE1MeC4Fp4quFlZ3eXSwGEIf5ErqSs8jrto0xL1zRBgHuRr/ehxxG5GwHMhcvubSIt88ojBYmidfB2/dpdxvHWn1yUiCCjCBv4m1GE2hBC7Z0bMMYhVVvJ6Z/RwxXYRTplCuC2uOK7C2ae6jmp3WLw1j29Nb+pLaXUyqV//e6AwVhAzdherXFDQlO3xWkQXLs0zRqHmlppqb3cW3mWlwlYeuV0XrYANPmZnZqIP/ymg/u9+uO6sSplZJ4/fXp8EuHvUWNWRmbP8W8XWW4mxjTG62sOYa1AkOM8oHIjwQc0mSsCs+gb6vrWl/tDN3XAoE7NDW4aggDc1S8Oy7bkWCqwp13zUM8t1awin8gGP7U3e5GC9rCuzfHI0E5oEdFAUw6fbM3WuGAYeX1LfLsvV9PWB3dubqrYzutFrXC9K+c81mSdQYuIUAzr2hJ/++6g1C2G/vvU1tv6vHJjDB5Sjac5/Z+ZwmgBb9ydjAb1gwzuXgCxTi/XB31plTaUVRCA2TcnGsYiK8McmbW5rC4VuCK7dG8TJfRrZtYG3OV3LU8FJVc07jrUfZ1HPYACxDUJM4SWUuAS/kQGV++sP+z+nespt44Kw4xlOwyCBo/q8n7GUbclr6zsAHmd6L9H1JdE7+TfufHIObfLGbNFqTqCBO/HXWMj0LRhCHpdi9krs4qXGYCkDemAxJjGbmtt/djP32PmskpmOMINrXi71vdnfb/k+bTyElAdyCiiFiMKa8ODip8puqyZvBgqV6HqgWT2qEQEBymY+3WW5t1cf4W7LdG/a/GGo3g346i708VGusLJmG2r/2ffaY15/ydbszWGDvzZU4UlQmMBNcu3n8ATI7sgY84Qt2CyeMNRKACGJjbHmgNGVwkMLj25W3pU7jCKOp36O0XoldMZXIrpGyW+uE4VluDQGa1StsjyVpQeA/DSqgOIaljfMDiblREDXIKUAoPlIR9wnhrdVSOYrf/5rDiuoQq1Gwm9wQXPl7pNTh1kPBLi8J2RxJjGBj29Rd8fRkTD+kjp0EzoykBvNCAShN/64TAWfX9Y6yJG8HH/M6AdPth4TJhH9SpcduS6Juss1h04a5hA1fnmix290cnrE3qa6potvrcXwkLqufuNvnwvlZaburTh8MlWLXgY2r6iuvEapwpLsEoSLWBXTqE0vBL/Rs0zDEJd2Aq43EYsfyhFM87IDHN4WhlzhuDr3acMY5es/b5xLbTXqcISoZGR3V1btRGKvkwBuWGV+l36cU8/Nitw7eL+4TcdsPFwnvDoU++rUb/rmP75HjQKree2WjYIczC62jDzSMDdEZl9p6wM9X7o1O5WRIK+3rBL5HwduGbwpmoTK9IGGNqQvr5Eedt6zBi5iEfE4Azu3Byv3dUDQYqCXgK/rWZumnwBHbkGECJrHHVQcVHYLpHy88urDiJBsm3Mt+1lIcD0R1KyKAnq9LnOgUzBPH35HltKt1w4A4zhuETCHMfslMCuUrJZfmIjtSF2PtmajQHz12KJzkz/re/N3aio0Zezk3y+9O0B93MiL/I8v4A4WLeaIMW1cyNbeYrapJVyvWwwBVyTHs+7ulyt2hlgNBR4avleYaguBcAHG49Jv/vJ1MqjUbN09XXE4fmWhSCDZJIBrumxfZTprq93fjgsDGVltx0xuPq7yNhD5JCWC/+y3S5ZeCX+PlkeRHC/k6IxS2+Yw9MCgNHdY23r43H9LJGqiBPUbUtfpk4M1NTox2b1e2VhuvSOt0WCMtcRFAlEaoHlVKHLRZNMmNOHW7P7nern1aHgXtLNQ/MF7ZjPFzLn64DRKj/nfInhG/T1Jcqb1RzIx84ZS3dixtIdBt+KZn3IV5BAF0BYhTeRDQKiAVNmBcg7u1UIJJ6mlQK2nd2OCgbbSreKYl+RGHBNQr3aNpFet/MuBcDdN8RJ86PGTPAShSBSIP9udTk7+WaZ5aF+wLF659394vDjnKGmK06Za4mpg9pLdViCFQV92zURCjUMLjcGeuwo+uvhobpEE7lZUXZvHWU7XbM4jrKwRr3bNTENL6WesETCmyyUlZM8mo0lsr4/oV+c9Bkn7ZNTXFYhLSORsZLa5Ygd4UztqBuo1ClbOq0//nF3srPM6qhq31SjQDw2i77RSZguQL6w0o/HVsf+VQmFBRj1t20bf1zTNbRrjOTEYEMf5issRHxAWVxWYUtYq0qs9JqGBLoAwiwgNiCO1SdTfhZZAXJLKvW7RA1EnaaZ4Kf34t8oJFg4ifOVtF65WI+iuIQzJ1abc242xmtUY/UuBS7l9BnDOgkVnfXCotUgOUcX23DB2CS3wYNZ3cqE9ftS2grTkVkeljOGr3efMnXboABIT03EvNu7W+qEyNrklEHt3JNn+s3GeI494prgLomQLNoxkCnd899kVswNQ4IQ17Sh26XHP+5ONp0o9ErPVu1DpiSt9sIvimVp132LSHgTtaP01ESNkYlVHs3GEpHAlJ6aiBlDO0mfceomQ5aWmbGS+jvUwtmKtAHCvjHlWjQVNXz31MoYCqhsT1axVO2MISIm3BBv6xsXTkjG6xN6CncmzRaE+oWVXkiTjSlq9ydqbBniweWnTb8QtNs+uBAuu1+2QNK3V1F9rXhogMZlkFkfyDxuPEGwEzPa10YTZBRhA38yirCrpGmmqM2f0SvtK6g0olC/S6RIr9ft0sfi43p9ej2Y25NbY/n2E5VpKpWe4fV5N1OYVSt0i9ArLZvx+Kc7NQrmXC9F/a2nCks0isgyfQkzT+5je7XG3+/sKTTMEJWjVTnz63qlanWeZXnh+Qe0Rh1THTjNFBna2G2T/LeU+Ws19ynQGrGoEX2/Ws9Ob0gxqFM0Mg7laerLzCBBlnd1usq1TDJBX1CXh15XiPcHWX0HwWXhqdex1CuW6+tXVKazP9uN9aoQVLzd2SlPfd9XR5IwG0tE3yMyZOF1LBpnRMZKorRESuh2xkU9+n6vhivHy2Kp6vNiMFBTtZEnR3UxGIUArigbUWH1Lfu8fvzUx77mET8eWbbD0Ha4EYUsXqlZuYnKWVRm+jFfNnaIQjGqi0QdVYbfr5+f7uhl/H7Z3GGnPejb7OzURGlINn10Cavy8xRO5A8S6GzgTwIdIB5o7Tyj79S7cs4bFOJFjVb2PP+dhx/ig596ctFPnty6KCe/xL3DpbeS1L/fLPC8OsqE1cAiSkMWXuiNu5PdedMPRNNUQo9scpEFdxeVrZ1y5te2HcsXKujaERL1iAZ8ALYstsyMc8zqU/gelaXl7NTKeJOi59TfKcorbxOiaCX8e7/cddJgVahvM/r869MVCR9m4fJk9a7vy2aCg1mAc/X7RH2O17OovMwme/2CanDn5tI2KHqfKFyUmdBup3zMrCLtjotmix3eJvTtULRQFvUBHiZOXUaiclDXiyjfsrpcfG8vqZWxaMFj1Q9FbUDkiUC0GFJbhVr1eX0fGaxacMkWFKL0XrjtereVrFkd78o5j63HzhvKSY/6W0WCJmBu8GDWhzwBWbnWcswGNRl6C0XZBGQWAsnOgM+V7QG5jkFxWYXGcsrMUkhmlcrLgQtzCiotxETI0pDpgHEnnXpdCgbgvQ3HMGVggvSd4/vGo1FoPYObBFnZqpF9r5U1ley58X3jUVByRRh7l+eHGx7YtdiSGedwocWJ5Zcs6LjsOf6dsjS+3HlSGnpObyUoazOyd4ssfHl5mEWTMKt3mSWnfoJQ169Z+cr6nPq79d8kEzT1dawPN2ZWPxxRlBKGynBwVpiFoNNbRToZF2WqEc+O7oqrjAnbofrbZH1AH06NPysqB94usvMv2R6byhnD1I8yDS6fAG1f4rtUXCAyKw99nemFT17OIutsbmRh1edFusXrf8mDAnkoLdnY/OzKfZb162QsUxuGyPqw3tpXjdkc5W1Ihy7A8IRljZnivl0dADv5sKNjUNXvEQlaautOu3mVWTFySyfZoCqywkv/fI87/bgm4g6ud/5ph+rUOR+wRKjrwkkaZsrAVcmrzApO9pwojfTP9+D//XTMNN6k3kqQwWgBWpX8bzuW70gvzyotABqraTvP8PzZsY7Ut1URsnBITtugnXBwMkR9XLYAdVpvsrGpT7smttqhrA/oPQrwZ2XpNQwJkuZbpkemt/JU501vwV6VcVXUh2TGB1bfwJEJ0HyBLMJM787p+OBkLNOjtpb2d0igCzA8YVkja8R6yyQZpwpL8NXuk5b5kCk8W1lO2fkekdIqDwSvxywNmRVjTr58gpRZ4anTl71X7ePILtWpc7t17SQN0SStKJXWaVXJq5PnzFbusrE5SIHQSlCfRlXyr5iYnIrafHXSsnrGrnWkrK9w7Cix26nX2Eh5ODhunCPDzmTLhWWRiw6z/IkMP54c1QVf7z5l6z1OPArIrFbn3dFN6trGrjWvkz6iNoiSIbMuFRmu2fkGjpXXBFG+9N8ves7Jt3PB32mkDr21tD9DR64BBm+Aer0K/Q6AmT6D6B0ih5MiRJ7H1e/Q50N/DGAnL1a7hPy4WMS7GUcwunsMLpWVu7/dKg2Rw9FHlu3ApbKrGN83HrNTEw1GB73bNhF6SH834wimDGrn6LusdE+sdhHNsFvXsvts7ygy+XsAV6gd9XG8nXzKykuWhoy7+8VhfJ+4a3pN5mmY5UNWT7K2sEilhwkY67kqbd/OM/o+B8DgExGobKuiNscnU7XCuH6HzO64M2VQAt4VCFxzv87CvG+ypMdhom9VAPexL++LZ4ouY7HAZxl3gSGDqyPwXTWz6Cb69+jLJ1hRMOL6loboGnwHa+PhPAzu3NxwnH6q0OjwWG/pqndUXZ0+IitzXm8lZVeFZfDQtZBsovHc6ht4ec0elSgtY1m+eHr/3X8az36xz/CcaHzisVn1UTZ2nyjAxHd/MhzDqutRj8xa2l+hHboAw86ul96Z7Ds/HNasSkTvmD82yVKY029l62GAwfkiT092hCTKy5OjuuBo3iV3ftWrKrPjYsA1qNz25kaDI11ZmfFr+o7Aj6WeWrHH4Mmd69NM6Gd0u1HBYLoiF+kh6h3/6sk5L15R/yr5XY3duhathisA3P7mRkP7Ea3iGSq/e/aoREM+1A6D7eZTtrMVGxlmK9g7d7fRo00Ubn9zI2Ys3elSfL72nCgNWT64PpKonmIjw7BgbFKlCxUFeGlsEkZ3b6XRexM5eJ5/h/Y5qx1yu+WkPno7mnfJtK3KULsGkcVCNht3eBmZ7bSYHf+KvpW7+eHuJwBXrGURVjsrev0pGbL3qMtn+UMp+G6fMbrGyG4tcbtqPFr/81nNWGinPnld6uMTi+7lYyUA0zJXH0Gq623q/2YKy2Bgx+aG/Dj5BgBoLVFDUedL1BZiI8PQoUW48Bn9icc76w8bQv25LY11x+Hpn+/Brpzz7nrUu/1RFHOn6v4IWbnawN+sXAFzq1MrVxUiM287jXbj4TzcvWSz6T1qiz67lo7qvOgV429Prox9GqS4wkqJVuN28mNm9fTV7pPCWI+y963/+awt03Yrq1WZRaL63v/bdQIzlu405OXuG+Ix75rrESvs1rVZ7FMzazd1vmX5XThBrljsJJ9mu8ScR4Z2xIR+rnZuZcVslQ/RO0T15KRPquMm83akwOjOQ4bTchJZ79mxurabrp22fKqwRBi2C3DFCpYZSVRprIPWBYYIO+OZnfeYvUu/c6sowMY5xvc5GYvNLNpFVsmyMl86rT/aRTc0jSsM2G8nVhbTZoZDakRtwU77ElkScyvcS2Xl4vpRXG6zZBa8duq+piEr1zqAzLLGTO+Er8wGd27uvlftlsFK+OK6U2adkhsMXCoztzjTpxcbGYYzRZc1cQUrGDQ+jypYpfdz2SCu11DjuhN6a7lpNyZgyqBKyyruaNTqGE9tEKG/VbTDYmYBZabroX6mT7umwueXbsnG+L5tLHdWrfIBVNZH/qUy6Y4Fbz8Zc4YYjpvU311QfEX4vImqmSYPojbIrzUKCbYU5hQAE/rJYw2rrZjN0ufXRe/g7YDHCAac9ckKAM+s2It1B8+42xGD1mpThLocmElPFBkUKKhULzDbAVW/Y9uxfCiK4nanIftGM0es6p2c0d1j8eLXWYacL9ngUpUQtWWnYx0fb6wmYquje9F71OVvpdYhGisZc0VCGd1d7kVAloZZecgMAZY/lIKQeoohL/xI1KwMK1ilbqFVe9T3GfXvgHWIQTVqVQD1e+bfkaRxccTbL2+nImMOboUrq2vGzC141X3cyQaFryCBrpYh0h9QU86YxnebaBeMr+z0jTc20qXgbLVD9vDSHYag0eqJSuTjCICtFVwFgAcGtcd7GUcNjoxFOiYAkHHorCaOKgOweMNRvJtxVOOSwEyXghMECA0iALFpu9ngvOfXQsM79JanvA4eEJQ7g+t4ecEdcpN8/YQsQr+TYya080l6fN94JMY0Nux4frI1G88JdF24z0FZeZi5GbCzI8fzHATtMYldPTWz9HmEE33yM1R6lmbIFkJrDpwx3Gvm4kRUDjKXDDIr1TfuSkaz8FBLf3bvrD9scHXzgG4RpM6XSKeV62BuPJynmfBFY4isLesFAysdRMCebiV/7+zURKFLHwB4fERnqZNf9zfqdLHUbeiuvnH4eEuO4b2i4YXnR+2UWp3G7FGV/hn15cD/FgnUvxMcR3NhHgDOXSwV9o/pN7XHonWHUQHgpVUHENWwvqUDbV4O+r40dZD9kGWAKy+Zx85j169aR+63J7eu7OiKa+H44tf78W7GUel8x/Uf+fgu8g+qtuCV6VIDkI4P/iTo0ZGrDfzxyFWN2WBQFdTHM6LGO2D+2ioFs186rT92/1og3BaXCUl6zLyff7I1G7MlE4vMtlTvdHXjoTwsXHdYmr4Cl4Lwou+N97w3uTeGdY1x/202AcgiFqTfnIg/DO5gGBQn9WuL//3puOk36I9frKKAAOIjVrXiuYi//O56FF8pNwzmsm/iO6LNGodKJyu9J311vVgdCQUpLiMPvWNrdVmYeflvFBIsVDY3O1p3f5vuCE02uE96bzM2qKI3mMHbgBqz40XRMZ7smJc7geXlIpqk/vrdASyS9AH1fXzB8OiynZZ9V93+zL5F3ZZlR8bqHfb1P58VTtIKzCOO2Fk86p0pP7J0p6njaP3xuWicUOerquO2e/GiqwurfsKfXZk2AAdyL2jGJv5OvkBe8O0Bw1HxyocG4Kvdp9xClqgclj+UYuhLouN+QCxAmd1fFfR9SeZM/8nULljwzQFhmqLFGO9zVfEJ6xQ6cq1DmO1eKABGXNcS/9l/2lHnUN+r312rKsGKguKyK0Irpwp9ohK4UYJ6x5DDjxxEmDkK4U5Xl2w4YquMGIC3BMIcAEz9KNO9wyAzIOHlKdriB4BzF8qExycyYY5/g3pX51Sh0dEtg2sHNDGmsWZCF01sDMDjv+2Mv/3nZ2F6emszq28CIN3VlVkX8m9iYJaT1IQb4k2PnUW7iXphQZ9EOWP47/7TeO4LuSsUQHuEZogock3oAIAMm8IcAMz/5gD6JzTVfJOZKoX+GE+9+8TDUQGVRi5cSBEd0WXnF0uFOfV9BSVXHAkhvP3xcWR2aqJwAlW7otAfGavftXjDUSzZcBRzUhPxwm3X49mV2jbJAPx3/2l0aBGuEa535ZwXLvpk36p2pixDpIbBAKEwt+Da7rGdXWcZ/BG9Cs3AjtGWiwYGl0umOcv3aBZxDC5r8BlDOyHz+HnhUbFot09NOWPYesx49C4TkvgibPeJAk1b8IQg5w79qFsYHci9oM2HArfBhCxd0e+MAWuyXOODvg9Vd66sDiTQBSB29YkYgO/2n652emqBQeanyAwFwMCOzaQWVPweq/cyVG7/J8Y0xpZj+bihnWvis+OzSsbiDUcc3V8hyS9TdWiz/PAtftE7Fm84gu5xkY6+RX+EKKsjhspjLT6hy5LZePic/QzA/NiiKtXCj0q+3HnS8t6U9nJ3KIA4TJl6R1CWP5GbBBGMiXXW+LH+1EEJjsvgtkUbNTuqVvqrPx46h9HdWxm+dfpvOuDN7w9rhIDZn+/BwruThUd0ZsKc+j7ZboYZDHDr18omUH5Ma6c/M7gWA7/rKTa04cI43zmRRUyxSsPqDEvml9LAta0n0YKrqjhdkAYpwP/76Zjwm5ZtycGMoZ1Q1UO7YEVB33b2dJEZgK3HzmN091js/rXAI2XBmTKgHXq3a4LebbWLPOFCl7msb6syd5wpKrWlA+1NSKALMKx2Fpxi9x3c34+Vjp7s/ett7FDwgcAsT3xCUjO2V2s8MbKLR8rDDtwnlwjeoa0m4LimYbi1Ryt8scsosPzfzpOO/Kw9mapVWpb5rQPMlYDVOBXouONRM19TTpg6qD0AlwBvhgJzL+76QVy2I1hVePoyAcTKkEcGg3a1b6W/umyry0BGv+umFubUrNl/2pYSv1n+qkJBSZlmV0MP30WcPSrRdpl9ufOkeIHF3ykYM/Q4rR/1c9wvpdU7eN9LahPhsXFKAWwLcwpcAr5IXQSodGPTp11Tx2MpV2XgrlXsCKxzv84SGsiIcOt6bz9heuICAP+76Rg+2HjMcAQq2nkEXH2hKvSIi3TsR7KmIT90AYRoF6A6zL3tekvLQw6P13e7xKWFCJuvBuD6ln/clYyl0/pjZdoAR89+vv0EzhRdxpxUo/+z6pI2pAMeuLG921cY97wvKwLuXDk2Msw0P8VlFYhvJl7F/Wf/acxOTZR6SNfTvXWU5m9ZlAqOLIxPdeC+ukQxK53CnXmKLCf1zLk50XQ1LBvEq/Pp/NkgVB6hmQnRFXCVj9365Og94Y/uHitPg8H2cRcAfLHrpKaNBSsKJtxg9FXnSRQFiGoYYqo3Bbi+5eVVBzX5Mys5BmCaqo9WpW5XPDQAS6f1R/rNlWkG2XjXP+5K1hhVWd1fzhh25hRKrwcpwN0264ELXY4Er2B5DtXCyNQbE2yX47OjuyJjzhCN7pinFgYKXLFef5wzFH+/syf+cXey5f36I1Du106287hScApg59sbhtS37TvTW9AOXQBhx8TcTmAprt8jG1z1iOL18ffIHr8lKRajkmJs+XbjafCdlqN5lzDn5kS89M0BW98DANuOnXcFWVcgPQ4KAvDn26433SHQM6hjc6R0aIYpg9pZet4HKp0rD+7cHEltInFfSlt8uEmr/8YHzoYhLfHGWuNqmQFoHRmG1+7qgUNnLuL1NYek+ROtCK3cMSjX/md2qrMylqH2pm6V9m09XbuSZlZp8+9Iwpe7Tto6HtMLs2pOFZbgYG6R8NrverbCl7uM4etEuJXQ4bKg1Udh2Hg4D/mXyqTPBwHoHheJ5Q+lICe/BDOW7rC9K6GOUHH4zEXpvbLjLtmYUMFcZbf8oRS3bmGLiAZYuiXHo7vc7rHpWr2KdrJk7oa6t47SRFbIPH5eOJ4EKa72N7p7DLYeO4+E6IaY9lGmIyODFhEN3A5zb+3RShPgXmb5rh6zALh02ap5TMAY0LaZeYQMBcDQxOZYe/Cso7QYgObhocJrfKdR797pgcEJ6N4mSjqOBysKbu4eq9HflekyO0VvxAO4YmSLToj6JTTBlqPGxZv6CFS28ygbx03zdq1vpnRoZhoJyduQQBdAyCbL6Td1wKCOzdEwJMhgwcNRFGDOqEScu1iGdzOOYPGGo0IXFdxk/c1rbj7M4vUxuJzbfrxFG90gCMDTt7gcQ4ryG6QAo66Pwap9uZo09BZDs1MT0b1NFHafKHArd8vGyz7XBtaosPrSzjj75kTc078d6gcHaUIamVnA8klb7/tJdvzFoFWkVgAM6dIcP/x8VvOt/H3dWkVg70mt0KHAZS6vtu4TEXRNofdo3iV3Hvn/y0z0OQ9/vMNdxucultk+tlGnrf8envbtya01/gPVtG4ShqmDEvCuQCDmIcl+OpJv61jU7HjDSumcC3MKgJu6NMe6g8YIJ4DGSwJmpya6dyH07ndEfUn9PC/v+XckYU6qvWPp2amJmj4hg0/G/LhLb9FbUGw0RuKhkPSWygvGJpnqGzrlhVuvR+nVCo0xisaiWpIGr1t1vztxXqxPqS8nfjy3csdJadgyNQww+Mvj/60OdaUeh0S7MR9I3GfYUSVR5+Wlbw9g9s2JhrQGd26ODzKO4d2MI1hzQN5eJ/SLw9LNRsE8SAGKrxh37wd3isZLv+8OQGtRzgC8t+EYlj+UIhzHFRj9blZHl1nz7mvtUS3M8T6tLuMguOa/t34Qqxbox/AFYyvHxarK3jxvovbia0igCyBiI8Xx8N7+/gju6d9W+tzc267HsK4tARg7rALj5Dy+bzwm9m+rWXXsyjkvfPf4vm3QNrqhIdYpb+D6eJBTBydgysAEt9m+zBs/P3bJmDPEsGr+23cHNQLD2F6t0SOuiVtfSgbfzdHHI/xy50nhBKvXTVMji0/Jy5WpynjdwbNIG+ISutWruFOFJdh/SryDZHWsHgSXWwQ+Eer1Rfg38glA7/qBp8HLeMqgdsg8dh6KAvxaUGKp9L7k3t5oGFJf6L1/xQ6xMAfArXSvwDWRZBzK07SbFhENhA5CAdfi4ZOtOdIJVZ0HKyFIXb7rf84T7qTy6/z/X151ELf2dIXz0nul1/elIAB39YvDsi05hiOgjDlDUHT5itw1CFxCyq09Wpm6olAATFP1J0AcO1kfTk5t2SfK249zhmqej2pYXyMk3pbcypYukwLg+S/3GYRD9ecoDLi1ZytDGqKQViJ9yrQhHQzlVMGAlTtOYvlDKW5XNjL3JoB1zFc+YevHIX3+lkjiya54aABy8kvwyLIdttRVKuCydhfFfeV9WYR6R6tHmyit2yJe/rq+pQB46ffdpU64yxlDcVmFcN5RALeFLUemO6yeY25LbuUWtmUoTPtuUZ9WR4EQ6QWKBE7ePzKPnRfWh36M1F/7y7W51F8EOD0k0AUYIh0ltYsHUUPs0LyxtMMyGJ2NAsZVh1k80T8M7iAd6EQTDMeON36+clbf+/c7e+LelLbYduw8+qic2sr0pQBxsGj+Ppnel9lxnp1dMDVvfX8Y9/Rva2s1K/qGu2+IdzuDdscmXGWckNUm87GRYXhqdFf3cfG5S6WGoxNexikdmmmiHtzaoxUyj53HL2cuCI98G4bUd8cKVWN3hc7gsszU+4/beDhPfFyuADOGdcSMYR0tjzec7hKUM4aR3WIR2ySscscK8qgjAIRCp74vHc27hI835wjf8ceRiYgIq69ZCHEH2eqyMPuONySh1PQe+/VHYAoTW/ap24JVH743pa00RJwadft86Vvj8X4F4HZUbXZ0JavTQR3FFuVcEOFtdHzfeDQKrSc8OrSK+apGthsjsyyfOqg9esQ1EZ5wAMATIzrj7//52fAsj5ag7mNm7VptlABoBRfu1FvmbJqPsWZOuEUzSwW0O5syFBj9RD4xsos0JJno3bJoK2ZRIACjwAm46rBpuLgs35iQjEtlV4XjOkPlXOqvkEAXYFh5vje7Jnu2dzt5FAGOTKGU/2y27WxnS9quR39OjzhjPFZZHq2CnjtNmyPaBTPTWdIPfqJ0RU6WgxXFIMzYDRsGVJb/qcIS298ZGxmGW3q4nnlj7SHbZWOlQ6fPr3rSNXt+dmqiRlA1w0kegMrvUe/AiKKOqMMlyYROfV8yK2+zhZDVd+j1t2TIJkKRixmzetX34R5xTbDAJLKKaJemAjDoP5mpNaipzrjHkenvcf3P6iDry2a6pcGKgrG926Co5IpBfcPJeCGLS8z7sBqzcuKLVNlOqZ0yFvUNBhj6eWykKwzcvG+ypO1b/W6z+o+NDMP9gxIMO6RqYVWP1VyYGNPYsGDxtQWrHcjKNcDgnU5kWWN2zepZK7hCqRoF5i4jPPVddhHlEXCtDs28d1cnbb4L9uOcoVg6rT9+TB+KdIF1q2gwEKU7f2ySaf3y3RM+IFmlUd3vdPqM/n6uzC3CTpkEAUgXOAg1Q/QOmS6iqI+kdGjm1kcTfbeo7AGt0CnKh6js1HVq9R2yPJshaye928m/zy7j+8YjY84Qg3VosKJgTmqiMN05OstaJ/2squOe2TvUYeKqg9W7zfI4ZVCCrb4sS2N091bVLkOOuk7Vlqt2y9jJuOSkfVul/z+DjFa5VgsUs/fxBYs/WbDawa9Df/3pT3/CCy+8oPmtS5cuOHDAddxx+fJlPP7441i2bBlKS0sxcuRIvPnmm2jZsqX7/uzsbEyfPh3r1q1DeHg4Jk+ejPnz56NePfubk/4Y+kutf6ZvZGbX7FyX8cnWbE1w5PmCUFLVpap580Qeq5u2mnfWHzboFcryIUrXTl5kIa2sqMp3On1Grx8pUyp3UiZOUb9Dba0oOt50+t3qsnd7pf+NWOis7rfw5xuGBEnDm5lh1k482eb17zILuVbVNKsz7jm9rypUdex10pc91Z48Xf5V+Rb1O+20b7P0qzIe1tRc6UmcyB9+L9B99tln+O9//+v+rV69eoiOjgYATJ8+HV9//TU+/PBDREZG4uGHH0ZQUBB+/PFHAEB5eTl69uyJmJgY/PWvf8WpU6dw7733Ytq0aZg3b57tfPijQOcr/KGBW+EvefRGPvzlW+3iy/x6Ou1AKntf5TWQysjX1KayovbmOWqVQLdy5Urs3LnTcK2wsBDNmzfHxx9/jN///vcAgAMHDqBr167YtGkT+vfvj2+//Ra33HILTp486d61e/vttzF79mycPXsWISEhwnRLS0tRWlrq/ruoqAhxcXEk0BEEQRAE4TWcCHR+r0P3yy+/oFWrVmjfvj0mTpyI7GyXCX5mZiauXLmC4cOHu+9NTExEfHw8Nm3aBADYtGkTkpKSNEewI0eORFFREfbtk8dpnD9/PiIjI93/4uJq1oM6QRAEQRBEdfBrga5fv3748MMPsWrVKrz11ls4evQobrzxRly4cAG5ubkICQlBVFSU5pmWLVsiNzcXAJCbm6sR5vh1fk1Geno6CgsL3f9ycnKk9xIEQRAEQfgav3Zbkpqa6v7v7t27o1+/fmjbti0+/fRThIXV3Pl4aGgoQkPFIVIIgiAIgiD8Db/eodMTFRWFzp0749ChQ4iJiUFZWRkKCgo095w+fRoxMTEAgJiYGJw+fdpwnV8jCIIgCIKoDQSUQHfx4kUcPnwYsbGx6N27N+rXr481a9a4rx88eBDZ2dlISUkBAKSkpGDPnj04c+aM+57Vq1cjIiIC1113ndfzTxAEQRAEURP49ZHrE088gTFjxqBt27Y4efIknn/+eQQHB2PChAmIjIzE/fffj1mzZqFp06aIiIjAjBkzkJKSgv79+wMARowYgeuuuw6TJk3Cyy+/jNzcXDzzzDNIS0ujI1WCIAiCIGoNfi3Q/frrr5gwYQLOnTuH5s2bY9CgQfjpp5/QvLkrPturr76KoKAgjB07VuNYmBMcHIyvvvoK06dPR0pKCho1aoTJkyfjz3/+s68+iSAIgiAIwuP4tR86f6GwsBBRUVHIyckhP3QEQRAEQXgF7ge3oKAAkZGRpvf69Q6dv3DhwgUAIH90BEEQBEF4nQsXLlgKdLRDZ4OKigqcPHkSjRs3hiKLNE4QBEEQBOFBGGO4cOECWrVqhaAgcztWEugIgiAIgiACnIByW0IQBEEQBEEYIYGOIAiCIAgiwCGBjiAIgiAIIsAhgY4gCIIgCCLAIYGOIAiCIAgiwCGBjiAIgiAIIsAhgY4gCIIgCCLAqXUC3YIFC6AoCmbOnOn+bfHixbjpppsQEREBRVFQUFDgs/wRBEEQBEF4mlol0G3duhXvvPMOunfvrvm9uLgYo0aNwlNPPeWjnBEEQRAEQdQctSaW68WLFzFx4kQsWbIEc+fO1Vzju3Xff/+99zNGEARBEARRw9QagS4tLQ2jR4/G8OHDDQKdU0pLS1FaWur+u6KiAvn5+WjWrBnFciUIgiAIwis4ieVaKwS6ZcuWYfv27di6datH3jd//ny88MILHnkXQRAEQRBEdcjJyUGbNm1M7wl4gS4nJwePPvooVq9ejQYNGnjknenp6Zg1a5b778LCQsTHxyMnJwcREREeSYMgCIIgCMKMoqIixMXFoXHjxpb3BrxAl5mZiTNnzqBXr17u38rLy7F+/XosXLgQpaWlCA4OdvTO0NBQhIaGGn6PiIgggY4gCIIgCK9iR90r4AW6YcOGYc+ePZrfpkyZgsTERMyePduxMEcQBEEQBBFoBLxA17hxY3Tr1k3zW6NGjdCsWTP377m5ucjNzcWhQ4cAAHv27EHjxo0RHx+Ppk2bej3PBEEQBEEQnqRW+aGT8fbbbyM5ORnTpk0DAAwePBjJycn48ssvfZwzgiAIgiCI6qMwxpivM+HvFBUVITIyEoWFhaRDRxAEQRCEV3Aif9SJHTqCIAiCIIjaDAl0BEEQBEEQAQ4JdARBEARBEAEOCXQEQRAEQRABjk/clhQUFGDFihXYsGEDjh8/juLiYjRv3hzJyckYOXIkBgwY4ItsEQRBEARBBCRe3aE7efIkpk6ditjYWMydOxclJSXo2bMnhg0bhjZt2mDdunX47W9/i+uuuw6ffPKJN7NGEARBEAQRsHh1hy45ORmTJ09GZmYmrrvuOuE9JSUlWLlyJV577TXk5OTgiSee8GYWCYIgCIIgAg6v+qE7d+4cmjVrVmP31xTkh44gCIIgCG/jRP7w6g6dU+HMH4Q5giAIgiD8k+zsbOTl5QEAoqOjER8f7+Mc+Q6fWbkGBwdjyJAhyM/P1/x++vRpBAcH+yhXBEEQBEEEAtnZ2ejSpSt69+6N3r17o0uXrsjOzvZ1tnyGzwQ6xhhKS0vRp08f7Nu3z3CNIAiCIAhCRl5eHi5fLgbwTwD/xOXLxe7durqIzwQ6RVHw+eefY8yYMUhJScEXX3yhuUYQBEEQBGFN12v/6jY+3aELDg7G66+/jr/97W8YP3485s6dS7tzBEEQtYjs7Gxs3769Th+FEYQ38IljYT0PPPAAOnXqhHHjxmH9+vW+zg5BEAThAbiO0+XLxWjQoCEOHsyq00rrBFGT+GyHrm3bthrjhyFDhuCnn35CTk6Or7JEEARBeJBKHadn6rx+E+EMvrNLu7v28dkO3dGjRw2/dezYETt27MDp06d9kCOCEMPN4uu6STxBVJ22vs4AAOrLgYJ6ZxcA7e7axC+OXNU0aNAAbdv6R+cnvIM/D7LVPTLy528jiLoEHf/WLJ70B6e1XgUuX74HeXl5VF8WeF2ga9KkiS0rVr1/Ohnz58/H8uXLceDAAYSFhWHAgAF46aWX0KVLFwDAsWPHkJCQIHz2008/xbhx4+xnnvA4NTHIelKI0h4ZzXU0qHjq2/zJcaY/5YUgnFCdvkyYU3M7av5huRoo457XBbrXXnvN/d+MMUyfPh1//vOf0aJFiyq974cffkBaWhr69u2Lq1ev4qmnnsKIESOwf/9+NGrUCHFxcTh16pTmmcWLF+Ovf/0rUlNTq/MphAfw9CBbc6tw57vGnvg2fzp68Ke8EETVse7LtLPujNq8oxZI457XBbrJkydr/p4xYwbGjh2L9u3bV+l9q1at0vz94YcfokWLFsjMzMTgwYMRHByMmJgYzT0rVqzAnXfeifDw8CqlSVjjfEXjmWP2qghRNb/6qvq3+dNA6cu8BMoK2d8gwcQ5dDQrx7o9+ceOmifxpzHYCr/ToasuhYWFAICmTZsKr2dmZmLnzp1YtGiR9B2lpaUoLS11/11UVOTZTNZy/GNFY0+I8o+82sGfBkrv5iVw6si/IMGkatDRrBhqT/40BovxmduSmqCiogIzZ87EwIED0a1bN+E97733Hrp27YoBAwZI3zN//nxERka6/8XFxdVUlmslgRSOJZDyGgjUhBNZqqOqQS5DqgsZ56mh9uT/1KodurS0NOzduxcZGRnC6yUlJfj444/x7LPPmr4nPT0ds2bNcv9dVFREQl2V8P8VTSXez2tVjxGzsrKE9/v6WLLmV/CB1J78idovmPjT0bLTvPi63zqn9renQMXrAp1aUAKAsrIyvPjii4iMjNT8/sorrzh678MPP4yvvvoK69evR5s2bYT3fPbZZyguLsa9995r+q7Q0FCEhoY6Sp/wHoE3ABqp2jHiKQBBuOeeewz3e/JYsqqTIx1VEb7An44CnebF39QJasPYWlX8aVFQVbwu0O3YsUPz94ABA3DkyBHNb3bcmnAYY5gxYwZWrFiB77//XuqiBHAdt956661o3ry5s0wTfoO/DYBVpWqKtgUAKiASmOy8z86A5ZnJ0f4Kvq5NIHXte72BtxcSZnXoNC/+pHDvrbHVH/uAPy0KqoPXBbp169Z59H1paWn4+OOP8cUXX6Bx48bIzc0FAERGRiIsLMx936FDh7B+/Xp88803Hk2/tqDuZKWlpQgNDfVJZ8vKygIg7+j+NAB6hqocI5oJTOL32R2wvDk5VncCsZoYRAKsL1fhtWUx4k2c1VfNHwXar0OnebEeB6oiCDkpP0+PrXrVkOzsbOzZswdjx45DaWkJAP/pA7XldCHgdejeeustAMBNN92k+f2DDz7Afffd5/77/fffR5s2bTBixAgv5i4w0A9SQDCAcmFnq7nV1Tnw40TATkcnfSonOB+wan5ytLuryIV8NadOncLAgTdKJ1Z1mw4NbYDPP/8MANyTifp+bwl5gbYY8fURlD/umviqDquyGKh6+VV3bDWqhgDQzTH+2gcCWz/QqwLdggUL8Mgjj6Bhw4aW927evBl5eXkYPXq06X2MMVtpz5s3D/PmzbN1b6AiErbsCGDaQeoogGchmvjtDCqyCdiai3AdJ/q+o8uMDmoH/jhgWe8q6ikoKDCdWCvb9AyUli7CLbfconq6sm0DMJ30amYB49vFiPeO3quHf++aeLcOqyJI+q78CqBXDXHluRjA/QDeg6/7gF2qPp/5Bq8KdPv370fbtm0xbtw4jBkzBn369HHrs129ehX79+9HRkYG/vnPf+LkyZP46KOPvJm9gEYkbK1d+18MHTrc/RvfqUhKSrLhFNI48VsNKmYTsH1qpqPb220QrywJz2NnoKxsb3wSEGHVXiJRuVDgi5XKtm026Xn6SNgf8Mejd2uqtwjh9WDV3uze5wQrFRLnVF9Fw3s7r6J6i63B9JxjVueemc+8i1cFuo8++gi7du3CwoULcffdd6OoqAjBwcEIDQ1FcbGr0JKTkzF16lTcd999aNCggTezF9CIhK0jR46ofstDaeks3HLLLR5YcYsHFXsTsPexv9tQANHK0urdntrBqd07g5U4Hyg9MQlYTYTGSW/Dhg1VPl4TCYOfffap9F5v6a9aCWrGCc4fd3TtY7eteX7ytlYhqe7uT1XGC3/YefUXrOrcX+czM7yuQ9ejRw8sWbIE77zzDnbv3o3jx4+jpKQE0dHR6Nmzp9+sZAMX0cTVFUAWZBaSnse/VmE1pT/mOSV3uTuS2oi/D5TGgb6r4bozNQaXMFhQUGC4T68LyPVX+W56bGysUMjjeeDXzPIixtjGqyrU+FrXzgyxOknV7nMmgJmrkFiVtV7I13qCqPp44V87r77Fbtvwt/nMDJ8ZRQQFBaFnz57o2bOnr7JQRzHuRASKjkD18+rZ3QbZETS/Zj+vBfCesC2mJo6brPHPgdJM4NQLYM7UGIxodQH5pKLX+9MaKQFqBXPXNcB6QWH/iNtqgqvEmzs+1Tu+tHtU6Vyfk18X9x/npxkyIb+SAlR/vPCfnVffn0wEhj6fHQLeypWoOk5W5J4W/JwKEFUfUL1B5YCwYcMGzJ6d7jbLd4ZvBlmzslVPoiJ8PxjXJEaBUyuA1ZQag0jvz0zB3OpIWHv85ywvWvS7cdXd8bGnsuDUAt7zOBPAnGDVxnj9i3azfSuUWY0N1njnZMKfd5A9DQl0AYYnG6fdoy9PC1NOBUn+7poZUJ0hH8Rcg9PMmTOv/W1/l8PzeanETt2Id2aMk6hWB8y5AYlvhW5PY1Rj2LBhA7p27Sqtj6NHj1YhDY6ZgrnVDoP6+K9qbTIrKwunTp0yuH0xz5859lUWxMeXgNOdcE9gVwAzkpWV5T4it5dndb3Kd7M9b3hhhdXYYJcC1PTJhGwHOZBOppxAAl0AUXPHG+ZHX55endo92hG/u+oDavWwGsQK4BqcvGGWb29AdV436jwbJ1GtDlgBnBiQ2BXiA3PHLxx2hF+rGNKewLz8qtImRbt71nUuE97531wvTK+ysGHDBrRv314i9HhqJ7ymkJVv5eLHeHxaHXy1c2k1Njil5nYaRTvIgN4nXu2BBLoAwvcKrUZhaseOHbaFKeMgXxX9IjNqUoiyO4h5Qy/MXl7slJ/1StWZdagMayE+MFzGiHfZ7Aq/NWkEUr3yk7cD0e6eeZ2LhXe9YKgWbLrCvtDj/Z3w6lMAbf17Ks8177vT8wsEX+Fqs7yN+7NRVnXwuUB36NAhHD58GIMHD0ZYWBgYY45iudZN/EGhVb/rYN65q3csWvWBw/Pb6pV5cX6E5mlqVtG7ZpDluQBOXcZUF2dtw84um1V91KSwXwD98a9d7LUD47eJyk87YaoFF5FgqJ5Qef6thB79fYEkVNg9IndK5fuqusNtFOj9b4FVvd170U6zfxplVQefCXTnzp3D+PHjsXbtWiiKgl9++QXt27fH/fffjyZNmuDvf/+7r7JG2KIATnYdvHMsqsapIrgTvHeEVpP4p/sQbyxWqtI2ClDzu2yeQHv8awfn7UBUfqLfZC6UOKIJ1a7QU/sm4+pRdQFMLNAXwNsLLDmeMJ6ovh5pIBDkq4Qfe+wx1KtXD9nZ2ZpQYOPHj8eqVat8lS3CMU4H1q4AEmoiIzrUHfgvHn53ASond/+geruF9urQ9zuSlYjykpWVhU2bNmH79u0Wu2/VaRu+FSSysrI8+m3a99n9NlEaNdnfCGsKUCmAFWPDhg22dqCzsrJUDrRF45k/nAYVQP1tVsJlVlYWsrOzJVe9Nf/4Bp/t0P3nP//Bd999hzZt2mh+79SpE44fP+6jXNUuPDEB+9ISyDMChLkLBrPvs/52f9gl8MZuoT/tSIryUlWl80A6rvOc65Gqvc9uGr4vU6fuNGqXxaPdHVr/O4K0rre2Fvf53zGxt/GZQHfp0iXNzhwnPz/f7fmcqCqemIBr8sjSCmf5dyr46V0wGPHltxstAc0pQM0fBVYtjer7qbKbF/1vvj9Wsdsm7bddTx8Z1cYjKG2/DQ1tgJdeWmD6RCDG6zRHXq9aodVZ/deswGvXDYpdTwPVPyYOVAHfZwLdjTfeiI8++gh/+Ytre15RFFRUVODll1/GkCFDfJWtgEI+YRag+pO8Zwd8Z0JXAezl36ngKhLURGn4arIzswS0whura7tpeMpPldO81JTSuRPstsmqLrpqTqE+8FH3W5fT50prWCP+avHo+ZMJswWqN3ZyrbDrQcDufdqdPGf4djFfXXwm0L388ssYNmwYtm3bhrKyMjz55JPYt28f8vPz8eOPP/oqWwGC3QnTG0HNrajObqFV/gvgTHAVCWpmaXh7srOyBPQcNbsC9bSfqkCiAPbapN37COeonT6LytfZcaNVX/GcbmlNqTZUZ4HqzcWtXQ8CNSmEBvbOtc8Eum7duuHnn3/GwoUL0bhxY1y8eBF33HEH0tLSEBvrD7pJ/kwgTZgFqPmJqyqGGd7H/hGkPQ/xVogHxZpZgYonPX9yN+Nt7NYbjXU1i6h87U7aVn3F0wJYAWp2rKzOuOetMdMT6jaeEMoCc+faZwJddnY24uLi8PTTTwuvBZaneF8RSBNmXZ64vHEEqcZsUPT0CtSegGh/F8M/9BeJukB1Q6YVoGYEsLo8VhbAc+o2NSeU+WtEG5+5LUlISMDZs2cNv587dw4JCc7MitevX48xY8agVatWUBQFK1eu1Fz/05/+hMTERDRq1AhNmjTB8OHDsXnz5upkP4CpnDADVU8g8FBPDP/E5cvFNbyjWgBrtyqeMt+3clfhdBfDV+4vqF8QMqz6Sl0WwFx43qWRE3Ubb1JpSdulS1cT9yi+wWcCnSwixMWLF9GgQQNH77p06RJ69OiBRYsWCa937twZCxcuxJ49e5CRkYF27dphxIgRQoGy9kP+onxHV/BVo3d8unlzopFNegWo2sDrbX9R1C8Iwjm+dmnkbWG6AE584nkbrx+5zpo1C4DLqvXZZ5/VuC4pLy/H5s2b0bNnT0fvTE1NRWpqqvT63Xffrfn7lVdewXvvvYfdu3dj2LBhjtKqPQSmjkDg4+sB0FcEyi4G9QuCsE8B6qZxjz84XDbidYFux44dAFw7dHv27EFISIj7WkhICHr06IEnnniixtIvKyvD4sWLERkZiR49egjvKS0tRWlpqfvvoqKiGssPUdcoQN0cAAmCqL0EyoKtduN1gW7dunUAgClTpuD1119HRESEV9L96quvcNddd6G4uBixsbFYvXq11Npw/vz5eOGFF7ySL6KuQgMgQRAE4Tl8pkP3wQcfeE2YA4AhQ4Zg586d2LhxI0aNGoU777wTZ86cEd6bnp6OwsJC97+cnByv5VNEdna2jfiUBEEQBOFfWMcfJjyFz9yWAMC2bdvw6aefIjs7G2VlZZpry5cv92hajRo1QseOHdGxY0f0798fnTp1wnvvvYf09HTDvaGhoX4Tfqz2haYhCIIgaj+BHXUhEPHZDt2yZcswYMAAZGVlYcWKFbhy5Qr27duHtWvXIjIyssbTr6io0OjJ+St5eXnXhDmyviMIgiACBbIc9zY+26GbN28eXn31VaSlpaFx48Z4/fXXkZCQgD/84Q+OI0VcvHgRhw4dcv999OhR7Ny5E02bNkWzZs3w4osv4tZbb0VsbCzy8vKwaNEinDhxAuPGjfP0Z9UgZH1HEARBBBo0d3kLn+3QHT58GKNHjwbgsm69dOkSFEXBY489hsWLFzt617Zt25CcnIzk5GQALtcoycnJeO655xAcHIwDBw5g7Nix6Ny5M8aMGYNz585hw4YNuP766z3+Xb7CO37NCIIgCILwR3y2Q9ekSRNcuHABANC6dWvs3bsXSUlJKCgoQHGxM32xm266CYwx6XVP6+P5F3XVrxlBEARBEByf7dANHjwYq1evBgCMGzcOjz76KKZNm4YJEybUYWe/VaEAvgmBQhAEQRCEv+CzHbqFCxfi8uXLAICnn34a9evXx8aNGzF27Fg888wzvspWAEN+zQiCIAiiruIzga5p06bu/w4KCsKcOXPcf5eUlPgiSwRBEARBEAGJz45cRZSWluKVV15BQoI3g3ITBEEQBEEENl4X6EpLS5Geno4+ffpgwIABWLlyJQBX5IiEhAS8+uqreOyxx7ydLYIgCIIgiIDF60euzz33HN555x0MHz4cGzduxLhx4zBlyhT89NNPeOWVVzBu3DgEBwd7O1sEQRAEQRABi9cFun//+9/46KOPcOutt2Lv3r3o3r07rl69il27dkFRFG9nhyAIgiAIIuDx+pHrr7/+it69ewMAunXrhtDQUDz22GMkzBEEQRAEQVQRr+/QlZeXIyQkpDID9eohPDzc29kgCIIgCIKoMllZWQCA6OhoxMfH+zg3PhDoGGO47777EBoaCgC4fPkyHnzwQTRq1EhzX+2O7mCP7Oxsd4MhCIIgCMIfOAcgCPfccw8AoEGDhjh4MMvnQp3XBbrJkydr/uYFQmjJzs5Gly5dcfmyszBoBEEQBEHUJBfhitD0TwDA5cv3IC8vr+4JdB988IG3kwxI8vLyrglz9wN4z9fZIQiCIAhCQ1dfZ0CDzyJFEFqys7ORl5cnOIunkF4EQRAEQZhDAp0foD5eDQ1tgM8//wwFBQW+zhZBEARBEAECCXR+QOXx6gyUli7CLbfc4ussEQRBEAQRQPhVLNeaZtGiRWjXrh0aNGiAfv36YcuWLb7Oko5IVCpa/sXHeSEIgiAIIlCoMwLdJ598glmzZuH555/H9u3b0aNHD4wcORJnzpzxddYEdAWQ4OtMEARBEAQRINQZge6VV17BtGnTMGXKFFx33XV4++230bBhQ7z//vu+zhpBEARBEES1qBM6dGVlZcjMzER6err7t6CgIAwfPhybNm0y3F9aWorS0lL334WFhQCAoqKiGsnfxYsXr/3X8Wv/n6n679r8mz/kgX6j3+i3mvnNH/JAv9FvNf2bi4sXL9aIjMDfyRizvpnVAU6cOMEAsI0bN2p+/+Mf/8huuOEGw/3PP/88A0D/6B/9o3/0j/7RP/rn8385OTmWsk6d2KFzSnp6OmbNmuX+u6KiAvn5+WjWrBkURanWu4uKihAXF4ecnBxERERUN6tENaH68C+oPvwLqg//gurD/6jpOmGM4cKFC2jVqpXlvXVCoIuOjkZwcDBOnz6t+f306dOIiYkx3B8aGuqONcuJioryaJ4iIiKoQ/oRVB/+BdWHf0H14V9QffgfNVknkZGRtu6rE0YRISEh6N27N9asWeP+raKiAmvWrEFKSooPc0YQBEEQBFF96sQOHQDMmjULkydPRp8+fXDDDTfgtddew6VLlzBlyhRfZ40gCIIgCKJa1BmBbvz48Th79iyee+455ObmomfPnli1ahVatmzp1XyEhobi+eefNxzpEr6B6sO/oPrwL6g+/AuqD//Dn+pEYcyOLSxBEARBEAThr9QJHTqCIAiCIIjaDAl0BEEQBEEQAQ4JdARBEARBEAEOCXQEQRAEQRABDgl0XmTRokVo164dGjRogH79+mHLli2+zlKtZP78+ejbty8aN26MFi1a4LbbbsPBgwc191y+fBlpaWlo1qwZwsPDMXbsWIPj6ezsbIwePRoNGzZEixYt8Mc//hFXr1715qfUShYsWABFUTBz5kz3b1Qf3uXEiRO455570KxZM4SFhSEpKQnbtm1zX2eM4bnnnkNsbCzCwsIwfPhw/PLLL5p35OfnY+LEiYiIiEBUVBTuv/9+VVxqwi7l5eV49tlnkZCQgLCwMHTo0AF/+ctfNLE7qT5qlvXr12PMmDFo1aoVFEXBypUrNdc9Vf67d+/GjTfeiAYNGiAuLg4vv/yyZz+k+pFSCTssW7aMhYSEsPfff5/t27ePTZs2jUVFRbHTp0/7Omu1jpEjR7IPPviA7d27l+3cuZPdfPPNLD4+nl28eNF9z4MPPsji4uLYmjVr2LZt21j//v3ZgAED3NevXr3KunXrxoYPH8527NjBvvnmGxYdHc3S09N98Um1hi1btrB27dqx7t27s0cffdT9O9WH98jPz2dt27Zl9913H9u8eTM7cuQI++6779ihQ4fc9yxYsIBFRkaylStXsl27drFbb72VJSQksJKSEvc9o0aNYj169GA//fQT27BhA+vYsSObMGGCLz4poHnxxRdZs2bN2FdffcWOHj3K/v3vf7Pw8HD2+uuvu++h+qhZvvnmG/b000+z5cuXMwBsxYoVmuueKP/CwkLWsmVLNnHiRLZ37162dOlSFhYWxt555x2PfQcJdF7ihhtuYGlpae6/y8vLWatWrdj8+fN9mKu6wZkzZxgA9sMPPzDGGCsoKGD169dn//73v933ZGVlMQBs06ZNjDFXBw8KCmK5ubnue9566y0WERHBSktLvfsBtYQLFy6wTp06sdWrV7Pf/OY3boGO6sO7zJ49mw0aNEh6vaKigsXExLC//vWv7t8KCgpYaGgoW7p0KWOMsf379zMAbOvWre57vv32W6YoCjtx4kTNZb4WMnr0aPY///M/mt/uuOMONnHiRMYY1Ye30Qt0nir/N998kzVp0kQzXs2ePZt16dLFY3mnI1cvUFZWhszMTAwfPtz9W1BQEIYPH45Nmzb5MGd1g8LCQgBA06ZNAQCZmZm4cuWKpj4SExMRHx/vro9NmzYhKSlJ43h65MiRKCoqwr59+7yY+9pDWloaRo8erSl3gOrD23z55Zfo06cPxo0bhxYtWiA5ORlLlixxXz969Chyc3M19REZGYl+/fpp6iMqKgp9+vRx3zN8+HAEBQVh8+bN3vuYWsCAAQOwZs0a/PzzzwCAXbt2ISMjA6mpqQCoPnyNp8p/06ZNGDx4MEJCQtz3jBw5EgcPHsT58+c9ktc6EynCl+Tl5aG8vNwQlaJly5Y4cOCAj3JVN6ioqMDMmTMxcOBAdOvWDQCQm5uLkJAQREVFae5t2bIlcnNz3feI6otfI5yxbNkybN++HVu3bjVco/rwLkeOHMFbb72FWbNm4amnnsLWrVvxyCOPICQkBJMnT3aXp6i81fXRokULzfV69eqhadOmVB8OmTNnDoqKipCYmIjg4GCUl5fjxRdfxMSJEwGA6sPHeKr8c3NzkZCQYHgHv9akSZNq55UEOqJWk5aWhr179yIjI8PXWamz5OTk4NFHH8Xq1avRoEEDX2enzlNRUYE+ffpg3rx5AIDk5GTs3bsXb7/9NiZPnuzj3NU9Pv30U/zrX//Cxx9/jOuvvx47d+7EzJkz0apVK6oPwhF05OoFoqOjERwcbLDaO336NGJiYnyUq9rPww8/jK+++grr1q1DmzZt3L/HxMSgrKwMBQUFmvvV9RETEyOsL36NsE9mZibOnDmDXr16oV69eqhXrx5++OEH/OMf/0C9evXQsmVLqg8vEhsbi+uuu07zW9euXZGdnQ2gsjzNxquYmBicOXNGc/3q1avIz8+n+nDIH//4R8yZMwd33XUXkpKSMGnSJDz22GOYP38+AKoPX+Op8vfGGEYCnRcICQlB7969sWbNGvdvFRUVWLNmDVJSUnyYs9oJYwwPP/wwVqxYgbVr1xq2uXv37o369etr6uPgwYPIzs5210dKSgr27Nmj6aSrV69GRESEYTIkzBk2bBj27NmDnTt3uv/16dMHEydOdP831Yf3GDhwoMGNz88//4y2bdsCABISEhATE6Opj6KiImzevFlTHwUFBcjMzHTfs3btWlRUVKBfv35e+IraQ3FxMYKCtFNxcHAwKioqAFB9+BpPlX9KSgrWr1+PK1euuO9ZvXo1unTp4pHjVgDktsRbLFu2jIWGhrIPP/yQ7d+/nz3wwAMsKipKY7VHeIbp06ezyMhI9v3337NTp065/xUXF7vvefDBB1l8fDxbu3Yt27ZtG0tJSWEpKSnu69xNxogRI9jOnTvZqlWrWPPmzclNhodQW7kyRvXhTbZs2cLq1avHXnzxRfbLL7+wf/3rX6xhw4bsn//8p/ueBQsWsKioKPbFF1+w3bt3s9/97ndCNw3Jycls8+bNLCMjg3Xq1IncZFSByZMns9atW7vdlixfvpxFR0ezJ5980n0P1UfNcuHCBbZjxw62Y8cOBoC98sorbMeOHez48eOMMc+Uf0FBAWvZsiWbNGkS27t3L1u2bBlr2LAhuS0JVN544w0WHx/PQkJC2A033MB++uknX2epVgJA+O+DDz5w31NSUsIeeugh1qRJE9awYUN2++23s1OnTmnec+zYMZaamsrCwsJYdHQ0e/zxx9mVK1e8/DW1E71AR/XhXf7v//6PdevWjYWGhrLExES2ePFizfWKigr27LPPspYtW7LQ0FA2bNgwdvDgQc09586dYxMmTGDh4eEsIiKCTZkyhV24cMGbn1ErKCoqYo8++iiLj49nDRo0YO3bt2dPP/20xr0F1UfNsm7dOuGcMXnyZMaY58p/165dbNCgQSw0NJS1bt2aLViwwKPfoTCmckdNEARBEARBBBykQ0cQBEEQBBHgkEBHEARBEAQR4JBARxAEQRAEEeCQQEcQBEEQBBHgkEBHEARBEAQR4JBARxAEQRAEEeCQQEcQBEEQBBHgkEBHEARBEAQR4JBARxBEneW+++7Dbbfd5rP0J02ahHnz5tXY+/fv3482bdrg0qVLNZYGQRD+AUWKIAiiVqIoiun1559/Ho899hgYY4iKivJOplTs2rULQ4cOxfHjxxEeHl5j6fz+979Hjx498Oyzz9ZYGgRB+B4S6AiCqJXk5ua6//uTTz7Bc889h4MHD7p/Cw8Pr1FByoqpU6eiXr16ePvtt2s0na+//hrTpk1DdnY26tWrV6NpEQThO+jIlSCIWklMTIz7X2RkJBRF0fwWHh5uOHK96aabMGPGDMycORNNmjRBy5YtsWTJEly6dAlTpkxB48aN0bFjR3z77beatPbu3YvU1FSEh4ejZcuWmDRpEvLy8qR5Ky8vx2effYYxY8Zofm/Xrh3mzp2Le++9F+Hh4Wjbti2+/PJLnD17Fr/73e8QHh6O7t27Y9u2be5njh8/jjFjxqBJkyZo1KgRrr/+enzzzTfu67/97W+Rn5+PH374oZolShCEP0MCHUEQhIr//d//RXR0NLZs2YIZM2Zg+vTpGDduHAYMGIDt27djxIgRmDRpEoqLiwEABQUFGDp0KJKTk7Ft2zasWrUKp0+fxp133ilNY/fu3SgsLESfPn0M11599VUMHDgQO3bswOjRozFp0iTce++9uOeee7B9+3Z06NAB9957L/jhSlpaGkpLS7F+/Xrs2bMHL730kmbnMSQkBD179sSGDRs8XFIEQfgTJNARBEGo6NGjB5555hl06tQJ6enpaNCgAaKjozFt2jR06tQJzz33HM6dO4fdu3cDABYuXIjk5GTMmzcPiYmJSE5Oxvvvv49169bh559/FqZx/PhxBAcHo0WLFoZrN998M/7whz+40yoqKkLfvn0xbtw4dO7cGbNnz0ZWVhZOnz4NAMjOzsbAgQORlJSE9u3b45ZbbsHgwYM172zVqhWOHz/u4ZIiCMKfIIGOIAhCRffu3d3/HRwcjGbNmiEpKcn9W8uWLQEAZ86cAeAybli3bp1bJy88PByJiYkAgMOHDwvTKCkpQWhoqNBwQ50+T8ss/UceeQRz587FwIED8fzzz7sFTTVhYWHuHUWCIGonJNARBEGoqF+/vuZvRVE0v3EhrKKiAgBw8eJFjBkzBjt37tT8++WXXww7ZZzo6GgUFxejrKzMNH2elln6U6dOxZEjRzBp0iTs2bMHffr0wRtvvKF5Z35+Ppo3b26vAAiCCEhIoCMIgqgGvXr1wr59+9CuXTt07NhR869Ro0bCZ3r27AnA5SfOE8TFxeHBBx/E8uXL8fjjj2PJkiWa63v37kVycrJH0iIIwj8hgY4gCKIapKWlIT8/HxMmTMDWrVtx+PBhfPfdd5gyZQrKy8uFzzRv3hy9evVCRkZGtdOfOXMmvvvuOxw9ehTbt2/HunXr0LVrV/f1Y8eO4cSJExg+fHi10yIIwn8hgY4gCKIatGrVCj/++CPKy8sxYsQIJCUlYebMmYiKikJQkHyInTp1Kv71r39VO/3y8nKkpaWha9euGDVqFDp37ow333zTfX3p0qUYMWIE2rZtW+20CILwX8ixMEEQhA8oKSlBly5d8MknnyAlJaVG0igrK0OnTp3w8ccfY+DAgTWSBkEQ/gHt0BEEQfiAsLAwfPTRR6YOiKtLdnY2nnrqKRLmCKIOQDt0BEEQBEEQAQ7t0BEEQRAEQQQ4JNARBEEQBEEEOCTQEQRBEARBBDgk0BEEQRAEQQQ4JNARBEEQBEEEOCTQEQRBEARBBDgk0BEEQRAEQQQ4JNARBEEQBEEEOCTQEQRBEARBBDj/H8KHiHZT6sRuAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1091,7 +1091,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpO0lEQVR4nO3deXxMV/8H8M8kkUVIhAgJIRGqVBBrLVVKqarWUlVVRYvaauvG46HVquDpQlddfqV9iqo+ti6ollK1F0Wp2iJKLClZJBFkzu8PzTSTzGTunXvukvi8X6+8Kueee873LPfmdGbuGZsQQoCIiIiILMnH7ACIiIiIyD0u1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiMgQMTExGDRokCF17dy5E61bt0ZwcDBsNhv27t1rSL0yvfjii7DZbLrW0b59e7Rv317XOohIOy7WiCRbsGABbDab48fPzw/VqlXDoEGDcPr0ad3qPXjwIF588UUkJSXpVocZzpw5gxdffFHxguvatWvo06cPLl68iDfeeAP//e9/UbNmTX2DJMVefPFFxMTEOKV99913eOKJJ9CgQQP4+voWOV6Q3W7H7NmzERsbi8DAQDRs2BCLFy8ukm/Hjh0YOXIkmjZtijJlyrhd+Obk5DjqDg0NRbly5dCoUSPMnTsX165d8xg7kRH8zA6AqLR66aWXEBsbiytXrmDbtm1YsGABNm/ejAMHDiAwMFB6fQcPHsS0adPQvn37UvUH5cyZM5g2bRpiYmLQuHFjj/mPHTuGkydP4sMPP8SQIUP0D7AE++6778wOAQCwaNEiLFmyBE2aNEFUVFSxeSdPnoyZM2di6NChaN68OVauXIlHHnkENpsNDz/8sCPft99+i48++ggNGzZErVq18Mcff7gsLycnB7/99hvuvfdexMTEwMfHB1u2bMH48eOxfft2LFq0SGpbibzBxRqRTrp27YpmzZoBAIYMGYLw8HDMmjULq1atwkMPPWRydMplZWUhODjY7DAUO3/+PACgQoUKHvOWtLbJ5u/vb3YIAIAZM2bgww8/RJkyZXDffffhwIEDLvOdPn0ar732GkaNGoW3334bwI1r684778Szzz6LPn36wNfXFwAwYsQIPP/88wgKCsLo0aPdLtYqVqyIbdu2OaUNHz4coaGhePvtt/H666+jatWqEltLpB7fBiUyyB133AHgxis/+a5evYqpU6eiadOmCA0NRXBwMO644w5s2LChyPmff/45mjZtivLlyyMkJATx8fGYO3cugBtvvfbp0wcA0KFDB8dbsD/++KPj/NWrV+OOO+5AcHAwypcvj27duuG3335zqmPQoEEoV64cjh07hnvvvRfly5dH//793bYp/3NVv//+Ox566CGEhISgUqVKGDt2LK5cueKxT44fP44+ffqgYsWKKFu2LG6//XZ88803juM//vgjmjdvDgAYPHiwo10LFixwWd6gQYNw5513AgD69OkDm83m+ExWcW3LysrC008/jejoaAQEBKBu3bp49dVXIYRwKt9ms2H06NFYunQp6tevj6CgILRq1Qr79+8HALz//vuoXbs2AgMD0b59e8VvSW/evBnNmzdHYGAg4uLi8P7777vN+9lnn6Fp06YICgpCxYoV8fDDD+PUqVOO46NHj0a5cuWQnZ1d5Nx+/fqhatWqyMvLA+D6M2tXrlzBiy++iFtuuQWBgYGIjIxEr169nOat3W7HnDlzcNtttyEwMBBVqlTBk08+iUuXLilqb2FRUVEoU6aMx3wrV67EtWvXMHLkSEeazWbDiBEj8Oeff2Lr1q2O9CpVqiAoKMireAA4Xp1OS0vzugwiWfjKGpFB8v9wh4WFOdIyMjLw0UcfoV+/fhg6dCgyMzPxf//3f+jSpQt27NjheNtv3bp16NevHzp27IhZs2YBAA4dOoSff/4ZY8eORbt27TBmzBi8+eab+Ne//oV69eoBgOO///3vfzFw4EB06dIFs2bNQnZ2Nt577z20bdsWe/bscXrb9Pr16+jSpQvatm2LV199FWXLlvXYtoceeggxMTFITEzEtm3b8Oabb+LSpUv49NNP3Z5z7tw5tG7dGtnZ2RgzZgwqVaqETz75BPfffz++/PJL9OzZE/Xq1cNLL72EqVOnYtiwYY4Fb+vWrV2W+eSTT6JatWqYMWMGxowZg+bNm6NKlSrFtk0Igfvvvx8bNmzAE088gcaNG2Pt2rV49tlncfr0abzxxhtOdfz0009YtWoVRo0aBQBITEzEfffdh+eeew7vvvsuRo4ciUuXLmH27Nl4/PHHsX79+mL7bv/+/ejcuTMqV66MF198EdevX8cLL7zgFHe+V155BVOmTMFDDz2EIUOG4MKFC3jrrbfQrl077NmzBxUqVEDfvn3xzjvv4JtvvnEs4AEgOzsbX331FQYNGuR49amwvLw83Hffffjhhx/w8MMPY+zYscjMzMS6detw4MABxMXFOfp5wYIFGDx4MMaMGYMTJ07g7bffxp49e/Dzzz8rWnh5Y8+ePQgODnbM63wtWrRwHG/btq1XZV+9ehUZGRnIycnBrl278Oqrr6JmzZqoXbu25riJNBNEJNX8+fMFAPH999+LCxcuiFOnTokvv/xSVK5cWQQEBIhTp0458l6/fl3k5uY6nX/p0iVRpUoV8fjjjzvSxo4dK0JCQsT169fd1rt06VIBQGzYsMEpPTMzU1SoUEEMHTrUKf3s2bMiNDTUKX3gwIECgJg4caKitr7wwgsCgLj//vud0keOHCkAiF9//dWRVrNmTTFw4EDH7+PGjRMAxE8//eQUa2xsrIiJiRF5eXlCCCF27twpAIj58+crimnDhg0CgFi6dKlTuru2rVixQgAQ06dPd0p/8MEHhc1mE0ePHnWkARABAQHixIkTjrT3339fABBVq1YVGRkZjvRJkyYJAE55XenRo4cIDAwUJ0+edKQdPHhQ+Pr6ioK36KSkJOHr6yteeeUVp/P3798v/Pz8HOl2u11Uq1ZN9O7d2ynfF198IQCITZs2OdLuvPNOceeddzp+//jjjwUA8frrrxeJ0263CyGE+OmnnwQAsXDhQqfja9ascZmuVrdu3UTNmjXdHqtVq1aR9KysrGLn7ahRo4SnP3eLFy8WABw/zZo1E/v27VMdP5Ee+DYokU46deqEypUrIzo6Gg8++CCCg4OxatUqVK9e3ZHH19fX8bkhu92Oixcv4vr162jWrBl2797tyFehQgVkZWVh3bp1quNYt24d0tLS0K9fP6Smpjp+fH190bJlS5dvuY4YMUJVHfmvMuV76qmnANz4kLc73377LVq0aOH0Ski5cuUwbNgwJCUl4eDBg6piUKpw27799lv4+vpizJgxTulPP/00hBBYvXq1U3rHjh2dXols2bIlAKB3794oX758kfTjx4+7jSUvLw9r165Fjx49UKNGDUd6vXr10KVLF6e8y5Ytg91ux0MPPeQ0jlWrVkWdOnUc42iz2dCnTx98++23uHz5suP8JUuWoFq1asW+8vS///0P4eHhjvErKP9pyqVLlyI0NBR33323UxxNmzZFuXLlXM4nWXJychAQEFAkPf+BnZycHK/L7tChA9atW4elS5di+PDhKFOmDLKysrwuj0gmvg1KpJN33nkHt9xyC9LT0/Hxxx9j06ZNLv/QfPLJJ3jttdfw+++/O20VEBsb6/j3yJEj8cUXX6Br166oVq0aOnfujIceegj33HOPxziOHDkCALjrrrtcHg8JCXH63c/Pz2lBqUSdOnWcfo+Li4OPj0+xn9k6efKkY0FTUP5bXCdPnkSDBg1UxeGJq7adPHkSUVFRTgutwnEUVHBRBQChoaEAgOjoaJfpxX2O68KFC8jJySnSfwBQt25dp8XukSNHIIRwmReA01uPffv2xZw5c7Bq1So88sgjuHz5Mr799ls8+eSTxe7dduzYMdStWxd+fu7/NBw5cgTp6emIiIhweTz/AQ89BAUFITc3t0h6/ucjtXxGrUqVKo63nh988EHMmDEDd999N44cOcIHDMh0XKwR6aRFixaOp0F79OiBtm3b4pFHHsHhw4dRrlw5ADc+LD5o0CD06NEDzz77LCIiIuDr64vExESnD3RHRERg7969WLt2LVavXo3Vq1dj/vz5eOyxx/DJJ58UG4fdbgdw43Nrrv7oFP7DHBAQAB8fbS+6672Zq7dktM3d573cpYtCDyl4y263w2azYfXq1S7ryp9TAHD77bcjJiYGX3zxBR555BF89dVXyMnJQd++faXEERERgYULF7o8XrlyZc11uBMZGYkNGzZACOE0x1JSUgDA47Yfajz44IOYPHkyVq5ciSeffFJauUTe4GKNyAD5C7AOHTrg7bffxsSJEwEAX375JWrVqoVly5Y5/fF54YUXipTh7++P7t27o3v37rDb7Rg5ciTef/99TJkyBbVr13a7QMr/UHhERAQ6deqkQ+tuvNpS8JXAo0ePwm63F7vfW82aNXH48OEi6b///rvjOKD/wq9mzZr4/vvvkZmZ6fTqWuE49FC5cmUEBQU5Xv0sqHDfxMXFQQiB2NhY3HLLLR7LfuihhzB37lxkZGRgyZIliImJwe23317sOXFxcdi+fTuuXbvm9iGBuLg4fP/992jTpo2mV7K80bhxY3z00Uc4dOgQ6tev70jfvn2747gs+W+ppqenSyuTyFv8zBqRQdq3b48WLVpgzpw5jrdt8l8hKfjqy/bt2522IACAv/76y+l3Hx8fNGzYEAAcbwvl7xdWeKuBLl26ICQkBDNmzCiyIztw4604rd555x2n39966y0AN/aac+fee+/Fjh07nNqalZWFDz74ADExMY4/xu7aJcu9996LvLw8x75d+d544w3YbLZi26CVr68vunTpghUrViA5OdmRfujQIaxdu9Ypb69eveDr64tp06YVebVOCFFkjvTt2xe5ubn45JNPsGbNGkV7+/Xu3RupqalF+iK/DuDGIjAvLw8vv/xykTzXr1/XdauLBx54AGXKlMG7777rFNe8efNQrVo1t08JFyc1NdXlq58fffQRADheHScyE19ZIzJQ/sadCxYswPDhw3Hfffdh2bJl6NmzJ7p164YTJ05g3rx5qF+/vtOHw4cMGYKLFy/irrvuQvXq1XHy5Em89dZbaNy4seOzVY0bN4avry9mzZqF9PR0BAQE4K677kJERATee+89DBgwAE2aNMHDDz+MypUrIzk5Gd988w3atGnj8o+zGidOnMD999+Pe+65B1u3bsVnn32GRx55BI0aNXJ7zsSJE7F48WJ07doVY8aMQcWKFfHJJ5/gxIkT+N///ud4uzIuLg4VKlTAvHnzUL58eQQHB6Nly5ZOr+Rp0b17d3To0AGTJ09GUlISGjVqhO+++w4rV67EuHHjHK9M6mXatGlYs2YN7rjjDowcORLXr1/HW2+9hdtuuw379u1z5IuLi8P06dMxadIkJCUloUePHihfvjxOnDiB5cuXY9iwYXjmmWcc+Zs0aYLatWtj8uTJyM3NVfQW6GOPPYZPP/0UEyZMwI4dO3DHHXcgKysL33//PUaOHIkHHngAd955J5588kkkJiZi79696Ny5M8qUKYMjR45g6dKlmDt3Lh588EFVfbBv3z6sWrUKwI1XZdPT0zF9+nQAQKNGjdC9e3cAQPXq1TFu3Dj85z//wbVr19C8eXOsWLECP/30ExYuXOj09vDJkyfx3//+FwCwa9cuAHCUWbNmTQwYMADAjY8izJs3Dz169ECtWrWQmZmJtWvXYt26dejevbvbz3oSGcqkp1CJSq38rTt27txZ5FheXp6Ii4sTcXFx4vr168Jut4sZM2aImjVrioCAAJGQkCC+/vprMXDgQKftC7788kvRuXNnERERIfz9/UWNGjXEk08+KVJSUpzK//DDD0WtWrUc2z4U3MZjw4YNokuXLiI0NFQEBgaKuLg4MWjQILFr1y5HnoEDB4rg4GDFbc3fuuPgwYPiwQcfFOXLlxdhYWFi9OjRIicnxylv4a07hBDi2LFj4sEHHxQVKlQQgYGBokWLFuLrr78uUs/KlStF/fr1hZ+fn8dtPIrbusNd2zIzM8X48eNFVFSUKFOmjKhTp474z3/+49iuIh8AMWrUKKe0EydOCADiP//5j6I4XNm4caNo2rSp8Pf3F7Vq1RLz5s1z9G1h//vf/0Tbtm1FcHCwCA4OFrfeeqsYNWqUOHz4cJG8kydPFgBE7dq1XdZbeOsOIYTIzs4WkydPFrGxsaJMmTKiatWq4sEHHxTHjh1zyvfBBx+Ipk2biqCgIFG+fHkRHx8vnnvuOXHmzBmP7S0s/5px9VN4zuTl5TmuGX9/f3HbbbeJzz77rEiZ+f3v6qdgm3fu3Cn69OkjatSoIQICAkRwcLBo0qSJeP3118W1a9dUt4VIDzYhJH36lYhuOi+++CKmTZuGCxcuIDw83OxwiIhKJX5mjYiIiMjCuFgjIiIisjAu1oiIiIgsjJ9ZIyIiIrIwvrJGREREZGFcrBERERFZGDfFxY3vujtz5gzKly9v2e80JCIiotJFCIHMzExERUUV+73FXKwBOHPmDKKjo80Og4iIiG5Cp06dQvXq1d0e52INcHx586lTpxASEmJyNERERHQzyMjIQHR0tGMd4g4Xa4Djrc+QkBAu1oiIiMhQnj6CxQcMiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIguz/GJt06ZN6N69O6KiomCz2bBixQqn40IITJ06FZGRkQgKCkKnTp1w5MgRc4IlIiIikszyi7WsrCw0atQI77zzjsvjs2fPxptvvol58+Zh+/btCA4ORpcuXXDlyhWDI1UnJT0HW46lIiU9x9A0NfnVlGlWe7yN2ay2GRGfEeNuRMxW6WMrtdXq7dW7rVrzGnV/UFq37Jisen1YfS6rzWsGy2+K27VrV3Tt2tXlMSEE5syZg3//+9944IEHAACffvopqlSpghUrVuDhhx82MlTFluxMxqRl+2EXgI8NSOwVDwC6p/VtXkNx/T0TqmH5ntOKyjSrPd7GrKa/ZLbNiPhc1SF73LW0Q2nMVuljI8bHKn1npetRzbWnNK9R9wc116XR9xcz5ovStps1l9XONbPYhBDCtNpVstlsWL58OXr06AEAOH78OOLi4rBnzx40btzYke/OO+9E48aNMXfuXJfl5ObmIjc31/F7/tc9pKen6/4NBinpOWgzcz3sBXrdBwBs0DXN12bD5okdAEBR/YW5K3PZyFbo+e4Ww9vjbcxq+kt224yIrzA9xt3bdiiN2Sp9bMT4WKnvrHI9qrn21OT1Nh419aq5Ls24vyjJo/c8sNJcVjvXNk/sgMjQIPdBeyEjIwOhoaEe1x+Wf2WtOGfPngUAVKlSxSm9SpUqjmOuJCYmYtq0abrG5s6J1KwiE9QOADqn5QmBpNRsCAhF9RfmrsydSZdMaY+3MavpL9ltMyK+wvQYdyV5tMRslT42Ynys1HdWuR7VXHtq8nobj5p61VyXZtxflOTRex5YaS6rnWtJqdnSF2tKWf4za3qYNGkS0tPTHT+nTp0yrO7Y8GD42JzTfADd03xtNsSEl1Vcf2HuymweE2ZKe7yNWU1/yW6bEfEVpse4K8mjJWar9LER42OlvrPK9ajm2lOT19t41NSr5ro04/6iJI/e88BKc1ntXIsJL1t80Doq0Yu1qlWrAgDOnTvnlH7u3DnHMVcCAgIcX9pu9Je3R4YGIbFXPHz//tJWX5sNib3jdU+b0asBIkODFNffu0k1RWU2ig4zpT3exqymv2S3zYj4Ctehx7h72w6lMVulj40YHyv1nVWuRzXXnpq8Rlx/aq5LM+4vZswXpW03Iza1c82sV9WAEv6ZNSEEoqKi8Mwzz+Dpp58GcOP934iICCxYsEDxAwZK3zOWKSU9B0mp2YgJL+uYAEakqalfTZlmtcfbmM1qmxHxGTHuRsRslT62Ulut3l6926o1r1H3B6V1m9HfVpkHVonNm7kmk9L1h+UXa5cvX8bRo0cBAAkJCXj99dfRoUMHVKxYETVq1MCsWbMwc+ZMfPLJJ4iNjcWUKVOwb98+HDx4EIGBgYrqMGOxRkRERDe3UvOAwa5du9ChQwfH7xMmTAAADBw4EAsWLMBzzz2HrKwsDBs2DGlpaWjbti3WrFmjeKFGREREZGWWf2XNCHxljYiIiIymdP1Roh8wICIiIirtuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNQtISc/BlmOpSEnP0ZTu7pje5Xh7zKjy9O4vme1Tky6jXTLqKy4OWWXJnit61OXquN5zSeaYqInf3TG955O37TIzNrNiMiJWve+t3pxn1DVkND+zA7jZLdmZjEnL9sMuAB8bkNgrHn2b11Cd7q4sALqWU1wbvGmf7PL07i+Z7VOTrnY8XOVX01Zv5pHefeztXNFjXro63jOhGpbvOa3bXPKmDWra7i5+GeMq676kpF1qx1tmbGbFZESsMu5BMuerUfdvs9iEEMLUCCwgIyMDoaGhSE9PR0hIiGH1pqTnoM3M9bAXGAFfmw3LRrZCz3e3KE7fPLEDABQpywcAbNCtHHf5PR1TW7+35endX7LqVVuW2vFwlV9NW72ZR5GhQS7nt6w+9nau6DEv3bW1MJlzyZv+chenu/NcxS/j2pF1X1LSLrXjLTM2WecYcc3o/TdB5j1E737yFJNsStcffGXNRCdSs4rcHPOEwM6kS6rSk1KzISCKHLMDgI7luMvv6Zja+r0tT+/+klWv2rLUjoer/Gra6s08igwNcjm/ZfWxt3NFj3nprq2FyZxL3vSXuzjdnecqfhnXjqz7kpJ2qR1vmbHJOseIa0bvvwky7yF695OnmMzCxZqJYsOD4ePi/wSax4SpSo8JLwsARY65+z8NWeW4y+/pmNr6vS1P7/6SVa/astSOh5pX1tTU56mdrua3rD72dq7oNS9dtbUwmXPJ2/5Sc89xFb+Ma0fWfUlJu9SOt8zYZJ1jxDWj998EmfcQvfvJU0xm4QMGJooMDUJir3j42mwAbkyIGb0aoFF0mKr0yNAgl2Ul9o7XtRx3+T0dU1u/t+Xp3V+y6lVbltrxcJVfTVu9mUfu5resPvZ2rugxL921tXeTarrNJW/6y12c7s5zFb+Ma0fWfUlJu9SOt8zYZJ1jxDWj998EmfcQvfvJU0xm4WfWYN5n1vKlpOcgKTUbMeFlnSaE2nR3x/Qux9tjRpWnd3/JbJ+adBntklFfcXHo3cd6HPO2PFfH9Z5LMsdETfzuytB7PnnbLjNjMysmI2I14m+RWf3kKSZZlK4/uFiD+Ys1IiIiuvkoXX/wbVAiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILKzEL9by8vIwZcoUxMbGIigoCHFxcXj55ZchhDA7NCIiIiLNSvxibdasWXjvvffw9ttv49ChQ5g1axZmz56Nt956y+zQvJaSnoMtx1KRkp6jWx5P58uIQUYdRpVjRBl69qmecek912SWoaUcrfXr3Qdaj8uKwah49Ypbz3GWGa+WWPQ+V0lemeNm1bKM5Gd2AFpt2bIFDzzwALp16wYAiImJweLFi7Fjxw6TI/POkp3JmLRsP+wC8LEBib3i0bd5Dal5PJ0vIwYZdRhVjhFl6Nmnesal91yTWYaWcrTWr3cfaD0uKwaj4lUbj1HzzEr3NW/uBzLOldWXsvrcrLKMZhMl/P3CGTNm4IMPPsB3332HW265Bb/++is6d+6M119/Hf3793d5Tm5uLnJzcx2/Z2RkIDo6Gunp6QgJCTEq9CJS0nPQZuZ62AuMiK/Nhs0TOyAyNEhKHgDFni8jBq3HlfaHjHI89YeMMvTs02UjW6Hnu1t0iUvvuSajbwvythxvjxnVB1rHSlYMBRlxD5B1n1CST0kfWem+5s39QMa5svpSST8ozWNGWTJlZGQgNDTU4/qjxL8NOnHiRDz88MO49dZbUaZMGSQkJGDcuHFuF2oAkJiYiNDQUMdPdHS0gRG7dyI1y2mCAECeEEhKzZaWx9P5MmKQUYdR5RhRhp59ujPpkm5x6T3XZJahpRyt9evdB1qPy4rBqHjVxmPUPLPSfc2b+4GMc5W0Qea4WbUsM5T4t0G/+OILLFy4EIsWLcJtt92GvXv3Yty4cYiKisLAgQNdnjNp0iRMmDDB8Xv+K2tmiw0Pho8NRVb0MeFlpeYp7piM8rUel1WPjP6QUYaefdo8Jky3uPSeazLL0FqOlvqN6AOtx2XEYGS8auIx6j5gpfuat/cDrecqbYOscZM5B2TPJ6OV+FfWnn32Wcera/Hx8RgwYADGjx+PxMREt+cEBAQgJCTE6ccKIkODkNgrHr42G4AbE2RGrwZOL71qzePpfBkxyKjDqHKMKEPPPm0UHaZbXHrPNZllaClHa/1694HW47JiMCpetfEYNc+sdF/z5n4g41xZfam1nWaXZYYS/5m1SpUqYfr06RgxYoQjLTExEfPnz8cff/yhqAyl7xkbJSU9B0mp2YgJL+t2gmjN4+l8GTHIqMOocowoQ88+1TMuveeazDK0lKO1fr37QOtxWTEYFa9eces5zjLj1RKL3ucqyStz3KxalgxK1x8lfrE2aNAgfP/993j//fdx2223Yc+ePRg2bBgef/xxzJo1S1EZVlusERERUel30yzWMjMzMWXKFCxfvhznz59HVFQU+vXrh6lTp8Lf319RGVysERERkdFumsWaDFysERERkdFumq07iIiIiEozLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NizUQp6TnYciwVKek5HtOVpmk9X4961KQb1Sa1efVog5FtldUPSvLqMS+MaLPMsvSYAyWhPbLKLin3QKX5zWyPFfKaMc/1uC+Zyc/sAG5WS3YmY9Ky/bALwMcGJPaKR9/mNVymA1CUpvV8Pepxl9dVes+Eali+57TubVIbv5rxUtoGI9sqY74pzeuqXVrnhd5j5ildr/5TMwdkpus5H2SMn1HXtl7XlbfXhB7t0eMa1zMuveaVjPuS2WxCCGF2EGbLyMhAaGgo0tPTERISont9Kek5aDNzPewFet7XZsOyka3Q890tTuk+AGCDxzSt5+tRj7u87tIL06NNauPfPLEDACgeL6VtMKqtauPX2meFyZgXeo9Zcel69l9hsvrFrPbIGD+jrm29ritvrwk92qPXNa5XXHrOq8LUxrV5YgdEhga5L1ADpesPvrJmghOpWUUmUp4Q2Jl0qUi6HQAUpGk9X4963OV1l16YHm1SG39SajYEhPQ2KM2nta1q49faZ4XJmBd6j1lx6Xr2X2Gy+sWs9sgYP6Oubb2uK2+vCT3ao9c1rldces6rwtTGlZSardtiTSku1kwQGx4MHxer+uYxYUXS1fzfipbz9ajHXV536YXp0Sa18ceEl71xXHIbjGqr2vi19llhMuaF3mNWXLqe/VeYrH4xqz0yxs+oa1uv60r2K2tG/U3QK6+e88fI+1L+eJuJDxiYIDI0CIm94uFrswG4MRlm9GqARtFhRdITe8crStN6vh71uMvrLr13k2q6t0lt/JGhQarGS2kbjGqr2vi19lnhdsmYF3qPWXHpevaf0jkgM13P9sgYP6Oubb2uK2+vCT3ao9c1rldces4rrfcls19VA/iZNQDGf2YtX0p6DpJSsxETXtZpMrhKV5qm9Xw96lGTblSb1ObVow1GtlXPcVTSLq3zQu8x85SuV//p2S9mtEdW2SXlHqg0v5ntsUJeM+a5HvclPShdf3CxBvMWa0RERHTzUrr+4NugRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYXp8g0GR44cwcqVK5GUlASbzYbY2Fj06NEDtWrV0qM6IiIiolJL+mItMTERU6dOhd1uR0REBIQQuHDhAiZOnIgZM2bgmWeekV0lERERUakl9W3QDRs24N///jcmT56M1NRUpKSk4OzZs47F2sSJE7Fp0yaZVRIRERGValK/waBv376oUKEC3n//fZfHhw0bhszMTCxevFhWlVLwGwyIiIjIaKZ8g8GOHTswYMAAt8cHDBiAbdu2yaySiIiIqFSTulg7d+4cYmJi3B6PjY3F2bNnZVZJREREVKpJXaxduXIF/v7+bo+XKVMGV69elVklERERUakm/WnQjz76COXKlXN5LDMzU3Z1RERERKWa1MVajRo18OGHH3rMQ0RERETKSF2sJSUlySyOiIiI6KbHr5siIiIisjCpr6y9+eabivKNGTNGZrVEREREpZbUTXFjY2M9V2iz4fjx47KqlIKb4hIREZHRlK4/pL6yduLECZnFEREREd30SsVn1k6fPo1HH30UlSpVQlBQEOLj47Fr1y6zwyIiIiLSrMQv1i5duoQ2bdqgTJkyWL16NQ4ePIjXXnsNYWFhZoemWkp6DrYcS0VKeo5Xx5Xm9faY2nwy2qOlDJltkRGP1njdHZfVTqv0tZFjauR8V5LHiGtcTT1G94+nfEbVozSP1mtSVrxG3QOMziMrZiV51ZRjBumb4hpt1qxZiI6Oxvz58x1pSj47ZzVLdiZj0rL9sAvAxwYk9opH3+Y1FB9XWpa3x9TEKqs9WsqQ2RZZbdISr7vjstpplb42ckyNnO8yxkBWP1m1f7S2y+iYtV6TRvaLlvbI7jejY5bZh2aS+oCBGerXr48uXbrgzz//xMaNG1GtWjWMHDkSQ4cOdXtObm4ucnNzHb9nZGQgOjratAcMUtJz0GbmetgLjISvzYbNEzsgMjTI43GlZQHw6ljBOpTEIqM9WsqQ2RalefWM1925y0a2Qs93t2hup1X62sgxlZnPqGtCSUye+smq/aO1XUbHrPWaNLJftLRH9jyX1W4jrxm9KX3AoMS/DXr8+HG89957qFOnDtauXYsRI0ZgzJgx+OSTT9yek5iYiNDQUMdPdHS0gREXdSI1y2miAECeEEhKzVZ0XGlZ3h5TE6us9mgpQ2ZbZLVJS7zuju9MuiSlnVbpayPH1Mj5riSPEde4mnqM7h+t7TI6Zq3XpKx4ZbXZqHmuNI+smJWUpaYcM+n2NqjdbsfRo0dx/vx52O12p2Pt2rWTWk+zZs0wY8YMAEBCQgIOHDiAefPmYeDAgS7PmTRpEiZMmOD4Pf+VNbPEhgfDx4YiK/uY8LKKjqspy9tjSsuX1R6tZchqi6x4tMTr7tzmMWFS2mmVvjZyTGXmM+qaUFqWjHqM7h+t7TI6Zq3XpJH9oqU9sue5zHYbdc1YhS6vrG3btg21a9dGvXr10K5dO7Rv397x06FDB6l1RUZGon79+k5p9erVQ3JysttzAgICEBIS4vRjpsjQICT2ioevzQbgxkSZ0auB4yVYT8eVluXtMTWxymqPljJktkVWm7TE6+54o+gwKe20Sl8bOaZGzncZY6A0Jln1GN0/WttldMxar0kj+0VLe2TPc5njZNQ1YxW6fGatcePGuOWWWzBt2jRERkbC9ncn5AsNDZVW1yOPPIJTp07hp59+cqSNHz8e27dvx5YtWxSVYZVNcVPSc5CUmo2Y8LIuJ4qn40rzentMbT4Z7dFShsy2yGqTlnjdHZfVTqv0tZFjauR8V5LHiGtcTT1G94/Wdhkds9ZrUla8Rt0DjM4jK2YledWUI5PS9Ycui7Xg4GD8+uuvqF27tuyii9i5cydat26NadOm4aGHHsKOHTswdOhQfPDBB+jfv7+iMqyyWCMiIqKbh6kPGLRs2RJHjx7Vo+gimjdvjuXLl2Px4sVo0KABXn75ZcyZM0fxQo2IiIjIynR5wOCpp57C008/jbNnzyI+Ph5lypRxOt6wYUOp9d1333247777pJZJREREZAW6vA3q41P0BTubzQYhBGw2G/Ly8mRXqQnfBiUiIiKjmfJF7vn4he5EREREcuiyWKtZs6YexRIRERHddHTbFPfYsWOYM2cODh06BODG10KNHTsWcXFxelVJREREVOro8jTo2rVrUb9+fezYsQMNGzZEw4YNsX37dtx2221Yt26dHlUSERERlUq6PGCQkJCALl26YObMmU7pEydOxHfffYfdu3fLrlITPmBARERERjN1n7VDhw7hiSeeKJL++OOP4+DBg3pUSURERFQq6bJYq1y5Mvbu3Vskfe/evYiIiNCjSiIiIqJSSZcHDIYOHYphw4bh+PHjaN26NQDg559/xqxZszBhwgQ9qiQiIiIqlXT5zJoQAnPmzMFrr72GM2fOAACioqLw7LPPYsyYMUW+2N1s/MwaERERGc20TXGvX7+ORYsW4ZFHHsH48eORmZkJAChfvrzsqoiIiIhKPemfWfPz88Pw4cNx5coVADcWaVyoEREREXlHlwcMWrRogT179uhRNBEREdFNRZcHDEaOHImnn34af/75J5o2bYrg4GCn4w0bNtSjWiIiIqJSR5cHDHx8ir5gZ7PZIISAzWZDXl6e7Co14QMGREREZDTTHjAAgBMnTuhRLBEREdFNR5fFWs2aNfUoloiIiOimo8ti7dNPPy32+GOPPaZHtURERESlji6fWQsLC3P6/dq1a8jOzoa/vz/Kli2Lixcvyq5SE35mjYiIiIxm6he5X7p0yenn8uXLOHz4MNq2bYvFixfrUWWJlZKegy3HUpGSnuMxXWteNee7SneXT0adevWDjLL16Dcjx12vdpkRg9Fxm30dmtEPMvLq3R6rjovZ15nS+6pV4lUTsx6xqp2jZtLlbVBX6tSpg5kzZ+LRRx/F77//blS1lrZkZzImLdsPuwB8bEBir3j0bV7DZToATXnVnO8qvWdCNSzfc7pIvuLaorROd2Vr7Qe16Ub1m9axNDqvXv2lNga114zWuPVon4z+0bMfjJ4v3rTHquNi9nVWOE3Pe7Ze/Wvk3wI192Yr0OVtUHf27t2Ldu3aISMjw6gqFTHjbdCU9By0mbke9gK972uzYdnIVuj57handB8AsMHrvGrOd5demK/Nhs0TOyAyNMhlW9TU6apsrf2gNt2oftM6lkbn1au/1MaweWIHAFB8zWiNW4/2yegfPfvB6PniTXusOi5mX2eu0gqTec/Wq39dxaxX3xZW3ByNDA1yf6JGpm7dsWrVKqffhRBISUnB22+/jTZt2uhRZYlzIjWryMTJEwI7ky4VSbcDgIa8as53l15YnhBISs1GZGiQy7aoqdNV2Vr7QW26Uf2mdSyNzqtXf6mNISk1GwLCsHHWo30y+kfPfjB6vnjTHquOi9nXmau0wmTes/XqX1cx69W3hRU3R/VcrCmly2KtR48eTr/bbDZUrlwZd911F1577TU9qixxYsOD4eNiFd88JqxIursVv9K8as53l16Yr82GmPCybtuipk5XZWvtB7XpRvWb1rE0Oq9e/aU2hvy5ZtQ469E+Gf2jZz8YPV+8aY9Vx8Xs60zpK2uy7tl69a+rmPXq28I8zVGz6fKAgd1ud/rJy8vD2bNnsWjRIkRGRupRZYkTGRqExF7x8LXZANyYFDN6NUCj6LAi6Ym94zXlVXO+u/TeTaoVyZf/fxuu2qKmTldla+0HtelG9ZvWsTQ6r179pTaGyNAgVdeM1rj1aJ+M/tGzH4yeL960x6rjYvZ15ipNz3u2Xv1r5N8CpfdmK7yqBuj8mbWrV6/ixIkTiIuLg5+fYc8yqGbm1h0p6TlISs1GTHhZp0nhKl1rXjXnu0p3l09GzHr1g1X7zchx17MfjY7B6LjNvg7N6AdZY6Vne6w6LmZfZ0bes/XqXyP7Vu0c1YPS9Ycui7Xs7GyMHj3asTnuH3/8gVq1auGpp55CtWrVMHHiRNlVasJ91oiIiMhopu6zNmnSJOzbtw8//vgjAgMDHemdOnXCkiVL9KiSiIiIqFTS5b3JFStWYMmSJbj99tth+/v9XwC47bbbcOzYMT2qJCIiIiqVdHll7cKFC4iIiCiSnpWV5bR4IyIiIqLi6bJYa9asGb755hvH7/kLtI8++gitWrXSo0oiIiKiUkmXt0FnzJiBrl274uDBg7h+/Trmzp2LgwcPYsuWLdi4caMeVRIRERGVSrq8sta2bVvs3bsX169fR3x8PL777jtERERg69ataNq0qR5VEhEREZVKhn43qFVx6w4iIiIymqlbdxARERGRHFI/s+bj4+PxaU+bzYbr16/LrJaIiIio1JK6WFu+fLnbY1u3bsWbb74Ju90us0oiIiKiUk3qYu2BBx4oknb48GFMnDgRX331Ffr374+XXnpJZpVEREREpZpun1k7c+YMhg4divj4eFy/fh179+7FJ598gpo1a+pVJREREVGpI32xlp6ejueffx61a9fGb7/9hh9++AFfffUVGjRoILsqIiIiolJP6tugs2fPxqxZs1C1alUsXrzY5duiRERERKSc1H3WfHx8EBQUhE6dOsHX19dtvmXLlsmqUgrus0ZERERGU7r+kPrK2mOPPcYvaiciIiKSSOpibcGCBTKLIyIiIrrp8RsMiIiIiCyMizUiIiIiC+NijYiIiMjCSt1ibebMmbDZbBg3bpzZoRARERFpVqoWazt37sT777+Phg0bmh2KYinpOdhyLBUp6Tmq09Sma80rO+1mKdOo/tRr3hjZLqv1lZH9ISO9NLSrNMxNV+lmzne96pfVV2b3g9pYzSD1aVAzXb58Gf3798eHH36I6dOnmx2OIkt2JmPSsv2wC8DHBiT2igcARWl9m9dweb67dDVlKI1BS5oedVuxTDP7WMa8kTHPSmpf6XXd6TUuPROqYfme0yW6XXrOWaPmptKxMWq+W31sAW1/C428l5tJ6qa4Zho4cCAqVqyIN954A+3bt0fjxo0xZ84cl3lzc3ORm5vr+D0jIwPR0dGGboqbkp6DNjPXw16g930AwAaPab42G5aNbIWe725RlK6mDKUxaEnTo24rlmlmH8uYNzLmWUntK72uOz3HpbCS1i49+8aoual0bIya71Yf280TOwCA138LjbyXb57YAZGhQZDNlE1xzfL5559j9+7d2Llzp6L8iYmJmDZtms5RFe9EalaRi9kOAArS8oTAzqRLRc53l66mDKUxaEnTo24rlmlmH8uYNzLmWUntK72uOz3HpbCS1i49+8aoual0bIya71Yf26TUbAgI0/pBzflJqdm6LNaUKvGfWTt16hTGjh2LhQsXIjAwUNE5kyZNQnp6uuPn1KlTOkdZVGx4MHxszmk+gKI0X5sNzWPCFKerKUNpDFrS9KjbimWa2ccy5o2MeVZS+0qv607PcSmspLVLz74xam4qHRuj5rvVxzYmvKymv4VG3stjwsvCTCV+sfbLL7/g/PnzaNKkCfz8/ODn54eNGzfizTffhJ+fH/Ly8oqcExAQgJCQEKcfo0WGBiGxVzx8//56Ll+bDYm94xWlzejVAI2iwxSnqylDaQxa0vSo24plmtnHMuaNjHlWUvtKr+tOz3Hp3aRaiW6Xnn1j1NxUOjZGzXerj21kaJCmv4VG3svNfFUNKAWfWcvMzMTJkyed0gYPHoxbb70Vzz//PBo0aOCxDDO/yD0lPQdJqdmICS/rmAxK09Sma80rO+1mKdPMPpYxb0pSX1ux/4wcl9LQrtIwN5WOjR5xlsSxNbsf1MYqk9L1R4lfrLnSvn3xDxgUZuZijYiIiG5OStcfJf5tUCIiIqLSrFQ8DVrYjz/+aHYIRERERFLwlTUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwLtaIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwrhYIyIiIrIwP7MDuBmkpOfgRGoWYsODERka5Pg92N8XWVfzEBseDABOacUdy0/blXQRNpsNTWuGOfIoLUttuUpiVVqPt+1W0zcyz1OaX0ndesRiVPu0jp+MeeFNf6rNm3wx2+38lz2eWuaYXnNWz2vW2/Jkzh0ZY6T3vVTr9aflHKV97e1/ZVyjsq4hNWMcGRoEM3GxprMlO5Mxadl+2AXgYwN6JlTD8j2nYRf/5LH9/V/h4nxXx2wu8uanKS1LbblKYlVaj5Ky1Naj53lK8yupW49Y9CjT23qUlqm1jd7E5E1eV9eE2jJljpmWPpQxj2WPmzf3KyvcN/S+l2q9/rSco7SvvSX7Gi0ur5b5XfDfPjYgsVc8+javoSASffBtUB2lpOc4FmoAYBfA/3Y7L9SAG5PB3WR0dcxVXlHgv0rKUltucfGorUdJWWrr0fM8pfmV1K1HLHqU6W09SsvU2kZvYvImr97jqfY8LX0oYx7LHjdv7ldWuG/ofS/Vev1pOUdpX3tL9jVaXF4t87vgv+0C+NeyA0hJz1EYjXxcrOnoRGpWkYUZERERlSx5QiApNdu0+rlY01FseDB8bJ7zERERkXX52myICS9rWv1crOkoMjQIib3i4Wu7sWLztdnQu0k1x+/5bABsbhZ1ro65ypqfR2lZastVEqvSepSUpbYePc9Tml9J3XrEokeZ3tajtEytbfQmJm/y6j2eas/T0ocy5rHscfPmfmWF+4be91Kt15+Wc5T2tbdkX6PF5dUyvwv+29dmw4xeDUx9yMAmhLjp36jLyMhAaGgo0tPTERISIr38lPQcJKVmIya8rONp0KTUbJT190H2VbtjtV4wrbhj+Wm/JF2CzQY0+ftJo/w6lJSltlwlsSqtx9t2q+kbmecpza+kbj1iMap9WsdPxrzwpj/V5j11Mcft/Jc9nlrmmF5zVs9r1tvyZM4dGWOk971U6/Wn5Rylfe3tf2Vco7KuITVjrNdCTen6g4s16L9YIyIiIipM6fqDb4MSERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGREREZGFcrBERERFZGBdrRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGREREZGFcrBERERFZWIlfrCUmJqJ58+YoX748IiIi0KNHDxw+fNjssIiIiIikKPGLtY0bN2LUqFHYtm0b1q1bh2vXrqFz587IysoyOzRFUtJzsOVYKlLScxQfc5Uuqxy15esZo57tVNsevcuR3Ra1fedNW/SaJzLTvT2mZ/rNdM2bFY83c71wmhHj5E09Rt+fjb6velOGjHKU3JfNZBNCCLODkOnChQuIiIjAxo0b0a5dO0XnZGRkIDQ0FOnp6QgJCdE5wn8s2ZmMScv2wy4AHxuQ2CsefZvXKPaYq3QAUspRW76eMbrKL6udatujJkZvysk/5mleaOmn4vrOSvNEZrrMa0xWut5z2GpjaUY83sz1wuf0TKiG5XtO6zpO3sxPNde2Ve7xatrort893Te1lqPkvqwXpeuPUrdYO3r0KOrUqYP9+/ejQYMGLvPk5uYiNzfX8XtGRgaio6MNXaylpOegzcz1sBfofV+bDZsndgAAl8eWjWyFnu9ucUr3AQAbNJejtnwZZbiL0VV+We1U2x41MXpTTv6xyNAgAO7nhdK2qO27yNAgVXXqOU9kpnvqb3fH9IxL7zlspWverHi8meuuzilM9jgVd93JuC9a5R6vdm4U5qkMd/2ophxP5etN6WLNT/dIDGS32zFu3Di0adPG7UINuPE5t2nTphkYWVEnUrOKTK48IZCUmg0B4fLYzqRLRdLtACChHLXlyyjDXYyu8stqp9r2qInRm3Lyj+XfFNzNC6VtUdt3kaFBqurUc57ITPfU3zKuDb2vg5J8zZsVjzdz3dU5hckep+KuOxn3Ravc49XOjcI8leGuH9WU46l8qyhVi7VRo0bhwIED2Lx5c7H5Jk2ahAkTJjh+z39lzUix4cHwcfF/IjHhZQHA5bHmMWFF0t39H43actSWL6MMdzGq+T9IWf3lrj1qYvSmnILHAPfzQmlbvOk7NXXqOU9kpivpb6Pj0nsOW+maNyseb+a60lfWZI+T2r8Baq5tq9zj1c6NwpSU4aof1ZTjqXyrKPEPGOQbPXo0vv76a2zYsAHVq1cvNm9AQABCQkKcfowWGRqExF7x8LXZANyYHDN6NUBkaJDbY42iw4qkJ/aOl1KO2vJllOEuRlf5ZbVTbXvUxOhNOfnHPM0LpW1R23dq69RznshM99TfMtqs93VQkq95s+LxZq67Oqd3k2q6jlNx152M+6JV7vFq54arfi+uDHf9qKYcT+VbRYn/zJoQAk899RSWL1+OH3/8EXXq1FFdhlkPGAA3PqOUlJqNmPCyRSaHu2Ou0mWVo7Z8PWPUs51q26N3OYVpbYvavvOmLXrNE5np3h7TM/1muubNisebuV44zYhx8qbfjL4/G31f9aYMGeUouS/r4aZ5wGDkyJFYtGgRVq5cibp16zrSQ0NDERSkrMPNXKwRERHRzemmWazZ/n7psrD58+dj0KBBisrgYo2IiIiMdtM8DVrC15pERERExSo1DxgQERERlUZcrBERERFZGBdrRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGREREZGFcrBERERFZGBdrRERERBbGxRoRERGRhXGxRkRERGRhXKwRERERWRgXa0REREQWxsWaiVLSc7DlWCpS0nOKTdM73V1eb8pXk8ebsvWIR+90o84pae3TUq43x4zoa2/OM+taNXrM9LzfKYlbr+NGz3GrXf963Rdk1ynjXDP5mR3AzWrJzmRMWrYfdgH42IDEXvEAUCStb/MaLvPKSndXp7sYiyvfU/sK5vGmbD3i0TvdqLaWtPYpmScyj8mc5zLntppr3og26DVmet7vtNxv9Lxf6THHZfWZ1e8Lsu+bWsfCCmxCCGF2EGbLyMhAaGgo0tPTERISont9Kek5aDNzPewFet4HAGxwSvO12bBsZCv0fHeLLunu6tw8sQMAFImxuPI3T+yAyNAgt+0rmMfd8eLK1iMePftWS9xqzzErXc954q5cb47JnOee2qVmrqm55o1og15jprXt3s5BT2Oi9bjRc9yMvxFm3BeK6ze95oGnc/WkdP3BV9ZMcCI1y2lSAIAdAAql5QmBnUmXiuSVle6uzqTUbAgIVeUnpWY7JrWr9hXM4+54cWXrEY+efaslbrXnmJWu5zxxV643x2TOc0/tUjPX1FzzRrRBrzHT2nZv56CnMdF63Og5bsbfCDPuC4D6e7bWeeDpXCvgYs0EseHB8Cn0f0ju/q+peUxYkbyy0t3VGRNe9sZxFeXnn+OufQXzuDvuqWzZ8ejZt1rjNiNeI9sHeJ4nso7JnOee2qVmrqm55o1og15jprXt3s5BT2Oi9bjRc9yMvxFm3BeK6zc954GSuMzEBwxMEBkahMRe8fC12QDcmBSJveOLpM3o1QCNosN0S3dXZ2RokMsYiyu/4P99uDs3P483ZesRj559qyVus+I1qn1K5onMYzLnuad2qSlPzTVvRBv0GjOtbfd2DnoaE63HjZ7jZvyNMOO+4G2faxlnT+daAT+zBuM/s5YvJT0HSanZiAkv6/QZh8Jpeqe7y+tN+UrO1VK2HvHonW7UOSWtfVrK9eaYEX3tzXlmXatGj5me9zslcet13Og5brXrX6/7guw6ZZyrB6XrDy7WYN5ijYiIiG5eStcffBuUiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjF83BSB/q7mMjAyTIyEiIqKbRf66w9OWt1ysAcjMzAQAREdHmxwJERER3WwyMzMRGhrq9ji/wQCA3W7HmTNnUL58edj+/m4wIiIiIj0JIZCZmYmoqCj4+Lj/ZBoXa0REREQWxgcMiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgsjIs1IiIiIgvjYo2IiIjIwkxdrCUmJqJ58+YoX748IiIi0KNHDxw+fNhx/OLFi3jqqadQt25dBAUFoUaNGhgzZgzS09OdyrHZbEV+Pv/8c6ObQ0RERCSdqYu1jRs3YtSoUdi2bRvWrVuHa9euoXPnzsjKygIAnDlzBmfOnMGrr76KAwcOYMGCBVizZg2eeOKJImXNnz8fKSkpjp8ePXoY3BoiIiIi+Sz1DQYXLlxAREQENm7ciHbt2rnMs3TpUjz66KPIysqCn9+Nrza12WxYvnw5F2hERERU6ljqi9zz396sWLFisXlCQkIcC7V8o0aNwpAhQ1CrVi0MHz4cgwcPdvs9n7m5ucjNzXX8brfbcfHiRVSqVInfDUpERESGUPrdoBAWkZeXJ7p16ybatGnjNs+FCxdEjRo1xL/+9S+n9Jdeekls3rxZ7N69W8ycOVMEBASIuXPnui3nhRdeEAD4wx/+8Ic//OEPf0z/OXXqVLFrJMu8DTpixAisXr0amzdvRvXq1Yscz8jIwN13342KFSti1apVKFOmjNuypk6divnz5+PUqVMujxd+ZS09PR01atTAqVOnEBISor0xRERERB5kZGQgOjoaaWlpCA0NdZvPEm+Djh49Gl9//TU2bdrkcqGWmZmJe+65B+XLl8fy5cuLXagBQMuWLfHyyy8jNzcXAQEBRY4HBAS4TA8JCeFijYiIiAzl6SNYpj4NKoTA6NGjsXz5cqxfvx6xsbFF8mRkZKBz587w9/fHqlWrEBgY6LHcvXv3IiwszOWCjIiIiKgkMfWVtVGjRmHRokVYuXIlypcvj7NnzwIAQkNDERQU5FioZWdn47PPPkNGRgYyMjIAAJUrV4avry+++uornDt3DrfffjsCAwOxbt06zJgxA88884yZTSMiIiKSwtTPrLl72W/+/PkYNGgQfvzxR3To0MFlnhMnTiAmJgZr1qzBpEmTcPToUQghULt2bYwYMQJDhw4t/smKAjIyMhAaGup40pSIiIhIb0rXH5Z5wMBMXKwRERGR0ZSuP/jdoEREREQWZomnQYmIiIj0kJycjNTUVABAeHg4atSoYXJE6nGxRkRERKVScnIy6tathytXsgEAgYFlcfjwoRK3YOPboERERFQqpaam/r1Q+wzAZ7hyJdvxKltJovqVtbS0NCxfvhw//fQTTp48iezsbFSuXBkJCQno0qULWrdurUecRERERF6qZ3YAmih+Ze3MmTMYMmQIIiMjMX36dOTk5KBx48bo2LEjqlevjg0bNuDuu+9G/fr1sWTJEj1jJiIiIrppKH5lLSEhAQMHDsQvv/yC+vXru8yTk5ODFStWYM6cOTh16hQ3piUiIiLSSPFi7eDBg6hUqVKxeYKCgtCvXz/069cPf/31l+bgiIiIiG52ihdrnhZqWvMTkTXlP/ZeUh95JyIq6bx6GtTX1xcdOnTAxYsXndLPnTsHX19fKYERkfnyH3tv2rQp6tath+TkZLNDIiK66Xi1WBNCIDc3F82aNcNvv/1W5BgRlQ7/PPb+7xL7yDsRUUnn1WLNZrPhf//7H7p3745WrVph5cqVTseIqLSpaXYAREQ3La9fWfP19cXcuXPx6quvom/fvpg+fTpfVSMiIiKSTPPXTQ0bNgx16tRBnz59sGnTJhkxEREREdHfvHplrWbNmk4PEnTo0AHbtm3DqVOnpAVGRERERF6+snbixIkiabVr18aePXtw7tw5zUERERER0Q1Sv8g9MDAQNWsq/yDypk2b0L17d0RFRcFms2HFihVOxwcNGgSbzeb0c8899zjluXjxIvr374+QkBBUqFABTzzxBC5fviyjOVQKJCcnY/fu3di9e7flt50oSbEqld+m0tIeotJK1v2H17w+VL2yFhYWpuhpz8L7r7mTlZWFRo0a4fHHH0evXr1c5rnnnnswf/58x+8BAQFOx/v374+UlBSsW7cO165dw+DBgzFs2DAsWrRIUQxUeuXvEXZj6wkgMLAsDh8+ZMmNXUtSrEoVbFNpaA9RaSXr/sNrXj+qFmtz5sxx/FsIgREjRuCll15CRESEV5V37doVXbt2LTZPQEAAqlat6vLYoUOHsGbNGuzcuRPNmjUDALz11lu499578eqrryIqKsqruKh0+GePsM8AAFeuPIrU1FRL3jxKUqxKOe/RNr3Et4eotJJ1/+E1rx9Vi7WBAwc6/f7UU0+hd+/eqFWrltSgCvrxxx8RERGBsLAw3HXXXZg+fbrjq6y2bt2KChUqOBZqANCpUyf4+Phg+/bt6Nmzp8syc3NzkZub6/g9IyNDt/jJCuqZHYAKJSlWpbhHG1HJIOv+w2teNqmfWZPtnnvuwaeffooffvgBs2bNwsaNG9G1a1fk5eUBAM6ePVvkVT0/Pz9UrFgRZ8+edVtuYmIiQkNDHT/R0dG6toOIiIjIW5r3WdPTww8/7Ph3fHw8GjZsiLi4OPz444/o2LGj1+VOmjQJEyZMcPyekZHBBRsRERFZkqVfWSusVq1aCA8Px9GjRwEAVatWxfnz553yXL9+HRcvXnT7OTfgxufgQkJCnH6IiIiIrEjVK2sFX40CgKtXr+KVV15BaGioU/rrr7+uPTIX/vzzT/z111+IjIwEALRq1QppaWn45Zdf0LRpUwDA+vXrYbfb0bJlS11ikCU5Odnxpdjh4eFSP4SZX7Y35So9V0sdZnPV93qOR3H1Wo3Z41oSx0FWeTfDtedJSbhGzOCpX9TOicLl6a00z1mjqFqs7dmzx+n31q1b4/jx405par7I/fLly45XyYAbm+3u3bsXFStWRMWKFTFt2jT07t0bVatWxbFjx/Dcc8+hdu3a6NKlCwCgXr16uOeeezB06FDMmzcP165dw+jRo/Hwww9b+klQPbdp0PLotNJzS/Lj2SkpKWjT5g6nvl+//nvcdVcnXbfNKAlbc7gaV7PqB0rGOBi95UFJvvY8KQnXiBk89YvaOeGqvC+//MKQ+Dmm3lP1NuiGDRs8/qxfv15xebt27UJCQgISEhIA3HjlLiEhAVOnToWvry/27duH+++/H7fccgueeOIJNG3aFD/99JPTXmsLFy7Erbfeio4dO+Lee+9F27Zt8cEHH6hpluGcH5P+DFeuZDv+L0de2f9WXa7Sc7XUYba0tLQifX/8+HHdxiOfnmMui9njakQfya5DVnk3w7XnSUm4RszgqV/UzglX5aWlpRkQf+mbs0Yy9QGD9u3bQwjh9vjatWs9llGxYsUSvAGunts0aHl0Wum5JfnxbFd9b8S2GSVhaw6zx7UkjoPRWx6YPUZ6KgnXiBk89YvaOWF0P5fmOas/xa+szZw5E9nZ2Yrybt++Hd98843XQRERERHRDYoXawcPHkTNmjUxcuRIrF69GhcuXHAcu379Ovbt24d3330XrVu3Rt++fVG+fHldAiYiIiK6mSh+G/TTTz/Fr7/+irfffhuPPPIIMjIy4Ovri4CAAMcrbgkJCRgyZAgGDRqEwMBA3YImIiIiulmo+sxao0aN8OGHH+L999/Hvn37cPLkSeTk5CA8PByNGzc25BFgcmbENh3exgRoe8y8uHxGP+JvhVi0xODqXBnjX7De3NxcBAQEmNYHMsoFXG/nIqNtVt+WRPa5rvrP3fHi/nYYsTWKp7HW6z6rZBshT+UeOuT6qW3Z17eMLUM8nav2PqWl/2S1wyhePWDg4+ODxo0bo3HjxpLDITW0bLWg1zYNsh4zLy6f0Y/4WyEWLTG4G2ut41+4XsAXQJ5u237otQWAku1cCrdNy9Yc+XVYaVsS2ee66z93x91tH+FqbGRvjaJkHuuxHZKSflPaL2rqVcpT3+vx90dJmoz+8xSLFRdsJeobDMiZEdt0eB+TtsfMi8tn9CP+VohFSwyuzpUx/s71vowbf4z1ezxfrznreTsX7W2z+rYkss913X/Fb5fjavsIV2Mje2sUT/NYr/us535T2i8vq6pXKU99L7tf1N6ntPSfp1isyNLfDUpKGbFNh1qyHjMvLp+VHj03KhYtMbg6V8b4F6zXiMfzjZyzsttm9W1JZJ9bT8VxtWV7Q+n1I/taUXvdyuoXI+as7H5R2/eytmGy9tYifGWNiIiIyMK4WCMiIiKyME2LtaNHj2Lt2rXIyckBgGK/jYCIiIiI1PPqM2t//fUX+vbti/Xr18Nms+HIkSOoVasWnnjiCYSFheG1116THedNwdXj4wUfedeyfUB+2flluHvcu6D8PFq3LTh06JDbc/PrUFp2cnKyy9iLq8OTEydOqMpfMGZ3xws/eq6kv11x93i+pxiKO1cGLW0qWIaWLQqKmzuF57unOtRQ0/fF5VMyZ9Vsc6NkPNT0y6FDhzRtuaEXd/3mzVYrMq7N4mIpblsNPa5LT8yqVxYl115p5dVibfz48fDz80NycjLq1fvng3x9+/bFhAkTuFjzQtFHsfMfdf/nkXdvt0ZwfsS5YHnu/AXAB48++qimeoEURzlFz3WuQ8kj00UfsXddh/IF241zp0yZojB/0ZidHwt33d6iMSuMzuXj+Z5iKO5cOVyPg7Yy1LWj+Lnjbr4reYy/eN71vdJ5UpjSrRGUjofyfvknPm+33NCH+2vdm21ktMxjdVuByKtXC7PqlUPZtVeaefU26HfffYdZs2ahevXqTul16tTByZMnpQR2syn6KHYegCfwzyPv3m8f8M+jyYXLc+cyALvmeoG0v8txdW7BOpQ9ku/cDiV1KI3vCQ/53Mfs/Fh40Vhcx6wwOpeP53uKobhz5dDSpqJleNOO4ueO6/mu7DH+4nnT98rmiSvqt7kpfjyU90t+fEXzebM1gjz5canffsMVLfNY3VYg8urVwqx65VB27ZVmXr2ylpWVhbJlyxZJv3jxouMlc/JWwUeOI12kaXm82FV5SmMx8rF1TyJdpMnoF6W8eZRdbR2e6jN6ywNXtLQpn5Z2eDpX7XxXyuhtFZTmUzoeSvuluHxGb5tTkJbtN1zRMo+13NtkXD/eMKteGcycd+by6pW1O+64A59++qnjd5vNBrvdjtmzZ6NDhw7SgiMiIiK62Xn1ytrs2bPRsWNH7Nq1C1evXsVzzz2H3377DRcvXsTPP/8sO0YiIiKim5ZXr6w1aNAAf/zxB9q2bYsHHngAWVlZ6NWrF/bs2YO4uDjZMRIRERHdtLxarCUnJyMkJASTJ0/GF198gW+//RbTp09HZGQkkpOTpQYYExMDm81W5GfUqFEAgPbt2xc5Nnz4cKkxEBEREZnFq7dBY2NjkZKSgoiICKf0v/76C7GxscjL87Q1hHI7d+50Ku/AgQO4++670adPH0fa0KFD8dJLLzl+d/XwQ2ljpb1yZO19U3BfJ3d7ahkVC6BsnzK1e7QVpGVvOE8xeLt3nBHc7fWktS+V7CGopQ6l9BoPb8ZIab9oYUSfFsebvcO09EVxY5Obm4vjx497XbYrZvdvQUbMp4J1qaWmr7zZv9FMXi3WhBCw2WxF0i9fvozAwEDNQRVUuXJlp99nzpyJuLg43HnnnY60smXLomrVqlLrta7Ce6CZSdbeN673dXJVh/6x/B2Rx33K1O7RVvRcT/tsKS3HOQZte8fprbi98rT2ZfF7CGqpQ10s8sfDmzFS2i9aGNGnxVO/d5iW+a5kbGT2tfn9+w8j5lM+7+e70r7yZv9Gs6l6G3TChAmYMGECbDYbpkyZ4vh9woQJGDt2LPr27YvGjRvrFCpw9epVfPbZZ3j88cedFosLFy5EeHg4GjRogEmTJiE7u/gLNzc3FxkZGU4/JUfhPdCsEouWvW/SUHRfJ1d7aindG077Pjye9ykrGLPq0uH93nCeYlAbl7Hzqfi98rT0pac9BLXU4U0s3tbrajy8GaOC9SrZW9EbBeswh/q9w7TMdyVjk78/pgxpMLt//5EG/edTPq3zXUFuL/ZvNJuqV9b27NkD4MYra/v374e/v7/jmL+/Pxo1aoRnnnlGboQFrFixAmlpaRg0aJAj7ZFHHkHNmjURFRWFffv24fnnn8fhw4exbNkyt+UkJiZi2rRpusVpDCvtNyMrFhn7Ohm9p5ZeezSp4SoG2XvHySYjZlfnWmFvK73GQ8uehFbfb08rI+e7p7GR3R9W6N98RsynfLL24FRbh5X+tv5D1WJtw4YNAIDBgwdj7ty5CAkJ0SUod/7v//4PXbt2RVRUlCNt2LBhjn/Hx8cjMjISHTt2xLFjx9w+mTpp0iRMmDDB8XtGRgaio6P1C5yIiIjIS159Zm3+/Pmy4/Do5MmT+P7774t9xQwAWrZsCQA4evSo28VaQEAAv2mBiIiISgSvFmsAsGvXLnzxxRdITk7G1atXnY55WlB5Y/78+YiIiEC3bt2Kzbd3714AQGSklV46JiIiIvKOV4u1zz//HI899hi6dOmC7777Dp07d8Yff/yBc+fOoWfPnrJjhN1ux/z58zFw4ED4+f0T8rFjx7Bo0SLce++9qFSpEvbt24fx48ejXbt2aNiwofQ49CTj8WxZj/trUVw7rLTdiBG0ttdKj+znk73lgRXI2GpDCyv0i9L2ysqntM9l3E9K0pyV0b/e/B3Q6++P0nx6b9PhLVnbK8ng1WJtxowZeOONNzBq1CiUL18ec+fORWxsLJ588kldXtH6/vvvkZycjMcff9wp3d/fH99//z3mzJmDrKwsREdHo3fv3vj3v/8tPQb9yHg8W9bj/loU1w4rbTdiBK3ttdIj+/lkb3lgBTK22tDCCv2itL2y8intcxn3k5I0Z2X0rzd/B/T6+6M0n/7bdHin6PZKZi/YvPoGg2PHjjnejvT390dWVhZsNhvGjx+PDz74QGqAANC5c2cIIXDLLbc4pUdHR2Pjxo3466+/cOXKFRw5cgSzZ882/MEHbdKg/fFsWY/7a5EG9+2w0nYjRtDa3jRY55H9fLK3PLCCNGjfakMLK/RLGpS1V1Y+V8eVpuXzZjsfq8/ZNGjvX2/+DiittzhaxkP/bTq8k1+H1u2V5PHqlbWwsDBkZmYCAKpVq4YDBw4gPj4eaWlpHvc4I3dkvCJphceQi2uHNR+J1o/W9lrxc5eytzywAtnbiKhlhX5R2l5Z+ZT2uYz7SUmaszL615u/A3r9/VGaz4htOrwha3sl7bxarLVr1w7r1q1DfHw8+vTpg7Fjx2L9+vVYt24dOnbsKDtGIiIiopuWV4u1t99+G1euXAEATJ48GWXKlMGWLVtK4OfFiIiIiKzNq8VaxYoVHf/28fHBxIkTHb/n5ORoj4qIiIiIAGjYZ62w3NxcvPPOO5g9ezbOnj0rq9hSJzk52RKP6hdmxGPwRtOyJUNp3rqhpI+hlZgdX0kaSypZ42Xkdh5GM/u69YaqxVpubi5efPFFrFu3Dv7+/njuuefQo0cPzJ8/H5MnT4avry/Gjx+vV6wlXnJyMurWrff3F8hahRGPwRtNy5YMpXnrhpI+hlZidnwlaSypZI2Xkdt5GM3s69Z7qrbumDp1Kt577z3ExMQgKSkJffr0wbBhw/DGG2/g9ddfR1JSEp5//nm9Yi3xUlNT/16olcQtGaywzYBSafB+Swal+WQwuk9L+hhaSRrMja8kjSWVrPFKg3HbeRgtDda+r7in6pW1pUuX4tNPP8X999+PAwcOoGHDhrh+/Tp+/fVX2Gw2vWIshUrylgxW2GZAKS1bMpTmrRtK+hhaidnxlaSxpJI1XkZu52E0s69b9VS9svbnn3+iadOmAIAGDRogICAA48eP50KNiIiISCeqFmt5eXnw9/d3/O7n54dy5cpJD4qIiIiIblD1NqgQAoMGDUJAQAAA4MqVKxg+fDiCg4Od8i1btkxehEREREQ3MVWLtYEDBzr9br0nPawpOTkZqampln2MmcgVLfOVc52IrKAkbtPhiqrF2vz58/WKo9Sy5nYdRMXR8ti9VR/ZJ6KbS8ndpsMVVZ9ZI/X+2a7Dao8wE7mj5bF7qz6yT0Q3lzSU1G06XJH2DQbkiVUfYSZyR8uc5XwnIisoedt0uMJX1oiIiIgsrNQs1t555x3ExMQgMDAQLVu2xI4dO8wOiYiIiEizUrFYW7JkCSZMmIAXXngBu3fvRqNGjdClSxecP3/e7NCIiIiINCkVi7XXX38dQ4cOxeDBg1G/fn3MmzcPZcuWxccff2x2aERERESalPgHDK5evYpffvkFkyZNcqT5+PigU6dO2Lp1q8tzcnNzkZub6/g9PT0dAJCRkSE9vsuXL//9r18AnPz73yeZxjQ3aVaIgWlM0yPNCjEwjWlq0v4AcOPvuB7rA+CfdYcQoviMooQ7ffq0ACC2bNnilP7ss8+KFi1auDznhRdeEAD4wx/+8Ic//OEPf0z/OXXqVLFrnRL/ypo3Jk2ahAkTJjh+t9vtuHjxIipVqqTpS+kzMjIQHR2NU6dOISQkREaopAHHw3o4JtbC8bAWjoe1GDEeQghkZmYiKiqq2HwlfrEWHh4OX19fnDt3zin93LlzqFq1qstzAgICHN9vmq9ChQrSYgoJCeGFZiEcD+vhmFgLx8NaOB7Wovd4hIaGesxT4h8w8Pf3R9OmTfHDDz840ux2O3744Qe0atXKxMiIiIiItCvxr6wBwIQJEzBw4EA0a9YMLVq0wJw5c5CVlYXBgwebHRoRERGRJqVisda3b19cuHABU6dOxdmzZ9G4cWOsWbMGVapUMTSOgIAAvPDCC0XeYiVzcDysh2NiLRwPa+F4WIuVxsMmhKfnRYmIiIjILCX+M2tEREREpRkXa0REREQWxsUaERERkYVxsUZERERkYVysSfTOO+8gJiYGgYGBaNmyJXbs2GF2SKVOYmIimjdvjvLlyyMiIgI9evTA4cOHnfJcuXIFo0aNQqVKlVCuXDn07t27yKbJycnJ6NatG8qWLYuIiAg8++yzuH79upFNKZVmzpwJm82GcePGOdI4HsY7ffo0Hn30UVSqVAlBQUGIj4/Hrl27HMeFEJg6dSoiIyMRFBSETp064ciRI05lXLx4Ef3790dISAgqVKiAJ554osB3HZNSeXl5mDJlCmJjYxEUFIS4uDi8/PLLTt8FyfHQz6ZNm9C9e3dERUXBZrNhxYoVTsdl9f2+fftwxx13IDAwENHR0Zg9e7bchmj/dk4SQojPP/9c+Pv7i48//lj89ttvYujQoaJChQri3LlzZodWqnTp0kXMnz9fHDhwQOzdu1fce++9okaNGuLy5cuOPMOHDxfR0dHihx9+ELt27RK33367aN26teP49evXRYMGDUSnTp3Enj17xLfffivCw8PFpEmTzGhSqbFjxw4RExMjGjZsKMaOHetI53gY6+LFi6JmzZpi0KBBYvv27eL48eNi7dq14ujRo448M2fOFKGhoWLFihXi119/Fffff7+IjY0VOTk5jjz33HOPaNSokdi2bZv46aefRO3atUW/fv3MaFKJ9sorr4hKlSqJr7/+Wpw4cUIsXbpUlCtXTsydO9eRh+Ohn2+//VZMnjxZLFu2TAAQy5cvdzouo+/T09NFlSpVRP/+/cWBAwfE4sWLRVBQkHj//feltYOLNUlatGghRo0a5fg9Ly9PREVFicTERBOjKv3Onz8vAIiNGzcKIYRIS0sTZcqUEUuXLnXkOXTokAAgtm7dKoS4cfH6+PiIs2fPOvK89957IiQkROTm5hrbgFIiMzNT1KlTR6xbt07ceeedjsUax8N4zz//vGjbtq3b43a7XVStWlX85z//caSlpaWJgIAAsXjxYiGEEAcPHhQAxM6dOx15Vq9eLWw2mzh9+rR+wZdC3bp1E48//rhTWq9evUT//v2FEBwPIxVerMnq+3fffVeEhYU53a+ef/55UbduXWmx821QCa5evYpffvkFnTp1cqT5+PigU6dO2Lp1q4mRlX7p6ekAgIoVKwIAfvnlF1y7ds1pLG699VbUqFHDMRZbt25FfHy806bJXbp0QUZGBn777TcDoy89Ro0ahW7dujn1O8DxMMOqVavQrFkz9OnTBxEREUhISMCHH37oOH7ixAmcPXvWaUxCQ0PRsmVLpzGpUKECmjVr5sjTqVMn+Pj4YPv27cY1phRo3bo1fvjhB/zxxx8AgF9//RWbN29G165dAXA8zCSr77du3Yp27drB39/fkadLly44fPgwLl26JCXWUvENBmZLTU1FXl5ekW9MqFKlCn7//XeToir97HY7xo0bhzZt2qBBgwYAgLNnz8Lf3x8VKlRwylulShWcPXvWkcfVWOUfI3U+//xz7N69Gzt37ixyjONhvOPHj+O9997DhAkT8K9//Qs7d+7EmDFj4O/vj4EDBzr61FWfFxyTiIgIp+N+fn6oWLEix0SliRMnIiMjA7feeit8fX2Rl5eHV155Bf379wcAjoeJZPX92bNnERsbW6SM/GNhYWGaY+VijUqsUaNG4cCBA9i8ebPZody0Tp06hbFjx2LdunUIDAw0OxzCjf+JadasGWbMmAEASEhIwIEDBzBv3jwMHDjQ5OhuPl988QUWLlyIRYsW4bbbbsPevXsxbtw4REVFcTxIMb4NKkF4eDh8fX2LPOF27tw5VK1a1aSoSrfRo0fj66+/xoYNG1C9enVHetWqVXH16lWkpaU55S84FlWrVnU5VvnHSLlffvkF58+fR5MmTeDn5wc/Pz9s3LgRb775Jvz8/FClShWOh8EiIyNRv359p7R69eohOTkZwD99Wtz9qmrVqjh//rzT8evXr+PixYscE5WeffZZTJw4EQ8//DDi4+MxYMAAjB8/HomJiQA4HmaS1fdG3MO4WJPA398fTZs2xQ8//OBIs9vt+OGHH9CqVSsTIyt9hBAYPXo0li9fjvXr1xd56blp06YoU6aM01gcPnwYycnJjrFo1aoV9u/f73QBrlu3DiEhIUX+yFHxOnbsiP3792Pv3r2On2bNmqF///6Of3M8jNWmTZsi29n88ccfqFmzJgAgNjYWVatWdRqTjIwMbN++3WlM0tLS8MsvvzjyrF+/Hna7HS1btjSgFaVHdnY2fHyc/9T6+vrCbrcD4HiYSVbft2rVCps2bcK1a9ccedatW4e6detKeQsUALfukOXzzz8XAQEBYsGCBeLgwYNi2LBhokKFCk5PuJF2I0aMEKGhoeLHH38UKSkpjp/s7GxHnuHDh4saNWqI9evXi127dolWrVqJVq1aOY7nbxXRuXNnsXfvXrFmzRpRuXJlbhUhScGnQYXgeBhtx44dws/PT7zyyiviyJEjYuHChaJs2bLis88+c+SZOXOmqFChgli5cqXYt2+feOCBB1xuV5CQkCC2b98uNm/eLOrUqcOtIrwwcOBAUa1aNcfWHcuWLRPh4eHiueeec+TheOgnMzNT7NmzR+zZs0cAEK+//rrYs2ePOHnypBBCTt+npaWJKlWqiAEDBogDBw6Izz//XJQtW5Zbd1jVW2+9JWrUqCH8/f1FixYtxLZt28wOqdQB4PJn/vz5jjw5OTli5MiRIiwsTJQtW1b07NlTpKSkOJWTlJQkunbtKoKCgkR4eLh4+umnxbVr1wxuTelUeLHG8TDeV199JRo0aCACAgLErbfeKj744AOn43a7XUyZMkVUqVJFBAQEiI4dO4rDhw875fnrr79Ev379RLly5URISIgYPHiwyMzMNLIZpUJGRoYYO3asqFGjhggMDBS1atUSkydPdtrmgeOhnw0bNrj8mzFw4EAhhLy+//XXX0Xbtm1FQECAqFatmpg5c6bUdtiEKLCNMhERERFZCj+zRkRERGRhXKwRERERWRgXa0REREQWxsUaERERkYVxsUZERERkYVysEREREVkYF2tEREREFsbFGhEREZGFcbFGRKXWoEGD0KNHD9PqHzBgAGbMmKFb+QcPHkT16tWRlZWlWx1EZD5+gwERlUg2m63Y4y+88ALGjx8PIQQqVKhgTFAF/Prrr7jrrrtw8uRJlCtXTrd6HnzwQTRq1AhTpkzRrQ4iMhcXa0RUIp09e9bx7yVLlmDq1Kk4fPiwI61cuXK6LpI8GTJkCPz8/DBv3jxd6/nmm28wdOhQJCcnw8/PT9e6iMgcfBuUiEqkqlWrOn5CQ0Nhs9mc0sqVK1fkbdD27dvjqaeewrhx4xAWFoYqVargww8/RFZWFgYPHozy5cujdu3aWL16tVNdBw4cQNeuXVGuXDlUqVIFAwYMQGpqqtvY8vLy8OWXX6J79+5O6TExMZg+fToee+wxlCtXDjVr1sSqVatw4cIFPPDAAyhXrhwaNmyIXbt2Oc45efIkunfvjrCwMAQHB+O2227Dt99+6zh+99134+LFi9i4caPGHiUiq+JijYhuKp988gnCw8OxY8cOPPXUUxgxYgT69OmD1q1bY/fu3ejcuTMGDBiA7OxsAEBaWhruuusuJCQkYNeuXVizZg3OnTuHhx56yG0d+/btQ3p6Opo1a1bk2BtvvIE2bdpgz5496NatGwYMGIDHHnsMjz76KHbv3o24uDg89thjyH/TY9SoUcjNzcWmTZuwf/9+zJo1y+kVQ39/fzRu3Bg//fST5J4iIqvgYo2IbiqNGjXCv//9b9SpUweTJk1CYGAgwsPDMXToUNSpUwdTp07FX3/9hX379gEA3n77bSQkJGDGjBm49dZbkZCQgI8//hgbNmzAH3/84bKOkydPwtfXFxEREUWO3XvvvXjyyScddWVkZKB58+bo06cPbrnlFjz//PM4dOgQzp07BwBITk5GmzZtEB8fj1q1auG+++5Du3btnMqMiorCyZMnJfcUEVkFF2tEdFNp2LCh49++vr6oVKkS4uPjHWlVqlQBAJw/fx7AjQcFNmzY4PgMXLly5XDrrbcCAI4dO+ayjpycHAQEBLh8CKJg/fl1FVf/mDFjMH36dLRp0wYvvPCCYxFZUFBQkOOVQCIqfbhYI6KbSpkyZZx+t9lsTmn5Cyy73Q4AuHz5Mrp37469e/c6/Rw5cqTIK1z5wsPDkZ2djatXrxZbf35dxdU/ZMgQHD9+HAMGDMD+/fvRrFkzvPXWW05lXrx4EZUrV1bWAURU4nCxRkRUjCZNmuC3335DTEwMateu7fQTHBzs8pzGjRsDuLEPmgzR0dEYPnw4li1bhqeffhoffvih0/EDBw4gISFBSl1EZD1crBERFWPUqFG4ePEi+vXrh507d+LYsWNYu3YtBg8ejLy8PJfnVK5cGU2aNMHmzZs11z9u3DisXbsWJ06cwO7du7FhwwbUq1fPcTwpKQmnT59Gp06dNNdFRNbExRoRUTGioqLw888/Iy8vD507d0Z8fDzGjRuHChUqwMfH/S10yJAhWLhwoeb68/LyMGrUKNSrVw/33HMPbrnlFrz77ruO44sXL0bnzp1Rs2ZNzXURkTVxU1wiIh3k5OSgbt26WLJkCVq1aqVLHVevXkWdOnWwaNEitGnTRpc6iMh8fGWNiEgHQUFB+PTTT4vdPFer5ORk/Otf/+JCjaiU4ytrRERERBbGV9aIiIiILIyLNSIiIiIL42KNiIiIyMK4WCMiIiKyMC7WiIiIiCyMizUiIiIiC+NijYiIiMjCuFgjIiIisjAu1oiIiIgs7P8BV0WZaEeqwZMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqBklEQVR4nO3deXhN1/4/8PdJIoOQGCKREEkMbakYaqqhLa1bVVWqxqqiRVvU1EmqtFoV3A46U/3VcFuqg6kDqihVc1GUqiHEt0KlSEgiyFm/P9ycmyNn2MPaQ+L9ep48bfZew2cNe2fZ55x1HEIIASIiIiKypQCrAyAiIiIi77hYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIlMkJiZiwIABptS1bds2tGrVCuHh4XA4HNi1a5cp9cr08ssvw+FwGFpH27Zt0bZtW0PrICL9uFgjkmzOnDlwOByun6CgIFSrVg0DBgzAX3/9ZVi9+/btw8svv4yjR48aVocVTpw4gZdfflnxguvy5cvo0aMHzpw5g7feegv/+c9/kJCQYGyQpNjLL7+MxMREt2M//PADHnvsMdSvXx+BgYHFzhfldDoxbdo0JCUlITQ0FA0aNMCCBQuKpdu6dSuGDh2KJk2aoEyZMl4Xvnl5ea66IyMjUa5cOTRs2BBvv/02Ll++7Dd2IjMEWR0AUWn1yiuvICkpCRcvXsTmzZsxZ84cbNiwAXv37kVoaKj0+vbt24eJEyeibdu2peoPyokTJzBx4kQkJiaiUaNGftMfPnwYx44dw6xZszBo0CDjAyzBfvjhB6tDAADMnz8fCxcuxC233IK4uDifaceNG4cpU6Zg8ODBaNasGZYuXYqHHnoIDocDvXv3dqX7/vvv8fHHH6NBgwaoWbMm/vzzT4/l5eXl4ffff8e9996LxMREBAQEYOPGjRg9ejS2bNmC+fPnS20rkRZcrBEZpGPHjmjatCkAYNCgQYiKisLUqVOxbNky9OzZ0+LolMvJyUF4eLjVYSj2999/AwAqVKjgN21Ja5tswcHBVocAAJg8eTJmzZqFMmXK4L777sPevXs9pvvrr7/wxhtvYNiwYXjvvfcAXL227rjjDjz77LPo0aMHAgMDAQBPPvkknn/+eYSFhWH48OFeF2uVKlXC5s2b3Y498cQTiIyMxHvvvYc333wTVatWldhaIvX4MiiRSW677TYAV5/8FLp06RImTJiAJk2aIDIyEuHh4bjtttuwdu3aYvk///xzNGnSBOXLl0dERASSk5Px9ttvA7j60muPHj0AAO3atXO9BPvTTz+58i9fvhy33XYbwsPDUb58eXTq1Am///67Wx0DBgxAuXLlcPjwYdx7770oX748+vbt67VNhe+r+uOPP9CzZ09ERESgcuXKGDlyJC5evOi3T44cOYIePXqgUqVKKFu2LG699VZ89913rvM//fQTmjVrBgAYOHCgq11z5szxWN6AAQNwxx13AAB69OgBh8Phek+Wr7bl5OTg6aefRnx8PEJCQnDjjTfi9ddfhxDCrXyHw4Hhw4fjyy+/RL169RAWFoaWLVtiz549AICZM2eidu3aCA0NRdu2bRW/JL1hwwY0a9YMoaGhqFWrFmbOnOk17aeffoomTZogLCwMlSpVQu/evXH8+HHX+eHDh6NcuXLIzc0tlrdPnz6oWrUqCgoKAHh+z9rFixfx8ssv44YbbkBoaChiY2PRrVs3t3nrdDoxffp03HzzzQgNDUVMTAwef/xxnD17VlF7rxUXF4cyZcr4Tbd06VJcvnwZQ4cOdR1zOBx48skn8X//93/YtGmT63hMTAzCwsI0xQPA9XT63LlzmssgkoVP1ohMUviHu2LFiq5j2dnZ+Pjjj9GnTx8MHjwY58+fx//7f/8PHTp0wNatW10v+61atQp9+vTBXXfdhalTpwIA9u/fj19++QUjR47E7bffjhEjRuCdd97BCy+8gLp16wKA67//+c9/0L9/f3To0AFTp05Fbm4uPvzwQ7Rp0wY7d+50e9n0ypUr6NChA9q0aYPXX38dZcuW9du2nj17IjExEampqdi8eTPeeecdnD17FvPmzfOa59SpU2jVqhVyc3MxYsQIVK5cGXPnzsX999+Pr776Cg888ADq1q2LV155BRMmTMCQIUNcC95WrVp5LPPxxx9HtWrVMHnyZIwYMQLNmjVDTEyMz7YJIXD//fdj7dq1eOyxx9CoUSOsXLkSzz77LP766y+89dZbbnX8/PPPWLZsGYYNGwYASE1NxX333YfnnnsOH3zwAYYOHYqzZ89i2rRpePTRR7FmzRqffbdnzx7cfffdqFKlCl5++WVcuXIFL730klvchV577TWMHz8ePXv2xKBBg3D69Gm8++67uP3227Fz505UqFABvXr1wvvvv4/vvvvOtYAHgNzcXHzzzTcYMGCA6+nTtQoKCnDfffdh9erV6N27N0aOHInz589j1apV2Lt3L2rVquXq5zlz5mDgwIEYMWIE0tLS8N5772Hnzp345ZdfFC28tNi5cyfCw8Nd87pQ8+bNXefbtGmjqexLly4hOzsbeXl52L59O15//XUkJCSgdu3auuMm0k0QkVSzZ88WAMSPP/4oTp8+LY4fPy6++uorUaVKFRESEiKOHz/uSnvlyhWRn5/vlv/s2bMiJiZGPProo65jI0eOFBEREeLKlSte6/3yyy8FALF27Vq34+fPnxcVKlQQgwcPdjt+8uRJERkZ6Xa8f//+AoAYO3asora+9NJLAoC4//773Y4PHTpUABC//fab61hCQoLo37+/6/dRo0YJAOLnn392izUpKUkkJiaKgoICIYQQ27ZtEwDE7NmzFcW0du1aAUB8+eWXbse9tW3JkiUCgJg0aZLb8e7duwuHwyEOHTrkOgZAhISEiLS0NNexmTNnCgCiatWqIjs723U8JSVFAHBL60nXrl1FaGioOHbsmOvYvn37RGBgoCh6iz569KgIDAwUr732mlv+PXv2iKCgINdxp9MpqlWrJh588EG3dF988YUAINavX+86dscdd4g77rjD9fsnn3wiAIg333yzWJxOp1MIIcTPP/8sAIjPPvvM7fyKFSs8HlerU6dOIiEhweu5mjVrFjuek5Pjc94OGzZM+Ptzt2DBAgHA9dO0aVOxe/du1fETGYEvgxIZpH379qhSpQri4+PRvXt3hIeHY9myZahevborTWBgoOt9Q06nE2fOnMGVK1fQtGlT7Nixw5WuQoUKyMnJwapVq1THsWrVKpw7dw59+vRBZmam6ycwMBAtWrTw+JLrk08+qaqOwqdMhZ566ikAV9/k7c3333+P5s2buz0JKVeuHIYMGYKjR49i3759qmJQ6tq2ff/99wgMDMSIESPcjj/99NMQQmD58uVux++66y63J5EtWrQAADz44IMoX758seNHjhzxGktBQQFWrlyJrl27okaNGq7jdevWRYcOHdzSLlq0CE6nEz179nQbx6pVq6JOnTqucXQ4HOjRowe+//57XLhwwZV/4cKFqFatms8nT19//TWioqJc41dU4acpv/zyS0RGRuJf//qXWxxNmjRBuXLlPM4nWfLy8hASElLseOEHdvLy8jSX3a5dO6xatQpffvklnnjiCZQpUwY5OTmayyOSiS+DEhnk/fffxw033ICsrCx88sknWL9+vcc/NHPnzsUbb7yBP/74w22rgKSkJNf/Dx06FF988QU6duyIatWq4e6770bPnj1xzz33+I3j4MGDAIA777zT4/mIiAi334OCgtwWlErUqVPH7fdatWohICDA53u2jh075lrQFFX4EtexY8dQv359VXH446ltx44dQ1xcnNtC69o4iiq6qAKAyMhIAEB8fLzH477ex3X69Gnk5eUV6z8AuPHGG90WuwcPHoQQwmNaAG4vPfbq1QvTp0/HsmXL8NBDD+HChQv4/vvv8fjjj/vcu+3w4cO48cYbERTk/U/DwYMHkZWVhejoaI/nCz/gYYSwsDDk5+cXO174/kg971GLiYlxvfTcvXt3TJ48Gf/6179w8OBBfsCALMfFGpFBmjdv7vo0aNeuXdGmTRs89NBDOHDgAMqVKwfg6pvFBwwYgK5du+LZZ59FdHQ0AgMDkZqa6vaG7ujoaOzatQsrV67E8uXLsXz5csyePRuPPPII5s6d6zMOp9MJ4Or71jz90bn2D3NISAgCAvQ9dDd6M1etZLTN2/u9vB0X13xIQSun0wmHw4Hly5d7rKtwTgHArbfeisTERHzxxRd46KGH8M033yAvLw+9evWSEkd0dDQ+++wzj+erVKmiuw5vYmNjsXbtWggh3OZYRkYGAPjd9kON7t27Y9y4cVi6dCkef/xxaeUSacHFGpEJChdg7dq1w3vvvYexY8cCAL766ivUrFkTixYtcvvj89JLLxUrIzg4GJ07d0bnzp3hdDoxdOhQzJw5E+PHj0ft2rW9LpAK3xQeHR2N9u3bG9C6q09bij4JPHToEJxOp8/93hISEnDgwIFix//44w/XecD4hV9CQgJ+/PFHnD9/3u3p2rVxGKFKlSoICwtzPf0s6tq+qVWrFoQQSEpKwg033OC37J49e+Ltt99GdnY2Fi5ciMTERNx6660+89SqVQtbtmzB5cuXvX5IoFatWvjxxx/RunVrXU+ytGjUqBE+/vhj7N+/H/Xq1XMd37Jli+u8LIUvqWZlZUkrk0grvmeNyCRt27ZF8+bNMX36dNfLNoVPSIo+fdmyZYvbFgQA8M8//7j9HhAQgAYNGgCA62Whwv3Crt1qoEOHDoiIiMDkyZOL7cgOXH0pTq/333/f7fd3330XwNW95ry59957sXXrVre25uTk4KOPPkJiYqLrj7G3dsly7733oqCgwLVvV6G33noLDofDZxv0CgwMRIcOHbBkyRKkp6e7ju/fvx8rV650S9utWzcEBgZi4sSJxZ7WCSGKzZFevXohPz8fc+fOxYoVKxTt7ffggw8iMzOzWF8U1gFcXQQWFBTg1VdfLZbmypUrhm510aVLF5QpUwYffPCBW1wzZsxAtWrVvH5K2JfMzEyPTz8//vhjAHA9HSeyEp+sEZmocOPOOXPm4IknnsB9992HRYsW4YEHHkCnTp2QlpaGGTNmoF69em5vDh80aBDOnDmDO++8E9WrV8exY8fw7rvvolGjRq73VjVq1AiBgYGYOnUqsrKyEBISgjvvvBPR0dH48MMP0a9fP9xyyy3o3bs3qlSpgvT0dHz33Xdo3bq1xz/OaqSlpeH+++/HPffcg02bNuHTTz/FQw89hIYNG3rNM3bsWCxYsAAdO3bEiBEjUKlSJcydOxdpaWn4+uuvXS9X1qpVCxUqVMCMGTNQvnx5hIeHo0WLFm5P8vTo3Lkz2rVrh3HjxuHo0aNo2LAhfvjhByxduhSjRo1yPZk0ysSJE7FixQrcdtttGDp0KK5cuYJ3330XN998M3bv3u1KV6tWLUyaNAkpKSk4evQounbtivLlyyMtLQ2LFy/GkCFD8Mwzz7jS33LLLahduzbGjRuH/Px8RS+BPvLII5g3bx7GjBmDrVu34rbbbkNOTg5+/PFHDB06FF26dMEdd9yBxx9/HKmpqdi1axfuvvtulClTBgcPHsSXX36Jt99+G927d1fVB7t378ayZcsAXH0qm5WVhUmTJgEAGjZsiM6dOwMAqlevjlGjRuHf//43Ll++jGbNmmHJkiX4+eef8dlnn7m9PHzs2DH85z//AQBs374dAFxlJiQkoF+/fgCuvhVhxowZ6Nq1K2rWrInz589j5cqVWLVqFTp37uz1vZ5EprLoU6hEpVbh1h3btm0rdq6goEDUqlVL1KpVS1y5ckU4nU4xefJkkZCQIEJCQkTjxo3Ft99+K/r37++2fcFXX30l7r77bhEdHS2Cg4NFjRo1xOOPPy4yMjLcyp81a5aoWbOma9uHott4rF27VnTo0EFERkaK0NBQUatWLTFgwACxfft2V5r+/fuL8PBwxW0t3Lpj3759onv37qJ8+fKiYsWKYvjw4SIvL88t7bVbdwghxOHDh0X37t1FhQoVRGhoqGjevLn49ttvi9WzdOlSUa9ePREUFOR3Gw9fW3d4a9v58+fF6NGjRVxcnChTpoyoU6eO+Pe//+3arqIQADFs2DC3Y2lpaQKA+Pe//60oDk/WrVsnmjRpIoKDg0XNmjXFjBkzXH17ra+//lq0adNGhIeHi/DwcHHTTTeJYcOGiQMHDhRLO27cOAFA1K5d22O9127dIYQQubm5Yty4cSIpKUmUKVNGVK1aVXTv3l0cPnzYLd1HH30kmjRpIsLCwkT58uVFcnKyeO6558SJEyf8tvdahdeMp59r50xBQYHrmgkODhY333yz+PTTT4uVWdj/nn6Ktnnbtm2iR48eokaNGiIkJESEh4eLW265Rbz55pvi8uXLqttCZASHEJLe/UpE152XX34ZEydOxOnTpxEVFWV1OEREpRLfs0ZERERkY1ysEREREdkYF2tERERENsb3rBERERHZGJ+sEREREdkYF2tERERENsZNcXH1u+5OnDiB8uXL2/Y7DYmIiKh0EULg/PnziIuL8/m9xVysAThx4gTi4+OtDoOIiIiuQ8ePH0f16tW9nudiDXB9efPx48cRERFhcTRERER0PcjOzkZ8fLxrHeINF2uA66XPiIgILtaIiIjIVP7egsUPGBARERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2ZvvF2vr169G5c2fExcXB4XBgyZIlbueFEJgwYQJiY2MRFhaG9u3b4+DBg9YES0RERCSZ7RdrOTk5aNiwId5//32P56dNm4Z33nkHM2bMwJYtWxAeHo4OHTrg4sWLJkeqT0ZWHjYezkRGVp7mtGrKUFO/knJlpFEav5b2y6hbbxq9fSyzLf7Sy+5jLeeMnA8yzquJUU99euIwc7xk5NXbJjPaoLYdemPRG4+a61tNTHraZeQcMnLeWMn2m+J27NgRHTt29HhOCIHp06fjxRdfRJcuXQAA8+bNQ0xMDJYsWYLevXubGapmC7elI2XRHjgFEOAAUrslo1ezGqrSqilDTf1KypWRRmn8Wtovo269afT2sex+9JUegNQ+1nLOyPlg5pzQW5+eOMwcLyXtNPM+Z+T9QMY1JvP+qrZ8wPP1rbZ9dpxDRs4bqzmEEMLqIJRyOBxYvHgxunbtCgA4cuQIatWqhZ07d6JRo0audHfccQcaNWqEt99+22M5+fn5yM/Pd/1e+HUPWVlZpn+DQUZWHlpPWQNnkVEIdDiwYWw7xEaGKUq7aGhLPPDBRkVlqKkfgN/YlMTvL43SPtDSfn9tkBG/nn5U0sf+2q+2H32VFwAADkjrYy3nlM5nrdeDjH6Ucd36q09JP8i+JrSe89dv/vIq6S+980LG/UDGNSbz/qq2fG/Xt6x7sZVzyMh54+/vqB7Z2dmIjIz0u/6w/cugvpw8eRIAEBMT43Y8JibGdc6T1NRUREZGun6s/BL3tMwct8kBAAVC4GhmruK0246eVVyGmvqVxCYjjdI+0NJ+GXXrTaO3j5XGoaYsb+mdgNQ+1nJO6XzWmt+sOaE0rZ5+kH1N6JmrRs9zvfNCxv1AxjUm8/6qtnxv17ese7GVc8jIeWMHtn8Z1AgpKSkYM2aM6/fCJ2tWSIoKR4CHf+kkRpVVnLZZYkXFZait31+5SuL3l0ZpH2htv966ZaTR08dK61Azl7yl9/Yvbz19rPac0vmsdT7I6EcZ162/+pT0gxHXhFHXkln3OT1xmHGNyby/qi3f2/Ut615s5Rwyet5YrUQ/WatatSoA4NSpU27HT5065TrnSUhIiOtL263+8vbYyDCkdktG4H+/xDXQ4cDkbvU9Pnb1lrZhfEXFZaipX0lsMtIo7QMt7ZdRt940evtYdj/6Ki/1wWSpfazlnNL5rDW/WXNC77gp6QfZ14SeuWr0PNc7L2TcD2RcYzLvr2rL93Z9y7oXWzmHjJw3dlCi37MmhEBcXByeeeYZPP300wCuPiWLjo7GnDlzFH/AQOlrxkbKyMrD0cxcJEaV9Ts5vKVVU4aa+pWUKyON0vi1tF9G3XrT6O1jmW3xl152H2s5Z+R8kHFeTYx66tMTh5njJSOvrP4wsg1q26E3Fr3xqLm+1bbPjnPIyHljBKXrD9sv1i5cuIBDhw4BABo3bow333wT7dq1Q6VKlVCjRg1MnToVU6ZMwdy5c5GUlITx48dj9+7d2LdvH0JDQxXVYYfFGhEREV1flK4/bP+ete3bt6Ndu3au3wvfa9a/f3/MmTMHzz33HHJycjBkyBCcO3cObdq0wYoVKxQv1IiIiIjszPZP1szAJ2tERERktuti6w4iIiKi0o6LNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjEu1oiIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFizgYysPGw8nImMrDxNabyd81eunnr1lK31nN64rIjZiDq1lqnmuJHjJ7M+PXXKbJOvtHaaA3rLl3nd6W2DEXNGy/gZ2Ratfac3JrPnrN2uETXXvFmCrA7gerdwWzpSFu2BUwABDiC1WzJ6NauhOI23c/7K1VOvnrK1ntMblxUxG1Gn1jLVHAdg2PjJrE/vPNY79krmpa+2mT0HlMSrdq5ove70tsGI607L+MmYozL728r+0zredrpPqrl+zOYQQgirg7BadnY2IiMjkZWVhYiICNPqzcjKQ+spa+AsMgKBDgc2jG2H2Mgwv2kAeDy3aGhLPPDBRq/l6qlXT9ne4vV3rjAmrXH5K9uImI2oU2vfe8vn6XgAADhgyPh5ik9rfXrnsd6xLzontbTN7Dmg9zpSe9zINugZMzXt9jd+vvpRb1u09LcZc172nDW7PpnXvCxK1x98GdRCaZk5bpMCAAqEwNHMXEVpvJ3bdvSsz3L11KunbK3nitISl7+yjYjZiDq19r23fJ6OOwHDxs9TGq31+Wqv0uvH33mlc1JL27TWLePa9pVOzVzRet3pbYMR153aa6GQ3jkqaxzMmvOy56yd7pNqr3mz8WVQCyVFhSPAw7/cEqPKKk7j6VyzxIo+8+ipV2/ZWs/pjcuKmGXXqbXvveXzdNzb0wQZ4+cpPj31ybh+9Ix9UVraZtW17Sudmrmi9brT2wY9Y6am3f7GT0asssbBrDlvxJy1y31S7TVvNj5Zs1BsZBhSuyUj0OEAcHVSTO5W3+1xq6803s41jK/os1w99eopW+s5JX3mKy5/ZRsRsxF1au17b/k8HU99MNmw8fOURmt9euex3rG/ltq2mT0H9F5Hao8b2QYjrju114KM+SVzHMya87LnrJ3uk2qvebPxPWuw7j1rhTKy8nA0MxeJUWW9Tgpfabyd81eunnr1lK31nN64rIjZiDq1lqnmuJHjJ7M+PXXKbJPWtmmtW0afaClf5nWntw1GzBkt42dkW7T2nd6YzJ6zdrtG1Fzzeildf3CxBusXa0RERHT94QcMiIiIiEoBLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjEu1oiIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGSvxiraCgAOPHj0dSUhLCwsJQq1YtvPrqqxBCWB0aERERkW4lfrE2depUfPjhh3jvvfewf/9+TJ06FdOmTcO7775rdWjSZGTlYePhTGRk5UnPp7Vsrfn11GdWXi312KF82TEoLc/IOWDmfLGij/XmNWqM9OQ1+vrRWofWMsxoj978stOb2b968prdz1YKsjoAvTZu3IguXbqgU6dOAIDExEQsWLAAW7dutTgyORZuS0fKoj1wCiDAAaR2S0avZjWk5NNattb8euozK6+WeuxQvuwYlJZn5Bwwc75Y0cd6YzdqjPTkNfr60dsetWWY0R69+WWnN7N/9eQ1u5+tVuKfrLVq1QqrV6/Gn3/+CQD47bffsGHDBnTs2NFrnvz8fGRnZ7v92FFGVp5rMgGAUwAvLNqr6F8b/vJpLVtrfj31mZVXSz12KF92DErLM3IOmDlfrOhjvbEbNUZ68hp9/ehtj9oyzGiP3vyy05vZv3rymt3PdlDiF2tjx45F7969cdNNN6FMmTJo3LgxRo0ahb59+3rNk5qaisjISNdPfHy8iRErl5aZ45pMhQqEwNHMXN35tJatNb+e+szKq6UeO5QvOwal5Rk5B8ycL1b0sd7YjRojPXmNvn601qG1DDPaoze/7PRm9q+evGb3sx2U+MXaF198gc8++wzz58/Hjh07MHfuXLz++uuYO3eu1zwpKSnIyspy/Rw/ftzEiJVLigpHgMP9WKDDgcSosrrzaS1ba3499ZmVV0s9dihfdgxKyzNyDpg5X6zoY72xGzVGevIaff1orUNrGWa0R29+2enN7F89ec3uZzso8Yu1Z5991vV0LTk5Gf369cPo0aORmprqNU9ISAgiIiLcfuwoNjIMqd2SEei4OqsCHQ5M7lYfsZFhuvNpLVtrfj31mZVXSz12KF92DErLM3IOmDlfrOhjvbEbNUZ68hp9/ehtj9oyzGiP3vyy05vZv3rymt3PduAQJXyPi8qVK2PSpEl48sknXcdSU1Mxe/Zs1/vY/MnOzkZkZCSysrJsuXDLyMrD0cxcJEaVVTWZlOTTWrbW/HrqMyuvlnrsUL7sGJSWZ+QcMHO+WNHHevMaNUZ68hp9/WitQ2sZZrRHb37Z6c3sXz15ze5nIyhdf5T4xdqAAQPw448/YubMmbj55puxc+dODBkyBI8++iimTp2qqAy7L9aIiIio9LluFmvnz5/H+PHjsXjxYvz999+Ii4tDnz59MGHCBAQHBysqg4s1IiIiMtt1s1iTgYs1IiIiMpvS9UeJ/4ABERERUWnGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysWSgjKw8bD2ciIytP6nnZ+bTWoyadrzRG1a+3/42O3+p+V5JGTYxq+lNt2WrbpDaPnrEwIq/S/GrTyuhbPWXIPmdEXXrOy47T6PNGzW+j55mW+4+W+4aZgqwO4Hq1cFs6UhbtgVMAAQ4gtVsyejWrofu87Hxa61HaDn9pjKpfb/8bHb/V/S67bQAU96dZ46Y0j56xMCKv2nbKmjMy5pTWNsm+xvT0rVn3WCNjkTXHrGiTlrgB3/cfLfcNszmEEMLqIKyWnZ2NyMhIZGVlISIiwvD6MrLy0HrKGjiL9Hygw4ENY9shNjJM8/lFQ1vigQ82Ssun9nhhPUrb6S8NAE3t9Fe/1n66tnyj4tcat5KYlPS77LEJAAAHFPWnr3pljpvSvtIzFkbk9dX3auenmjkjY05pbZOWc776WGtdRtybtcapJxa946Fnfuttk696vZXv7/6j5b4hk9L1B18GtUBaZo7bxACAAiFwNDNX1/ltR89Kzaf2eGE9StvpL43WdvorW2s/XVu+UfEb1W6l/S67bU5AcX/6qlfmuPmrS8ZYGJHXV9+rnZ9q0smYU1rbJPsa09O3sueL1jj1xKJ3PArJ7nslMWuJ29/9R8t9wwp8GdQCSVHhCPCw0k+MKqvrfLPEilLzqT1eWI/SdipJY0T9Wvvp2vKNil9r3EpjkpVGaYze/mXrqT/1tF/NuClto56xMCKvr77XMj/19oOamPW0SfY1pvWc7PmiJ06j/o4onWNa57fR80zt/UfLfcMKfLJmgdjIMKR2S0agwwHg6sSY3K2+65Gr1vMN4ytKzaf2+LWPjP21w18are30V7bWfvL0SNyI+I1qt9J+l9221AeTFfenWeOmtB/0jIUReX31vdr5KaMf1MwprW2SfY3p6VvZ80VrnDLGTO8ck933MuaZp3P+7j9a7htW4HvWYP571gplZOXhaGYuEqPKen3vjpbzsvNprUdNOl9pjKpfb/8bHb/V/S67bWr6U0/71dajp0w9/WdU32tpn95+kFWG7HNG1KXnvOw4jT5v1Pw2ep5puf9ouW/IoHT9wcUarFusERER0fWLHzAgIiIiKgW4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjFDvsHg4MGDWLp0KY4ePQqHw4GkpCR07doVNWvWNKI6IiIiolJL+mItNTUVEyZMgNPpRHR0NIQQOH36NMaOHYvJkyfjmWeekV0lERERUakl9WXQtWvX4sUXX8S4ceOQmZmJjIwMnDx50rVYGzt2LNavXy+zSiIiIqJSTeo3GPTq1QsVKlTAzJkzPZ4fMmQIzp8/jwULFsiqUgp+gwERERGZzZJvMNi6dSv69evn9Xy/fv2wefNmmVUSERERlWpSF2unTp1CYmKi1/NJSUk4efKkzCqJiIiISjWpi7WLFy8iODjY6/kyZcrg0qVLMqskIiIiKtWkfxr0448/Rrly5TyeO3/+vOzqiIiIiEo1qYu1GjVqYNasWX7TEBEREZEyUhdrR48elVkcERER0XWPXzdFREREZGNSn6y98847itKNGDFCZrVEREREpZbUTXGTkpL8V+hw4MiRI7KqlIKb4hIREZHZlK4/pD5ZS0tLk1kcERER0XWvVLxn7a+//sLDDz+MypUrIywsDMnJydi+fbvVYRERERHpVuIXa2fPnkXr1q1RpkwZLF++HPv27cMbb7yBihUrWh2aZhlZedh4OBMZWXmG5ZeVxshy1dTvL63ePlVSjhXxyqxTZr1Wzx0Z+Y1qg9byZc4Jo+o2ug4z4pYdkx1i0JPH6D43Y24pzSfr74QRpG+Ka7apU6ciPj4es2fPdh1T8t45u1q4LR0pi/bAKYAAB5DaLRm9minfm05JfllpjKpbbf3+0urtUyXlWBGvzDpl1mv13NFTh9Ft0Fq+zDlhVN1G12FG3LJjskMMWsvVUrYd55bSfLL+ThilxD9ZW7ZsGZo2bYoePXogOjoajRs39rsxb35+PrKzs91+7CAjK881WQDAKYAXFu1V9S8Uf/llpTGqbrX1+0urt0+V1GNFvDLrlFmv1XNHTx166jKyfJlzwqi6jW6fGXHLjskOMWgtV0vZdpxbSvPJ+jthpBK/WDty5Ag+/PBD1KlTBytXrsSTTz6JESNGYO7cuV7zpKamIjIy0vUTHx9vYsTepWXmuCZLoQIhcDQzV1p+WWmMqltt/f7S6u1TJfVYEa/MOmXWa/Xc0VOHnrqMLF/mnDCqbj157BK37JjsEIPWcrWUbce5pTSfrL8TRjLsZVCn04lDhw7h77//htPpdDt3++23S62nadOmmDx5MgCgcePG2Lt3L2bMmIH+/ft7zJOSkoIxY8a4fs/OzrbFgi0pKhwBDrhNmkCHA4lRZaXll5XGqLrV1u8vrd4+VVqP2fHK7COZ9Vo9d/TUoacuI8uXOSeMqtvo9pkRt+yY7BCD1nK1lG3HuaU0n6y/E0Yy5Mna5s2bUbt2bdStWxe333472rZt6/pp166d1LpiY2NRr149t2N169ZFenq61zwhISGIiIhw+7GD2MgwpHZLRqDDAeDqZJncrT5iI8Ok5ZeVxqi61dbvL63ePlVSjxXxyqxTZr1Wzx09deipy8jyZc4Jo+o2un1mxC07JjvEoKdvjO5zM+aW0nyy/k4YSeqmuIUaNWqEG264ARMnTkRsbCwc/+2AQpGRkdLqeuihh3D8+HH8/PPPrmOjR4/Gli1bsHHjRkVl2G1T3IysPBzNzEViVFlNk0VJfllpjCxXTf3+0urtUyXlWBGvzDpl1mv13NFTh9Ft0Fq+zDlhVN1G12FG3LJjskMMevIY3edmzC2l+WT9nVBD6frDkMVaeHg4fvvtN9SuXVt20cVs27YNrVq1wsSJE9GzZ09s3boVgwcPxkcffYS+ffsqKsNuizUiIiIq/ZSuPwx5GbRFixY4dOiQEUUX06xZMyxevBgLFixA/fr18eqrr2L69OmKF2pEREREdmbIBwyeeuopPP300zh58iSSk5NRpkwZt/MNGjSQWt99992H++67T2qZRERERHZgyMugAQHFH9g5HA4IIeBwOFBQUCC7Sl34MigRERGZzZIvci/EL3QnIiIiksOQxVpCQoIRxRIRERFddwzbFPfw4cOYPn069u/fDwCoV68eRo4ciVq1ahlVJREREVGpY8inQVeuXIl69eph69ataNCgARo0aIAtW7bg5ptvxqpVq4yokoiIiKhUMuQDBo0bN0aHDh0wZcoUt+Njx47FDz/8gB07dsiuUhd+wICIiIjMZuk+a/v378djjz1W7Pijjz6Kffv2GVElERERUalkyGKtSpUq2LVrV7Hju3btQnR0tBFVEhEREZVKhnzAYPDgwRgyZAiOHDmCVq1aAQB++eUXTJ06FWPGjDGiSiIiIqJSyZD3rAkhMH36dLzxxhs4ceIEACAuLg7PPvssRowYUeyL3a3G96wRERGR2SzbFPfKlSuYP38+HnroIYwePRrnz58HAJQvX152VURERESlnvT3rAUFBeGJJ57AxYsXAVxdpHGhRkRERKSNIR8waN68OXbu3GlE0URERETXFUM+YDB06FA8/fTT+L//+z80adIE4eHhbucbNGhgRLVEREREpY4hHzAICCj+wM7hcEAIAYfDgYKCAtlV6sIPGBAREZHZLPuAAQCkpaUZUSwRERHRdceQxVpCQoIRxRIRERFddwxZrM2bN8/n+UceecSIaomIiIhKHUPes1axYkW33y9fvozc3FwEBwejbNmyOHPmjOwqdeF71oiIiMhsln6R+9mzZ91+Lly4gAMHDqBNmzZYsGCBEVWWehlZedh4OBMZWXlS08rMq6cMvfXKiFtrOUrzmDWGesswa/7IGjO7xKK2DNntN+MasnJeas1v9Dww+35r1Twz835SWu5BMhnyMqgnderUwZQpU/Dwww/jjz/+MKvaUmHhtnSkLNoDpwACHEBqt2T0alZDd1qZefWUobdeGXEbHbtZY6i3DLPmj6wxs0ssasuQ3X4zriEr56XW/EbPA7Pvt1bNMzPvJ6XlHiSbIU/WvAkKCnJ9Vygpk5GV55pQAOAUwAuL9nr8l4CatDLz6ilDb70y4jY6drPGUG8ZZs0fWWNml1jUliG7/WZcQ1bOS635jZ4HZt9vrZpnZt5PSss9yAiGLNaWLVvm9rN06VLMmDEDDz/8MFq3bm1ElaVWWmaOa0IVKhACRzNzdaWVmVdPGXrrlRG31nKU5jFrDPWWYdb8kTVmdolFbRmy22/GNWTlvNSa3+h5YPb91qp5Zub9pLTcg4xgyMugXbt2dfvd4XCgSpUquPPOO/HGG28YUWWplRQVjgAH3CZWoMOBxKiyutLKzKunDL31yojb6NjNGkO9ZZg1f2SNmV1iUVuG7PabcQ1ZOS+15jd6Hph9v7Vqnpl5Pykt9yAjGPJkzel0uv0UFBTg5MmTmD9/PmJjY42ostSKjQxDardkBDocAK5OqMnd6iM2MkxXWpl59ZSht14ZcRsdu1ljqLcMs+aPrDGzSyxqy5DdfjOuISvnpdb8Rs8Ds++3Vs0zM+8npeUeZARDtu4odOnSJaSlpaFWrVoICjLtswyqlYStOzKy8nA0MxeJUWX9Tig1aWXm1VOG3nplxK21HKV5zBpDvWWYNX9kjZldYlFbhuz2m3ENWTkvteY3eh6Yfb+1ap6ZeT8pLfcgJZSuPwxZrOXm5mL48OGuzXH//PNP1KxZE0899RSqVauGsWPHyq5Sl5KwWCMiIqLSxdJ91lJSUrB792789NNPCA0NdR1v3749Fi5caESVRERERKWSIa9NLlmyBAsXLsStt94Kx39fEwaAm2++GYcPHzaiSiIiIqJSyZAna6dPn0Z0dHSx4zk5OW6LNyIiIiLyzZDFWtOmTfHdd9+5fi9coH388cdo2bKlEVUSERERlUqGvAw6efJkdOzYEfv27cOVK1fw9ttvY9++fdi4cSPWrVtnRJVEREREpZIhT9batGmDXbt24cqVK0hOTsYPP/yA6OhobNq0CU2aNDGiSiIiIqJSydB91koKbt1BREREZrN06w4iIiIikkPqe9YCAgL8ftrT4XDgypUrMqslIiIiKrWkLtYWL17s9dymTZvwzjvvwOl0yqySiIiIqFSTuljr0qVLsWMHDhzA2LFj8c0336Bv37545ZVXZFZJREREVKoZ9p61EydOYPDgwUhOTsaVK1ewa9cuzJ07FwkJCUZVSURERFTqSF+sZWVl4fnnn0ft2rXx+++/Y/Xq1fjmm29Qv3592VURERERlXpSXwadNm0apk6diqpVq2LBggUeXxYlIiIiIuWk7rMWEBCAsLAwtG/fHoGBgV7TLVq0SFaVUnCfNSIiIjKb0vWH1CdrjzzyCL+onYiIiEgiqYu1OXPmyCyOiIiI6LrHbzAgIiIisjEu1oiIiIhsjIs1IiIiIhsrdYu1KVOmwOFwYNSoUVaHQkRERKRbqVqsbdu2DTNnzkSDBg2sDkWzjKw8bDyciYysPE3n9ZZhxDk1afTUpbXdemOX0S4tscmIyeoyjOx72X0qq116+8Sq61dGGbKuIxn1mVGG7HuV3nr1xqZ2jLTkM/N61xqjFaR+GtRKFy5cQN++fTFr1ixMmjTJ6nA0WbgtHSmL9sApgAAHkNotGb2a1VB8Xm8ZRpxTE7ueGLW2W2/sMtqlJTYZMVldhpF9L7tPlcZkdJ9Ydf3KKEPWdSSjPjPKkH2vMmMsZI6RmvbobZee+7uetplJ6qa4Vurfvz8qVaqEt956C23btkWjRo0wffp0j2nz8/ORn5/v+j07Oxvx8fGWboqbkZWH1lPWwFlkNAIdDmwY2w6xkWF+z+stA4D0c0rjUtoP3upaNLQlHvhgo+p2+8unNR417fIWg6/YfNWrNCYZ7dJTht75rKUPtPap0jbrucaU9IlV16+/dispQ9Z15K8sGfdCI++nWu9VMvtSy/1QSbmeGH3v19PXWmI0giWb4lrl888/x44dO7Bt2zZF6VNTUzFx4kSDo1InLTPHbbIAQIEQOJqZi9jIML/n9ZYhIKSfUxqX0n7wVte2o2c1tdtfPq3xqGmXtxh8xaZ3PGS1S08Zeuezlj7Q2qdK26znGlPSJ1Zdv/7arfceoOY68leWjHuhkfdTrfcqmX2p5X6odowKGX3v19PXWmK0UolfrB0/fhwjR47EqlWrEBoaqihPSkoKxowZ4/q98MmalZKiwhHgQLHVfWJUWUXnZZRhxDmlsStN6+lcs8SKmtrtL5/ePlPSLm8x+ItNb0wy2qWnDBnzWfY8kdFmI/vEqutXb90y8quJRUkaq+6nWu9VMvtS6/1QzRgpjVVNWtl9rSVGK5X4Dxj8+uuv+Pvvv3HLLbcgKCgIQUFBWLduHd555x0EBQWhoKCgWJ6QkBBERES4/VgtNjIMqd2SEfjfr+sKdDgwuVt918re33m9ZRhxTmlcSvvB27mG8RU1tdtfPj19prRd3mLwFZuMmKwuQ++8kT1PZLTZ6D6x6vqVMV9kXUcy5o4ZZci+V8nsSyOvDy1jpbddeu7vamO0Uol/z9r58+dx7Ngxt2MDBw7ETTfdhOeffx7169f3W4advsg9IysPRzNzkRhV1uNk8XdebxlGnFOTRk9dWtutN3YZ7dISm4yYrC7DyL6X3aey2qW3T6y6fmWUIes6klGfGWXIvlfprVdvbGrHSEs+M693GW3TS+n6o8Qv1jxp29b3BwyuZafFGhEREV0flK4/SvzLoERERESlWYn/gIEnP/30k9UhEBEREUnBJ2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKyZJCMrDxsPZyIjK8/r/ytJ7+m8t3y+jmutV0uZauP1Va6/mGTVqeeY2t/VxK+lfk/plMQgY94pOa+nHj3Xgdp5pmVctaTxRm1eLWOitTyl5/TMX3916e1rI+5nMq4zWXNRSfxK21b4/78dP6urXpn3Li33Jj3Xo9mCrA7gerBwWzpSFu2BUwCO/x4TcP//AAeQ2i0ZvZrV8Jq+MA0A13lv+Xwdf6BxNSze+ZfPdN5i89QmX2V6Susr3mvbVrRcfzF563O1deo5dm0/+PvdWxu0xiljbNXU72ve+RsLvfUoaavSPvA3z9SOs9Kx8dZWrfPB3zVnRHlKz2npV6VzScncUNM+GfczJde6v3GQNRf1XI++rp1CWupVGreSe5ea+72We48dOIQQwn+y0i07OxuRkZHIyspCRESE1LIzsvLQesoaOBX0cqDDgUVDW+KBDzZ6TR8AAA64nfeWT0l5StMFOhzYMLYdYiPDFLWpMD2AYmm91eepbb4UjakoT/GpqVPPMbU8tcFT/FrrVzu2aur3Ne98zRVfc0NNPUrbqjS/N1rGWUkeb23VOh/8XXO+xkRreWrP+Wv/tZTMJSVjq7Z93uLwlFbN/NRynflrhz96rkc9147avxme8iu5d6m55rXcezz9jZFJ6fqDT9YMlpaZo3iCFgiBbUfP+kzvBNz/SeMjn5LylKYrEAJHM3MRGxmmqE2F6QWE4rg8tU1JHddeSJ7iU1OnnmNqeWqDp/i11q92bNXU72ve+ZorvuaGmno8tUPPdeCNlnFWksdbW7XOB3/XnK8x0Vqe2nP+6ryWkrmkZGzVts9bHGruZ77aAigfVzXn/dWr9nrUc+2o/ZvhKb+Se5eaa17LvcfT3xgrcLFmsKSocAQo/JdQoMOBZokVfab3tvr3lE9JeUrTBTocSIwqq7hNRdMrjUvLk7XCOoryFJ+aOs1+snZtGzzFr+fJmpqxVVO/r3nna674mhtq6lHaVqX5vTH7yZrW+eDvmvM1JnrKU3POX/uvpWQuKRlbte3zFYee+6yW68xfO/zRcz3quXbU/s3wlF/JvUvNNa/l3uPpb4wV+AEDg8VGhiG1WzICHVdfbXcA+O//uv1/oMOByd3qo2F8Ra/pAx0OpD6Y7HbeWz5fxx+8pZrfdJ5iK/zXxbVt8lZmbGSYx7Te4vLUtqLl+orJV5+rrVPPsWv7wd/vntrgKX6t9asdWzX1+5p3vuaKr7mhph4lbVXaB77mmZZxVpLHW1u1zgd/15yvMdFanppzWvpVyVxSMjfUtk/G/czfta5kHGTMRT3Xo79rp5CWepXEreTepeZvn5Z7jx2eqgF8zxoAY9+zVigjKw9HM3Ndq3RP/3/t+1R8pSl63ls+X8eVpPMWm9oy1cbrq1x/McmqU88xtb+riV9L/VrGVk39vo4rOa+nHj3XwbV9oPaaUxKLljTeqM2rZUy0lqf0nJZ+VRK3jL424n6mZGz9xamlz2Rfj95iKhscgNxLTs31yrx3abk36bkeZVG6/uBiDeYs1oiIiIiKUrr+4MugRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENlbiF2upqalo1qwZypcvj+joaHTt2hUHDhywOiwiIiIiKUr8Ym3dunUYNmwYNm/ejFWrVuHy5cu4++67kZOTY3VoimVk5WHj4UxkZOWpOufrvL98RpetNb8VfaG3r2SUr6ceGWMtM52nc0b2sey2+Uorq6+Nurb0xmDE/NNz3i7n9M4/I/qoJPWr2nYYec+Web80k0MIIawOQqbTp08jOjoa69atw+23364oT3Z2NiIjI5GVlYWIiAiDI3S3cFs6UhbtgVMAAQ4gtVsyejWr4fecr/P+8hldttb8VvSF3r6SUb6eemSMtcx0ns4BMKyPZbfNjL426trSG4OvcTLq+jJi3GWf0zv/jOgjX2Nlp77TMuf0tM1fGpn3S1mUrj9K3WLt0KFDqFOnDvbs2YP69et7TJOfn4/8/HzX79nZ2YiPjzd9sZaRlYfWU9bAWWQEAh0ObBjbDgC8nouNDPOad9HQlnjgg41e8/mrV2/Zvsr3ld9Xe43qC3/94K+vtMZ1bX9prUfGWCupX2k6T3EGAIADhvSxr3Na2uYrray+Nura0junfY2Tt37We30ZMe6yz2m9Z+m91/o67++aslO/qp1zetom4xpTc6+QRelircS/DFqU0+nEqFGj0Lp1a68LNeDq+9wiIyNdP/Hx8SZG+T9pmTlukwIACoTA0cxcn+d85d129KzPfP7q1Vu21vxW9IW/cv2l0RrXtf2ltR4ZYy0znadzTsCwPpbdNl9pZfW1UdeW3jnta5yMur6MGHfZ57TeswrpHS8t15Rd+k7LnNPTNl91yb5fWiHI6gBkGjZsGPbu3YsNGzb4TJeSkoIxY8a4fi98sma2pKhwBHj4V0RiVFkA8HnOW95miRV95lNSr56y9eQ3uy/89YOSNHrL11OPjLGWne7ac97+pSyrj2W2zVdaWX1t1LWld077Gycjri+jxl3mOT33LBl9oGWs7Navatqht22+0si8X1qh1DxZGz58OL799lusXbsW1atX95k2JCQEERERbj9WiI0MQ2q3ZAQ6HACuTorJ3eojNjLM5zlfeRvGV/SZz1+9esvWmt+KvvBXrlFj5OlxupZ6ZIy1zHSezqU+mGxYH8tum6+0svraqGtL75z2NU5GXV9GjLvsc1rvWbLGS8s1ZZe+0zLn9LTNX5/LvF9aocS/Z00IgaeeegqLFy/GTz/9hDp16qguw8oPGABXXyc/mpmLxKiyHt9D4+2cr/P+8hldttb8VvSF3r6SUb6eemSMtcx0ns4Z2cey2+Yrray+Nura0huDEfNPz3m7nNM7/4zoo5LUr2rbYeQ9W+b9Uobr5gMGQ4cOxfz587F06VLceOONruORkZEIC1PWyVYv1oiIiOj6c90s1hz/fVx5rdmzZ2PAgAGKyuBijYiIiMymdP1R4j9gUMLXmkREREQ+lZoPGBARERGVRlysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxZqFMrLysPFwJjKy8nQdN6ssf+eUnDcyBqV1l4S+susc0Nomo8ZGaz4jxlRLjFaPmVHjJbPNetphRnu01OMvrR3nhRH9r6a/9JRjVnxGCrI6gOvVwm3pSFm0B04BBDiA1G7J6NWshurjZpXl75yS80rar/Wc0rpLQl/ZdQ5obZNRY2OnMdUSIwBLx8yo8ZLZZj3Xi9I49bTHzPuflfPC27jp6Rc1/aWnHLPiM5pDCCEsq90msrOzERkZiaysLERERBheX0ZWHlpPWQNnkZ4PdDiwaGhLPPDBRsXHN4xtBwCGl+XvXGxkmNc2FZ5X0n6tMfhqU9G6zeh3vX2lpY1q88gsy1+bjBobrfUaMaa+znmLMQAAHLBszLTkUTJeMtus53pRe1/S0h4z739Wzgtv46an/5XOM399pmfuyIxPD6XrDz5Zs0BaZo7bJACAAiGw7ehZVcePZuZCQBhelr9zsZFhXttUeF5J+7XG4KtNRes2o9/19pWWNpoxB/z1sdq+1Ts2Wus1Yky1jLcTACwcM6OuJZlt1nO9qL0vaWmPmfc/K+eFt3HT0/9K51kh2fcH2fGZgYs1CyRFhSPAw79UmiVWVHU8MaosABhelpJz3tpUeF5J+7XG4K9N/uq1W1/ZcQ74y6O2b/WOjdZ6jRpTtTF6e1ph5pgZMV4y26znelF7X9LSHjPvf1bOC2/jpqf/lc4zf32md+7Iis8M/ICBBWIjw5DaLRmBDgeAq5Ngcrf6aBhfUdXx2MgwU8ryd85Xmzz9K0RrPWrbem3dJaGvtLTRyvnkr01GjY3Weo0YUy3jnfpgsqVjZtR4yWyznutF7X1JbzlG3/+snBfexk1P/yudZ/76TM/ckRmfGfieNZj/nrVCGVl5OJqZi8SossXeP6HmuFll+Tun5LyMerS0SU9+K/rKrnNAa5uMGhsz267nnLfzVo+ZUeMls8162mFGe7TUo7U9Vs4LI/pfTX/pKces+LRQuv7gYg3WLdaIiIjo+qV0/cGXQYmIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMb4dVMACreay87OtjgSIiIiul4Urjv8bXnLxRqA8+fPAwDi4+MtjoSIiIiuN+fPn0dkZKTX8/wGAwBOpxMnTpxA+fLl4fjvd4ERERERGUkIgfPnzyMuLg4BAd7fmcbFGhEREZGN8QMGRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY5Yu1tavX4/OnTsjLi4ODocDS5YscTt/4cIFDB8+HNWrV0dYWBjq1auHGTNmuKX56KOP0LZtW0RERMDhcODcuXPmNYCIiIjIYJYu1nJyctCwYUO8//77Hs+PGTMGK1aswKeffor9+/dj1KhRGD58OJYtW+ZKk5ubi3vuuQcvvPCCWWETERERmcY232DgcDiwePFidO3a1XWsfv366NWrF8aPH+861qRJE3Ts2BGTJk1yy//TTz+hXbt2OHv2LCpUqGBS1ERERETGsvUXubdq1QrLli3Do48+iri4OPz000/4888/8dZbb+kqNz8/H/n5+a7fnU4nzpw5g8qVK/O7QYmIiMgUSr8b1NaLtXfffRdDhgxB9erVERQUhICAAMyaNQu33367rnJTU1MxceJESVESERERaXf8+HFUr17d63nbL9Y2b96MZcuWISEhAevXr8ewYcMQFxeH9u3bay43JSUFY8aMcf2elZWFGjVq4Pjx44iIiJAROhEREZFP2dnZiI+PR/ny5X2ms+1iLS8vDy+88AIWL16MTp06AQAaNGiAXbt24fXXX9e1WAsJCUFISEix4xEREVysERERkan8vQXLtvusXb58GZcvXy72Gm5gYCCcTqdFURERERGZy9InaxcuXMChQ4dcv6elpWHXrl2oVKkSatSogTvuuAPPPvsswsLCkJCQgHXr1mHevHl48803XXlOnjyJkydPusrZs2cPypcvjxo1aqBSpUqmt4mIiIhIJku37ijcbuNa/fv3x5w5c3Dy5EmkpKTghx9+wJkzZ5CQkIAhQ4Zg9OjRrkeGL7/8sscPC8yePRsDBgxQFEd2djYiIyORlZXFl0GJiIjIFErXH7bZZ81KXKwRERGR2ZSuP2z7njUiIiIi4mKNiIiIyNZsu3UHkd2lp6cjMzMTABAVFYUaNWpYHBEREZVGXKwRaZCeno4bb6yLixdzAQChoWVx4MB+LtiIiEg61Yu1c+fOYfHixfj5559x7Ngx5ObmokqVKmjcuDE6dOiAVq1aGREnka1kZmb+d6H2KQDg4sWHkZmZycUaERFJp/g9aydOnMCgQYMQGxuLSZMmIS8vD40aNcJdd92F6tWrY+3atfjXv/6FevXqYeHChUbGTGQjdf/7Q0REZAzFT9YaN26M/v3749dff0W9evU8psnLy8OSJUswffp0HD9+HM8884y0QImIiIiuR4oXa/v27UPlypV9pgkLC0OfPn3Qp08f/PPPP7qDIyIiIrreKX4Z1N9CTW96IiIiIipO0z5rgYGBaNeuHc6cOeN2/NSpUwgMDJQSGBERERFpXKwJIZCfn4+mTZvi999/L3aOiIiIiOTQtFhzOBz4+uuv0blzZ7Rs2RJLly51O0f2lZ6ejh07dmDHjh1IT0+3OhwiIiLyQ9OmuEIIBAYG4u2338bNN9+MXr164cUXX8SgQYNkx0cScSNXIiKikkf3NxgMGTIEderUQY8ePbB+/XoZMZFBuJErERFRyaPpZdCEhAS3DxK0a9cOmzdvxvHjx6UFRkbiRq5EREQlhaYna2lpacWO1a5dGzt37sSpU6d0B0VEREREV2l6suZNaGgoEhISZBZJREREdF1TtVirWLEiKlWq5PdHqfXr16Nz586Ii4uDw+HAkiVLXOcuX76M559/HsnJyQgPD0dcXBweeeQRnDhxwq2MM2fOoG/fvoiIiECFChXw2GOP4cKFC2qaRURERGRbql4GnT59uuv/hRB48skn8corryA6OlpT5Tk5OWjYsCEeffRRdOvWze1cbm4uduzYgfHjx6Nhw4Y4e/YsRo4cifvvvx/bt293pevbty8yMjKwatUqXL58GQMHDsSQIUMwf/58TTERERER2YmqxVr//v3dfn/qqafw4IMPombNmpoq79ixIzp27OjxXGRkJFatWuV27L333kPz5s2Rnp6OGjVqYP/+/VixYgW2bduGpk2bAgDeffdd3HvvvXj99dcRFxenKS4iIiIiu9C9dYeZsrKy4HA4UKFCBQDApk2bUKFCBddCDQDat2+PgIAAbNmyBQ888IDHcvLz85Gfn+/6PTs729C4S6r09HRkZmYiKirK1tt7FMYJwGOsvtrhL69VPMWsdDz0jFtJGXMiX0rLPJZ9f9JzrzSD3eOzUolZrF28eBHPP/88+vTpg4iICADAyZMni70EGxQUhEqVKuHkyZNey0pNTcXEiRMNjbekK7qBrp03z/W30a+vdth1k2BPMQNQNB56xq2kjDmRL6VlHsu+P+m5V5rB7vFZTeqnQY1y+fJl9OzZE0IIfPjhh7rLS0lJQVZWluuH+8MV978NdF/ExYu5rn/t2I37Rr+fFovVVzv85bWKp5iVjoeecSspY07kS2mZx7LvT3rulWawe3xWU/VkbcyYMW6/X7p0Ca+99hoiIyPdjr/55pv6I/uvwoXasWPHsGbNGtdTNQCoWrUq/v77b7f0V65cwZkzZ1C1alWvZYaEhCAkJERajKVbSdmKxd8mv77aYdcNgj3FrHQ89IxbSRlzIl9KyzyWfX/Sc680g93js4aqxdrOnTvdfm/VqhWOHDnidkzmF7kXLtQOHjyItWvXonLlym7nW7ZsiXPnzuHXX39FkyZNAABr1qyB0+lEixYtpMVBREREZBVVi7W1a9dKrfzChQs4dOiQ6/e0tDTs2rULlSpVQmxsLLp3744dO3bg22+/RUFBget9aJUqVUJwcDDq1q2Le+65B4MHD8aMGTNw+fJlDB8+HL179+YnQYmIiKhUsPQDBtu3b0e7du1cvxe+zNq/f3+8/PLLWLZsGQCgUaNGbvnWrl2Ltm3bAgA+++wzDB8+HHfddRcCAgLw4IMP4p133jElfiIiIiKjKV6sTZkyBSNGjEDZsmX9pt2yZQsyMzPRqVMnn+natm0LIYTX877OFapUqRI3wCUiIqJSS/GnQfft24eEhAQMHToUy5cvx+nTp13nrly5gt27d+ODDz5Aq1at0KtXL5QvX96QgImIiIiuJ4qfrM2bNw+//fYb3nvvPTz00EPIzs5GYGAgQkJCkJt7dV+Uxo0bY9CgQRgwYABCQ0MNC/p6omVTxNK8ceC1/WFndh8H2fHZqb16NhPlNeeZXTeQVstTO5Qes4OiceXn5yMkJETRht8y67VTf1wvVL1nrWHDhpg1axZmzpyJ3bt349ixY8jLy0NUVBQaNWpk+z+eJY2WTRFL88aBnvrjq6++sDgqz+w+Dt423pVZnlXt1bOZKK85z+y6gbRantqxZs2PuPPO9n6P2aG9GRkZaN36NldcQCCAAkUbfuu5V5aW8S/JNG2KGxAQgEaNGqFLly7o3bs32rdvz4WaAbRsiliaNw701B/nzp2zOCrP7D4OsuOzU3v1bCbKa84zu24grZandhw5ckTRMTu099y5c0XiehVAAZRu+K3nXllaxr8kKzFfN3V907IpYmneONCum9h6YvdxkB2fndqrZ57wmvOsJF17vnhqh9JjdlA0LjM3/LZrf5R+JeLrpoiIiIiuV1ysEREREdkYF2tERERENqZrsXbo0CGsXLkSeXl5AJRtYktEREREymlarP3zzz9o3749brjhBtx7773IyMgAADz22GN4+umnpQZIREREdD3T9GnQ0aNHIygoCOnp6ahb93+fDunVqxfGjBmDN954Q1qApZXsDQYLy9u/X/1+WWZtdlgSNw4tLRvHyqjXyM1ifaUzcsNSpRuHGnW9eivPU3/I6CN/x3xtsqq0TUrjU5pXSzozqB0jX2UApWejWaVtMnuDc6XjZac5VpSmxdoPP/yAlStXonr16m7H69Spg2PHjkkJrDSTvcHgteWpce0mizI2SPWkJG4cKjtmq/pAxga4Rm4W6yud0k1MtfSl0o1DvV0jsq5XX20uOl56+0jJMW+brKppk5L4/LVX7Twxm9ox8lcGUDo2mlXaJrM3OFc6Xp6O2WU8NL0MmpOT4/EL3c+cOYOQkBDdQZV2sjcYdC/vVVV53TdZNG6zw5K4cWhp2ThWRr1GbhbrK53STUxltcnTxqGyrxF/fempP2T0kf9j3jdZVd4mZfH5a6/aOsymdox8l1F6NppV2iazNzhXOl52mmPX0vRk7bbbbsO8efPw6qtXFwYOhwNOpxPTpk1Du3btpAZYutlpw0KzNjssiRuHlpaNY2XUa+RmsWo395Q1Z5WWY/b16qk/ZPSRv2N65omeDVplzBOzqR0jT0rjRrNWXVP+KB0vO82xqzQt1qZNm4a77roL27dvx6VLl/Dcc8/h999/x5kzZ/DLL7/IjpGIiIjouqXpZdD69evjzz//RJs2bdClSxfk5OSgW7du2LlzJ2rVqiU7RiIiIqLrlqbFWnp6OiIiIjBu3Dh88cUX+P777zFp0iTExsYiPT1ddoz466+/8PDDD6Ny5coICwtDcnIytm/f7jovhMCECRMQGxuLsLAwtG/fHgcPHpQeBxEREZHZNC3WkpKScPr06WLH//nnHyQlJekOqqizZ8+idevWKFOmDJYvX459+/bhjTfeQMWKFV1ppk2bhnfeeQczZszAli1bEB4ejg4dOuDixYtSYyEiIiIym6b3rAkh4HA4ih2/cOECQkNDdQdV1NSpUxEfH4/Zs2e7jhVdEAohMH36dLz44ovo0qULAGDevHmIiYnBkiVL0Lt3b6nxEBEREZlJ1WJtzJgxAK5++nP8+PFu23cUFBRgy5YtaNSokdQAly1bhg4dOqBHjx5Yt24dqlWrhqFDh2Lw4MEAgLS0NJw8eRLt27d35YmMjESLFi2wadMmj4u1/Px85Ofnu37Pzs6WGrMW+/fvd21ICajboNNMhXUXjbXw/6+Nv+iGm94261VTntUK2yArlqLl2WUvn6KUtNfb+Hoa72vb6y9vfn4+jhw5oqsNnmI1ouyivLXTV7379+9XNQ/89VFaWprW8ItJT0/3e/36Ou9tLhRe397GX8080bqRrzfe+k/N5uO+4vPVp3qpKVvtvPNUl5K5bcS9/Nr+1fL3x1N5dqVqsbZz504AV59m7dmzB8HBwa5zwcHBaNiwIZ555hmpAR45cgQffvghxowZgxdeeAHbtm3DiBEjEBwcjP79++PkyZMAgJiYGLd8MTExrnPXSk1NxcSJE6XGqV0GgAA8/PDDKNyQElC3QaeRmwkW5b6R4f9i/d//u8dffMNNfeWZ1c7i/sH/xkhGLMXLs9Pmi0rbe+1c9JTXW3me58a1eYvOCX2Kxyqv7P9R0s5r6/3f9a9sw2J/fXS1vPHjx+ttDADfG257Hn9/eT3f767SN0/kbOjtvf/8tVdNfFo3MfdH+QbpauedhxL8XlPq/rYp5+0aUPf3x3t59qTqPWtr167F2rVr0b9/fyxfvtz1+9q1a7Fy5UrMnDkTderUkRqg0+nELbfcgsmTJ6Nx48YYMmQIBg8ejBkzZmguMyUlBVlZWa6f48ePS4xYrXMAnAAew9WJpn6DTiM3EyzqfxsGFo21cCPN4vEX33BTX3lmtbO4C7g6RrJiKV6enTZfVNpe97n4qoe8no75mhvX5i2cB/oVj1Ve2f+jpJ3X1nvuv3mUbsLpr48Ky5PTNvdr1J3n8feXt2h8BZA3T2RtYlo0vmvO+Gnv//iOz1ef6qW87HNQN+88lOD3miqsQ/a93Ns1oO7vj/fy7EnTe9aKvn/MaLGxsahXr57bsbp16+Lrr78GAFStWhUAcOrUKcTGxrrSnDp1yutLsiEhITb8poXC2O26mWBRnmL1Fb+/WNWWZxU7bWJsBj1zUdaxWA/n9TCybE91KK1Xz0aqnsqT3TZf5Sm9vj0ds8NGvp7oaa+ndJ7iM2r+qSlb9kbZasdadr16Ns+29/1Y02INALZv344vvvgC6enpuHTpktu5RYsW6Q6sUOvWrXHgwAG3Y3/++ScSEq5OsqSkJFStWhWrV692Lc6ys7OxZcsWPPnkk9LiICIiIrKCpq07Pv/8c7Rq1Qr79+/H4sWLcfnyZfz+++9Ys2YNIiMjpQY4evRobN68GZMnT8ahQ4cwf/58fPTRRxg2bBiAqx92GDVqFCZNmoRly5Zhz549eOSRRxAXF4euXbtKjYWIiIjIbJqerE2ePBlvvfUWhg0bhvLly+Ptt99GUlISHn/8cbeXImVo1qwZFi9ejJSUFLzyyitISkrC9OnT0bdvX1ea5557Djk5ORgyZAjOnTuHNm3aYMWKFdK3ESEiIiIym6bF2uHDh9GpUycAVz8FmpOTA4fDgdGjR+POO++U/knL++67D/fdd5/X8w6HA6+88gpeeeUVqfUSERERWU3Ty6AVK1bE+fPnAQDVqlXD3r17AVz9dEhurvyPIxMRERFdrzQ9Wbv99tuxatUqJCcno0ePHhg5ciTWrFmDVatW4a677pId43XL08aMSo8V0rKRq6zNAZXEJau8a/nbSNNbf/jarNMfXxtM+itLbb3eNoQ0c/NHmRuv6uWv/5TGqvT6UjpeavvI7I05jRpDO20watQmy3pi8XVe6/1HNiM3Xlbzd0zNxrZKyiupNC3W3nvvPdf3bo4bNw5lypTBxo0b8eCDD+LFF1+UGuD1ydPGjEqPFdKykWvRTQz1UB6X/vI8pFawWWvx/vC1Waey+DxvMOmvvWrr9b8hpPK8WsndeFUff/2nNFZ115z/8VLbR2ZvzGnUGNppg1HjNlnWH8u19Nx/ZDNy42V1f8eUb0Tsr46ST9PLoJUqVUJcXNzVAgICMHbsWCxbtgxvvPEG39QvxTkU35hR6bFCWjZyLSxP7+aASuNSWoev8jyk9rtZq6f+KFrHtZt1Ko3P0waT/tqrtl5/G0Kasflj0Zitdg6++6/oeaXlKD3mq8+V1lvI7I05z8GYMbTTBqPGbbKsP5ZrnYP2+49sRm687Cmv9/KUb0Tsr46ST/M+a9fKz8/H+++/j2nTpnn9midSS+lmlzI2cNSbxxPZcan9pLGsDXqV8rXBpOx69WwgbMb4ms1fHyiNVe01p2VDWF/M3pjTzI2BrWLGRshKGXn/kc3IjZfN+Dtm9VjLperJWn5+PlJSUtC0aVO0atUKS5YsAXD1Gw2SkpLw1ltvYfTo0UbESURERHRdUvVkbcKECZg5cybat2+PjRs3okePHhg4cCA2b96MN998Ez169EBgYKBRsRIRERFdd1Qt1r788kvMmzcP999/P/bu3YsGDRrgypUr+O233+BwOIyKkYiIiOi6pepl0P/7v/9DkyZNAAD169dHSEgIRo8ezYUaERERkUFULdYKCgoQHBzs+j0oKAjlypWTHhQRERERXaXqZVAhBAYMGICQkBAAwMWLF/HEE08gPDzcLd2iRYvkRVgKFG7qB9hjY8ailG4caPUGjd6o3SRYSzq1ZPeVnvKU5vWXTnZfyd5QszSzahNjs+eEjDqMvE/J3uS7pMZQGqi9L3rb7NxMqhZr/fv3d/vdHhsf2lt6ejpuvLFukU39rN7wsJDSjQPttMllUWo3CfaXVwbZfaWnPKV5lW3WKa+vZG+oWZpZtYmx2XNCRh1G3qdkb/JdUmMoDbTdFws3O7dywaZqsTZ79myj4ii1MjMzi2zqlwZgPK5u1vf/LI3LfeNAX7EU3SCxMH47OIfi8Xs6pjSvDLL7Sk95SvP6S3cOcvtKT3myY7E7WfPpHNT1m9lzwhO1dRh5n/IVi1n3RzvEUBpouS8CFy8+jMzMzJKzWCM97LQxY1FKY7HDJo2e6NmssaRsCKqnPFkb5cruK9kbapZmVm1ibPackFGHkfcp2Zu2ltQYSgOzNxDXT9PXTRERERGRObhYIyIiIrKxUrNYe//995GYmIjQ0FC0aNECW7dutTokIiIiIt1KxWJt4cKFGDNmDF566SXs2LEDDRs2RIcOHfD3339bHRoRERGRLqVisfbmm29i8ODBGDhwIOrVq4cZM2agbNmy+OSTT6wOjYiIiEiXEv9p0EuXLuHXX39FSkqK61hAQADat2+PTZs2ecyTn5+P/Px81+9ZWVkAgOzsbOnxXbhw4b//9yuAY//9/2MmH7vqfxsB+strZax2P3aV8r7kMeuO2SEGHrPvsavsfy0b2c4/rx759X/p7NF2XzFbE8uFCxcMWSMUlimE8J1QlHB//fWXACA2btzodvzZZ58VzZs395jnpZdeEgD4wx/+8Ic//OEPfyz/OX78uM+1Tol/sqZFSkoKxowZ4/rd6XTizJkzqFy5sq4vpc/OzkZ8fDyOHz+OiIgIGaGSThwTe+F42AvHw144HvZj9JgIIXD+/HnExcX5TFfiF2tRUVEIDAzEqVOn3I6fOnUKVatW9ZgnJCTE9f2mhSpUqCAtpoiICF5oNsMxsReOh71wPOyF42E/Ro5JZGSk3zQl/gMGwcHBaNKkCVavXu065nQ6sXr1arRs2dLCyIiIiIj0K/FP1gBgzJgx6N+/P5o2bYrmzZtj+vTpyMnJwcCBA60OjYiIiEiXUrFY69WrF06fPo0JEybg5MmTaNSoEVasWIGYmBhT4wgJCcFLL71U7CVWsg7HxF44HvbC8bAXjof92GVMHEL4+7woEREREVmlxL9njYiIiKg042KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizWJ3n//fSQmJiI0NBQtWrTA1q1brQ6pVEpNTUWzZs1Qvnx5REdHo2vXrjhw4IBbmosXL2LYsGGoXLkyypUrhwcffLDYxsnp6eno1KkTypYti+joaDz77LO4cuWKmU0pdaZMmQKHw4FRo0a5jnEszPfXX3/h4YcfRuXKlREWFobk5GRs377ddV4IgQkTJiA2NhZhYWFo3749Dh486FbGmTNn0LdvX0RERKBChQp47LHHinzXMSlVUFCA8ePHIykpCWFhYahVqxZeffVVt++C5HgYa/369ejcuTPi4uLgcDiwZMkSt/Oy+n/37t247bbbEBoaivj4eEybNk1eI/R/OycJIcTnn38ugoODxSeffCJ+//13MXjwYFGhQgVx6tQpq0MrdTp06CBmz54t9u7dK3bt2iXuvfdeUaNGDXHhwgVXmieeeELEx8eL1atXi+3bt4tbb71VtGrVynX+ypUron79+qJ9+/Zi586d4vvvvxdRUVEiJSXFiiaVClu3bhWJiYmiQYMGYuTIka7jHAtznTlzRiQkJIgBAwaILVu2iCNHjoiVK1eKQ4cOudJMmTJFREZGiiVLlojffvtN3H///SIpKUnk5eW50txzzz2iYcOGYvPmzeLnn38WtWvXFn369LGiSSXaa6+9JipXriy+/fZbkZaWJr788ktRrlw58fbbb7vScDyM9f3334tx48aJRYsWCQBi8eLFbudl9H9WVpaIiYkRffv2FXv37hULFiwQYWFhYubMmVLawMWaJM2bNxfDhg1z/V5QUCDi4uJEamqqhVFdH/7++28BQKxbt04IIcS5c+dEmTJlxJdffulKs3//fgFAbNq0SQhx9eINCAgQJ0+edKX58MMPRUREhMjPzze3AaXA+fPnRZ06dcSqVavEHXfc4VqscSzM9/zzz4s2bdp4Pe90OkXVqlXFv//9b9exc+fOiZCQELFgwQIhhBD79u0TAMS2bdtcaZYvXy4cDof466+/jAu+FOrUqZN49NFH3Y5169ZN9O3bVwjB8TDbtYs1Wf3/wQcfiIoVK7rds55//nlx4403SombL4NKcOnSJfz6669o376961hAQADat2+PTZs2WRjZ9SErKwsAUKlSJQDAr7/+isuXL7uNx0033YQaNWq4xmPTpk1ITk522zi5Q4cOyM7Oxu+//25i9KXDsGHD0KlTJ7c+BzgWVli2bBmaNm2KHj16IDo6Go0bN8asWbNc59PS0nDy5Em3MYmMjESLFi3cxqRChQpo2rSpK0379u0REBCALVu2mNeYUqBVq1ZYvXo1/vzzTwDAb7/9hg0bNqBjx44AOB5Wk9X/mzZtwu23347g4GBXmg4dOuDAgQM4e/as7jhLxTcYWC0zMxMFBQXFvjEhJiYGf/zxh0VRXR+cTidGjRqF1q1bo379+gCAkydPIjg4GBUqVHBLGxMTg5MnT7rSeBqvwnOk3Oeff44dO3Zg27Ztxc5xLMx35MgRfPjhhxgzZgxeeOEFbNu2DSNGjEBwcDD69+/v6lNPfV50TKKjo93OBwUFoVKlShwTlcaOHYvs7GzcdNNNCAwMREFBAV577TX07dsXADgeFpPV/ydPnkRSUlKxMgrPVaxYUVecXKxRiTZs2DDs3bsXGzZssDqU69Lx48cxcuRIrFq1CqGhoVaHQ7j6D5imTZti8uTJAIDGjRtj7969mDFjBvr3729xdNefL774Ap999hnmz5+Pm2++Gbt27cKoUaMQFxfH8SDF+DKoBFFRUQgMDCz2CbdTp06hatWqFkVV+g0fPhzffvst1q5di+rVq7uOV61aFZcuXcK5c+fc0hcdj6pVq3ocr8JzpMyvv/6Kv//+G7fccguCgoIQFBSEdevW4Z133kFQUBBiYmI4FiaLjY1FvXr13I7VrVsX6enpAP7Xp77uV1WrVsXff//tdv7KlSs4c+YMx0SlZ599FmPHjkXv3r2RnJyMfv36YfTo0UhNTQXA8bCarP43+j7GxZoEwcHBaNKkCVavXu065nQ6sXr1arRs2dLCyEonIQSGDx+OxYsXY82aNcUePTdp0gRlypRxG48DBw4gPT3dNR4tW7bEnj173C7AVatWISIiotgfOvLurrvuwp49e7Br1y7XT9OmTdG3b1/X/3MszNW6detiW9n8+eefSEhIAAAkJSWhatWqbmOSnZ2NLVu2uI3JuXPn8Ouvv7rSrFmzBk6nEy1atDChFaVHbm4uAgLc/9QGBgbC6XQC4HhYTVb/t2zZEuvXr8fly5ddaVatWoUbb7xR90ugALh1hyyff/65CAkJEXPmzBH79u0TQ4YMERUqVHD7hBvJ8eSTT4rIyEjx008/iYyMDNdPbm6uK80TTzwhatSoIdasWSO2b98uWrZsKVq2bOk6X7hdxN133y127dolVqxYIapUqcLtIiQo+mlQITgWZtu6dasICgoSr732mjh48KD47LPPRNmyZcWnn37qSjNlyhRRoUIFsXTpUrF7927RpUsXj1sVNG7cWGzZskVs2LBB1KlTh1tFaNC/f39RrVo119YdixYtElFRUeK5555zpeF4GOv8+fNi586dYufOnQKAePPNN8XOnTvFsWPHhBBy+v/cuXMiJiZG9OvXT+zdu1d8/vnnomzZsty6w47effddUaNGDREcHCyaN28uNm/ebHVIpRIAjz+zZ892pcnLyxNDhw4VFStWFGXLlhUPPPCAyMjIcCvn6NGjomPHjiIsLExERUWJp59+Wly+fNnk1pQ+1y7WOBbm++abb0T9+vVFSEiIuOmmm8RHH33kdt7pdIrx48eLmJgYERISIu666y5x4MABtzT//POP6NOnjyhXrpyIiIgQAwcOFOfPnzezGaVCdna2GDlypKhRo4YIDQ0VNWvWFOPGjXPb4oHjYay1a9d6/JvRv39/IYS8/v/tt99EmzZtREhIiKhWrZqYMmWKtDY4hCiyjTIRERER2Qrfs0ZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkSl1oABA9C1a1fL6u/Xrx8mT55sWPn79u1D9erVkZOTY1gdRGQ9foMBEZVIDofD5/mXXnoJo0ePhhACFSpUMCeoIn777TfceeedOHbsGMqVK2dYPd27d0fDhg0xfvx4w+ogImtxsUZEJdLJkydd/79w4UJMmDABBw4ccB0rV66coYskfwYNGoSgoCDMmDHD0Hq+++47DB48GOnp6QgKCjK0LiKyBl8GJaISqWrVqq6fyMhIOBwOt2PlypUr9jJo27Zt8dRTT2HUqFGoWLEiYmJiMGvWLOTk5GDgwIEoX748ateujeXLl7vVtXfvXnTs2BHlypVDTEwM+vXrh8zMTK+xFRQU4KuvvkLnzp3djicmJmLSpEl45JFHUK5cOSQkJGDZsmU4ffo0unTpgnLlyqFBgwbYvn27K8+xY8fQuXNnVKxYEeHh4bj55pvx/fffu87/61//wpkzZ7Bu3TqdPUpEdsXFGhFdV+bOnYuoqChs3boVTz31FJ588kn06NEDrVq1wo4dO3D33XejX79+yM3NBQCcO3cOd955Jxo3bozt27djxYoVOHXqFHr27Om1jt27dyMrKwtNmzYtdu6tt95C69atsXPnTnTq1An9+vXDI488gocffhg7duxArVq18Mgjj6DwRY9hw4YhPz8f69evx549ezB16lS3J4bBwcFo1KgRfv75Z8k9RUR2wcUaEV1XGjZsiBdffBF16tRBSkoKQkNDERUVhcGDB6NOnTqYMGEC/vnnH+zevRsA8N5776Fx48aYPHkybrrpJjRu3BiffPIJ1q5diz///NNjHceOHUNgYCCio6OLnbv33nvx+OOPu+rKzs5Gs2bN0KNHD9xwww14/vnnsX//fpw6dQoAkJ6ejtatWyM5ORk1a9bEfffdh9tvv92tzLi4OBw7dkxyTxGRXXCxRkTXlQYNGrj+PzAwEJUrV0ZycrLrWExMDADg77//BnD1gwJr1651vQeuXLlyuOmmmwAAhw8f9lhHXl4eQkJCPH4Iomj9hXX5qn/EiBGYNGkSWrdujZdeesm1iCwqLCzM9SSQiEofLtaI6LpSpkwZt98dDofbscIFltPpBABcuHABnTt3xq5du9x+Dh48WOwJV6GoqCjk5ubi0qVLPusvrMtX/YMGDcKRI0fQr18/7NmzB02bNsW7777rVuaZM2dQpUoVZR1ARCUOF2tERD7ccsst+P3335GYmIjatWu7/YSHh3vM06hRIwBX90GTIT4+Hk888QQWLVqEp59+GrNmzXI7v3fvXjRu3FhKXURkP1ysERH5MGzYMJw5cwZ9+vTBtm3bcPjwYaxcuRIDBw5EQUGBxzxVqlTBLbfcgg0bNuiuf9SoUVi5ciXS0tKwY8cOrF27FnXr1nWdP3r0KP766y+0b99ed11EZE9crBER+RAXF4dffvkFBQUFuPvuu5GcnIxRo0ahQoUKCAjwfgsdNGgQPvvsM931FxQUYNiwYahbty7uuece3HDDDfjggw9c5xcsWIC7774bCQkJuusiInviprhERAbIy8vDjTfeiIULF6Jly5aG1HHp0iXUqVMH8+fPR+vWrQ2pg4isxydrREQGCAsLw7x583xunqtXeno6XnjhBS7UiEo5PlkjIiIisjE+WSMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjEu1oiIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrKx/w//ulZTyXuaygAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/snudda/utils/export_sonata.py b/snudda/utils/export_sonata.py index 1e96098d9..803da6c0d 100644 --- a/snudda/utils/export_sonata.py +++ b/snudda/utils/export_sonata.py @@ -599,6 +599,21 @@ def get_nest_synapse_models(self): return synapse_model_lookup + def get_nest_synapse_sign_lookup(self): + + synapse_sign_lookup = dict() + + for synapse_models in self.snudda_load.data["connectivityDistributions"].values(): + for synapse_type, synapse_model in synapse_models.items(): + synapse_type_id = synapse_model["channelModelID"] + + if synapse_type.upper() == "GABA": + synapse_sign_lookup[synapse_type_id] = -1.0 + else: + synapse_sign_lookup[synapse_type_id] = 1.0 + + return synapse_sign_lookup + ############################################################################ # This code sets up the info about edges @@ -626,6 +641,8 @@ def setup_edge_info(self, edge_population_lookup, node_group_id, group_idx): # 4: locType, 5: synapseType, 6: somaDistDend 7:somaDistAxon # somaDist is an int, representing micrometers + synapse_sign_lookup = self.get_nest_synapse_sign_lookup() + for i_syn, syn_row in enumerate(self.snudda_load.data["synapses"]): source_gid[i_syn] = group_idx[syn_row[0]] target_gid[i_syn] = group_idx[syn_row[1]] @@ -644,7 +661,10 @@ def setup_edge_info(self, edge_population_lookup, node_group_id, group_idx): sec_x[i_syn] = syn_row[10] / 1000.0 synapse_type = syn_row[6] synapse_conductance = syn_row[11] * 1e-3 # pS --> micro simens - syn_weight[i_syn] = synapse_conductance + + # We need to set the weight to negative for inhibitory synapses it seems + # hence the synapse_sign_lookup (returns +1 or -1) + syn_weight[i_syn] = synapse_conductance * synapse_sign_lookup[synapse_type] pre_type = self.snudda_load.data["neurons"][source_gid[i_syn]]["type"] post_type = self.snudda_load.data["neurons"][target_gid[i_syn]]["type"] From 9e7acb775fe1aeacf3115b8f697553417787c70f Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Wed, 7 Jun 2023 15:39:05 +0200 Subject: [PATCH 09/14] Fixed ablate so it can handle 0 gap junctions case --- snudda/utils/ablate_network.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/snudda/utils/ablate_network.py b/snudda/utils/ablate_network.py index 5985c0c42..af9b1f0e8 100755 --- a/snudda/utils/ablate_network.py +++ b/snudda/utils/ablate_network.py @@ -136,6 +136,9 @@ def filter_synapses(self, data_type): synapse_data = self.in_file[f"network/{data_type}"][()].copy() + if synapse_data.size == 0: + return np.array([], dtype=int) + keep_flag = np.zeros((synapse_data.shape[0],), dtype=bool) # Shortcut, if user wants to remove all, skip the processing part @@ -354,10 +357,15 @@ def write_network(self, out_file_name=None, print_remapping=False): row[1] = remap_id[row[1]] temp_gj_mat[idx, :] = row + if temp_gj_mat.size > 0: + gj_chunk_size = self.in_file["network/gapJunctions"].chunks + else: + gj_chunk_size = None + network_group.create_dataset("gapJunctions", data=temp_gj_mat, dtype=np.int32, shape=(num_gj, self.in_file["network/gapJunctions"].shape[1]), - chunks=self.in_file["network/gapJunctions"].chunks, + chunks=gj_chunk_size, maxshape=(None, self.in_file["network/gapJunctions"].shape[1]), compression=self.in_file["network/gapJunctions"].compression) From b3f3671fb03d19c13f4f0dc0f9544d5ed83201eb Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Thu, 8 Jun 2023 17:36:54 +0200 Subject: [PATCH 10/14] Updated SONATA export code, working on virtual nodes for input --- examples/notebooks/NEST/Snudda-in-NEST.ipynb | 864 +------------------ snudda/utils/conv_hurt.py | 16 +- snudda/utils/export_sonata.py | 221 ++++- snudda/utils/load.py | 7 +- 4 files changed, 212 insertions(+), 896 deletions(-) diff --git a/examples/notebooks/NEST/Snudda-in-NEST.ipynb b/examples/notebooks/NEST/Snudda-in-NEST.ipynb index e30e4dc2e..312bc8968 100644 --- a/examples/notebooks/NEST/Snudda-in-NEST.ipynb +++ b/examples/notebooks/NEST/Snudda-in-NEST.ipynb @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "07413422-e250-4017-ad0d-13edb2bbf34a", "metadata": { "tags": [] @@ -33,25 +33,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "011ac1a8-eda9-40df-9232-2cd69fe31b0e", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using cube for striatum\n", - "Neurons for striatum read from /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum\n", - "Adding neurons: FS from dir /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs\n", - "Adding neurons: dSPN from dir /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn\n", - "Adding neurons: iSPN from dir /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn\n", - "Writing networks/snudda_in_nest/network-config.json\n" - ] - } - ], + "outputs": [], "source": [ "from snudda import SnuddaInit\n", "\n", @@ -65,20 +52,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "655ae722-5fbc-4611-8d60-e245e6f19a3d", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading SNUDDA_DATA=/home/hjorth/HBP/BasalGangliaData/data/ from networks/snudda_in_nest/network-config.json\n" - ] - } - ], + "outputs": [], "source": [ "from snudda import SnuddaPlace\n", "spl = SnuddaPlace(network_path=network_path)\n", @@ -87,82 +66,12 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "58bc5af7-4f9a-4aaf-a231-c33f105ebc5d", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading SNUDDA_DATA=/home/hjorth/HBP/BasalGangliaData/data/ from networks/snudda_in_nest/network-config.json\n", - "No d_view specified, running distribute neurons in serial\n", - "Processing hyper voxel : 62/150 (948 neurons)\n", - "Processing hyper voxel : 57/150 (947 neurons)\n", - "Processing hyper voxel : 61/150 (946 neurons)\n", - "Processing hyper voxel : 56/150 (935 neurons)\n", - "Processing hyper voxel : 37/150 (865 neurons)\n", - "Processing hyper voxel : 32/150 (861 neurons)\n", - "Processing hyper voxel : 31/150 (850 neurons)\n", - "Processing hyper voxel : 36/150 (846 neurons)\n", - "Processing hyper voxel : 87/150 (217 neurons)\n", - "Processing hyper voxel : 81/150 (211 neurons)\n", - "Processing hyper voxel : 86/150 (205 neurons)\n", - "Processing hyper voxel : 82/150 (203 neurons)\n", - "Processing hyper voxel : 58/150 (159 neurons)\n", - "Processing hyper voxel : 63/150 (142 neurons)\n", - "Processing hyper voxel : 55/150 (133 neurons)\n", - "Processing hyper voxel : 67/150 (131 neurons)\n", - "Processing hyper voxel : 52/150 (130 neurons)\n", - "Processing hyper voxel : 60/150 (128 neurons)\n", - "Processing hyper voxel : 51/150 (128 neurons)\n", - "Processing hyper voxel : 66/150 (123 neurons)\n", - "Processing hyper voxel : 38/150 (105 neurons)\n", - "Processing hyper voxel : 33/150 (104 neurons)\n", - "Processing hyper voxel : 27/150 (97 neurons)\n", - "Processing hyper voxel : 35/150 (94 neurons)\n", - "Processing hyper voxel : 42/150 (91 neurons)\n", - "Processing hyper voxel : 26/150 (90 neurons)\n", - "Processing hyper voxel : 41/150 (88 neurons)\n", - "Processing hyper voxel : 7/150 (82 neurons)\n", - "Processing hyper voxel : 30/150 (80 neurons)\n", - "Processing hyper voxel : 11/150 (70 neurons)\n", - "Processing hyper voxel : 12/150 (62 neurons)\n", - "Processing hyper voxel : 6/150 (59 neurons)\n", - "Processing hyper voxel : 83/150 (19 neurons)\n", - "Processing hyper voxel : 88/150 (18 neurons)\n", - "Processing hyper voxel : 91/150 (17 neurons)\n", - "Processing hyper voxel : 85/150 (15 neurons)\n", - "Processing hyper voxel : 92/150 (13 neurons)\n", - "Processing hyper voxel : 76/150 (12 neurons)\n", - "Processing hyper voxel : 80/150 (12 neurons)\n", - "Processing hyper voxel : 28/150 (10 neurons)\n", - "Processing hyper voxel : 40/150 (9 neurons)\n", - "Processing hyper voxel : 53/150 (9 neurons)\n", - "Processing hyper voxel : 50/150 (8 neurons)\n", - "Processing hyper voxel : 65/150 (8 neurons)\n", - "Processing hyper voxel : 68/150 (8 neurons)\n", - "Processing hyper voxel : 77/150 (7 neurons)\n", - "Processing hyper voxel : 43/150 (6 neurons)\n", - "Processing hyper voxel : 1/150 (5 neurons)\n", - "Processing hyper voxel : 5/150 (5 neurons)\n", - "Processing hyper voxel : 25/150 (4 neurons)\n", - "Processing hyper voxel : 16/150 (4 neurons)\n", - "Processing hyper voxel : 13/150 (4 neurons)\n", - "Processing hyper voxel : 8/150 (4 neurons)\n", - "Processing hyper voxel : 2/150 (4 neurons)\n", - "Processing hyper voxel : 17/150 (3 neurons)\n", - "Processing hyper voxel : 10/150 (2 neurons)\n", - "Processing hyper voxel : 93/150 (2 neurons)\n", - "Processing hyper voxel : 90/150 (1 neurons)\n", - "Processing hyper voxel : 106/150 (1 neurons)\n", - "Processing hyper voxel : 107/150 (1 neurons)\n", - "Processing hyper voxel : 112/150 (1 neurons)\n" - ] - } - ], + "outputs": [], "source": [ "from snudda import SnuddaDetect\n", "\n", @@ -172,25 +81,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "50c01a1a-2195-411f-9d67-103533574ffc", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No file networks/snudda_in_nest/pruning_merge_info.json\n", - "Worker synapses: 14/6281449 (heap size: 29)\n", - "Worker synapses: 4128319/6281449 (heap size: 24)\n", - "Worker synapses: 6281449/6281449 (heap size: 0)\n", - "Read 6281449 out of total 6281449 synapses\n", - "Read 75 out of total 75 gapJunctions\n" - ] - } - ], + "outputs": [], "source": [ "from snudda import SnuddaPrune\n", "\n", @@ -210,21 +106,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "81b6a6dc-98eb-46de-9c3c-7da9f1c293b0", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading SNUDDA_DATA=/home/hjorth/HBP/BasalGangliaData/data/ from networks/snudda_in_nest/network-config.json\n", - "Writing spikes to networks/snudda_in_nest/input-spikes.hdf5\n" - ] - } - ], + "outputs": [], "source": [ "input_config = {\n", " \"dSPN\": {\n", @@ -281,646 +168,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "2e229380-8851-4383-ad7c-55c62386235e", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using input file: networks/snudda_in_nest/input-spikes.hdf5\n", - "Copying morphologies\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/morphology/BE104E-cor-rep-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/BE104E-cor-rep-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var8.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var7.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var7.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/morphology/21-6-DE-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/21-6-DE-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/morphology/51-5-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/51-5-DE-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var4.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var4.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/morphology/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/DR-rat-Mar-13-08-1-536-R-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/morphology/WT-P270-09-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-09-15ak-cor-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/morphology/WT-0728MSN01-cor-rep-ax-res3-var1.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-0728MSN01-cor-rep-ax-res3-var1.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var3.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var3.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/morphology/WT-P270-20-15ak-cor-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-P270-20-15ak-cor-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/morphology/46-3-DE-cor-rep-ax-res3-var0.swc to networks/snudda_in_nest/SONATA/components/morphologies/46-3-DE-cor-rep-ax-res3-var0.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/morphology/WT-1215MSN03-cor-rep-ax-res3-var2.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-1215MSN03-cor-rep-ax-res3-var2.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var5.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var5.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/morphology/MTC180800A-IDB-cor-rep-res3-var6.swc to networks/snudda_in_nest/SONATA/components/morphologies/MTC180800A-IDB-cor-rep-res3-var6.swc\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/morphology/WT-MSN1-cor-rep-ax-res3-var8.swc to networks/snudda_in_nest/SONATA/components/morphologies/WT-MSN1-cor-rep-ax-res3-var8.swc\n", - "Copying mechanisms\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/can_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/Im_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kas_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/can_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caldyn_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal13_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/car_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/im_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/par_ggap.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cap_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut_double.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdb_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cat32_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal12_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/NO.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir23_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kv2_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kaf_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir23_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/hcn12_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cadyn_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kas_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na2_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cal_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/car_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kv4_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cat33_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmgabaa.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir2_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caq_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/naf_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/bk_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/cadyn_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/caq_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/ca_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/vecevent.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdrb_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/hd_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kcnq_ch.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/tmglut_M1RH_D1.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/na3_lts.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/sk_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kdr_fs.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/kir_ms.mod\n", - "Copying /home/hjorth/HBP/BasalGangliaData/data/neurons/mechanisms/it_lts.mod\n", - "Copying hoc files...\n", - "Creating nodes/FS\n", - "Creating nodes/dSPN\n", - "Creating nodes/iSPN\n", - "Missing hoc template: \n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e160628_FS2-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mBE104E-v20210209/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c6_D1-m21-6-DE-v20211028/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161024_FS16-mDR-rat-Mar-13-08-1-536-R-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/fs/str-fs-e161205_FS1-mMTC180800A-IDB-v20210210/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/FS.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150917_c11_D2-mWT-MSN1-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150602_c1_D1-mWT-0728MSN01-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e151123_c1_D2-mWT-P270-09-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e160118_c10_D2-m46-3-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c10_D1-mWT-P270-20-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/dspn/str-dspn-e150917_c9_D1-mWT-1215MSN03-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/dSPN.json\n", - "Missing ../../../../BasalGangliaData/data/neurons/striatum/ispn/str-ispn-e150908_c4_D2-m51-5-DE-v20211026/dynamics_params.json file, using /home/hjorth/HBP/BasalGangliaData/data/nest/models/iSPN.json\n", - "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_FS_Striatum.hdf5\n", - "Writing file networks/snudda_in_nest/SONATA/inputs/input_FS_Striatum.hdf5\n", - "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_dSPN_Striatum.hdf5\n", - "Writing file networks/snudda_in_nest/SONATA/inputs/input_dSPN_Striatum.hdf5\n", - "Writing spikes to networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", - "Writing file networks/snudda_in_nest/SONATA/inputs/input_iSPN_Striatum.hdf5\n", - "Writing networks/snudda_in_nest/SONATA/simulation_config.json\n", - "SONATA files exported to networks/snudda_in_nest/SONATA\n" - ] - } - ], + "outputs": [], "source": [ "from snudda.utils.export_sonata import ExportSonata\n", "se = ExportSonata(network_path=network_path)" @@ -928,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "70593a0b-24d8-46a3-851d-6c01ea425898", "metadata": { "tags": [] @@ -952,37 +205,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "711e8a95-daf2-4766-aa78-b98351dac708", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " -- N E S T --\n", - " Copyright (C) 2004 The NEST Initiative\n", - "\n", - " Version: 3.4.0-post0.dev0\n", - " Built: Jun 1 2023 12:32:32\n", - "\n", - " This program is provided AS IS and comes with\n", - " NO WARRANTY. See the file LICENSE for details.\n", - "\n", - " Problems or suggestions?\n", - " Visit https://www.nest-simulator.org\n", - "\n", - " Type 'nest.help()' to find out more about NEST.\n", - "\n", - "\n", - "Jun 07 14:34:02 SimulationManager::set_status [Info]: \n", - " Temporal resolution changed from 0.1 to 0.1 ms.\n" - ] - } - ], + "outputs": [], "source": [ "import nest\n", "\n", @@ -1011,7 +239,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "37ca25ad-6dd5-471e-84a4-a251a3bf49ee", "metadata": {}, "outputs": [], @@ -1036,70 +264,20 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "d516b479-e2f4-4a6a-94e6-3881806b5875", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Jun 07 14:34:02 NodeManager::prepare_nodes [Info]: \n", - " Preparing 4863 nodes for simulation.\n", - "\n", - "Jun 07 14:34:03 SimulationManager::start_updating_ [Info]: \n", - " Number of local nodes: 4863\n", - " Simulation time (ms): 1000\n", - " Number of OpenMP threads: 1\n", - " Not using MPI\n", - "\n", - "Jun 07 14:36:17 SimulationManager::run [Info]: \n", - " Simulation finished.\n" - ] - } - ], + "outputs": [], "source": [ "sonata_net.Simulate()" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "859267cf-8916-48b3-b3ec-31abd4e9a489", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVwV9f7/X3OOooCyCcgimwcVRDYRBBQUrBQxRa0UKm1xuYLavbdMqOy2Clb39qvUMu1rdsvlllu5lzviQgaKCy4IgiwKiWiAopz5/THM8Syznl2d5+PB7Xpm5jOfmfnMZ96fz+f9fr0JkiRJSEhISEhISEhIWCUyS1dAQkJCQkJCQkKCHclYk5CQkJCQkJCwYiRjTUJCQkJCQkLCipGMNQkJCQkJCQkJK0Yy1iQkJCQkJCQkrBjJWJOQkJCQkJCQsGIkY01CQkJCQkJCwoqRjDUJCQkJCQkJCStGMtYkJCQkJCQkJKwYyViTkJAwC/7+/njhhRfMcq7CwkLEx8fD3t4eBEGguLjYLOc1Ju+88w4IgjDpOYYPH47hw4eb9BwSEhKGIxlrEhJG5ttvvwVBEKq/Tp06wdvbGy+88AKqq6tNdt4zZ87gnXfeQUVFhcnOYQlqamrwzjvvCDa47t69i6effhrXr1/Hp59+iv/+97/w8/MzbSUlBPPOO+/A399f47ddu3bh5ZdfxoABAyCXy3W2q6NUKvHRRx8hICAAXbt2RVhYGNasWaOz37Fjx5CZmYmoqCh07tyZ0/D98ssv8fTTT8PX1xcEQbAOKpjqLiFhDjpZugISEg8r7733HgICAnD79m0cOXIE3377LfLz83Hq1Cl07drV6Oc7c+YM3n33XQwfPvyh+qDU1NTg3Xffhb+/PyIiInj3Lysrw+XLl7F8+XJMmzbN9BV8gNm1a5elqwAAWL16NdatW4eBAwfCy8uLc98333wTeXl5mD59OqKjo7F582ZkZGSAIAhMnjxZtd+2bduwYsUKhIWFoXfv3jh//jxrmYsWLcKtW7cQExOD2tpao12XhISxkGbWJCRMREpKCp577jlMmzYNK1aswGuvvYaysjL8/PPPlq6aKJqbmy1dBVFcu3YNAODk5MS774N2bcbGxsYGNjY2lq4GFi5ciJs3b+LQoUMIDw9n3a+6uhr//ve/kZWVha+//hrTp0/HL7/8goSEBMybNw/t7e2qfWfNmoWmpib8/vvvePzxxznPv3//fjQ0NGD79u3o0qWL0a5LQsJYSMaahISZSEhIAEDN/NC0tbXh7bffRlRUFBwdHWFvb4+EhATs3btX5/i1a9ciKioK3bt3h4ODA0JDQ/HZZ58BoJZen376aQBAUlKSagl23759quO3b9+OhIQE2Nvbo3v37khNTcXp06c1zvHCCy+gW7duKCsrw+jRo9G9e3c8++yzrNdE+1WVlpbimWeegYODA3r06IFXXnkFt2/f5r0nly5dwtNPPw0XFxfY2dkhNjYWW7duVW3ft28foqOjAQAvvvii6rq+/fZbxvJeeOEFDBs2DADw9NNPgyAIlU8W17U1Nzfj1VdfhY+PD7p06YJ+/frhk08+AUmSGuUTBIHZs2fjxx9/RP/+/WFra4u4uDiUlJQAAJYtW4bAwEB07doVw4cPF7wknZ+fj+joaHTt2hUKhQLLli1j3ff7779HVFQUbG1t4eLigsmTJ6Oqqkq1ffbs2ejWrRtaWlp0jk1PT4eHh4fKqGHyWbt9+zbeeecd9O3bF127doWnpycmTJig0W6VSiX+3//7fwgJCUHXrl3Rs2dPzJw5E42NjYKuVxsvLy907tyZd7/Nmzfj7t27yMzMVP1GEARmzZqFK1eu4PDhw6rfe/bsCVtbW0Hn9/PzM7l/oISEIUjLoBISZoL+cDs7O6t+u3nzJlasWIH09HRMnz4dt27dwjfffIORI0fi2LFjqmW/X3/9Fenp6RgxYgQWLVoEADh79iwOHTqEV155BYmJiZg7dy4+//xzvPHGGwgODgYA1X//+9//YurUqRg5ciQWLVqElpYWfPnllxg6dCiKioo0lk3v3buHkSNHYujQofjkk09gZ2fHe23PPPMM/P39kZubiyNHjuDzzz9HY2MjvvvuO9Zjrl69ivj4eLS0tGDu3Lno0aMHVq1ahbFjx+Knn37C+PHjERwcjPfeew9vv/02ZsyYoTJ44+PjGcucOXMmvL29sXDhQsydOxfR0dHo2bMn57WRJImxY8di7969ePnllxEREYGdO3di3rx5qK6uxqeffqpxjoMHD+Lnn39GVlYWACA3NxdjxozB66+/jqVLlyIzMxONjY346KOP8NJLL2HPnj2c966kpARPPPEE3Nzc8M477+DevXv417/+pVFvmg8//BALFizAM888g2nTpqG+vh5ffPEFEhMTUVRUBCcnJ0yaNAlLlizB1q1bVQY8ALS0tOCXX37BCy+8ALlczliX9vZ2jBkzBrt378bkyZPxyiuv4NatW/j1119x6tQpKBQK1X3+9ttv8eKLL2Lu3LkoLy/H4sWLUVRUhEOHDgkyvPShqKgI9vb2qnZNExMTo9o+dOhQk5xbQsKikBISEkZl5cqVJADyt99+I+vr68mqqiryp59+It3c3MguXbqQVVVVqn3v3btH3rlzR+P4xsZGsmfPnuRLL72k+u2VV14hHRwcyHv37rGe98cffyQBkHv37tX4/datW6STkxM5ffp0jd/r6upIR0dHjd+nTp1KAiCzs7MFXeu//vUvEgA5duxYjd8zMzNJAOSJEydUv/n5+ZFTp05V/fvvf/87CYA8ePCgRl0DAgJIf39/sr29nSRJkiwsLCQBkCtXrhRUp71795IAyB9//FHjd7Zr27RpEwmA/OCDDzR+f+qpp0iCIMiLFy+qfgNAdunShSwvL1f9tmzZMhIA6eHhQd68eVP1e05ODglAY18m0tLSyK5du5KXL19W/XbmzBlSLpeT6l10RUUFKZfLyQ8//FDj+JKSErJTp06q35VKJent7U1OnDhRY7///e9/JADywIEDqt+GDRtGDhs2TPXv//u//yMBkP/5z3906qlUKkmSJMmDBw+SAMgffvhBY/uOHTsYfxdLamoq6efnx7qtd+/eOr83NzdzttusrCxS6OfO3t5eo51KSFgD0jKohISJeOyxx+Dm5gYfHx889dRTsLe3x88//4xevXqp9pHL5SqfIaVSievXr+PevXsYNGgQ/vjjD9V+Tk5OaG5uxq+//iq6Hr/++itu3LiB9PR0NDQ0qP7kcjkGDx7MuOQ6a9YsUeegZ5lo5syZA4By8mZj27ZtiImJ0ZgJ6datG2bMmIGKigqcOXNGVB2Eon1t27Ztg1wux9y5czV+f/XVV0GSJLZv367x+4gRIzRmIgcPHgwAmDhxIrp3767z+6VLl1jr0t7ejp07dyItLQ2+vr6q34ODgzFy5EiNfTds2AClUolnnnlG4zl6eHigT58+qudIEASefvppbNu2DX/99Zfq+HXr1sHb25tz5mn9+vVwdXVVPT916GXCH3/8EY6Ojnj88cc16hEVFYVu3boxtidj0drayuhTRgfstLa2muzcEhKWRDLWJCRMxJIlS/Drr7/ip59+wujRo9HQ0MD4oVm1ahXCwsLQtWtX9OjRA25ubti6dSuamppU+2RmZqJv375ISUlBr1698NJLL2HHjh2C6nHhwgUAQHJyMtzc3DT+du3apXLIp+nUqZOGQSmEPn36aPxboVBAJpNx+mxdvnwZ/fr10/mdXuK6fPmyqDoIgenaLl++DC8vLw1Di6se6kYVADg6OgIAfHx8GH/n8uOqr69Ha2urzv0DoHNvLly4AJIk0adPH53nePbsWY3nOGnSJLS2tqqCWf766y9s27ZN5cfHRllZGfr164dOndg9ZC5cuICmpia4u7vr1OOvv/7SaU/GxNbWFnfu3NH5nfaPFOqjJiHxoCH5rElImIiYmBgMGjQIAJCWloahQ4ciIyMD586dQ7du3QBQzuIvvPAC0tLSMG/ePLi7u0MulyM3N1fDodvd3R3FxcXYuXMntm/fju3bt2PlypWYMmUKVq1axVkPpVIJgPJb8/Dw0Nmu/WHu0qULZDLDxnHW6qxtjGtj8/di+53UClLQF6VSCYIgsH37dsZz0W0KAGJjY+Hv74///e9/yMjIwC+//ILW1lZMmjTJKPVwd3fHDz/8wLjdzc3N4HOw4enpib1794IkSY02Rstt8Ml+SEg8qEjGmoSEGaANsKSkJCxevBjZ2dkAgJ9++gm9e/fGhg0bND4+//rXv3TKsLGxwZNPPoknn3wSSqUSmZmZWLZsGRYsWIDAwEBWA4l2Cnd3d8djjz1mgqujZlsCAgJU/7548SKUSiWn3pufnx/OnTun83tpaalqO2B6w8/Pzw+//fYbbt26pTG7pl0PU+Dm5gZbW1vV7Kc62vdGoVCAJEkEBASgb9++vGU/88wz+Oyzz3Dz5k2sW7cO/v7+iI2N5TxGoVDg6NGjuHv3LmuQgEKhwG+//YYhQ4aYfSYrIiICK1aswNmzZ9G/f3/V70ePHlVtl5B4GJGWQSUkzMTw4cMRExOD//f//p9q2YaeIVGffTl69KiGBAEA/Pnnnxr/lslkCAsLAwDVspC9vT0A4MaNGxr7jhw5Eg4ODli4cCHu3r2rU6/6+noDropiyZIlGv/+4osvAFBac2yMHj0ax44d07jW5uZmfP311/D391d9jNmuy1iMHj0a7e3tWLx4scbvn376KQiC4LwGQ5HL5Rg5ciQ2bdqEyspK1e9nz57Fzp07NfadMGEC5HI53n33XZ3ZOpIkddrIpEmTcOfOHaxatQo7duzAM888w1ufiRMnoqGhQede0OcAKCOwvb0d77//vs4+9+7dM9lzAoBx48ahc+fOWLp0qUa9vvrqK3h7e7NGCUtIPOhIM2sSEmZk3rx5ePrpp/Htt9/ib3/7G8aMGYMNGzZg/PjxSE1NRXl5Ob766iv0799fwzl82rRpuH79OpKTk9GrVy9cvnwZX3zxBSIiIlS+VREREZDL5Vi0aBGamprQpUsXJCcnw93dHV9++SWef/55DBw4EJMnT4abmxsqKyuxdetWDBkyhPHjLIby8nKMHTsWo0aNwuHDh/H9998jIyODU+A0Ozsba9asQUpKCubOnQsXFxesWrUK5eXlWL9+vWq5UqFQwMnJCV999RW6d+8Oe3t7DB48WGMmzxCefPJJJCUl4c0330RFRQXCw8Oxa9cubN68GX//+99VM5Om4t1338WOHTuQkJCAzMxM3Lt3D1988QVCQkJw8uRJ1X4KhQIffPABcnJyUFFRgbS0NHTv3h3l5eXYuHEjZsyYgddee021/8CBAxEYGIg333wTd+7cEbQEOmXKFHz33Xf45z//iWPHjiEhIQHNzc347bffkJmZiXHjxmHYsGGYOXMmcnNzUVxcjCeeeAKdO3fGhQsX8OOPP+Kzzz7DU089JeoenDx5UuVfd/HiRTQ1NeGDDz4AAISHh+PJJ58EAPTq1Qt///vf8fHHH+Pu3buIjo7Gpk2bcPDgQfzwww8ay8OXL1/Gf//7XwDA77//DgCqMv38/PD888+r9v3ll19w4sQJAFS6spMnT6r2HTt2rGpgJCFhMSwVhioh8bBCS3cUFhbqbGtvbycVCgWpUCjIe/fukUqlkly4cCHp5+dHdunShYyMjCS3bNlCTp06VUO+4KeffiKfeOIJ0t3dnbSxsSF9fX3JmTNnkrW1tRrlL1++nOzdu7dK9kFdxmPv3r3kyJEjSUdHR7Jr166kQqEgX3jhBfL3339X7TN16lTS3t5e8LXS0h1nzpwhn3rqKbJ79+6ks7MzOXv2bLK1tVVjX23pDpIkybKyMvKpp54inZycyK5du5IxMTHkli1bdM6zefNmsn///mSnTp14ZTy4pDvYru3WrVvkP/7xD9LLy4vs3Lkz2adPH/Ljjz9WyVXQACCzsrI0fisvLycBkB9//LGgejCxf/9+MioqirSxsSF79+5NfvXVV6p7q8369evJoUOHkvb29qS9vT0ZFBREZmVlkefOndPZ98033yQBkIGBgYzn1ZbuIEmSbGlpId98800yICCA7Ny5M+nh4UE+9dRTZFlZmcZ+X3/9NRkVFUXa2tqS3bt3J0NDQ8nXX3+drKmp4b1ebeh3hulPu820t7er3hkbGxsyJCSE/P7773XKpO8/05/2NdOyLkx/QiVjJCRMCUGSRvJ+lZCQeOR455138O6776K+vh6urq6Wro6EhITEQ4nksyYhISEhISEhYcVIxpqEhISEhISEhBUjGWsSEhISEhISElaM5LMmISEhISEhIWHFSDNrEhISEhISEhJWjGSsSUhISEhISEhYMZIoLqhcdzU1NejevbvV5jSUkJCQkJCQeLggSRK3bt2Cl5cXZ95iyVgDUFNTAx8fH0tXQ0JCQkJCQuIRpKqqCr169WLdLhlrgCp5c1VVFRwcHCxcGwkJCQkJCYlHgZs3b8LHx0dlh7AhGWuAaunTwcFBMtYkJCQkJCQkzAqfC5YUYCAhISEhISEhYcVIxpqEhISEhISEhBUjGWsSEhISEhISElaMZKxJSEhISEhISFgxkrEmISEhISEhIWHFSMaahISEhISEhIQVIxlrEhISEhISEhJWjKSzZmFqm1pR3tAMexs5mtvaEeBqD09HW9Xv9L+1j/m94joIgkCUnzPjdu1jT1Q14ljFdcT4uyDcx5l1fwA6xzKVp/0bW33F1pWvLlxlGnLPuOqi/Wy4nps6XPfckPsj9tnrey6+Y/i2cdWD774yHcd3T/Vtx3zXwPWMud4NvuO4noXQ6xT7PNjqxFWm2HsgtG8Qcp1C2quYdqRvf8R1/YbWR0z/J6R/FHqtXPsIrS/fNeh77/muXei7JrZMIffMUkjGmgVZV1iJnA0lUJL3fyMAJPRxRf7FBihJQEYAuRNCMSnaV3VM9voSqB2CnJQgzBym0CmTADA9IQBXbrRiW0mdav+EPq746KkweDra6tSBAEDi/nkBaGzPiPGBn6s9Fm0vVdVvfKQ3NhZVa5zzxaEBOHC+XnBdZQQwKsQD20/XgewoBx11IQggOyUIMxMVWHagDLnbSjXuV95EzXrSdU/s64byhmaUVDchb1upqh70MfQ9BYBlB8qQt70UpNo1bfijWqPubPeE3jZ/VBBCezkiwNUen+w8h/V/VKu2TxzojX8/E6HROWjfH+16ad8f7TrR+6tfp/pzEdpuapta8X/55fgmv1zjWAA69ctOoa6R655q15uuh/Z5+O7rmFAPTE/srfqIv/q/YtZ7+n/55VhxsFyjPmztmACQHuMDEATWHK1kvIZlB8o0rk+9nkzPhwCQOVyBtnYl6/Wp3wP1ugLAIrXnrn2d6u+rdjuly9V+vjrX0nEM1LZndzx/7edFt2P19sR0nPY9YOoLUgZ4YMfpOtW/1Y/Vvs6UAR54Ps6P891gauvadQMBQfcIoPqz+EBXRPk548D5eo3nqd4Ps10/DVtfPj0hAD26d2F8L/nuHcDdF9Not0u6PtrXOqOjX6YNELY2c6P1rqqP5Xqv548KQsNfd1TtXfue6fstYLt2+nimPl/7ntPn5CtT+3kfvNDA+Z2wJARJkiT/bg83N2/ehKOjI5qamsyWwWD32TpMW3UcQm6+nCCQn50EAIjP3cN4TM7oIMQGuCBtaQGEPFGCALJHBWHRjlKdl1+1T8f/6NNC6I8lE1lJCgR5dMcra4tZz81Ef4/uOFN3S9D5CFDXyHVtBTnJ8HS0xcc7S7Fkb5mgOqi/9GJ5Id4P3x2+rOocmMqg63Xt5m2MW1IgrE4cz2hxRiR8nG2RtqSA8XxJ/dyw91w9Yz3EXqOMAJZPiWJs1zmjgzSMbJ1jO07K9LwmDvTGlDg/xvvxQrwfvi24zFkvMe1YRgCzhitY2wP9Ll67eZv1njKWC2DyYF8N41C7jnzPnelZyQkCGzLjGI8hAGQmsV8LQL2LX+4rE/Ue0sfp8w7Txz7RvyfrdXK9G1zvNBsyABuz4nmfl5g2nxbhicf6eyDKjxpIsPXLTMgJAl9PGYiXVx0XeAT3+wFQ96Ugm+rPdp+t4yx7TKgHxg/0Fvz9AYDNWfEYv7RA9L3ng24LXM+GtT3wvNNcz1PWsY3vctS/E6ZCqP0hGWswv7GmPaIUwprpsdhbehVfHyw3Ua0ePWYk9EbnToRgQ81cpEV4YVNxjaWrYVVMGtQL636/YulqAABSQz2xtaTW6OW+Py4ERy/9iS1qs+BCCPLojlKWQYy1MiLIDbtLdQcJpmJMqCe2mOCZAea/FjaWZERiT+k10d8WIQzyc8bvlxuNXu6DwIyE3ngjNdhk5Qu1PywaYPDOO++AIAiNv6CgINX227dvIysrCz169EC3bt0wceJEXL16VaOMyspKpKamws7ODu7u7pg3bx7u3btn7ksRzImqRtEvk4wAWtruSoaakfn64CWrM9QASIYaA+Yy1Liz81GYwlADgAWbT4s21AA8cIYaALMbN6Z6ZoD5roUndST+V1hlEkMNwCNrqAHA8oOXUNvUaulqWD4aNCQkBLW1taq//Px81bZ//OMf+OWXX/Djjz9i//79qKmpwYQJE1Tb29vbkZqaira2NhQUFGDVqlX49ttv8fbbb1viUgRxrOK66GMGeDmKmjKXEPbRlZDQJj3GOvxTJIwLCWCIooelq2EQ04f25ty+/0KDmWry4JPYx1XwviSAP6zAWLW4sdapUyd4eHio/lxdqZvY1NSEb775Bv/5z3+QnJyMqKgorFy5EgUFBThy5AgAYNeuXThz5gy+//57REREICUlBe+//z6WLFmCtrY2S14WKzH+LqKPOVndZIKaPPiEeTuybnsY1/ZnJykwsn9PS1fDZFjawCYATIruZeFaSJiKQ2V/WroKekMA6NHdxiRlB3l0wwdpIZBZ+gU0IwdEGrbW4CxmcWPtwoUL8PLyQu/evfHss8+isrISAHD8+HHcvXsXjz32mGrfoKAg+Pr64vDhwwCAw4cPIzQ0FD173v+AjRw5Ejdv3sTp06dZz3nnzh3cvHlT489cuDt0Ndu5HmZyUoLwfloI5z7m6HtyUoLw/jjuehiL6813sfPMVf4drQw5QSCuN/8gxdL94YSB3pwDI772xLdMJbQcCQltSFARrqagtO4vhHo7Yv6oIP6dH0EIAFH+zNJL5sSixtrgwYPx7bffYseOHfjyyy9RXl6OhIQE3Lp1C3V1dbCxsYGTk5PGMT179kRdHeXXUVdXp2Go0dvpbWzk5ubC0dFR9efj42PcC+Pgdz2WQSU0eWmIP2YOU6C5rZ1zP76Pf2wAtwFBgH/ppLapFQs2sw8MhBDWy0HQB3z1sUqDzmMJlmREYtbw3jh8ybLtngAVuMHFxj+qsWwfsw9jtL8TpicEcB4vdNY8c7iCfycj8qAv/0lQmHJ2551fzsDb2Xo0xayJ7NFBVqG3ZlFjLSUlBU8//TTCwsIwcuRIbNu2DTdu3MD//vc/k543JycHTU1Nqr+qqiqTnk8dQujw20oZHCBshPFKcqDJ6tCjG7UcYG8j17sMGQFMjPLm3IcE/9IJn2yEEE5euYlXR/Y1uBxLwdWifztzFYutIIiDBH/ghhLAlRu3GbcVVtzAnbtKzuOPlQszSL9kMQhNRYCrnVHLIwCMCfMwapmW4GF2KRBLUeUNzF5dZOlqWCXeVmCoAVawDKqOk5MT+vbti4sXL8LDwwNtbW24ceOGxj5Xr16FhwfVUXh4eOhEh9L/pvdhokuXLnBwcND4Mxe0Lg8TD4LPwNFyYY6Wkwf7UsKjJsDPxR7rCiuRJlCHjInJ0b640XrXiLUyjE92nufdxxqbBy0S6tiVWV9740MU2brqCLdhLnTiQwnzPsvvjxp3MEoC2HJSfNSqtfEguhRImJ85a4qwrtDyqxpWZaz99ddfKCsrg6enJ6KiotC5c2fs3r1btf3cuXOorKxEXFwcACAuLg4lJSW4du2aap9ff/0VDg4O6N+/v9nrLwRPR1tkJTEvgyyfEoUZCdwRPw8K127eRn9P0xjB20/VIntDiUE+TmsLK/HhVtP4gJgKS/t0MUECyN1eiqbb1iuXY41Y47OUkJDQhQSVPcHS8h0WTTf12muv4cknn4Sfnx9qamrwr3/9C3K5HOnp6XB0dMTLL7+Mf/7zn3BxcYGDgwPmzJmDuLg4xMbGAgCeeOIJ9O/fH88//zw++ugj1NXV4a233kJWVha6dOliyUvjpLqxhfH3Y+XXsSL/4dBS+3z3Rewuvca/ox5s1UOLShtjK3FLSEiYF0/HrqhtYl62lpAwJiSA4xWNGBNuuSVRixprV65cQXp6Ov7880+4ublh6NChOHLkCNzc3AAAn376KWQyGSZOnIg7d+5g5MiRWLp0qep4uVyOLVu2YNasWYiLi4O9vT2mTp2K9957z1KXxEttUys2FTMLNC478HAYagAMMtSeieqF/x23DrV6CQkJ60Qy1CTMiaXdzaV0UzBvuqmFW89ImQgkJCR08HTsiqs3b0uzvhISVsjmrHiE+xhfwuOBSDf1qFHb1IrlkqH2SDMzkVv+QeLRpbbpNiZGckcoS0hIWIaWNu5ocFMjGWtmorapFVtO1kiOxY84d++ZtwUME5FWRcIwjLFKYow8n5E+ToZXRELCQAgAGSZSBDA3coKAv5ElcMQiGWtmYF1hJYbk7Xngog8ljA+fqUYAmGckzbUIHydMifcTdYw1yoM8KIyL8IJcgGMLV6dbUmN4NpWMwZb/QErtSOKL9EjMGdHH0tUwGDlBYOGEARYXxpWMNRNT29SKnA0lBvuhhHmbTwvOmpCByl33sLCyoIJ1G61ZdqPFOPpvKaEemLbquKhjHtdTKJTQ+q8lIABMHGi5ZcQXh/gjPzsJb6UGc+43RM/ZTqH3tpezvaj7IOaZyQTuL6S7M7StSAahlUNQEk4P6nPy72GHNdNjkZ+dhEnRvpaujmSsmZryhma9DDUZqBHykoxIbM6KR4CbvdHrRp8nqZ+b0cs11gs6Jd4PpXV/Gak0cUwaxJ7UW8j1EQC+mRolKJsDASArSYG87aUG+zXKQOUsXbS9VPSy+y49hEIzYnxRkJOMxemRRomYIqBf+5kS54cNf1QbXgEGhNQnbWkBDpyvR2qYJ6fA9aELDXoJYJOg+oTZSQrO+vxx+TpeG9kPm7PiMSLInbPMJRmRgg10AsD8lCDkTQw1yvttDIeAD9JCzGIMLMmIxDdTo1i30+2eqy4vxPtZ9Qf3pXh/1m0KV/Hfn9mrizBuSYHVu/6wPbPK6y3wd7Wz+IwajTW3nYeCAFd70R3zgtRgHMpJxsLxYbhyoxXjlhRgM4vchyE8M6gXNmbFY//5eqOXLeQFTYvw4m2Aq4yQzklfEvqyG7Ek+D/gJIDWNiVcuzNr/tHHywkC2SlBWLqvTO+OTX1ma35KEOxs5GaLKpwzIpDq0Ajj6NdNT+iNgpxkZMSIG81+d/iyyT4MQsolSeCNDafw84kazvugBJVBQx/WHK3ibScf7zqPIXl7cOTSdew9xy2h8+uZq4INdBLARzvOIbGvG157wjzp0biMTRKAk62NWerhYt8F/b0cEenjyFwX8n6d2PBxtsNyDoPPksgJgnNCoKyh2aTnlwGs99aULEgNxnvjQhi3KUmgooFZE9USWFRn7VHA09EWuRNC8caGU2gnSRDgfqFlAHo6dgUALNtfhtzt+vu5TYj0woYi9nQ///v9CmqbLCsVwHdqS47KfjtzlfN5Canb3LVFiOvNnOB7kJ8T/vlEEPxd7fSegdWuC51RwJjwtdmV+eXo0b0LcrcZfl4ZgBeH+gMA1ohMXG/KtsJ3D2jaSRJ5PPeBABAf2AOrRV4fOuogRGxJSQprB3z5UrVpJ0mszK/A1wcviTpOX7j0GuUEgYJLDZzPRehz40IG4GT1DTy74ohB7+ggf2c0t7UbWBvTMMjfCW9vPm2x8ysBBHs6oqiqyaznvd7SBluWHNMEAYsHFagj6azBPDprJ6oaUVjRiGh/SqdlHEteS2N0LnQ5EFgWQWh+AMQcaw0Y654xlZuVpDBZInKCAAqykwEAv56pw9ubz5jkPIaSFuEl+qOuL1lJCgwJdMWWkzVYrUdOS6a2m5MShDw9loRNyTdTozD9u+MPnKaatfQNMgKYPyqI1yCdNKgXQns54u3Npw2618boYzZnxaPyegteWVv8wD13c2Cqflxfxkd4ITnYHQRBIMrP2WTLoULtD8lYg+mNtXWFlaogAxkBjI/0xnoT+dboC22wyQBMSwhAY3MbfrSyOj6MzEjojRX5l6TOuwPtgYM+DA5wwdHy66p/D+/nhv3n6q3qQyBhGCkDPJAa5onZq4t49yUATBho+T6XbtvWZpRIMKP+nAgAeRNDTRJoIBlrIjClsVbb1IoheXus/mNMgJIe4PO3kTAuUsctIaEff0sMwFcCU/RJ79mDib+LHSqum9dvjK2tyAjgUHay0WfYpAwGVoKhvkjmggTlv/Ig1PVhQrrdEhL6cbS8UfC+0nv2YGJuQw0Anghhjo62dMCBZKyZGH2iQSUkJCQkuCmuumHpKkg8hOw8zRwdLbNwwIFkrJkYOhqUVjaXEwQSpBRAZmFwgLNkKEtIPKRIs2US5oIAkDsh1KKaa5J0hxmYFO2LxL5uqGhoUVnmpvBje3awD37QI4KOD2vw9xii6IFDZX+KOoZeJhkR5IbdpcK15OjrtYbrlnh4iezliKIrxpcqoCMl77Yr8cmu88KOASWfwMaj+C48atf8sFxvL6euqDGiJBUBYFNWPMJ9nI1ToJ5IM2tmhASJazdv4/eK65gsUvBTCPoaakLEXS0JASBe0UPv48UYajMSArApKx6L0yPxqpFydEqYH3pGlU4mLURwM9DdNFlC2DDEUPNzYR/h//Pxvrh8vQX/+VW4oTY61INzn/5e3cVUTy+MNQvu1aFTaShzBGQeeVgwVSYbU8KWhvDKjdsYG+6J8RFeBp9DThDImxhqcUMNkKJBAZhXusPaeFhGU8bEHFpSET6OKFYTgBzg5YBTRkjiLUExNc4Pd9tJrDlWKbVvHqQ+gJmkIDfsFTHQk3i4MNeMmlD7Q1oGNTHGSuRuKqy0WhbFkJRPQo8t1lLqlgw147LqsOXSlD1oSH0AM5Kh9mhDAmhp43IOMC/SMqiJeVCkOyQMR3rMEhKPLqNYJB8kHlzsbKzHRLKemjykSNIdEhISEg8/UX6W92uSMC7SzNojhLZ0hwR/QIM5sIY6SLAjPR/jY857KqS7G+jr9FA95w+3lcLLSb/ghofpPpgKAkC/nsxBBaZAThBWlchdMtbMwKRoX2zIjMNcA6OLLPVCG/u81rBcaK46pEV4mulMpidCQESlMZiRGIBxRojkMgUjgt0f2A9rrMIFGTE+ZjkXSQLzRvblvFd/VN7Aa09wR1ynRXjpfb97du+i8e8BXg4Y2d84S5UEgP6euhGyNTduI5UnspYJWirIGPR1N59BY06CPbvj/NW/zHIuGQG8PqofyhuaUdvUapZz8iFFg+LRjgaVkJCQsFaWZERi15mr2FxcY+mqSDxkDPJzxu+XmVOWpanlyZYRlCCuKZK4A1JuUKvB2qNBJSQkJKyV3ysaJUNNwiSwGWqAZp5sJQnkrC+x+AybZKyZGCkaVEJCQkI/VhZUWLoKEkbgQXUdoFECWJlfYdE6SMaaiZGiQSUeRaSORZPB/s4P/AdLnalxfpauwkNHTkrQQ9VG1HlvXIjVfQfFxvytyL9k0dk1qU81MdrRoGLba8ZgH2QM9jVLQ/flSGFjKQZ4Gd+HUJ04hYtJy2ci0M0es5MUD1THPDhAnCzB87HcH/MH6dqNQWFFo8mCWixxLx1tO1vgrJpMHOhtlHKspS3uKb2K7NHCDDa+fbKSFBgcYJy+zdD7IyOAlrvtsDbveLH1UZJARUOLaSojAMlYMwOTon2Rn52ENdNjUZCTjPfHhQg+ds3RKqw+WgklqV9kYZqIqLrK68YZNXwzNcpoHaBQZX99z3e47LqeR+rPxfpmLN5bZhVRsTR8o8xgD3FG86oj3BkE9L32B3WGylRqTTLwz3I9FektehaBj8/3XDRugXowJc7PKG3BXO/hKyMCsTkrnnX70fJG5G4rFVQWV52zhivg0LUzjpYbp2/76KlQzEjorfeEwazhCizaXmrQfR7ex9XobZgNGcGcJ9XSUh6SsWYmPB1tEafoAU9HWzjZCR+VqjfwTcW1os4pJwizCzUSAPp7OSJvYqhZp72tyfB5EEmP9uX88H1rJembjppwhkpf6I+IJYxIJfhTa/1UVI2BPk68ZYV4mnYW29hsLq6xurbAhWu3Ljhyid+AMvSalu4rQ+52YUafEG623sOLQ/3xztj+erXxu/eUBvtt77/QYLaZuceDe2LvOd1UY6+n9IOno+VWnyRjzQLU3Lht8nPICCAt0gtvbz5t8nOpQ4KaKp4U7Yv5KUFmPTcTkwb1Yt02xAJLoMYmvrfh10AAWFsoJTzXF/ojYqn7J+S8xytv8O5zutY68tMKNQj+71CF4DKHM8yUmJu3N582qhHFhrHb4e6zVxGftwdvbz6jV9krDpYbPJAhId7HTF92nrnK+HuYt5N5KsCCZKyZmdqmVizaYfoXNiclCBuLqi3yAdlxqhb/3lUqeErflLTda2fddkjPJVBrWoYrEDBS54MEpIjlB4TBAQ/mMrBQCADhJhBfPnCu3uL37UF9xQouXTdoVksJw6+dIIDM4QoDSzHg/IDFsxlIxpqZMZeUx4fbSi32AV51+DK+2FMmaF9TK9VvFLl0LIQHtdOVePA5Wm59y8DGhARQXNVk9HKNYTBIWA6SBC4aOXvBEEUPzEjoLez8AA6c110aNSeSsWZmAlztLT7Csyb6ezpI90NCQkJCghO25Ul9OVT2J74+eEnw/jkbLCuMKxlrZsbT0RbTEwIsXQ2r4aMd55A+2Pj5Cs2Z8FdCQkJC4uFGku54BHlxqGSs0bSTJOJ7u7Juf4YjQIAL/x6W9S+QkJCQkHh4kBGW9VuTjDUL4OloixyWSMlHbUlQBuC3s+zT21WN+o1kdp25xvi7uSKKJCQeFKzllRD7MbKWepuDB6XfekCqqRfzU4Ik6Y5HkZnDFMhKYo5uEdLgXxriz/j7x0+F4qV45m1s/G1YAMaEehrlRRsTKk64VwkqaS4b+orWsjkTjwv3UmWT4IIAkBHjg2+mRul1/geRJ/r3ZN1GgIowZhtkmJoRQZaXXjAWBJhFN8WQMsADL8QblvIp0NUOizMikcnSD5mbV5/oK2p/EtbZLmQEMIPD1SUrSYHF6ZGiyiRJ9j6fRt/+Oy3CE++nhWBJRiSSDWyX73EIvo8IdsML8cKFjGckBpg8AE0MknTHI8zde7q65iSERS01trQx/j7vpxL8n8jkxyVXbmLxswOxgsMwee2JvngrNZizHBmA5rv3RJ3b3GwursHfhvfGmumxeD+NuWOZmxyIgpxkhPs4Ydqq43qfa4iih97HWgJvJ/ZRIwnAya4zLv/ZbL4KdUAA2F1qnEgsGYyXYSMt3AsZevhbkgCj6KYYtp+qw7cFhgkVlzW0YPbqIizZKyxyWygfPxWq33G7zos+xljtQgx8RtO7Y0PQuRP7p/XuPRK/cqwmsLVNPl25L9IjkRHjy7kPE5tP1GLBptOYvbrI4Ha55QT7wHv32Xp8d/iyIM07AoDCrRseC3Zn3cechpwk3fEIU9vUiuUHy/U+fmMR+0vBxgBvZoXyQ2V/YtmBMrTeZU+K03DrDhqbmQ1EmsR+bthrgc5TDCSAJXvLcPLKDXg5dmXc5+btuwCo6B99w/1lAArK/tTzaPNDAFjJY+TPX1+C1ceqTHJuLowluSAjgNyJoRgR7GGUvJKbTtRg9VHj3w9zYSopi4o/TeOEzTXza052cxhaALBg82lOA/jrg5ewmWM1YQpP+jAmCACNrW1YfaxS9LHqos6GtomjFY2c25WksIEKCSB7fQlu32XXydxcXGO25WFrkH2RjDUL8cWeC2ZvAKeq2RXKF20vZZ2tA6h0Q0v2cY/A9xk4KtMXfd7X3O2lOHGFWc+J0om7oLdOHQFgWkKASZ5vkEd3E5Rquc5oRmIA3mOZ4TQ2I/v3RJBHd3y49Qx++qPaLOd8FFlq5Jk6muY7dxl/j/ZzMsn52LhspBzKbPClD2OCBLBgk3mz1ZgaEtRKEec+Zuy4VuZXmO9kDEjGmgVYtr/M6kbkShKov3nHZOUPCTThkqCeo6s//2K+XpKEwc9nsBHSQDFRWnfLrDlXTU1qqCec7WzMcq7tp69i3JICg2a0Jfgx1feTLeNI4eUbJjqjhMR9VuRfknTWHiVqm1qRZ4b8cPrw+Z6LJiv70EXTLQnqO7qqbjTNi0cCKOfR4zHE3hob7vXQRF3tKb0GH2fLRVhJSEg8+BCAyQexks7aI0Z5Q7NVrH8/TOj7jnbv2om9TANefBmAAFc71noFutljU1a83uVvLq7B2HDriZLiggC1/MjGzdZ7qDKR0awvo6zEN0obSxno+pz3YRlMGJsnwzwsXYWHEhLA55MjTRrUJemsdZCXlweCIPD3v/9d9dvt27eRlZWFHj16oFu3bpg4cSKuXtV07qysrERqairs7Ozg7u6OefPm4d49641IDHC1N1nZ6qMLq3mwAvkgLcSgkZE+h8YEML/YMgLITgkSJPHBhBLA9O+Os0Y9Xaxvxrrf9V9mJQFs5oi6siYyBvtiTDi7nMvKggrMWV0kulxTGgN9OfwCCVBtdbyBkWj61H/F1Ci93hGZnuej0SfqzpABKQEga7gCI4LYIwGFlGEsxJbFtb/cwOkfGQHMTlJY1BVicICz5U7Ogpwg4ONia3BQFwFgSUYkRod66PyeOyFU0lkrLCzEsmXLEBYWpvH7P/7xD/zyyy/48ccfsX//ftTU1GDChAmq7e3t7UhNTUVbWxsKCgqwatUqfPvtt3j77bfNfQlGQ04QyBkdpPPCZw1X8M72jIvwwqHsZKyZHotDOclG18TSNgbTIrg11SJ6OfJ2dLR+V2+3bhg1QL9RJwnxYesEAC8n5mjQiZHemJmoQH52EtZMj0WSHlpOShI4cL4BET6OjNvXHK2ySt8zQu2/hIhnzcbs5EAM8nfhbAckfT4R5WYlKfQ2prkgAISzPDOAqqvCrTs+nRyJnNFBej9DtsjGkf17MpaZlaSArU0nzE8JEtVpEwCWT41CNkdfoP6smeCKXOQ797ODfVXXI/QZkwC+2n8JH4wfwHuP2QzJSF9HzfMa2FSEPmc5QWBoH/aMLD8X1xpkSE4b2huvjQzCxsx4i8xeZg1X4JXH+mJzVrxeMiFiiPZ3YvydgKbBKicILJwwAFWNrYIGCVztMHt0EAb6OWPHqTqdYxL7WlbTj30dyEz89ddfePbZZ7F8+XJ88MEHqt+bmprwzTffYPXq1UhOTgYArFy5EsHBwThy5AhiY2Oxa9cunDlzBr/99ht69uyJiIgIvP/++5g/fz7eeecd2NiYx3FZDOUN7DpVMgJYOGEAJkX7Ymy4F45XNOJGaxucOhyw+XyzovycUd7QjABXe3g62mLmMAUuX282WjADCSA92hdPhnvB39UOizh8794fF4Ln4/yx7EAZcrex70cCyNteavBI3MfFFmO6ecLZvjO+3FsGdhESigkDvVmjQX/8oxpKAP9+JgIAsI9FjkRGAPNHBeHPv9qw/OAlnWtoJ0kE9LBHcZXueeh7ueZYJUhQBtHkGB9GaYy0CC9sLq4xyfI5Ac1ZkMzhCgR7OgAE4ONsi60n67Ai/xI2FdfyljM13g+rDl8GSXbIZKiNRCcM9MZ6jghMEpSWn38Pexy+9CfWHKuEktStH82SfWXIHhWEsF5OuNLYjNd/0l9mRZ3slCDY2rB3izLcXwpxsu2st78kW1Lq6AAXxm1L95Vhyd4yEKAGE+uLqgVdLwlg2nfHkR7NrAe3IDUYo8M88fOJGuo9ZCiU7Txh3o4oqW5i3U4CsLfppCENoQ4B4LWRfdF2T4nPdmv6y7aTJI5XNCLU2xGZwxVYsrdM43gZKBkWOxs5ozH5RyX1ziX2ccWip6hJgK0na/HB1rMstWWHBPDF5EgQBHDoYgOrfM2C1GAM8ndG2pIC1rKUAGYk9MaKg5egBHv7ZqNzJwIFZQ3YcpK5PxgR5I69565BSVL3iK8fJEC1+RNXbmBbSR3jPq8kB6KvR3ecrb2JJfvKsGRfmeq4jME+Bn9f5iYHQkmSWLqvTPXOA0BhxQ3G/UkAQwLd8GysHyoaWuDvaocD5+sxW8AMPQFgekIAbDrJsFgrajkjxgdjw71Q3tCsowSgBOWvZsmZNYsba1lZWUhNTcVjjz2mYawdP34cd+/exWOPPab6LSgoCL6+vjh8+DBiY2Nx+PBhhIaGomfP+6PUkSNHYtasWTh9+jQiI5lVou/cuYM7d+5HAt68yS5pYWxKWAwEABoNxNPRFtVN9ztQejTA9WK//fNp1b7ZKUGYOUyBSYMMf5nUWVtYiTkjAvHeL2ew/RTzyy0jgMf698S6wkpOg47G0I8sCSBtaYHq2tNjfEAQBFYfrWQte8Mf3B+79X9UY0qcH+dojSSBm613sTxf11Cj2cgxK6GuiaQE4Gxnw/iM9Z3Z0Ae6I6Znu8BQHyZIAKsKLqv2HRvuCfsunVTRUxuL+KUyPtl1HsP7ueHbF2MwOzkQK/MrsPzgJebzkZTcTGaSAkv3lRnNkF20oxSDA9gjeUkAB87XI7GvG7LXG8dApJEB6NJZBhkBnY+FusHzk9a95HtOJAlWA2N0GDVjuojFUOPiZDV7X0azguPdIEE988xhzBkU5qwpYj12+dQo2Np0Qmsbt8vLgQsNOFPThBHBHkgN88SHW88ylsnXt/5++Tq+O3yZU87HwbYTmtvaOcuREwReHOqP1DAP7D57DTadZPhEhBjwkr1lnBpuu0upNHsZMT6YM6IPfi6uQS5HH0wPlrnqmxzsjrWFVVij1oZIUPJHWR0zXPrKHAHAqeom7Dtfr1EGX3F/Nt+BnY0MJEhcu3kb2eu5JT5UEMDXLNHgq49VYW1hFeaPCmJsD5YWxbWosbZ27Vr88ccfKCws1NlWV1cHGxsbODk5afzes2dP1NXVqfZRN9To7fQ2NnJzc/Huu+8aWHvx1Da1YtEObuMle0MJEvu66bxk6h9PNtQ79NztpQABhHqzL+nog5IEfjtzldVQA4DxkZTgaM6GEoNeYjGoX7sQ4VYh1fp8z0XsPsucY5Qug097TgxsZZnyFjKVTXJsE1rWpuJabOpY8pmeECC4Hew7V4+XVh7DhxNCOT/0AGXgao+ODUVJAocvsac4IwG8seEU3hnb36jPhf44LNh0WrVsRwqYHZEByExS6H0ffj5Rg1BvR5O9p3zlkiQ1a8i4jeO4aauOC77/01YdR97EUCT2deM8hstgE5ItYt5PJZzq/ASolZMD5+uNbuhrs/pYFfxc7TFzmAIgwLu6wYSMANIivZC2pIB1ny/3lWFWx8ynvuzR0ucUcl+EzKIxwTcgUXYMApn4+UQNZiZaLjWbxXzWqqqq8Morr+CHH35A167MvkOmIicnB01NTaq/qirzaJ4xTa9qQ5KUQjbTaEfsy71oeynsbeQij+JGThC4VM+dcmjDH9U4frnRbIaaqeAy1CSEQYJ9JMvGnnP12HD8itW2n3aSZJ0h93PWvy/TMJJJKpBhI0/UsKEGqyn6CHWE+qiJRcwxtIH9G0fmARJAsgEBDTR8wuBBHt1NbqjR5G4rxYmqRr0jx5Uk/wqEkoTZdBLNhRLM7WvR9tJHU2ft+PHjuHbtGgYOHIhOnTqhU6dO2L9/Pz7//HN06tQJPXv2RFtbG27cuKFx3NWrV+HhQTmie3h46ESH0v+m92GiS5cucHBw0PgzBwGu9oIcVcuuGUfeQ0kCVddbMSbUOOHitE9dzQ1urRkS1OybMeALxbY2H30ZQTnhShjGx7vOW7VkRDXLO3C58bZe5Wm/7ySAtzadRmndLZMmK1eSQEubEhkx4nOcCiE9xtcqotjaSZLV95SGXkI0FLY2SAIorGg0q3TTuCUF+GL3Bb2P56srASDa3/qiQw2Brb0+sjprI0aMQElJCYqLi1V/gwYNwrPPPqv6/507d8bu3btVx5w7dw6VlZWIi4sDAMTFxaGkpATXrt1/yX799Vc4ODigf//+Zr8mIbw8NID3g7KyoMJoH525a4vg18NwuRAZgOVTolBcdQM7z/B3asbys+IKxZaBkjOwJoNt+ZQozBsVhBQ9I1sNZbCFOk59noGcIBCn4PYPE4OMoAIkzAGbmr6xyV5fgozBzFF3Qu453z60dlRnOfenQN93bFJ0LyyfGqXn0cati7GMMT7iOLKXFFU2mqUO6pgin686RzjcBvggACT1c7OaPlxOEBjGspRtaZ01i/msde/eHQMGDND4zd7eHj169FD9/vLLL+Of//wnXFxc4ODggDlz5iAuLg6xsbEAgCeeeAL9+/fH888/j48++gh1dXV46623kJWVhS5dupj9mrhYdqCMNdqKCWONvpQcPiFiiPB1EuUnYqz68/ksHb1k3pEqH3Y2nQEAbz/ZH7VNrYyRoKaETqQsNsrMEMaEemLbqVrRDuqvp/TDzEQFXlp5TMdvRR+UJODbww4RvRxRzBHIw8aIIHfE9HbBom2lvFF05oIE0NqmxESGaFqhgR9cTI72xc/FNZz5KOmApUMXG3DgQoOAs97n37vO46CIY4S0W2t635ko4DBetrJEXLKhHuxjjdet8o/mgCtilISwxO7mIibAmbU+04b2lnTW2Pj0008xZswYTJw4EYmJifDw8MCGDRtU2+VyObZs2QK5XI64uDg899xzmDJlCt577z0L1lqXZfsp+QpzJp1Vxxin/aPyhmANG301ucRCAFiezxwtaCl2nqrFusJKxOfuMbuhZgkIAFtP1erlX2ZvI8cvJ6oxIaoX3hxtHE3A7PUlcLTtrNexu0uvoaaxFeMirSs7BEEAU+L8TFL26mOVvB9bEpS/Tv5FcYYaQEVjCm0aBIApsX5WM8tiLXyQFmKwTpylyEpSYE5yH0tXQzBcwUUvDvU3X0UYIEjSUiaE9XDz5k04OjqiqanJ6P5rtU2tiM/dY5WjIgnTYK2jYIkHk+R+bth7rl5qUw8xMgIYEujKOAv5VmqwXvpw1sCMhN7o0c2Gd0Bg7RAA8iaGYlK08YWAhdofFtdZe9iRcoE+ekjPW8KYGGOJ2BjQciIS4hAyeFs+JQpnam8yGmuOtp0e2AEgm06iqTF2W6UjihP7ullsKdSql0EfBoRGgFo7CjcT5jR9CO6PsYn0dZTuixHhcvrmwliPwBrzKYolPdpXWqLUg9RQT84PbbBHd0xbdRz/3sUctXnleqtOrkqxhHmbR/FAGxKWMTJNMahoJ8lHMxr0UcHT0Ra5E0If+E5O37ydQpBG67oUVTZJ98VIjB7goXfE2tQ44/hQHS03fxSgsaFTo5mDF+L8LBbZbGxcu9twWv1n625x3tfP91wUHZigTY/u1hVwZ+0EutnpDJblBGHRaFDJZw2m9VkDKL+1IXl7rFbkUwhiUg9JSFgThiyJSEt/lkEGAAamMZKQMBT6/aeTxUs+aw85QjIXWDsPePUlHmEMMbYkQ80yKAGp05GwOAQJLM6IxEA/Z4vKdgDSMqhZeFj81iQkJCTMhdRlSlgaJagBm6UNNUAy1swC7bcmlzzGzQoBqcN/WHDsarr8lZZCapvcSBNrmlhbe0kyYRo0a2Lu2iKsK6y0dDUkY81cTIr2RX52EtZMj8X740IsXZ2HHqLjf4R0+D0l51tBjAhyx8j+PS1y7qbb7RY5r6kQIsWQFmFd4rwSluW9cSE4nJNssXdQmxkJCsRzpIszhKkmEoHWByVJyXZYMok7IBlrZsXT0RZxih5wstNPYV0sI4LcrarRmxMSwv2Nrt66Y9K6PCwEeXbHzjNXLV0NXhanR1rdqH9k/54arhBCmuYmI+XXlXjwIQA81mGkWcM7KCOArw+WocAEOXKTgtzw7rgByDJTnl8hWFq2A5CMNYswyN/FLFPaEwZ6429GaPDWNv3+sPBBmnXMsD4e7I7XnujLu9+SvYbnmDUHv5yowd5S8wvJcr0nCX1dsTEz3iq084YG9rB0FawOK3gsnExPCAAA/F5hfONIHxICXU32ju0/V4/aplY46Jk2zhRYOok7IBlrFsHT0RZ5E/m11wwJSiAADPRzRnlDs/6FdMA1C0AAyEkJkgIo9OD2XetIF/7r2Wv4967zlq6G0bDUzENCH1fWbU62Nmhua7eK6NJDF/+0dBV0sGT3MSbUE19kRFqwBuwEutl3zGKVY0jeHhwus45nd/P2PZOVrSSB385cRR5PiipzDnxGDfCweJCBZKxZiMS+bpyNjSCAjZnxWJweKdoQovOYeTraGiUSla2eMf7OKMhJxsxhCuROCBV1HrEvGtfuYi9PXzV7YxPgamdSI1dM0YbYEExLjsYM7qDbigxAYh9Xvcs1dd/OlCqIPm+UvzNKrjSZuAbCMORZywgga7jCqB9KGYDs0UGsHyMCwDyOmV8hbe2VEYGs7XR6YgCi/JwNfhcXp0ciI4Zdh0uf4i/W35d9UpLA2mNVJm/HhNZ/mSiqusFbhiHv6oLNp3nbadZwhehnJgPw7GDxmTh2nroq+aw9qvBqr5GAu0NXjAn30ogkFdvItCNR2Y7nKjdlgAdjQ/m9ohHXbt6+X2WBX4Gc0UHI0yM69tnBvoyq0nkTQzGjY5lACEcuXcfspPsvupCXQGhNxXQet+8qNZ6NDNwdkLVOXu5jWA5JCfXgnZEVAgFgU2Y81kyPxaGcZHz38mBsyooXfS/UHfpNdR/ZrnfCQG8AwKIdpk1mLaTtpQzw0Pv6ZyQG4FB2Mp6L88O0oQGiB1Bsv+VODMXYcC98lh6BEUHuOvuQAD5mmfmVEdTAlG+loo97d6x8IQazkzQNTRLA+KUFOHC+nhpwcpTBR3VTK+aMCGTdPj2ht8GKAMqOcow5eAWArCSFamKAbsckqD6J6ZnwQYKawd2UFY8ZCb0599V3YNd2jxQ9Uz1+oDc+HB+KgpxkzEjoLbi/lnzWHlFqm1rx5193OBsoCWDryVrUNrVqRJIK+VCRAHLWl2DLyRrBx5OgRoZMEWg7T13FuwwRrEoAaUsLsGx/GXI2lAgesYd5O6nqJDQylgSw+milxstJAHhnbH8k9nXDi0MDBL94JIAgDwccyk7Gmumx2MhzT2UQFp0kJwhs7DAsckYH8XbM15vbNJ7NoZxkzBsVpGPAZcT4YElGJN4T4ePGF20opIMcohDm28R0nu0M6XEIUMbomumxeFWAjxxAzbiE+zgjrqMuBWUNqGpsFTU7xHQvRM0CAxjeT/+AhU1FNTh+uVGQMDYBYGRIT42BhNCqvjcuRKftyQkCWcMVmJsciPfTQvC3YcwfTiH345uDFfj5RA2G5O3B8oPlrM9ARnTMlBH3rykjxod1/xutdzEkbw/mrCnGntJroj7cn0+ORGJfN/i42OE9jr7E1kaGgrIGPBvrh01avoN0tF9iXzfGfg4AFqQG4wWePmDRtlL8xrIELyOAF4f6Y0NmHOYmBzLOTGYlKbBYwHJs504E68wmPXh9X2BfQb+T80YGwaWbjU4bVQIYH+mt16xjO0mipU2JF4f6c04SZKcEiV6GJgAsz7+k0aYI8LfjTUU1qhmy4UFu2JgZj7dSg3nPZ+lUU4CUwcDsrCusRM6GEkEd9wdbz2LhtrPInRCKSdG+qjXzWIULDvNE4SgBzF5dBAJA5nAFhvRxRYCrPTwdbZGdEoRcLX8AggB8XGwR4u2gE4XWTpKov3WH8aNHksCi7aUQ6n2l3ugPnK/Hv34+LfBIhnODmi5/e/Np6pomhOKNDafQTpKQARjaxxUHWJamLly7hSh/yggoKGtg/ZDICQJ/G9YbS/ZxO9cTABZOGIBwH2cAUBkXedtKWct2sbdBbVMryhuaVc8GoGReEvu6YWV+BVbkX8LqY1VYc6wKY8OFSTnwGWoA9WGvvN6Cb/LLGdsiQQDpg31xSE8fGabzf5EeiTHhXlhXWCnYR87b0RYFZQ0oqW6i2hl539Dku8aMGB8EezpgwWbNNkZHChOgZpp2nr6Kdo4hOgnK6ZkPtjq1kyQam9t4j5cTBNIivbCxqFr1TJKC3LBboCP3iOCeqojzseFeqGhogZ2NDFtO1uKb/eWqe8dUx2lDe2PFwUuc73E7SXK2Z5r5KUFwsu2sMbDy62HP3H8AyN1WqvFvgPro8vWRMgAFl/7E3LVFvPtO++44SJIqd9rQAJ0ZmXaSxMr8Ciw/eEnnWDlBoLGlDauOXOY8hxJUf8R0nfNTgnDgfD1n3x/s4aBajuW6ni/3ljE+pwWpwRgd5glPR1ss288fDETX88v9ZfDtYYcgj+6M+/m42GJ+SpDq/WNifKQXNhZpfjcIUE755Q3NrG2GBJC3vRRTYv04U7uNDOmJX89cVZ2fVP2PZlnvjQ3B2dpbWH2MWReNfs4r8i9B2dEeZg1T8KaVS4v0srjPmpQbFKbPDUqjb45QOUEgPztJ9RJqG1pCkRFA7oRQJPZ1Q3zuHsbZBn3TYgn5eALAxIHe+PczEahtamWsgyFkJSkQ5NEdMoJAL2dbjF9awHk9MgKYPyoIXk5dMXdNsU5diI4yl+wt462nDMChnGTVC813fQRBjSjpDpB+NnTuOVPmk6UHn2TH/08f7IPVR6t09tucFc97D8WQlaTAc7F+gq+LAHWfGI1Jjm3q+wh5bsunRsHOpjNOVt/Aom3CBx7apAzwwI5TdYzv1dhwT2wqruU8fmqsH/579LJe95sAtRyonrtwXWElstfzz3jT/cu1m7cxbkkB5zn4yspJCcLYCC+dZywnCPxteG/BEcXzRvbFJ7vOs35AhfY3TLDlHWUqkwDlm3u0olHnd7B84NXbpgyUocZ0T3Tq1dEH3Gi5q1cfvzkrHuE+znr1HXKCwDtj++sMbADK/WTNsUpVeULvPUEABdnJAGBwXybmeXPtq2/OWfVvsLERan9Iy6BmRN8cofR6eW1TK2uEjJApYCVJLY+uOVbJ2Jj1fZnENKL1f1SjtqkVxy83cr58Mf7OjL9zXeKSvWWYs6YYc9YUYevJWt7rUZJA7vZSzGEw1ADqhV+yj99QA6hRtbpPA9f1EQCyR2mOVOlnc6KK+igYO5+stsaXul/KGgZDDQCqrrcaNfPGkr1leGsj88wC2xnY7gHJsU19Hz6UAF5edRwnr9zAzEQF/ilweZaJnQyGGgCMDffiNdQAYNURfkON7V0joSncWdvUKtg14fWUfvB0tMXWk+x1lBME0mN8eOs2NsKLse22kySGBrohK0mYlNCdu0pWQyhjsA9vgAOXP6oSwGSGhNxsfYC2oUb/ns6S1JsEtTxLuzaMjfDClpM1gvqjNzacgrezfgZBSxs1zNCn76BXT5hYfbRSozyhRZMk1Sdq+03rY3SIuRyufndaQoBB32BLIhlrZiTA1V5v5147GxnndHJKqAcOZSdjcXok5zmUAD7ffVHQOSdE8i+7EQBG8ziTa/PF7ovgm9AtrGhkvI4Xhvjzlq8kgRUHyw2O7pJBeNCEnCBg1+EXU9vUynl9BABvZ1tG/5C0pQVYV1hpUFvRRob7kcVs/oqM9STuZ95YnB5plAhAtiU9tg+lsWG7hNztpcj84Tg+MUDCRAndKGcCwGYjiduOCfXk9K9U/6CI+WDLCQInqhqx/GC5zjYCwJKMSORnJ2HOiD6c5dADFqYIdPr9ECIITgAYEeyuU4YMwKaseIwJ8+K9tseDe2JuciD++URfxrqAMKx1yQgg2JN52VBGQOViceB8PYbk7cGHW4XNlLWTJECKl21S1wHTp++QEwRGBLuL6h+ElEnXSd03d/nUKN5jjdX3qUMC6NxJptd3QdJZe8TwdLRFpp4itS1tSk4Zju2nKIfuMeFeyBQ4euVCThCI9GOe3QLUZBQIYAuDMzkXawsr4etixxtgQS/TAff9lFYeqhB0DiUoPxx9Z4XkBIH5AvXjCFA+DeOXFiBj+VEMyduD0tpbnHVj65DJjtE1QC2TGgMSQGndLbh0s2HseOl7q83Ajufv6WiL5rZ7Zk/WyHbv9e205ATBKRGxTWQ7Zio/ZYCHxm/qs5hCYWty207Vwt2hq0ogVRvtD7bQj9IHW89i3JICxnqmx/giNUyYvw79cdaeSaF98cYvLRBktGSnUEEl2mXkTgxFuI8z7G3kvAOHnWeu4vM9F/HJrvOUrx5xv46vj+rHOJusvjrB18ZGDfDA2wxLhgAwa7gC5Q3NOFHVKNg/mUZOEIjyp65dTM81bWhv1TPydLTFKK12yAXtb1tap9tn6auhKScILJwwQKfdkCDRyqMvKScIbMqiArW4AiW4pF7Y+HJfGeansAd/ycAsKzU/JcjiPmuSsWZmhnAIZ7Kh3Qkyjn5I4I/LjVhXWIkveZzhmVDvqOgXLczbkXHfD9JCsDErHvkXG/SaUlaSlPGZN5E/VJ7oOB9BiPvoyQkCLw71V43mcjg+0kzn3JAZd18/jmd/EtBwCleS4HwGRMfIm+1Z0jMkYyO8kBHjo1dkoHb93thwCvY2csaON3t0kI70AQEqAARgX1LTLkvd6JMBGODF7f/5/GAOTSoCGp2qnCCQkxKkit4VrT1IUB+kmYkKQSN7GhkBHQOMcT8Ar4/qhx2n+A0+AtRHkC2dzoqpUQjz1r13yo5lJbbIZ/UPCpNkjz5tZ21hpSqJNZfAtvrHubapFT4udtiQGYc102OxITNO4/3gY9GOUqwrrNSYjcnPTsKkaF+sK6zE+KUFoiUbSPL+DGFoL0fGvmR6Qm+NCHGme0yA8i3czrDkTQAYPcADX+4rQ8byo0hbIt7fk16SnhTti4KcZAwO0NSETBngwTjj+OJQf9W/a5tasfO08IEHASDIo7vOO04vawt1hSAIql0vTo/EZ+kRSOx7P4J6XWElhuTtQcbyo5jTEfjGxusp/VQR4GzfoEmDemFjVjwWafdbBPcgV0lSagTq3wX15dlpCQHITtH8LSclCDMTLZ/6SooGNTP0FLWYd1h9hDIp2heHyxoYfWCuN7fhXz+f1suAon0w4hU9AAKI4sh+oHDrjua2dv2DETpmAOIUPZDY1w3HKxoxZ00Rsx8dKD0ysaNT9Xvm6WiLyuvNKs9TApQQZo9uXRij20gAyw+U480xXTsqDNUD6+1qh0sMvgtMS5qsz5nH/0NOEDhZfQPPrjiiiuCbkRiA1FBPrC2kIkO5eDHeHysLKjR+aydJnLzShBAvB5RU31T9njLAAzMTFahtatWIiKINvMS+bqxLatH+Lvi9ohHtJKm654l93VRRiOOXsjurywkCVzhEJkm1TrWioUU1WKHhi07TvvcESX2QPtx6Bt/k6y73MUEvH4f7OGPZgTLO85EA/vzrjiCfs40djuAFZQ2MUcatbUqNZ6SO+qBNPfJ5PsMHhY4qpu/fgfP1ggIO1FGXtaBntLQNJQKUoUobU/RsEu0w7+Nix3hfxoR6YmtJrU59aP9N+y6dEOV3X7aFHjSolyUDMCXOD98evsx7LQVlfyI1zAs/MyxL0waPp6OtyuB8eWiAKlpaBmAaR58BUBHW6v0v27u9ITMOyw+UY0uJbh9eUtWEE1WNaG5rR0l1EwrV0ktlDVdg3qggrCusVD17phkssT5rSlBuJ0x9WEVDi0Y7yr9YzxokQnQshdDRueoBberPja9qYd5OAKjnfYwlvda636/gf79fQd5ESjPteEUjbrS2wcnOhjPyWn3iQz1ymo4Q/fpguUpBYWgfN51+x5JIxtoDwI3Wu6r/X9vUis0MhhoB4GzdTcaXdEFqMHo6dsXs1UWc51lzrBJrCytVL9r8UUE6EaLqfgh6R4+qHePpaAuXbuy+eHTYvFDUw9dptDt5EpRm1Osp/VjPu6WkFls7OlP1fZgMNbERRiSA4xXUEolOWQT14VM3DGjjccVBZpkNdeglp1WHK3T2ZYr02nX6qko+hMkpvKKhBfY2csZzHS2/jqwkBYYGanZqnh1yG1x1TejLnVtQu1NVZ11hJafhBOh+EJQAZ6QjE+MHequkWGYmKjA23AsfbjnL+JElASzv8JNkizKkl+Ca29pR29SqWqrUfr/AMYv884kazExU6BhitIGhLQOjfv9utNzVayVbXe6AaUaLBPDRjnOI7e2i8Z7RRte7aSGM9yXUxxHTEwMYnwstPaQeJc3URpUARg7wxLW/7vAuY685VolnBvViFCeePPh+8IS6wUkPlF4cQi09D8ljjvCWEwSc7XV1yrShZ43eHNOV0VDdUlLL2L4A4Kv9l/BcnB/vs2dqV1zICCDaX1cyRL2vVzduAOY8wUpQMhyk2vN/Y8MpfJYeIcp/0t/VTpDEFQkgZ0MJDmUno7ntHt7ezD1RISPAuDQLQCXlQZe7ZF8ZHOw6q67XGpCWQc0MV5AA29Rw3rZSVZQX2/HpMb6MfhgyAhgd5gnbzvyPmgQ0OtqPdpzTWYp6fVQ/1YybkCVCNodV9cgaNv8a2nARs6xb1vCX6v/XNrWioKyBUZCU1oziQoi/Ee1Lw7Sk2THQ1PmdNkCZOpZ3x4ZAJtPtaNWfDRdpkV4I93HW8LfjWnJoJ0kcr2jEn3/dYVxe+bP5Dqoa2WfAlu4tg52NTMc4ZipPnX0cumXq7Uw7xcuJqkZkC/ADMoaDsrqAJs1Wlg8pQD0jpihDAtQS3KzhvZG3o1Tl10ir5qsvubw+qh98OKIBc7eV4r+HK1Db1Kr6eHo62mLZgTLEdywzDcnbo1q6BKjn8cuJav5ciyy/y0AJkHLd83aSZJ2dWbCJ+SP60fZzOMmTgov+4J+oYm6jdOCCkOVnJck8gwQAq49WIT53D97YcJJxYAewz1jRRoCQlFVh3k4qwyp9MHd0rTbqqgDlDc0qQ019iTE+dw9W5pdjlgjf6PkpQXB36IqX1ZbX2XzOaptaOYNEmPTrGpvbBAUn0ecEINjXT0neH/jy7b98ShR8XOx03mm257poe6nOvpZEmlkzM2JHPQDVYSzaXor/NzmSMb8gNbNDsopd0ssfYmknSY2lqJPVNzSESacnBODdcSGMMzbA/dm5RTt0Z0FOVt9QjVoOnK/Xecnp0azYKf3VR6llwgmR3io/GdpgYlruNJQnQnqqln+YIAHMSOiNb/LLVUtWQwJ7MDonE4Dey9g0m4pq0Neju8ZzSuYQViVwf9mCAFTLXPT9ms3jX0KCimDN65j90J6VEMsHaSFobmtn1J8Tqhsm1s2ADfrjSH+wVuazq/YDHT58DFGGSlCpd9SFOmkjJD87Ca+n9ENeh77boh2lmDY0gLNetBA0rav28c5SjZkO9aVLPiFWVd0BZCYpKKkardmV+MAerHlP1TlVfUNU39ZOkqx9h/Z+aWp+auozlQsnDBAk0wNQbZtrlp4EsJrBxYBuB2x9L71UDlBq/+v/qGYsX0ZAx71BTFvVdo9g6l9JQLWUJ4SsJAWcbDurdNDUXS7oGWC6/YsRdFfnbQF5PoH7S+lCZE5oiI7/4dt/4kBvTP/uuE6fAoB15YD2EbWWZVBJFBfmE8WlUfc5EENSkBv2n6vXaZhZSQosZRFunRrnh++OXBbtkEujr9DiyP498c64EFYhXxmAzzMi4eNsizSGSLTDHQKzu8/W4eVVx3XKF/tBpg0RukMSeyzX/t9MjVJ1BNrQYrkAVArpXDOrxngZdfy1WMqlO3T1bTIA76WFYMEmYR0sDe2Loy2iK+aaJg70xmsj++m0M1q4lu0eqyODfhGYjGURwKHsZNUyU1zuHtZ9CYLSzsvbzuzPxHYf3h8XwvgxE6TgTwBTYtn9teYmB2Lx3ouC3lkqk0OdzrN7Y3QQPuSZgVbHGG1YSBm0X1GQZ3dGQWvW4xh87oSQlaTAl/vKGPveIYFUdhiAW/zVkL6Ynm1ma1/6wCZSTRtAdMYH2u/MVCLdNHKCwOsp/TQyWvBBEFTuYC7xbvW+n4b+/lTfaOV0qaC/f6ZEqP0hzaxZANrnYM3RSny+R5jmGQBWH5/fK9gFWFcJcLzl4uSVJlReb8GFa3+JelF3nb2KgX7OCO3lyCjySPuksPHH5Ub8dYd9RvAFBid6LkhQARTdunTC1wwpZfiO5WJfqa4BTaMENSOTGuZJ+fyIPM+IIHfsLr0mrKIs5bCdc1yEl05qMSXYBX3njeyLjX9U42K9buBJO0nix9+vMC7fZsT4sqZ/AYDnY33xVFQvldM901Iak8HORKC7Pc5fY49aFMPQQFfVqPp3FkfnIYoeyBjsi4F+zpxCyGy/s80sJQW5Y2/pNc53TkmC07FeTN+ynWEZkQRYDbUxoZ6svntcCDFCU0I9sKOkjjNIhwR4U8Axoe+glS3F09J9ZViyt0yVxorr2r47fFm0oTW8nxtmJirg72rHKyQulmAPB8ZZLFL1P9Szyt5Qgi/SI01qqAFUHyLGUAOo57n1ZB1n3UjoPne+7w8NLTRsDUjGmoU4cL5eVGfKxdFy7jyhhiBkmYIJkoTGbJrYETcd2cp2zLcFFaLL5DIYDGF4kBt+OFbJ2mF8fbAcXzMIjvIhA0QbamLQNtRotHP80Xy8k1sw9vujLPeXR4C0b8/ucHegIm+ZlprEYCxDDQAOXmhQLQPdaLnLuE9KqAdSw6h8p/P1cDVgY/fZa6olqT7u3TDvJ+OVzYbQ94kAMH6gF6sjPBfLp0Sp8nSysb2kTqMyxppxNgQ2w1HdmX75wXLOmTt9rmHfuXrEKXogTtEDJGncfn7O2iJBxitJAjda2gxKR2gqZKCCA/j20SfFFKDprmNppAADC1Db1KqXD9mDjNhlR7bIVu3yDM1SYAxcu3XBkEDx+nlcyEAtez8MMOUdVWfB5tMYkrcHy/aXMUbqGQIBYDBL6jI+SFDZNqj/z9wY8y80YPfZOsbIXkMhQUUBv24GQw2ggpSEQIJ7ppPrlTx5pYnXQFCfCTGXbZAW4cXr58VXF6YZHGNAB5j5uhhXQV9MXW+03BUUUKYv+pQrI/jTRxEAJsf4YGw4fzYeJvKsKMhAMtYsgCHT2dZgnBgC7T/ABVtkqzYkrGOkN25JgSAHbDGQYE/N9DCi7JiJFfM8+/W0593nif498crj+uf7XH2sEm9sPIlbrfcYt+84fRUvr+L3pdMXY/nfCeFue7tRyskeHYT+LKmYbt9tF522zBzXf725De+NY1fLtyQkgN1nr6K5zTjPRx/+3ZGG7V0T3KNXkgMxe0Sg6OPeHRuCznJ2E4YW1F19rIp1FYEPWmzeGpACDGCeAAN1HZxF288KSuzMxOAAF0HLnsEe3RHgZm9wCh1TMCOhN1YcvMToAwJQH9hdZ66atU4S1oEplry4AnAkjAudqJ1VOBWWX9K0ZvxcbHH5OvNMTtZwhV5+esbCkGfn2LUTmm4zD3j0XV7lq4+x2tri9EiM0XNmTghSgIEVoS1nwNaAQjwdcLqWWbmc5phA/7SzdbdQepU9P6UlGdzbGXfu+bEGP0iG2qPLuAgvbC6uMeoHnc1wkDCu8TSUQzCVRjLUuGEz1AD9AiqMiSHPjs1QA/RfHRGyLM1HYh9XHOBZFam2kmVQaWYNpp1ZEyN5Yc2jzhfj/dHdthM+322coAgJCSYyYnyx5lil1b4HEhISjxa0/JKp9NaE2h+Sz5qJESPqas0fqFWHKyRDTcLkSIaahISENUHJL1VYuhrijbULFy7gk08+wezZszFnzhz85z//waVL4nSrHiXoxO0POtbgyC9hfGQABvk5WboaKszVzGQEkBEjLt2PUNIiPEU70RubQX6GC3mOCHI3Qk3MT0IfV6RFeFq6Gg8FPk5dLV0Fq2BF/iWLR4WKMtZyc3PRv39/zJ8/H+vXr8ePP/6IefPmISgoCJ988omp6vhA4+loi+kJ3Olj9OGV5MAHPjJUwjLICCCpnxsIUKPG3y/fYN33YW1iGzPjMSnaxyRG1abiWoDkj3pmY0ZCb3wzNcqgOhw3QgTbqAE94eXYxeByzAEBIKyXAwiC0sfbrGcAlyHnf9jwceqKqhu3LV0Nq4BOPWVJBBtre/fuxVtvvYU333wTDQ0NqK2tRV1dHerr65GdnY3s7GwcOHDAlHV9YHlRLUGuMZARwOTBvhpJoPmKfxg7Ewn9eDy4J/aeq3+klxvXFV7BeLV8k8aGBKUF/IpISQICQGqYh8FiyIZelq+LLeb9VIKapjsGliQcOlemWF4ZEYhNWfE4VX1TQ5/NXH2eDMCKqVFYnB5p0vOMDvUwq9+SuQ01fxf9fcIIAM8M6mW0umi3HTlBwN/VuDp3YhH87L/66itMmzYN77zzDpyd70+xu7i44L333sNLL72EL7/80iSVfNDxdLQVZVjxMXqAJzwdbTEp2hf52UlYnB6J9MHcgpbpMb6Ymyxey0abB8HomzjQCy/E+fHu93ysr0pqgAkh16rv/aCPkwEYE+qhZyn6sVNEtO3DatCt5sg4IRS+Z68EJZjMh/pAjgSl28cnJGwsAlztGAeSlRxRieoY03jQV1Ou/lYbqhpbmdMmmQElgGmrjqOgjD2qMGOwDzIGG7bs/nysPzZmxZtsid3SKzWXGzXbnNDq0Pv97/crRqkHAUorkP5eywkCCycMsHhCd8Hv2rFjx/D888+zbn/++edx5MgRo1TqYYQ2rNZMj8WmrHiDylK38A+cr8ecNUVYzZbqp4O1hZUI93Fk3R7q7YD3eQQPhwT2eCA+3uv/qOHMmUgzvJ8bqhvZp7azkhS8LwgJIC3cCzmjgwS/TASATVnxmJHQGyCALRxaeE9HeRutc5YBiBGp5m9IBz461IOzwyUA5IwOMuoAwFy+YkJOIwPgbG/Du5++GlOs20Tcg/KGFpWkkD51mDVcYfEB3JpjlZgjIM+jWAgAs5OEXR8JSnyVjdVHqwQJfbPWhaD6/XAfZ2SnGPmdAbBoYig2Zhr2XTIU7Vlu3jyzoPIVC9mXRuiz/PNWGzZkxuGt1GBsyIzDpGhh2T1MiWBj7erVq/D392fdHhAQgLo66xNgtSY8HW0Rp+gBd4euBr1sS/aVobapFbVNrcjZUCKooSpJqmNmo6T6Jt7efJqzXocu/im6rtbMtFXHOcWJl+4rw/yUIGTwpOHZdIJSxxY66s0Y7At3h65YkX+J90P94/FqVSdmUJvJiMTyqVE4ViHOl2na0N6qEaZYdp66iteeYM8ekB7ji5mJCnyRYbzloxh/Z04DkzBCYEHGYB98kRHJ+94pAZyt4dZN1Ac+iZ/UAZ6in5k+gzASwFf7LyHdwBkjQzEkywPXB5AEMCTQDQU5ybx9gBAMGuh2HLyusBJ520qNOmimy1pXyG5MWtog10ZGAOMHeuOTnedF3Quh+y4/eAnjlxbgg61nMX5pAdYVmiavtBgEG2u3b9+GjQ37KLFz585oa2szSqUedsobmnkbDdfLQZJU+pEtJ2tEjcq7dJZxfsi0820SoCLbDJldifBx0v9gE8P7sSWBj3ac401EDgCLtpfC3aEr8iaE8t4vT8euoiRdaEjoP9N1oqoJ0zjyOTIhJwi8ONQf+dlJnEvobL5G7SSJj3exJ3+//GczaptaEeXHbWCJ4Wh5I0gSGMGSV/XVx/siiCUVkjppEeyK5W7dusC2s0yQYW4KIVO+ZjM9MQD52Ul4KzXY6OfWpp0kEewhTJsyNsDFxLURz5McyvSyjtksT0dbjAkXFl3a35P/XugTfU0COF7RKHhwLpac9SWsM4MvxvtbPLpZnRHBblg+JQobi6pNttKjnspQSQJvbDhl8WhQURkMVqxYgW7dujFuu3XLOtXyrZEAV3veFBt8jXDBptOiG+qCTdwzZ/R5v5gciR7dusDf1Q7lDc16p8YCgOKqG3ofaw20k6Qg/yH1aCE+p/V/7zqP7JQgvdKs0PtPjfVDl85yfH2QXzZHBmqkKOZUMgAvD/UHQM0I9+nJ/N4DlH9HbIAL0kQ67B8q+xND8vYgd0IocieEImd9CWsKMnX4ZpZIAHtZ8qr+59fzgu75zydqWKPhPrNyvcHSulsI93FGtL8zCEJ8cnEZAcwfFYS8HaW8x8pERAUcEZh9xZxsPsGeM3JooKvKT0lInw0AZ3gy0ADc0dcAe1qp3aVXTSahxPbeEQCi/J2xsqDCqOeTcZyTDbqZ7T5bj91nzZs3uZ0kUdHQYlG/NcEza76+vli+fDk+/fRTxr8VK1bA11fcVPGXX36JsLAwODg4wMHBAXFxcdi+fbtq++3bt5GVlYUePXqgW7dumDhxIq5e1XSOrqysRGpqKuzs7ODu7o558+bh3j321BbWgKejLeanBBlUhr7vrJAZvSh/Z5WhZm8jt7jjqT7ICKrTMxdygoCdjUzQyJcENRM3hSMIIphn9mfVkcu4dkvYSC9O4SK6vZAAvj5YjiF5e7Bsfxkq/mxm3beXky3CfZwxIdJb5Fmoj1/2+hIk9nXD50ZcDmX6EBAQbhwrSdNGw43s31PU/mLewZwNJVh2oEzvaNd3x4ZAJhNm5I0e4ImbLXfFn8TMRPg4ig6GOHihAVtO1qC2qZXqs0cZ1mcLgQAwkGXmbWMRu2Fpqi46tJcDfJxtBbU/IXY7Acol41UO9wjt/TNifPBBWgg18BB0lHj46m4N0aAWTTf1yy+/QC6Xo0+fPiBJEqtWrcLHH3+MoqIihISEYNasWdi6dSu+/fZbODo6Yvbs2ZDJZDh06BAAoL29HREREfDw8MDHH3+M2tpaTJkyBdOnT8fChQsF18McidzVWVdYiez1ppnONhQ6EmbR9lLeXKbWDAFgekIAvj5YbvJzyQggd0Ioyq79ZZbzWRsZMb6YMyIQcbl79C4jsY8rFj0VhvjcPQ9kezM1748Lwds/nxZsfOkzowZ0fLT0mPG1dghQ8hovi3QFAO6/3z4udshYftSgOqTH+HAGIgDAc4N98T1PwJix8XLswirTQgCYMNAbG/7gXnYcouiBQ2Xcfs10Wev/qBZUL/r7Y47v0NzkQHy+R3fWnACQNzHUZEEGD0S6qSeffBKjR49Gnz590LdvX3z44Yfo1q0bjhw5gqamJnzzzTf4z3/+g+TkZERFRWHlypUoKChQRZ3u2rULZ86cwffff4+IiAikpKTg/fffx5IlS6zWf662qdVqDTWAeiHyOgw1+t/WDNtoiASwnMdwejpK/EwQExsz45HY1433fA8rawsr8dtZ4XIgTBy40IBrN28j28AZ54eVm613hRtq0M9Qo3nYDDWA6g9a25R6ZTagfZbsbeSc+/HNKs0cFoA5I/rwno+0QK/LpadHAthYVI2PngrlLIPPUKPLEmqo0fur/9dUyADYdGY3hxL7MvvAmhPBPmuff/65oP3mzp2rV0Xa29vx448/orm5GXFxcTh+/Dju3r2Lxx57TLVPUFAQfH19cfjwYcTGxuLw4cMIDQ1Fz573lxRGjhyJWbNm4fTp04iMZF5WuXPnDu7cud84b940fsQWG0KCC7jIGOzD6kP1XKwvyuubGV8aoSNtQzt6c8Pnu8RF107cnS8f9Igr3McZC7eeMUmHMjjABcfKrxu97KCe3VB69S+jlKUkgfqbwsRTB/s7gyAIRv+l3ysaMTbCC3nbjRvtxoUMQKyiBwoEfGgsSds9peDZhfQYH6wtrNLL6HqAXn3REATQ0ibWU4qinSRRdb0VAa52rFH1m7LisfVkLevs+lf7y6FUcvfhAPCDgRp7ppiFUpJAU6t496LYABer9FVUh75fn+xkDoaigzvGhFtWZ02wsfbpp5/y7kMQhGhjraSkBHFxcbh9+za6deuGjRs3on///iguLoaNjQ2cnJw09u/Zs6dKIqSurk7DUKO309vYyM3NxbvvviuqnsYiwNWeddvTA72xvqiatZMlADjbskfkfn+Efep8xZQotLYpMXsNux7Rg7bkKQMAA5Zshge54QcDxFE3ZcUj3McZJ6oaTbb8eaz8Ol4d2Rf/FhmizgefoSa2LbSTpKBjCi834vlYP8YOfJC/s8GDGTF8kBaCEcE9ce3mbYxbUmCms2pCz8bwXXNysDvukSSW7OWOLiUISu+LXs40xcAra7gCX+4vs4oZOKHtlCAo5/9dIgShtc8zZ00R67lmJykQ7uMMd4euWH6wnHW/rw+Wq/yjTHH7PkgLQXNbO3K3lYo6js/hX0YA0R2yOEKfuwyUjuL4pQVGaStC3xV94CtzzpoiNLfds6jemuBl0PLyct4/fRK69+vXD8XFxTh69ChmzZqFqVOn4syZM6LLEUNOTg6amppUf1VV5lELB6jgghksuUJ/+qMamcMVrBpJJIAv9ZACmDjQGyOCPdDcxj4yeiU50CTh2XSZpnCAnT86CPP1FIgcHeqBEcEeyJ0QqnN8Qh9X3uMJAO4OXbGusBJpPB96Q65dfcSnfi/NEfMxIzGAM8ODOl/tu4Ts0fxLmEoS+O7IZcZtpXW3EOBqb9LMEeo42dqgvIE9cILpnBmDfYwqR5M3MVSQztyR8uuC3n31dEsggZeG+BtUPyaW7qf0B4VouRFgl1ERA6cIMM+xMgLIHhWEpTyGLlu5fEZCRC9HvDaSavuejrbIm6jbp6hDcpQltm7anKm5hUXbxRlqABWExMW0oQFwd+iqkYmHj8mDfVTHGAOu+yYnCMH9tnb1hTwLElTgjiXlOyzqswYANjY2CAwMRFRUFHJzcxEeHo7PPvsMHh4eaGtrw40bNzT2v3r1Kjw8qPQ8Hh4eOtGh9L/pfZjo0qWLKgKV/jMnLw4NYHzZSFC6TM9xpI5SQtiH6rUn+uK5WF98MzUK/34mAieqGpG9voRxXzlBoI9Hd6OPlNWXVGknUaHICQIpA7jTMFX+2YJFei6ZPR/rDwC40XJX5/j8C+xpY2iE6h4tSA3Gpqx4g40LEpTc25KMSGSPDjL66HKAl2b0KQngm4MVCBagGwVQM2vejraCosHYZntyOtqnEL+199NC8P64EJ3zCb3PBIC5a4uQsfwor7ENUB3l1Hg/rD5axSpHsyA1WLBxS5PY1w1Rfs689c7dVqqXLt/tu0qjG/YkCdjbyHn194YG9gAIYDeLjIoQ6OjBgpxkLGYwakkAT3BE1mYM9sGh7GSE9nLU650ZEezOa1wVX2nSEE2dFO2LgpxkDBNgPOjLOBYdwDV6rhQcKmNeqhwa2AMy4n5kOAB8PWWgoDa1+mgVhuTtwY2Wu8LfSz0a64KOLAN8/faC1GAU5CTr7Rdr6WTuFjfWtFEqlbhz5w6ioqLQuXNn7N69W7Xt3LlzqKysRFxcHAAgLi4OJSUluHbtftLjX3/9FQ4ODujfv7/Z6y4UT0dbDOvHPNokOWYeVPvwlE+A0pP6/kglpn93HK/+rxjjlhQwHicjgIUTBggWJuXbh94sY6in0D4kY7APNmTGYedp7owYq4/q1zHRYdi1Ta3IZRiFCilSThBobGnjPL8MQE/HruIryIISVPvIE7nEIYRTNbo6ie0kCZACUysRQGNLmyDZEjaUAFbmV2DmMIUgo+ex/j0xLSFAJ7emEEiAN4iGLldOEBg5wAPfFrC/lwQoB2WxszeL91zEtZv6SYQMUfTg3WfNsUqkCMw9K+Y7+dam0/j+8GW4dmd3y8i/+KfBy7AkgBMdxrGPM7PPEFeu23XHqHyRtE6a2HPvPnuNdz+Akp9Rn3V5dV0x9gsY9OmDDMDmYmYZDxLGTblWUPanhjhs9voSvLzquOD3TEkCuSIG1HF6CCcP8nfG1pO1nOeg++JrN2/rNfMI3BdJthSiRHGNTU5ODlJSUuDr64tbt25h9erV2LdvH3bu3AlHR0e8/PLL+Oc//wkXFxc4ODhgzpw5iIuLQ2xsLADgiSeeQP/+/fH888/jo48+Ql1dHd566y1kZWWhSxf+BMqWorapFfvOsY82jTFrov6CcUXf/PPxvvBxscPPJ4RlQ+Dbh978WHBP7NIzQnDN0Sq03GkXfC6xvJ7SD56Otnhjw0m9jpcTBEaG9MSCzac59yMBzDZizkI5QaCxldkgMpUPzNk6YcE3owZ44G2e+yGErw9eQmqYB3xduDvF3ysa8fbm06o2YorrJ0lqKTg11FPQ7NuCTeKv/4ejlfhBT5kGodF32zlyz6ozJdYPq3gGiuqYIjsDE18fLFf5eomFFjOtvC4+Y4gY1J3QX1h5DAWXTOdU38+zO87WsovQx/i74KiRnPq175mp3RQP63HfTl5p4vUZpvtiffsJokO+xZKiuBY11q5du4YpU6agtrYWjo6OCAsLw86dO/H4448DoIIaZDIZJk6ciDt37mDkyJFYunSp6ni5XI4tW7Zg1qxZiIuLg729PaZOnYr33nvPUpckiOOXG3n38Xbqimo9RTnFNEahiu5i0ddQA6j6b2IZORoDexs5aptaefWOmJg7IhA3W+4KShRvzNsqI4DXR/VD2TXmwIBBfs74/XKj0TvTL/eW8ZY5Nc4P/z1y2WjnHrekgPfDvLm4RuN8pnI6/uZgBa7dvGPQjKGlEVq3/4ow1CyBXh9ZQCVWbWoIAth9to5zIG4MuAw1AEYz1IyNkOAEfZ4x36BZvVyx5ROgXC5GBPe0qKEGWFgU11owtyjuLyeqMWdNscnPI8HOYH9nHBWZ1NySZMT4Ym2h/pGrpiTS1wlFlTcsXQ0JCR2MLY4d5NEdpXXMxlJyPzfsMbGh9iAzOIB/xk+fNFSmZHg/N8xI7I0AV3uTGWtC7Q+9jDWlUomLFy/i2rVrUCo1b21iYqL42loYcxtrtU2tBqm9SzxaPKyq8oagT15ViUcTQyV+JMyDjABGhnhg+ylhy/bmhM5iYQrpDpNlMDhy5AgCAwMRHByMxMREDB8+XPWXlJRkUKUlJCR0iVf0MMuHZmSIuHyVliItwssseRolHg6UAKYN7W0WuRtjQ8vFPAq8OzaEN6jMUtBZLB4o6Y6//e1vGDRoEE6dOoXr16+jsbFR9Xf9unWulVsbYrSdjMWbAjSwrBG+hOaA+KTY1oSMAL6ZGsW5j7eTsETKhrLztGEpo8zF4/17wpslMpCLrCSFqPsYxZJQ27VbZ0HHZ8Q8Gh9Zc6Hve04QwItD/fFeWoiRa2R60iK8MCe5zwNpaIpBRgDO9jZWPftJB6tYCtHG2oULF7Bw4UIEBwfDyckJjo6OGn8S/PAJf8oABHl0M9r5Bvo6YSGP3AOB+1IF1tQx8DnTygkCPTjkA6yd+SlBGBHsgUUT2YUjfzx+BeMjvQWLUapjTc9SDFz1PlT2J+aIjLJ9Ic4Pvi52gqUkclKCkDmcWT6k4a+7vMfTmQSsDQKU2v6DyFA9dcuyhivg6WiLx4IfvEHdxuIaHDhfb9KcuabqI0K9HQT3WfNTggTLR3Fhyv6OlnyyFKKNtcGDB+PiRd3M9BLGQU4QmDVcgXNGyNv4yohAfDM1CkWVNzijYOQEgbyJoTiUnYw102OxKSveLDM5QIfYaKyfqGPoqskJAq+P6oc1BubS40IGYHNWPJKMoMLOhJMtNUszKdoXh3OSGdXxSVCJlL+eMhDJQe6sZSX1c1O90MZOadPfs7vR9JsI8D/z7NFBOm2Q/ufqo5WirispyA0zhyt4BYxH9u+JJRmROJyTDCe7zpj+3XERZ9GEyygcHeqh+ojJCQITB3obXfAyLcKLVXh7qRElN2YnKVg/kMbqQgiAGszoUeAALwdVdgFj1slYMCnqa5O9vgRjI7yQw7E6khbhxdlnywiwioyToNJUcdVxSUYk67MezVJuSfVNfD1lIN4fxz2jmTLAAzMTKYNa34w02vXVhxmJAdjMImBO65FaMiJUdB8xZ84cvPrqq/j2229x/PhxnDx5UuNPgh+2/IfPD/bFrOG9sXRfmcFiklnDFfjH4/1ga9OJ98M2KboXEvu6wdPRFnGKHmhu49c4E8I3U6PwVmow5z7zU4IwUqBo54LUYBzOSUZBTjLeHxeCrGQF7GzkJpNNkBMEcieGorTuFvbxqLC/khyol4Gr7gdx4Hy9SgBUGyUJvLzqOPaUsot0zkhU4FAOZXC/Ny7EqPflTO0txjYpRJhVmy/SI3mf+cmqJo3zjQhy4+2F2TY/NbAXyhv4dbZ2nbmKE1U3cO3mbeRsKBH9DhAA5j3Rl3e/gb7O2JAZhzXTY5GfnYR/PxOBzwWknAKoj+Y3U6M4s5wAlPQNW/WZrmtxeiRGcAwE2Aj2dMB7LB9jY7W/L9IjMSnaF8crxLvZnK29pXq/TJ13VkZQM7JMmTW4SI/2wZKMSLzPYjCRANYcrcTYcC/GLA4AMMDbERsz41n728nRvng+jn2AVH/rDuu26Qm9kRrmhddGBmFTVrzO9m2n6jBpUC/GY/eV1qP+L/ayAWDX6auobWrFusJKURlpmM7Jlm1iRkJvXmPnm4MVyL/QwHi8NSzPitZZmzhxIgDgpZdeUv1GEARIkgRBEGhvbzde7R5SaDVt7QbwXz3FMZlYsq8MdTdv47WR/XhnWFYfq8KaY1XIm0hFu7DVT+xMTWubEqlhnvhw61nW4z7acQ4bMuN4y5YTBEaHecLT0Rav/q+YU+jXGIwIcscH4wfg2s3bSFvKnP1BvW76putS94Pgm/nhgp6i93S0xYHz9UYRqBWCEGFWdeQEgSh/Z17V/q0ltRr/5kpZJAPwRUYkrre0MQrT/nrmKkYEu/NGkJKgBFi5EnFzQQLw68H87qjzwdazqugyf1c7FJQ1wMfZVtD7daKqCSvyLxn140EQQJS/M2xtZNjNMRhggiQBJzthPnz64uNii2X7y7CpuJZxO9f9pt8vT0db1n6NC6F9HgFgY2Y8wn2csXDrGVGZNFYfq8LawipMjmb3cfx8z0Us3nsR80cFMV4D3abmjwpirPPawkpMimY2qADAtVsX1mtVdzOpvM7ss7Xu9yuMvwv5prWTpCp1n5hnM8DbET8ev8J7jAxAapgHOncisIQjw0g7SeLjXedZt+dsKFFNalgC0TNrbAnc9U3k/iji6WiL3Amhgmdi6CUtsaz/oxq/nbkqKME2ifspUzwdbTGLxV9HzOzRjdY2eDrasvr+ANQL0tKm5NyHXu4sb2jG7rN1og21wf7OovYHgL3nruHnEzVIW1LAO8v5XKwvSJLUa2ZNBkq0U8jMD2sZHYK55Q3NqhywYorSt33pA5094uSVJqOUR4CanU0N80KYN7PP7KbiGsxZUwySFJaKR187SEZQhsXLQwN42wKdumdI3h5VftJwH26fXxlgdEMNoAyu45cbkX9BnOENUEbeIH/2FEHGcKeout6KPJYUQRkxvhgb7sl6LC2KC0CvZTa2HJzaTI3zQ3NbO05UNWK5HppuShJYw+PjqCSpwe38lCBGXzB6ezpD9KiSBA6ypL8iAIT1cmT1Cfxo+znV7CRhzFxWaufXR1olrJejoMTySlBC22JTwemUQ1o2N6jomTU/P3H+RRLsCF3qzExSwNfFDm9sOEXlaxTBgs2nqfDvGB+0tLXrKL9r1AdUypTmtnrGhk121HmIwoU18a/GuTedRme5DE723CPvQxfrMaSPK2P6mrnJgbDv2gmLtotPZA1QH7jn4/1FC+AqSSoHp5BTrjp8GasEZDRgPA+A8UsLMDJE2FKwNmHeDkgN99L7/tBMGOiNTUU1nO2La5YhwscRxVX8BliYtxPWFVYKUh3ngu6eSQCLdpTCya4zfHhSVJEAZCSQMdhXkN8bPYMhdHZl1AAPjF9aoDpmRmIAwno5saYco98n+v/z3b9pRhR31UaftGgEqKX7SdG+yBjsg9UMvqOTo33h2s0Gn+/h93Nmu88Fl5iXpgAq9ynXsyFBvV+5E6gAHjHLbASAKD9nQdlUVh25jG8PXzbIT1TIce0kCW9HW+RnJ+HDLWexRWsGup0kEd/bFWuPVen0B5+wzBoFeXSnBqUc56RnJ6sb9ZeueDHeHysLKnR+JwEUXGwQPevZ0qbEpGhf7D9fj20CUqoxFS3meVk6N6hefq1lZWWYM2cOHnvsMTz22GOYO3cuysrMkyfuQaa2qRUFZQ04UdUoasnry31lSOzrhvzsJF5nTSboqfafT9Qgc7gCqaHsI9HL15t56ybEUKPPm72+hPdtWLqvDK1t9xi3fb7nIvK26WeIEASQOzFU7ygjfTtdsadSktBbCLKk+qbBhhoJYFNRDTZkxrG2LxkBztnPEwIMNQC4WH+LM/WPmHtHXzKtgWRvI+c9XglgNc8HHqBmczdmxmNxeqSg2binBnpjx6k6jeTw3xysUC1vGoPBvV3MFvgjBBLUff9kZymjoQZQy28jgt0F3YMVU6OQEaPri8dWNl0HPuhZTLHLbCmhHoIHFepGNx+GPsLZa4rw1sYSHUONxselY+VGYHln625x1psAZaScqGpE3g79kqDLCQJpkcxBLwD1fRI68w1QhgtdJyGGGhNiDDVryA0q2ljbuXMn+vfvj2PHjiEsLAxhYWE4evQoQkJC8Ouvv5qijg8F6worNZY8xHQaShJYeYgaUd++p79PoJKkfNm0/YHUuXNXadRlFhLAhzyyIUoSKOeYXtZ7pEpSo8b/yy8XHbChj+M8TXqMr9mWFUkYx/mVXo52tmeWQRkb7oUhHNIJQquwYNNpxvrSEX/TEwIElaNdBF3/FJ7ABRmEzWinRXrB3aErzl29Kej+/vRHtc5+7SSJdYVXjObUXtHQgvkpulGyYhESgSiUdpLEYo7lJSUJbD0p7GNqZ9MZ3brIjVMxLfR5TwxR0ud6RiP798QX6RF6BXTQcPlw0jNOQoNW+CABwS4hTMgJAgsnDEC4jzPjEq36eQgSGMSib6i974Hz9TimR9CJehlcpAzwwOL0SCzJiERBdrJJsheIQfQyaHZ2Nv7xj38gLy9P5/f58+erkrBL3Ke2qVVjVKdP5738QDlWHCw3eVRKU+tdEITwJVpjICcIONqKboqCGLekQK/jxDrOq9Pfi1/I15gYQ6KDAHCy+gZyWQzrTcU1egnRCiUzSYFJ0b6obWrFinz92vnXB8uwlysQocMBO0/AUtiGP6qx4Y9qg+/r6mPGCxpqbGnD0n1lnPfmhTg/fMuxJD+yf088GeEFH2dbrCu8olM/AtQM18ur9JctUUcGYHn+JUEzmXY2Mr38vUyBDIYNgmYNV0BOEIzLvzvOXMWOM6YToD5ZfQNxih6I8nM2mnwPW78ghNdH9cOkaF+sK6zknCUFqJnv3y/f4C2TBJC9oQQrpnALiuvLN1OjMCJYP9cUUyF6Zu3s2bN4+eWXdX5/6aWXcObMGaNU6mHDEOdxGmPNoPCx6vBlsxtqCycMwBke8dsHBQKAk52NSSUCmKBH8jLot8xCgvLn4YIrkspQlu4rUwW35E4I1esauAw1gIrWmzlMgSkCdP1IGE96whikDPDgNdQAwKaTHGkR7G4OO89cxezVRUhbUsBqSNbc4I7UFYqMAIb0ceXtT+g+oKqx1aB7TvvmGoqcIAzW+/pq3yWMCNZ/5swQFm0rxZaTNfjhyGWraMN520vx7i+nkc3h/qAPJAnUNhmnrapDAGj4q83o5RqKaGPNzc0NxcXFOr8XFxfD3d0yjdPaoUPGJTR5LtYXGzLjMCnaF+frblq6OoLge4wRPo7wMeEMFBO0IU8AmBzjo3cHbUktIZIE1h6rRG1TKyZF+5okNdDWk3WobWrFPVKpdxmE1n/NQZzCBc/H+Ql6PivyL8Hbmd8JmivIyNDgD5rlU6KQzxKBSPN8rC/ys5MAQHRWCm2+SI9EnAHuCzR/G9YbM4cpBC/JM0EvywuNJjUmSlABI1zL0+rICEqX01SQAFYeqjDJJADfAE0f6Fk7S+YBZUK0sTZ9+nTMmDEDixYtwsGDB3Hw4EHk5eVh5syZmD59uinq+MBDzxaYWrX8QeP7I5UYv7QAy/aXCQ5asDQrePJ4FlU1YfzSAla1cFNCAlh7rEovQ0LfGTlj8tnuixiStwfrCitZZTgMYfnBSxiStwc/GJDxgtT6rzk4XHYduwT6TylJ42Yo0Jd4hYsgQe6noijtL0M0BoGOyE1/Z/jyRAQLYcm+Miw7UIbUMPYZSiH1WVdYiZ8FRJJamo2Z8Zg3Kshqc9ly9UtcuoCG9GckCfxxudGAEoyPaHthwYIFePvtt/HFF19g2LBhGDZsGBYvXox33nkHb731linq+FAwKZoaQQpRLXftZr5cl4l9XEU16gFeDkY1MpUk//IbjT56YPT+MlBSCqMFZktg4+ilRs48ngB1TbtOX0Uay6jalEaREuDV69JGRlBaZdF66NEZGyUJ5KwvQZVIiQAC4B0AmcqVwByzbVx+aNoIncEwpb5eQdl1/HG5kbP8gb5OCPdxNpqbyMr8cqw8VCFof77rzttWKlogWLs+XFkk+DDnwGnXacp/bs6IPnodb8pVo3499c+R/VSUN+f2MG8Hzu3Xm9tQUNZgNTNsor679+7dw3//+19kZGTgypUraGpqQlNTE65cuYJXXnnFJIJ5DxN0Oic6/JctrN+c6+UKd3Evw5mam0ZZalBHzKJUbG92AU4m6M7yyXAvpIZ6YocBEV4A8PXBS0js68aZpw+glkGi/JiNn6wkhcEG79Q4P0aZA4Bfr0sdGShJjrztpTgmUovOVCgBFFz8U9RHgATQ16M7DuUkY0ZCb1NVjfXcSzIisSkrntNfjMbUvaSQ8mUApicEIMuESd0/2XWe01gprryBLSdrBEmuCOHrg+WCNNEA/plREsDnu42fA1vQsyGopW91DDFa+FiyrwyZP1ABJVz1G8YQDS4D8M8n+uLFIf56P0OuyPtzV//S2+D98TizePqIIHd8MzUKJ6u5XW/e/vk0MpYfVc32WxqCJMWtJNvZ2eHs2bMPlTjuzZs34ejoiKamJjg4cFvb+lLb1IryhmYEuNoDAP4vv9xqIp+YMDSKyFhRSNbI+AgvbD5RwzkbICcI/PPxPozpS5ZkRIKE/kKk6TE+mBTtoxJg1ReCADKHKbB0P38uWnNHCBOgkrmL0ZCTEdSSTuX1FsxdU2zW9jci2B27zwqbiUno48qqJm8uHub301IYKyp7WD837DtnfF8sPuY90Zcz3dKjjJwgkJ+dZBKdNaH2h2i9hJiYGBQVFT1UxpqpWVdYqZLueFA6SUsbakMUPQySzzAlGwWM3kcO6Mna8TW2tGFEcE/R56XTsqw+VoXVPKlpBNHh3yToWenxQA1Vc7/c0CJajzBtqX5aUIYi1FAD2NP+mBOhtyjKzwnHeaQUspIUgiKFLd33fZAWggWbTpusDsYo15iyKWIxl6Fm6XagD+pZHCyFaGMtMzMTr776Kq5cuYKoqCjY29trbA8LCzNa5R4GjKGx9qBhjGu0VkNNKFyq2k62+vkkkqr/MQ5iihJ7Wlqva9qq43pXWR+NMmMZamJT31gj4yO8BA0suOAz1ADKqBaKJT/U9bfumPzc6mnQxCADlW3FWLIpEsaHzjFrKUQba5MnTwYAzJ07V/UbQRAgSRIEQaC9XX+F/YcRYzjPGhMZATwe7I6dZ/R3nn1Y6O/ZnVPfTd8PC9dxdNTacSuLNDI2JChF+ukmzGdpSmYNV8DZzgYfbD1r6arozYjgnrDtIucVIjUEAuDMiKIOCSrXr5A8oabAtVsXk5+DBLA4PRKNLW14ezP/LB4B4P20EDjZ2SDKzxmrj+qXY/hBwoo+h6JoadNf8scYiDYVy8vLdf4uXbqk+q+EJqbSWBsR7C66XAKUT8+TEdxRMvryLEcqEVOjj/QEnxBv9uggbM6KF10XrnRTKaEe8HS0hUhXUYORAXh2sK+qzTBFAsoAzDZC8ANd/p/Nd5Aa5sn5XGQEMJpB5sQS0ifqfLmvjDM6NsLHCYvTI/V+t9lisSJERvKylg9qUDAnWb8IP1U5PNeXPli4rp+MAKdQbFoEe+5I3rIBjAhyY91OAHisf0+Ty1PICOq+Px/nj7yJ/Pk5U0I98Pbm05i9ughD8vbgZgtzjmR9IKAmlk0AMzh048TedxnAG2TFRMoAD6MEkxCgfD+NCVcaNjlBWDSJO6CHsebn58f5J6GJtsaamLx8TLvRORS/mRqNQ9nJVKJpgWXlTQxFuI+zKg2JWGQAXoj3Yz2WS78qqZ+bhs5cTkoQMmJ8DVbel4Fy2D+Uk4y8iffvs6HkpARhZqIC4T7OWDTxvqI+ff+5Ogo/Vzvksch77Dx1FbVNrRjk78J4vRksBm9GjC9yUnQ7RxmAp3lC1AEqwtLeppPGMuGEgd4azyR3YiheGxmEjVnxOm1UH5mH2auLMH5pAUaxGF4Zg32wMTMeKaEeOufbdfoq672QEfp9KLThuh4lSY2kme45ALw7tj/GhHth/ij+eiRqtZWJA72Rp9Yn0LIyh3OSsSlrKOt1C4V+1wEqkEnfN0JOEMhOCdLsuzq2yUC9I3OS+zAarIMDNPsYOhG2u0NX1jrPTwnCFyxyRmNCPRkjV9Xf/5gA5qhC+n54Otpizog+gu9HhI8TZiT01tk/Y7APq5E+PtJb5dc0KdqX8V2i65Q1XIEdp+pUKy9KEvjvEfaZtRFB7ox1l4FKjzQjobeqXnKCQN7EUBzKTsaa6bE4lJ2MF4cGMNY7Z3QQ0nmM2DBvR42ycyeGYmaiApuz4nnv59RYPyxIDcbmrHh8+VwUp9gw0/dR/Tf6XSnIScZHT4XxDpZeSQ4UNKAiCCo6mmkMLSOAhRMGWNRfDdAjGvS7777j3D5lyhSDKmQJzBUNWtHQorLOKxpa0NJ2Fz/+fgU7TuvmiXt/XAhsOsnwxoZTaCdJVRQgrYVDR5Z6OtpSAQzrS6AEs88EAWBTVjzCfZxVdfm//HJ8w5GD8blYXzjZdsaX+y6hXa2JyAhglsAIQnXWTI+Fv6sdjlc0AgQQ5ecMT0dbjfty4Hy96nqFQOd6DO3lqLoXJ6oadZzM+ZYzaf8kGYBpiQF4cUiA6sWk79WKg+VUomFQHX9iXzfE5+1hvAd05NDxy42MEZ9rpsciTtED6workb3+vhhoTkoQxkZ4YUjeHo3nIgOwMSsezW3tKLjYoJN2iL4Pl/9swdrCStZE6dCK6KTLbWlTws5Ghua2do02RT8LOh1QkEd3bCqqwbcFFaKWMmSgcn/S9ZaB+jA72XXW8OfUZnF6JOauLdLZnpWkwLyRQahtasX8n07igJrD/vB+bhga6IqGW7fx1QHm5VcClFzJEyE9UVjRiCvXW3R0zGQAPs+IRJSfM34+UYO8bZr5RGUdxod9l06cUb0EgIKcZFy7eRu/VzRikL+zxntIt336XShvaIa9jZw10leIT9Ti9Eg0t93TaFtCoD+KSvJ+Cig6X6t236XeXn4urkGullainCCwITMOJ680of6vOxgR5I5wH2cUlDUgY/lRnXPPSOiNF4f64/eK64yRvIdzkuHpaItlB8pUEcLaddR+bwDKsJo0yEenbav3l+MiPLGpWHcpV0YAh7KTAQDHKxpBEMDAjn5LvQyNY3C/3dB9iHqd1fuY8oZmxnvB92zof5PQvAfA/Tal/T7TqL/X9Hs4c5gCv5yoxpw1xaznpyOt+foKGSgXgsaWu1hzrBIk7r8riX3dONs327frvXEhCOvliJY2pepdUb8etnZOPz/174oMQJiPo468Ed0XateL/p1+Z02ByaJBX3nlFY1/3717Fy0tLbCxsYGdnd0DaayZA09HW41GRjfynQyGGj1l7+loi8S+bhodunpkKf0STIr21djv/S1nNBzcJwz0VjU27cjUjME+WHusSufF+f5IJaNhpiSpJaL0wb5Ye4zZMNCGnkI+cL6ese7qI9EbrXepRNuk5vFpkV7YVFSjeuGmJQagR7cu9zvBjvJ8XOx0DCguXxn1TkhIR0ACeGPDKeRnJ2FCpDfW/6Gr5UNHDlUzCLvKQC0PagstEgCc7DqrZmLVDaW0SC9VJ8L2TD7acQ752UmYMyIQFQ0tOFl9Ax9tP6cyfJmCE5SgUjAp3O1529SB8/UaHRn9sZABGDXAAztPX1U9G+0PmBJA2z0Sh7KTNT76TB9XGjlBIMrfGbkTQnUMui/3lcHXxQ6Jfd2Qf1EzsnLfuXrsO1fPOtqn6710X5kqEpZeit1xuk4jYnv26iLV/diUFa8xCFCSQPZ6/lyHJIAD5+sxKdpXp8NX7xO03+vxkd6q9i4nCLw+qh/+/KsNK/Iv8UrG2NrIMGeteEONvi4C95Nva9cTHdejXtchgbqzzO0kia0n61T1XbznouqDrR28IQPQo7sNa3ug61bb1IpQb0fG95XNN7ibTWeNd4epbV+7eZvRWFOSlGEap+iBMeGasyqTon1x4soNHX9AOtUTfS4Aqj6KAGXIDOmYaaVdZIT6NKvvRw8c1Z8TQD0rtn6Wrrf2NwWAaqafrSr0THPl9WbGsul+Wz2DBql2bPb6EpWxSbfvjX9Uqwzm6YkBCOvlpDPwIUGlP6PPpa3xeaP1Lmud56cEwdPRVuOa8y/WM0YuK0Fdn3bfu3DCAJMaamIQPbPGxIULFzBr1izMmzcPI0eONEa9zIo5Zta0YZoBAjr0pVKo2SJ7G7nGCIZp9Kg9klu2v0xnlCsDcCiHGiFqHy8nCLye0o9Vz4rp46te1/TBPpwOzHSDT+zrhvjcPTov1vtpIXDucK5lqp/6rGBtUyt+O3MV9X/dQXgvR0z/7rjOtWzIjGMcHT3evyd2ntE1jF+I88M74wbo/M72fFT1HhfC6UD8floI/rX5NOPoke0YdS2f2qZWHK9oRGNrm045bM/k/XEhULh345xl1EZ7xE6Xr96m2GYtAGopZ96oII0RfdqSAp1r1J7dZZthATRH4mx6hHKCwGfpEXpp1TFBt52q662Ys7ZIZ7Dwztj+eufM1H6u6rPiABjvL10f2igBmI3b2UkK1ew3bdgzDSDYIAC8NrIv/r3rPOeMgvqsH9PzZSpXu13RbaC07pbGB/Fvw3rzztTPSOitMvy0DRAA2H22TifyWNZxUr6Zki0naxjbET0zo/6c1LUymfozjeMZzq9eNm3M8a0mjAundB2Z0G5bv1dcx9y1xTrtd0NmHONMmzpM3w7tMthmnsRqPmrP9LOtKqhDf8fo+n+8s5TR8KK/oWMjvDSeF9usLX0M3T+dqGpEYUUjotVmwU2JyWbWmOjTpw/y8vLw3HPPobRUWOqgRxmuqdv0GF8s2qFpONHLXDKZ7otPj+ToZdI1DPpbSgAr8yswPMhN5/h2ksTlhhbWjlIJdkFUEuA01NRHfltOMqdeWbDptGrf6QkBOvUjQUWbhfs445Od5zg/RPRoXruuSoDRUAOAVUcuI9jLQTVFH+BqjwPn63mXkPgivejr0obrmHaSxPGKRkT5g3OZmu2Z0MYE1ywjU32Y7hf98crqmAlg60CX7CuDg11njA33AgkS7g5dMZRB9JUEMG5JARZNpD6ydAfKxLtjQ3Dx2l+cz6CdJAGS2/gVQztJorCiEZca/tK5H+0kaVByc3qm9ecTNapZY/Ul/C0ndQWW6fqkhnnC09EWBWUNjM+gsPw6/t/kcMgIAr2cbZG2pIC3Pur3jATw8U5dfS0lKM26vA6Dgmu5monUUE9s0YoSJQGkLSlAdkqQqs5XbrQidxv/N2N5/iWNWc2c9SWw79IJUX7M/YKcIPDyUH+dSGQlqHY4IyEALw6l3B1+O8MssxPWyxEANbAoqW7SmCFLDfXgbXdK+qKZtpH3Z+hfT+nHeQ/YDDXgfttSn01j2ocetDG5jtCcrW3SPRj3fbaa29oZvz+f774oWvFAe6Y/d3sp0NFvsRmv9HfsjdRgLNtfxqrt90WHGwBt+AlxHSABjF9aQM34FVWrjsvuWCa2BowyswYAxcXFSExMxM2b3CkcrBFzzqxxzVIAptUh+vipUMz7iX/pRh06b6T6kpoY6BHZb2ev4os9+iWYJgC8OrIvPmH4qGjUtWNnsR0Hmz+IJRBybno2VNuPSnufr6cMNIrAZlKQG/afq+dss/T9E1L/wx2zvHG5e/Suk5wg8LfhvQWJsVoaQ+qqPsvIdb9kBDA52kewWLLQNi7kQ6dTF1CzLXwzcKZ8z76ZGoWL15pZZ4qA+4YL2z5Ms4PGZm5yIL7Yc1H/HKIEsClT/MwWoDlDyTWrNm9kX2Ql9eHch7ee4H/W9OwWQBnUbHXemMndtrKSFPhSy6/XEHJGU8FmpsJkM2s///yzxr9JkkRtbS0WL16MIUOGiK/pIwI9hX69uY2zEZnSSBBrqAHAtKG9MTNRgUA3e70+/O0kKWjZhAsS4DXU5ASBSdG99FL2155dMtUzENJhCTHUFk4YwLtvO0miXIRYKRd7S+sxu0Olnumc6vdPyL177X8nkD6YOa+pEGQENWObp+eHw5zIAGqZT0+jkp6B2ZAZx7sf06w6G0LbuNh3gTYAwn2cWR339S1bDCermvDFXm49NyVJ+ZOxwTTrLBShRq6hmnMkCVQ1tuplmNAzlEEe3TnfJT8Xe9Q2tWLRDv3ft5gAZxRWNPJ++9KWFiA9mj0yVUlS2UK4LvfLvWWi8k3zsWh7KcaGe1k8GlS0sZaWlqbxb4Ig4ObmhuTkZPz73/82Vr0eKtSdhx80XhzqDwC41NCsdxmmvuwFqcG4R5LIE7CcYkkMvQ9LMiIxUM23jwsCQLS/s9GU+CsaWoz2HA+V/YkCPTNUjAn1xJtjglHe0Mw7a5MpMA0SH1xG9iA/J/zOovJPgFq6EZzSi4V2ksSmIv5MBCQsOysMAFNi/TAp2hfrCis5DTUujHENrt27CGr3XG4ehmDOZ9DY3Kb3e64EsPxAOa+It6Hi7kfLGwEAkT6OKNKKxFSHFDDo+GLPRe5gCD3ryAYdaGJpY020zppSqdT4a29vR11dHVavXg1PT09T1PGBRjvd1IPGJzvPAQB6c/gYmUL0VwyldTexaDv7kqC14eMs/qUncF82QGjH6e7QFbkT+IU5haDtf8QHX5ugDQtRZQJ4c0wwPB1t0drGLR46PaE3fF0MF7EkQIkjs9WVzVADNP3CDK3DyoIKQftmJSks+j5+d+QyTlQ1ImeD+Fl8gDKcMhn01MRSd/O2oPugrSX3INLw1x3MT2FvowD3u7a1pJZ1e/ZoKqIywNXeKGK2XIYajdDVB1M8sSQGYWUZYHFBXLoeetHW1oZz587h3j3jKS4/jBgr3ZSxOmC2B54R44v3x4Xo/L7+j2qcqGqErQ3zJKyMAJZPiRIs9KtOygAPLE6PxJKMSHwzNUp8AR38eLzaoHs8RMEspvnKiEDMTlIYvVOoamzFN1OjsCA1mPGeM0GCGt0BENRx0vtPivbFu2nCzsFGmLd4P853x4bgrdRgxPd2Yd1HrB/UNDUxTa6ZXgJAapgHo7RGWoQXc/nE/WPVz5mdEoRQb0e8+kRfEbU1jIwYXw0hWjEMCXTDoexkjAllHjib2iRRkuBd7tJGJXhKAHkTQhHsKby9sfVnX+4rw/yUIM4PnAzUcvrMRAXys5MwI6G34POaAwLCntdnuy9i0fZSTmHbZwb1Yt1GggoIYSLM20lADYyLEIF0EpT+mtjvjgzc2VFmJCiQozU4U4KSq7E0oo21lpYWvPTSS7Czs0NISAgqK6lky3PmzEFeXp7RK/igIzbdFNsDmRztKzhbAQ2TqvX8lCDG+jjbd8YflY2M5awqqIC9jZzxuFEDPGCrpYzPxysjAlVq1mPCvZAa5oXWu/yT14Z+aGRgzh7BtCRHAJgc44vXRrKrqnOxJCMS8zg+8HY2nfFyQm881r+noOtST3fi6WjLqQIOUPWn93e20y9xPM37aQNE3XsCwL9+Po0Ptp7FkfLrSOrHnAZISOdDp8kCAXx9sBxD8vZgXWEl50zv9ITeOHmlidEY3FRco3MtcoLAxsx4rJkei4KcZBzOoVTf548OwqIdpchYfhSf7OL2mTQWcoLAnBGByM9OQkaML+U3JfBYGXH/mTPNhBIAVkyN4uyPjPGOBbjaierz3hsbolLZB4A5AuVYXhkRSGUIYNimJClDgyuDgBLAoh2lWFdIfcNW5ItPlzgiSFzaPzH3lwTw6hN9BR2jJIG1HMuH636/wrpNRgDjBzIPYujk5XxuB8ZCRgCTY/hTmMkJAo/174lsARlEaAhQwXJfPhfFmA2D7mPHhuvei+z1JTramOZGtLGWk5ODkydPYt++feja9X7qkMceewzr1q0zauUeBpjSTWlDaBlTTKwtrESUvzOyWbYzYWfTGW+kBqtSjuRnJ2HmMAVjipwle8uwkcUvZkNRDdKWMEcb7Tx1FfY2cubrYvqNoIwgdf2adYWVvHpZLw3xR0FOst45I+UEgfEDvRm/fPSSnHZ96dEUk7gtF7TS+YQo9tHsyeobosrTTnfCljqGCbb0Ykwdls65QS2n5qml3OLbH7jvP6MkKaFanf06ooy5oN+HNWriy7TA5vTvmINdCAB/td3jlNrQbgJpkV4I93FGnKKHSgDW39WOVXuQ7byE2v8Xg/pgin7OPxfXYPWxSlHl0CKgv1dcZ9yeHuOLEcEeGB/JnZ5MrGGu3g6VAKZ/dxzjI70FLy223G1XiZ3mbBAu5uvarQvCfZwxjGUwYGcjQ7iPs0ZqLxr6HHQAxxd7LnAK8rKxu/QaSJJKgZQz+v5yKtuHNTmIPTcqE//edV7w/dDXV2vUAA/WwfKVjr6PS2oH0K/9M/W5o0I8eH3W1NM/hXbIqwiBBCUeXtvUquMiQfexALD66GWde06CymJhSUQHGGzatAnr1q1DbGwsCLUXICQkBGVl1h9Gbwm0VaMBzfQlADS2MYVH006OM4cpAAKCPiT0qEhbgVxMA6dhO1U7SaLqOrMx83j/ntilpW9GksDWk7Uq/ajaplZBSvArD1Wgn0d3vP1kf+w4VSdYdiA7JQhhvZxgZyPD+KXsUalML+cbG04hyKO76Cgokrz/PKcnBDCKun60/RzGhnsJGrESJJDYV/ODRA8CmFLe0PX/43IjUsOo5z4tIUCl20bfl7ERXljKEuGpXc6kaF8EeXTnjex9b1yIjqHEuD8JjI3wwh+Xr2PnmWs6m18a4o/pib0Z3QjYovRop+PVR8UZOZuKavDayH4a74gQ9wXaqVtd+Pl4RSPmaonqckGnWdJOO8UWnScjgOcH+2EVQw7J2AAXFJQ1oPJP5ijg/l7dUdvUio1F7FqFYn0JSVAzY2//fFpDB21TUQ2ej/PFtwW69dRm0fZSxAa44FjFdVHLp//6+TTqmm4zDgYASpEeuN//Hq9oxOw1uoPCdpJk1YtcMTUKRy9d19FrU4cEsOJAOQ7lJGNsuBcqGlpw/PJ1xtnY3aW6bR2g7nlChz6h+i0w9mxWWoQXNhVrDsq3n6pDf5alZ/qZXrt5m7XMucmBquhuMe0/xt8ZR7UMoG2nmDXv1Hl3bIhKEJnNd5UtAIHWstTxqSSBqust3LJaFnZrFG2s1dfXw91dd3TQ3NysYbxJaKJtMEX5Ux8E7W0FZQ1Mh2ssccxMVKg6hV2n61idj8cvLdBR+gaAkiv8Tp5CkRMEpUTNsE3bUKP5YOtZLNx29r5wq4Dz0MbTZ+kRgjswbcV8rg8BU1aAdpLE8gPs+VNZyyKombNnVxxhPZYWsxSSckYJ5mikSdG+KCj7E5uLmWdEz9XdwpUbZRpinjPUcp8WlDUIupe/nrmK1DAvNLe180ZghvVyFCxRsjK/gtFQA6CRW1FIpNuIIHfsPXdNr6g++lmo319Bz4Wk0rXFK1xVGThqbwqXUSBARVtr9w1cBrySBKOhBoA3W4WTrQ1WcuQDpuvEtJntdzlBwNnehlFIWIihBlDXpI+8j5KkRJmZUO8vadmkgkvMfSsXrW1KvDg0ACt47pu6YCv1bgnzcSIAhPZyQEn1TY0ct0Kh26iQd44A9V5pG2skCUbDkgAVCQoAx1hmawFg8d6L8Ham0jq5dOMe5BAAxkV4YXNxjY6hJpQFm0+jpa0dM4cpWH1X2apAf6+YBoCLOSLH1SdWLIXoZdBBgwZh69atqn/TBtqKFSsQF8etBSRBsa6wEkPy9iBj+VGVDw6NvY2c8ZjM4Qqd3KJxih6wY9kfuD/Fr77WLkQvR6jJTU9H6xPdSNeNbQmViXaSRMFF4ZIPR8rvdzB8TvmzWKLoxEZBAlT+P76ZT9o/wtPRlnFZmmlfbWqbWlkNNYDScMrddr8eJIBvDlaotgs12jcV12DZgTLWtklDAlhXeEXwrOfyg8w+Quodo6ejLe+yHQDsKb3GKdrLFECgzqGLmh9XeuaSr4NcfbQKs1cXIT53D+Jz9+DDrcJnYdNjfHUMcEBYAAkTfIaqj4st4yyvdp203wO2e0C//1F+zgYHQDFVXYijORv0krB6X8uVbYWNG61tqrbAV5cV+ZdUfa1SwJokHQRy8spNvQYZtK+lqMAIETc0b2Koqn3G+LMHCql/Z7j6FDry9ucTzNls2KrLVOXc7aVYdqCMs15M5184YYBotxY68OWBk+5YuHAh3njjDcyaNQv37t3DZ599hieeeAIrV67Ehx9+aIo6PlRoS3loG1TNbe2MxznZ2eg4ONY2teLL/dxLz/SsAQ3f8o7QBpER44ND2cmYFO3LWmc+2kkSLW1Kwf5QAOW7J5RF20sFO4UGezhgEocYoxAIUPcl2NOB+x6r+UcUlDXArgu3ETQphtn3rVwP7Tu6PbAZ7YMDmEePi7aXooqnkyMAVj8r7ecb4ePIPIOj1THyLdvRcHX+2aODVH6bbMEiS/aWYcvJGo32MinaF4dy2CMrtc/PZnCwMSma3afR2BCgopD5ZkbnjAjU8LGVEwSrw/d740IQ5NEdW07WIHO4wigSMTQLUoNxKCdZkF+lOgSoPJMzExVGlU1K7OvGuwxGu6qcqGpknfFTr+fWklrW50Ebv3yGsrtDV6zIvyR4deJm610Be1IEeXRX/X93h65I6EhAzwS9vMjUp2QlKVQ+06G9HAW5FwBU28ubGIr3WCLmc7eV4mR1E0aH8vsxL0gNRn52EhL7uolyayFAZUzQXp2yBKKXQYcOHYri4mLk5eUhNDQUu3btwsCBA3H48GGEhoaaoo4PFUzGkvoyDNvIRH3pkG44QmVBTlbfgL+rnSoRM9uU+YLUYPR07CooOfaaY1UI93FS5XnUV5TxZPUNjA33wufpEai83oJPdnI71Io5h7qY4cp8buHHuWuLDOrUB3codK8+VoU1x6o4lyU+n6yZu46P1UersPZYlc6SNj0DI6ba9CwdW9t5PtZfJWCpjpIE76xmcpAbdpcyL/+8Ny4EznY2+O+Ryzhafp1Vb+k9NX8UwDjSN2HeTqqlxtqmVsZ7RoLKh6qdJJx2YtZnhnVBajAG+TuzLk/SPlXamCLyjuz4H673NKGPKzwdbXV8bH+vuM6YGeSXE7V4Sy0Hboy/M44ZwQlbRgCjwzxx4Hy9KFFj7STtxmg7Z2puAQCOX+aXI5ETBE5W3+AV5+Z7Z+kUfS1tSpWvrU7y9EzqOvncO7TRzgTDVZc9Z68h3MdZR9R9RJAb9pyr10kWX3CJuS5375GqABKA363h88mR6NGti2rl4ZcT7IO1BZtOgwAwNZbZj5M+32ieHLtskGB/T82NXoMhhUKB5cuX49ixYzhz5gy+//57yVATCJOUh5wgYGcjwy8nqjmtfu1ZOKGyIHnbSlVLAeOXFmAUQ0SlDEBPx67wcbYVVCYJKipvy0lqGU59NC4DWOUa2Oo2Z00xPtl5HikDPIw2QidA+a3UNrWyLv/Ql8qZ91LAuY6WN2osN6qXrY6cIODjYit6xM+0pM0G1/N7PaWfSuSSqR36uDBP9RNgn9Wk7xGboUb7sl1vuYOj5ey+LwSAx/r31PiNbUlQzFK9+hKyp6MtZ0S19n02JM3OIH9nhPswR3CrL23XNrWioKxBdc6dJfxO1nxo3x85QSDK35lzyf3ghft1oN0sPB1tMcjfhfF+az9LPkNNqEszHSUsJjJUThDInRiqEWXOtWwvZiZ/2YEyXjkROUHg9VH9OMW5CQAfpPFrg72e0k8VnRzu46wz06l+nfY2cp3yuIpXrxsBKoAiazjz7OXney9i2f4ynb5qb2m9xnI5fe1r2II01JaH+dw+6HZKtz0AGMSz1EkC+O+Ry6yzsPSSOCDexYDNBcUSGHPmWkIA2lIecoJAWqQXxi8twJw1xbwfcPVlTaayZjDob5HQlFLYdfoqZqv5aNGjq9mrizB+aYFG2D3fiz97dZEq9VF+dhKll5STjJUvxiBnNLOmG1vdSFDRQM/H+WFGQm/Wc6t3EhMHerM2YsqJvRzHLzcydqBjQj3xRUYke+dKUH4bBTnJyFDrnIS87CSAL9IjdXTuFk4YgOa2dr1G/ExL2kzFDA1kX67w7hhdApSBrVpu6VhWYVvSTg31ZKzzEEUPKl0PR71TBnjg/7P35fFVVOf7z9xIIGHJwpYEEhKCkAABwp4AEQKVTQGhFkEr8lW0EtBqVRJbtbbWgF2VxSpaq7+WpVYWy2YtoBCCgOz7EpYESIBIFiAhgdz5/TE5k1nOmeXmboHzfD6p5c7MmTNnfc+7PO9Di3Lx+uojzHscUPvIAJIQw6KhsOoXl03xNXnmvnjDsUlMOrl5xUyNipUxQE7kz6TFI0vBMK+kHtD6r37wbR5TQ0ADa+zPGNJRtS5YoToQIUX+ahEZEoS5k+r89wQAAxnmciMIohTly4IDQMbQeCS1C2FSadDw2thErJiZgujwYFkoWL4rHw8toicDB4DZ6Z0sle0Ugbkm2VGeT++Ed6f0QruwIMND39xJSejYupnpd2mJaCf3i5HX1pzMYbLWl3yjVsM1d1ISFljghhQBPPnpbtyqcSKdcrgWRTrrgBNSxDWhLCHmTdZnEQsHQTuGjzPJ+Xum+IbqUBoZEoR5Jq4yTkiuLFP7R6tMyMQkrizLjKOSQDlv/AGWzaAOh8M02lMQBJ7RwAKUoeQlldV4Y/VhW5s3oeRQlkVMFr/5D3tDJKgRRQzq1BrNgxohe516ISJh90QNT9T6ZqbJzBUHkZuZrlJ3k6hVEs5t9Rs/3X4OWWMSsCojVWdCUpoIiJr88ZQOTFPTh1vPyJof5WWSughgq+UJZcaWE1ewbFe+TnNmBHJCfKBnlIqaAQC+P3vVJbOx9pRHMz87AOScokeVCQBm14bVOwTgoeR2dQnYReMyZ6TFUX1stjFyfA5PaINNxy7LArgR3prQDUntQnCjugaFZZWyEFMffyMB6mhgLUKDGhlurGS8slY8s2pp+yo0uFHds7UP0/xXjRKLa+u4YGoy2ocF6SIpBUhRplpKEMBY26SsGwGJpEzr3Fo6hOWcxUc5p/EdxVRO4ADwxKBY/G3bWdXvTkD3G7l//tRkHC0sx8Jv8kz9vZQIEATcFkXZVOgQgDmjJDJjVv8GCAKGJ7bB/E2nrPl6GdwkAJi/+ZQ8VsxMnGZ8ZSxNjjZimFAead/14eO9MTwxAoVllZbXmA+3noFDAMb3jMLq/eqAJaPcqSKkgKXpg+IMXTKU2u3lu/Ixh0HV9HhKB7nftO4IZJ/7Yvd5JkG1cs4qo94JyFge0DHckIoFkA4AxHTqL7CsWVu5ciVWrFhB/Xv55ZfRuHFj3HOPPRe47Oxs9OvXD82bN0ebNm0wYcIEHD9+XHXPzZs3kZGRgZYtW6JZs2aYNGkSLl1SU0Lk5+dj7NixCA4ORps2bfDyyy/7vdC45cQVPLdsL15bxRbUWJ2jtaETk8Xl8ptYT9kYaSaR4EAHc2Mgjv+EGNTqgsY6lT/QM0qlAWTVS4l5649JZKwazeHbE7urCEwByMSXRho2QK2Ry67V4hhFGzoBmZPHVvocAE8OjpX/Tfpny4krsslXFO3x9giQTp3aiGCtZvWpIXFMTZAIqLiwvthzQZW/8tUVhwCAaXaxeiJ1ABKNhoV7J/VuhxvVNZiwKFelXXJFUNM6JrMENSIkGcGOYK6F9kRO3qdta5rWzqp3jAggvGljtGnRRH+xth2UpkwCo2AgAXVUDQDwwZY8pCq0fl/uu4iPck6b9osTQO8YaxGiDgHInpSE8yWVWLA5z1ZUpNL0qBV4jer4yugu9HazCbLeaMcK7buV82uqQVqotC6tdJolGljWgqc+3Y3lu/Kpa4ORFcIpAl/up0eWZwyNZxIcK/2tWe4FxAxpNu8+3X6OGXgHSOOZFSAhQN0Pyqh3QM3A8NSndEJtJfrGhvmVoAbY0KyNHz9e99vx48eRmZmJ//znP3j00Ufxm9/8xtbLv/32W2RkZKBfv364ffs2Xn31Vdx///04cuQImjaVTiAvvPAC1q5di88//xwhISGYNWsWJk6ciG3btgEAampqMHbsWERERCA3NxeFhYV4/PHH0ahRI7z99tu26uMtmEUpkZNm+7AgnXOpkQ39f0fpvGbpCW3wzfErqBFFS6Y4Myf0oZ1b4ZsTeu0N4eOiQakBDA50oKLaiR9uVDGDGYjqXKs5ZE0gmbSVoWETAUzpF4MHe0apyjGKNmRx8iihPU0Ktf/z4dYz+CjnjHw61Pa5CMAhAs8N74R3N55iv0BR/3kbjiE0uJHKAZ9GuKzlhHJASlvze5OUSWThZbX59MESwS/r9EwIYp8cHGt4chUgfXd6Qht8d/oqshUO2fJma9YgGtA0riwYOZ6baUaMQOZt7w7qhZ4VVERz+A8QBEzu396UZkI5R7X1JaTMLFoQmsaFmOnIMx98m6ci57bTLw5BEvqyJybh1RWHUCOKVB5DQHIm7xMbhtTsTRZKrhPQerQPZa5RRtogQDIzuhrEoXw/bf0SAcx/JBlF5Tfx1tqjqmtkfs0efi81YAOQ/ME2H7ui0yxpITI+jgiFaZ1bU+fx4ykdmJx2rPYY1Kk1Hh3YgWohUe5HWsJ2ByRBjZghjeadA/oxqeU/NPI91harfJa29prBX4IKlHDJZ+3ixYuYMWMGkpKScPv2bezbtw+ffvopOnToYKucDRs24IknnkC3bt3Qs2dP/P3vf0d+fj5275Yk37KyMnz88cf405/+hPT0dPTp0weffPIJcnNz8d133wEA/vvf/8pBDr169cLo0aPx29/+FgsXLkR1dTX1vVVVVSgvL1f9eRNGg5ZoMsb2iNI5lwowDvdnnRaHJbRGTuYwLJiSjHen9EJa59bM4ASlPw3LCZ3l8Pnl/oumJ0IRItq0aIKU+JaG/ExE+0f8q7QaAhrMNGxLduYjONBhialegDmHlAPAlAF6Xzal9oqcDlmbCjFJat9NeycryECpQaGdqLMnJSGmpbmTLFl4SX21Qg/r9OwA8Ob4blg4NRk5mcMMU2ERrdcLP+oCgJGtA3qtq0D5TVkmTeOqxf6CEizemofK6tvMsZ85OsFQ46uE0o+RaIjG9ojSvZ82jxyQeM+0ffX2xO6YnX6vaR1+NrSjHN1Nm6OsA11kSJAqP7ADkskoNytdFgxYGRRo/UID0aQofa1WZqRS69knNsxUcAoQBGSNTpB9tsb1ioJY+wTLrDstpQN1HSBtYzdnM1BH//DMffGIbRUMURSZ3zS2RySzXyJDgpBlkmrNLKCIFfQB6P2alXPCSKNIy52srLPWQuKA2oIASK4vhCZnW1a6JMDVwmjPoeWs1gbh0NJAAVJWBhqUeU1pa7zRuu4vQQVK2LJblpWV4e2338b8+fPRq1cvbNy4EUOGDHFbZcrKygAA4eGSMLB7927cunULI0aMkO9JSEhATEwMtm/fjoEDB8qUIW3b1kWRjRw5Es8++ywOHz6M5GS9o2V2djbefPNNt9XbLlh+QbRT+eR+MSitvCX7lhFqiLmTkpDWuTXOFN9AXKumiAwJwojEtnhtlT4n4vDEtthy4op8uhAgbUrak+9TtXZ+QOL/imvVVHUPCYb4I0NDo6TK0ELpg0Te/8x98arylUiMrNOSmZ0ylSAatrfXHaNGHk5YmIu5k+q0XT9cr6L7dihMSbQ6Eg0MSW3E0siYZSp4b9MpSRCp1QQ4IKWGGtsjEou3nNFRRtDY9oE6f4y4Vk2pJ+oPGHx82pRJynFCa3ft6Zl892urDqvu146bV0Z1QbvQIECQWNSX78pnphnTCWoCMDG5HVbsuaD6LXNUgqxhISdo5XxQ4hf/2ocvFM/f26YZ8q5clzUATyl8XHJOFWOrCZt8gCCgQ6tglc9facUted4AUNVFO4acqMswkpM5TKfFzBydQBVkCRZ9k4eFm/PgEIBe0aHYk18qX5uQrBcYCZbvylf13ZzaeaiEkfCk0iLX9suqvRflNWQOxaGb+CAqpzjJxWiWpULre6RcRxwC8NRgumn+0+3nkDk6AT9cr5ZNt1rzNGvtoSFAEGQfJu1aRuausvzCsko8ObguxZv23c/cF4+Ve8/jWNF15jtZc52069xJSVT/L0FgCxusvhUAPNRbP8eU30N8F3Myh8m+i1oLAqkbrc5bTlzR9XHava0w78c9EBkShNDgRro140zxDXy5/yLTb9oBKYJcm5UBANYeKELP6DDq2ks08QVXK5F7+gcs3ZGvclPYcuKKX3CrKSGILH2qBu+88w7mzZuHiIgIvP3221SzaH3gdDoxbtw4lJaWIicnBwCwZMkSTJ8+HVVVVap7+/fvj2HDhmHevHl4+umnce7cOXz11Vfy9YqKCjRt2hTr1q3D6NGjde+qqqpSlVleXo7o6GiUlZWhRQt6jjR3Y/mufNXAfHtid1mAUC7y+wtKMH4hPaqJDEDlJkk2QRF1pg2WeTBrTIKctopsFNrFMHtiksp8qTXLavHxtD4YnqimBiksq6Ryik0dEI3Z6fficvlN03QzWg4lFpTfzyyr9iRnJctATuYwebEiASECgNctBoWQMgDgbzln5MVbVydIWrolikWDhdWadtB+c5ZmA2a1P8HU/tGYPfxeANDd5wCwLStdt/juLyjBxqOXMX/zKWoAyI3qGjQNDJDNkkohEDA2N7JMy6rNHuoAgg+25ElRexQh02gOPZAUgRlpHeVyCssqkZq9ydTU+7P7OmLRN/S8qrKGFeo59PWRIryx+ojqGe0YU879D7bkqUzEViEIQG5mOgC1wEgbBwKAXE3/mo0XJbZnSe/ZfbZEFsStvFc5rvYXlODDLaex7qA+56+2fazWS/ksAHn9ulFdoxLmybym5QxVlqNcn2l1WKg4aGuFuRkKgZP0cWX1bTxp4julrD/tEFJYVokUivmY1adm79UKNAIkBcKF0so606ZAD+BgrRNW6jp/arKcXq6wrBJniytw4EKp6fpM9re0zq2pc9YhSHx0N6prcPBCGd5Zf1y13wJguiOZfY87UV5ejpCQEFP5w7JmLTMzE0FBQejUqRM+/fRTfPrpp9T7VqxYYb+2ADIyMnDo0CFZUPMkGjdujMaNG3v8PUagaT+0gtJDGm2CFlpnTJqfwpYTV5iC0Lz1xzCuZ5QcwamNMNJGeVohFHzqs92Yq9HGsNTQhOx1UKdWpgKKE1LuQ23ZShSWVTIjjVRliZA3diMoT7ZazaSV/YKmrRIAPNAjAmsOqANBnAD+aTEBudKfghYVlr3+GCDAkq8IIGlrO7RqiqR2enZxZc5DAqNIzRpR1GlEY1sF6+43aj/tNZHyo4i68VBacUvnX0XmQ2RIkGFewzUHi7DuUJEs3LE0D8qE6wculBoKUcrnnaLERygwNEdkjNE0muN6RpluWNT3i8CCTaewdGe+qrzo8GBdWSKAOf8+gM+eHCD/RoJuvjBYewh2ny3BjerbqvFNyjV6L8l3+4evjhu+RzkH7ZLckmdJcA9NYxwZEoTwZsaZQFbMTDEl2l2+qwBje0RR/aNIxKSdCGdiYvxy/0WVoKQ8hOymBHSRdyo1clbfSxsbWp88lu8ibZ1QwoiCR0tGfbn8pqX1mVwmdBxaP1mnCNVaNEehiQfAPJRZ+R5fwLLP2uOPP46f/OQnCA8PR0hICPPPFcyaNQtr1qzB5s2b0b59nU9WREQEqqurUVpaqrr/0qVLiIiIkO/RRoeSf5N7/BnE94IWxq+M1jMDzU8BMCaWdIqQ+aQKyyqpEUbKKE8rfh6iqPe1MKILcIowNTlpy95fUKIiESVgBViwyjKD0ofLroPq1AHRcnoT7bPrDhRR/dSsQICauuX7s1eZgrgd8uR5648x87QqSS2tpPDR+uxZYX9XwmqUrCgCWV8cpPpXKeeDWf5ApX8Qy7+MJFyPbRVsylCvqyfYQSoOQepPWgo6u+2mxJId+bryWPNwy8li7C+o2/itpvgCgEMXS5H5hXp8Kw975L00f6SK6lumAqHSb8mMdoT1LG1tzfrioGp+GOG8Is0ai1SVtCGtzwhvn1VBTQAgClKQkjK3r9aPzcgoRtYId6bcImC53pN1QkvyDEguAoZl1n7bB1vyJOWCxfpmrZD6keUnq1yL3tlwXFaMsKJpad/jL7AsrP3973/HJ598YvpnB6IoYtasWVi5ciU2bdqEuDi1/0GfPn3QqFEjbNy4Uf7t+PHjyM/Pl5PGp6Sk4ODBg7h8+bJ8z9dff40WLVqga9euturjTWjJMD9hmMesguZUbHYSFSBx05A65DL4uciA1zqvs6Alb3U1dyirbCXNw3IFq/7l8ptue48y0MIoCIGF5TvPA6D3gRPAU4PVpKVTDML5lRAh+TqR72ZxHxL/QaCu34zq6xQljR2NnkNZlt1xWiOKpmmqlCBO/konZiM4wRaeyYbVMzrMMK8hqSfRRtACNIiWYv6mky5Hi9Lw1OCO1MjsGlHEiaJrttjWldDWkdDxPMDIo/j92RJ5k7UjJP71W3YaN+V7aYEUpxm5bcmQ1vp5rT1gPeWXgDrnd9Yc/CTnLABpfhjRaSgFh8iQIGYuysVbzlAzHQQIAkoqqi23qQj2YVK5thox+xPtu9W+ZOUEpiFAEDB1gL69nKLUpmRfS83ehLfXHkFhWaWKZ5CFGlE0JSCmvZO0x5MGgU2kfHKvFe8vZdn+ANu5Qd2JjIwMLFmyBKtXr0bz5s1RVCSZhkJCQhAUFISQkBA8+eSTePHFFxEeHo4WLVpg9uzZSElJwcCBAwEA999/P7p27Yqf/vSneOedd1BUVIRf/epXyMjI8LmpkwXaSe+jWmJCVwQ2FtOylZydyjrQwskFqLmXiJl1/sZThkm7teStVk2HVqDV3BBz14jEtpi/Se9I//G0PrhYehOvrz5suQ7KucxyUP3w8d546rPd1IVVGVig88ES9KSlgJRv1Ur9iHk6rXNr2UdIC22aJcC4/YmwP31wnI76Q6mhMCOT1NUD7DRVNBAHdeJLaeYn6QA7iTpx4J/cLwbv/LgHUuduYm6CysMOi7rkg2/zDCk17M5forFjPfveJnNKFy1I8I7Wp4h834y0jlhDSWdVUlEt+2IJqB+FiRLkvSnxLXVt+ntGGq+PHu+D4MBGOoodFm0DFUIdfc6cUQnU7/ko57SsMTWi01CufwDwdFpHrKW04dpDetJohyAFfLy+Wh/45QqU45RElWoDUcg9RkE8Wuw6U2Kpz8lek9a5NZbtLND5rSl5+ESY94ESNPoOwHgsOgQpv/SjH31n6g+rbDsSTWtlTfQX+DTd1Pvvv4+ysjIMHToUkZGR8t/y5cvle/785z/jgQcewKRJk5CWloaIiAiVX1xAQADWrFmDgIAApKSk4LHHHsPjjz9um/PNm2Cd9B7pF8PsEAHAmO4RqtOpMpyd5sfF0oQJAMb3irK0GGeOSaA6WZptwF/uuyirwo1SfDgEiRiVpa0TUBdiTbtDeVpihaV3jQpBWNNAW5uPCLXJQXlqIwvW8MQIJlWI4URXaCoJVxQgOcsqv1Uw+G5ino4MCULWGDUNgCCo0yyZkVFqhX3atxLTgRmU/WVE0qvtdwES+SbxsyOmfBp9DWkXEjk7hXLKB+qE+f0FJThTfEOlsSMCCe37le8nv+0vKGFGZwoA5k1KwrbMdDzHSGNEMwMqiZnNNNbkitGC/UBSBFZlpMpR1rR0Uz2jwzCpt5oEemiX1lj0TZ7OzK/sxzHdI1Rjc3gCO/cvrV21dDCFZZV4nxKhPCYpAsMTI+R5QeafkS9h1pg6uhVZ0NSYv2hjRKt9NqPTIKC14ZB7W1EPAi/+qDNW7jV3ZxE0/6VB6RhP1lZt6jSt87zVNc9IQ03ba+wQchM/t4xh8fL4dUA9/wMEgUrf4QDwm/HdqPUSUBvsoPHrpH2H0lIC6FOoaevjgJ6E3NewHA16J8NqNIa7wIoocgjAI/2imSc8rZOkciDtLyjBzrNX0T82XBcxSSJsck5dwaLNdRFsVk5SDyRFYkZanCqKKjevGFMX77D0rQKAmUPjkRDZHM8t26da0JQRnvsLSvD59+fxD4qT/W/Hd8N3p69i7UG9GUQZMbXmwEX8bq1+Qx2bFIl1lFRJJHLxwPky7Mkvwcq9+vDvp4d0lE+LAtSRXQQbjxZh8ZYz2Hn2qhwtSKLHWG21dMZA5F+9oY4aGxKHAR3Dcaa4Av1iw9CmRROcLa7AqSvXqJQsvx3fDflXK1QRpiSyU1k/Vh0m9IrC5H4xqgAXZbCCljbhP/svYPbSfbpytPQfWpJe2ljPGBaPxwZ2wPyNJ2WNImmD6YPjdIskGcOkzE9yzmLx1tOWxrJMi1I7fwiFSHRYkCUSXbOoTBKdy4pEVhL2EkJoZeoxQRBkDenaA4U6MlX5OyDNpfe/zdO1p/Ybk9qHyNG4tCjIP3x1DAtr1wJW2z2X3gldIpqjd4cwbDlxRRVlPnNoPDMt1HPpndCmRWOEBgeiT+2zWuf+6PBgS/OCfE9UaBM8v2yfTpNDIvZIVOeJy9fwHoVkesGUZCqhqzLa8uqNaipJ99NDOuLVsYm6aN2NR4uw+fgVDOvSGl2jQmxFqmqRMSwegzu1ZhKFk/RH2mAlMl8AqLSWb689YksLziItVqZdUn4/AJnnTzmejdqARbejohjakicLX8r1hFbu+F5R+FHXtkxidfm9AN75cRLahQVTI2qVkcK5p4qx8Js825RR9YFV+YMLa/C+sAboeZ8IHIAha74ylJ1V1ujuEXj/sT6q58zC3lmTVXVP7eA1yhRgBKH2f5ScRIRuhOUESw5arNNS9sQkAOwQbKO6zBgSh5bNGzMj7mh9oaUQ0bZ9/9gwvDslWaXV0rY72bwNzXuKhYJFPUHbZGnjgxU27xCAbZl1m502OkqAmgJAy2pPsDojlSn0sHIBmpk2tIukdqOgRXJZOXwQzRwtuk77HsJPZ8R3ljVGMtuyKD9YC75WABRQR0NgNE8DBAGvjO4i0xAYgUSUr9x7QfW9duavQwCevS8ei75Vp4IKEASkdWmFzceuGD5Pm78BgoCfDe2IhZv1wt60lA747Ltzluo2unsEfprSAXGtmuqoYbRYnZGKz7afU83VSb3boX9cuGmUt5bqR9uuxPQcGtwIWV8ctJ19A1DTrbDWi/yrFTqBldRPOcaM6GdY7555H134Vh5EjCJ+lcnljSLyjehIWFycAHvtAehUP6zoa9p8NNp/aOupu2FV/vCpGfRuhVG0lRPA4E5sZ2it8/7+ghKd0Lf+UBH+8JV6YJul+liZkYqnTXI/OkWJhuAhzULvgLVoRhGAIEJmuqelYaI9w1p03nskGWmdW6ui0exAG22lBEutTyhElu/Kp7b9zrMl+Od35+R/08wFZum+AHV01EOL1IKabOqhPKcdH4Bkkma9g9w7f6PecV5ELX8W2Kz2AOSMFDRtGMv8atRd2qg3bTAOra6AZC6Z2t/4FCxCT3nDes8H3+YxvxmQMoMQsy0ruuw347vpBbVv9Zo6EZDbysgkWiOK6NEuFCtmpphGzZKIcuX3Zn5x0Fa0nVOErGnQ1uPpIfGYNSzesB60+VsjiljE0Mp9ut2aoAZI6xxxZDdbAwquVupokL7Yc8FSlLdTlKh+tJH6yuey1x9DaeUtvDc12VrlNVC6NWjXiwnJUXhoUS5mL9ULaqQ+ynFsN5WWIAKJUXQhYe2BIpkeyCjil7w7rXNrUyd/ZRACCRKjRdy/s+G4XG5S+xBmmdqDwNxJSXh2aDz1Xm19zfYf2nrqK3BhzQcwE5xyGFGZgDoNU2FZJZNDasHmPPy/7WdV4emsOeSEFD00fXCc6Qag3OxIfVdmpKr8rYzghJSAGoDtyDMlSLoe1iY5MZmegoTA6JUTk6OwYmaKYTj4qysOYeOxy/qLkDY3Zci3Mu0OEVKt0BCQ6Chte/9mfDe2VgrADzeq5BD6/+y/wBQ4CG3Ef/ZfYJreT16+JmubWO9UCnTKkH27vFhKELqD/+y/oAvGWcqoa3jTQKR2amn7PWsPFGJ/QYnuPfNMItO+PX5F/tarN6qo95RW3FK1i5HQS4RnMl5+y/DVCQ50oKCk0rZmG2AffqwctpQgPpmPDuyA9x7pheeH0331aFD6lLkDRgc6oC4ak3aPlfHpgLX6zlt/DNFhQbbTWBGQd6R1bo2/PNITC6cm48PHe2PF3gum9VQKFUZrC61qTgAlN+ipGT/KOY3/HblkGvFL3m22ngtQByE4RYlGxYjyBLBGP+SAxImX1rk1FlG0tspyl+7Ix5oDF03r609BBj6NBr1bYRSl2a1dCxy8QM9VqjxlEXX8s/fRTxAA8Nrqw3h99WE5vdKUAdHUaDYSObjlxBXbIWBE0Nt55qrlhe8/By5iWS1hp5GWyOy9ExbmYnyvSPp10X50HsGKvRexcu9FKZ3L6ARqqpMaUUTrZvRoY1GUBJjwZnVqfm0KFqt0JtpNwgkgLDiQ+W0iJJJJI/MxwajuEaYZKd7deArzN53CnFFs52tB0KcByq4lq60PtD5GBKzqni+tRFQIO/chQB9rb609Sv3dLCG4s7afH+gZJB9AtPjDf0/gj/89IZuMnhocZ2j+JRvD5fKbWHOArhFde6AIi7eeZpRiH3bnnwDoyJ7toH9sGHbUbsKeBtFkB9vkaCNgMfbT4BSB5bvOu7TmCJCiTu0Q5yqhFCqM1pZfjOyMP351QtffX+w5T73fKQJXrtEPItp3W8m4QduDnAByT/1AXdOeW7YXF0orkdQ+RDJFr9MT8irLKbhaiRvVNabj2UqktTYowdfgmjUfgKi6aY1PE9QESKbDFTNTZD8JQBrYf/32NIYZRGYR88oHW9i0AzOHxuNy+U1k2ogeIrBKbkm+wwk1YafZqZg8R4MIYNU+OvfS6n0X8Uj/mHrxVGV+cZCpXREAJk8UAMxW8Nctp0TONg0MsET+qr2HJIqmRU6RepP/GrVrSnw4NhwqsrQpkIi6aSkdqNe/3HdRp5XK/OIg5jGoGTIYJgrae+1g3vpjiAk3PwXT2p32KgfUnG80zFq6F2+vPYLosCDDcQpI3/NhLUWPrk6o87/86cc7MH5hLnac0Qs0RDPhDu1YfZAQ0dxlstWdFgU1B4BZw+JNeR2N8OHjvTG5X4ylcUF7/+LH+8iCgpV6sOiMzDD43la4XH7TUps6AAyIU3Os3d+trRw9a2RF+QNFUAOAfQVlzPfViCKzPBI1+eW+i4aCmgPSvE/p2JJa1tKd+dKapvndKUom5qmLd2De+mOYMzoBTw/pyHzP7GV7cfB8mcvaTe2763vgdCd4gAF8E2BQWFaJJTvOUXnBtCDOx6wIqpFd2+KrI8bs/Uan57R7W2HryWJLgprSeZM46TcJDKBGYCnRNaI5jhZdc5m7yRXtm7/AAeDNCd0QRomOswPiCHz2hxtYd6ioXqYkV9rzgaRIXWJ5V2DEjVZfTOgVRU3qrIQAifuKFv2rbBcy7xIimjNzixIo08OZfdfwxDbYfOyyPIfG94rEiK4RuFBaaaqZ6NGuBQ4wNO+TerfDyj0XXHJwt4tfjU1kRq26goeSo1BWcQubjtcFLEzq3Q5//Ekv7C8owaq9F/FJ7lnb5QqClGx+pQVTohZjkiLkAw2xYrAiYN2xPlktI4MREQzUaQIPnC+lcsG5Wq9hXVqr+qZ7VAscLiy3tAY9n94JV25Uy9YUFt6a0A2Xym8a7okkwIaV2J3cM7J7W6yz8f1G6wYJIvIUeDSoDXhLWCO+PwcvlNnO+ecQpFOeWfJfDs9iUHxLbMuzzsh/p8CKWfVOhCAA86ckm9IDAPY37AeSIhDbqqmK48zKO1iRboBEAM0ianYXAgQBjw2Mwafbz5nfXA84AMwZQ3dDqC/ubdsUJy8Z5wS1CgHAS/d3xu//e8It5d1pcPdB28g1wc49qvthQP0DdVS8u8GjQf0MykgzVgSiEZwiLOfr4/Ac7kZBDZB8Te42QQ2QFvzSimrL0c52sOZgERZsti6okXc8YsD7tGZ/IZOo2V24v1tbfOZhQQ2QXCayPSCoAXCboAZIWqcWFtIp3a1wd/9ZEcLsHlaMbhdRlx/bl+DCmhfgrmS6aw8UedUvhYMDAIYntEFydKivq+EzhAYFWs7d6mkIAgwjXlfuu4jSylvYlpWO4QltPFKHDYeK7krBnYXNx4255jjcC1/sgf5gf+TCmhdQHwoDJTzl58OCgLqUMw4AExiRl94EF1b10Dobuxsbj13Gy/+2lmPQXaiHT7lbQaL0UuLtUYJ4DKKUecEI82qpQSaY0NfUowp+0z/+ABHA0YvX7qq1KSGiuc/ePcWES9HdIGuAr8GFNS/ACkcMoBaOfA1BkJyrt2WmY+mMgdiWlY4He7p38e/Rzp5/4IDYMK9La2OSImxHo3mzDwUAO87QufYaKgIEwTQK01sYnRSByJAgl6IJ7cKqqbXgaiWTsgao42sjyard8V4tMobWL0qTUPY0FDgAZjQ0IEWBZo7RRzN6C0+kdMDSGQMxvpf9NdqVfjhWdM3lZ83ebdSGAoDZwzthTFJEPd9sDSTIyB/oO7iw5gVoWalZjP+ZYxKwLTMdDyT5RoM1tX8MFkxJxsKpycjNTJcT9qbEt8SWE1fcHtxw4EI5ukWan9Ae6BFRm/Yk1Kvq6Iyh8Vj0aB/kZA7Dr8YmWnpm3qQkJi2Lu+EQpJB/FsheGiAImNS7XYOZ7G9P7I5n0uKRkzkMTw/p6LFNfUKvKFPBev1BicHdKi9efTB/SjK2Z6UbmpwFSNxTqxmUNeQekvpLmayahd9O6GY5iTnBoE6tkZM5DAumJNt6jsCI2Nnf4BCA7ElJ6Geiwd52shjbstJdbpP6IDo8GCnxLZFpsx8fSIrEqoxU0/tY80QA8H+DYm29U1eA8j0AZg4zjrz8ct9FbDhkP9I13oDShIan0+KQm5Xu8dygVsFJcb2Eyf1i5ATXrGS9PdqFAgA1YXl9IQB4aWRn/P4rdsRSYmRz9IkN050i9heUIJORNsj0vSZROYcLrzGvKZOSF5ZVYrGNxMTuwPvf5iGmZTAm94tBv9gw0295eWRneWJX33bitdX65Ov1ASGNFCAllB+bFIkJBpQSL93fGbEtm8IpiugbG46XRnbB7rMlmL10r0sbpUOQqFo+2OK5ftAupixOsfrCASnfY0p8S2rydQIRwLKd+UhPaONR+hjCn3e5/Cb2FpQa3mvmUiEC2HLiCtI6t0Z0eDBWZqRi68li/IERrRgaFIjHBkYBAixHXh64UIqU+JYIb+aaoz6N2Nnb9DxW3jehVxTmjE5AZEgQ/rPfOMBry8lifLH7PKprvEGeokbf2DAUllXi+7NXLbejA9I68r+jxrRPT6R0wDND47H2QKGOrsUo+4EZpjIIcln0KID0XXNNMouwcNpiGi4BwKranKgk+4g2AbwvwIU1L4Kw2H/wrX4wEhboT3LOeGTBmti7HTKG3Ytvj19hklKSjAckgW5hWSX+lnMGH211vU710YQt21WAntGhmNwvhplWypMgeeSOFpbj09xzpu+/UHITgBT5625BTYC6LVs2bYydZ68a1unkpev4439PyDxRc0YlIKl9iI4zySr6xYbjQwuCWosm96D85m3b5QPSYjzni4NI69wan+SccYuvJw0P9W6HyJAglFbeMu1XksVhVPcIrLdwondF6HhlVBdsOXHFMAk2bJQ754uD8uHCIQBjurPNRhdqU2aFBjWyXP68dcfQLjQIRwvpnG9GcACAIGXQUHJheXt+W3nf6n0XkRLfEmmdWyPXQiQ4SyDWQjtG7FJNKDGpdzscK7pmmo1ECQckrbyVZz7dfg6RoUEY1ysKv1t7VNduK014DWnIGBqPhMjmWLqjQJ+T2MJhxBWwiKS1/ZA5KgE3qmvwwZY8mWKLlgDe2+A8a/AuKW5hWSVSszfpBs60lA7oGxuG2Uv3eeS9ggCsmplqSu5JMCAuDDvPeF9A0oJwLZmRhfoDBAC/mdANr61yr6B2p2JMUgSTuPKhWpJKu+PPjlbhRxbIpLV4uE87fL674VHoGLVLgCBgxcwUy2tDfesBg7r4Cikdw7H9tHd8P3tFh+gyBjgATBkQg3/usJcBYVpKB0zs3Q4TFuV63EVkWkoHfLbd/NBqBf5Mcs6qW4AgICdzmNs1bJwU1wa8KaytOXDREsGmJxDfuinyrriPX8hb8OeJzeE6AgQBgzu1xLcni31dlbsez6V3spQvkcNzcGWd42ujd7F0xkC3R4ZzUlw/hS9l44YoqAF8MfJnjDDIS2uGGlHkgpqfIDeP94Ov4co6x9dG7yI40HciExfWvIy+sZ7lxPI0zIg2G1I4Pkf98b9jnBD0TsD350p9XQUODr9HRbX3g0cIuLDGYQtTB0QbCmQN8aT3hAF/EkfDAj8s+D980Ud9O/ie1LQhwl94P/0BJAjQV+DCmpdxptjzpsj0Lq09tiDuOO25HGkP9vAO0aEWI7tHGhJecjQcxLdu6rV3TegVhY+n9fHa++4ECAA+mtbH6xkQvveD3I7ugFlkrzsxoVcUVs5kc7B18uJc8zUcgsT/6Ev6Di6seRGFZZX44XqVoSDlgBSJWR+4QssAmJ94HbDGe+XqOlx92/sqZnJaGummBVCA9zV1AYKAn6XFufTs02lxWDDVfSSeI7u1Ne3/347v5rHDxCkv+mX+qGtbBAVy9iM7EAEEBzbyeLL5OxVvjuuGDYeN6WP+LzXWLe9ave8i1h5gc36eLr6BX44xJ+H1ZWoqI3QIty54vfdIss/Jcfl88RKW78rHoLmbMHvpPkNhxwlgxxnzU+DTQzoaXnfFHGnEHO0QgKeGxFni8XkiNRaPDoixvSF/deSyzSfqhwBBwNsTuwMAfrhe5RaVvwhJU5c1JsHw+18e2dktmSrIiW/aoDiXBKCxSZHo0yHMLd8+IC4cXx+5ZDr2erQPwYwh9oRLAcDCqcnIGuMfaagA4HxpJeJssqJ7CqT/AgQBGUPj/Tp3Z3CgA5P7xWBbVrrpOuZr+KIZWeuCQwDCmgYarsEOARjvppywIoCPtp5hrg1OERAsDDSSmspTcLWPzl2ttHQfIaz2Nbiw5gUUllUia8VBS4KO1YE3tkcEtmelY5DFMGIHgFnD4g073GgTXPx4H0wfbE0g+CT3LJbuzEfm6AS3pc5yNZfgyyM7U59bODUZOZnDAKBOiLYp4Y7s2lb3G9HUPZMWj9ysdGZARofwpvjlA4m2hSRyvwOSVmybIi2YldRCWkxYlIstJ64Ypsh6a0I3S/XcdfaqpTFeUe2UxpKNb88ck4CxPaLwTFo8XhndxfqDGvx2fDfqe10ZW++sPw4ApoInEaCswu5YnzUsXs7hm5M5DC+PSsBcTXq7qQOi3eZ/VN9iiJN2ZEgQXh2biNUW0h0ZwQHJZOcqEto2o/4+PTWWOac8ldvUIQCtmgVSr80ZnWB6sHpqcEcUlFgTQsj7pvaPZl531pZJa4MAQUC/WPcc9FwBOcDNN7EMTB0Q7fIhzx/Mn3JdfF2BuwG7z5VYZpaeOSze0uCvqHYiMiQIr4wy37hIbruXRiZgW1Y6c2Ez4lkKDmyEyJAgyxoRpwi8s+E4HuodpVvUAgQBUwewFwgtHJDSf7gijEzs3V56jgg5gpS/c2wPqQ2UQrQIaQGwkjMSAB7sGYWsMQkqAeqVUV3kiR0ZEoS3Huqu+34BkNN62ckjKgBYOTMVS2cMxLasdLw6pqtqESHaiqUzBlpenMTaLA1pnVvLmg7lUwKARgEOZE9MYm5OAoCnLWpdHZA0K1tOXLGl/m0XEoTcvGLsLyjBvPWuESQ7BGBE17aSCa72YwRIQu+qjFTbm06NKGL32RJMHxxHfTZjWLxKgJpnYfwGCALmTkrCRxZ94YYltMZLI6V0SLGtgnGm+AYKyyoxuV8McjKHyWPl7Yd6GPYhDc+nd9J9F5mL8ybZK4tAEKBz0u4ZHWapbVT1UGgSsyclYc7oBJeFhuOXrlN/b9o4AJP7xeA9ijAgApgxhC7EKGFXPrivS2v8ffs53e8Zw+IxrmcUzhTfkL6V8qwDwPTBsZbpoR5IisDKmalI7WSQX7i2TLI2KNv97Ynd0TM6zOO5kFllzxjSEWN7RJkKsMt3nse4nlGWcjyTYrSHYX8Ad7jwMJbvykemSQoZgoxh8Xh5ZAJiwoPx6opDqBFFOCAtDMrpp4xKMfIpAKTB9+a4bkjrLPFhRYYE4Sf9orHKRooQssAWllWivQ07f40o4qlPd+vq/vbE7kjr3BpLdxZY0mbNGZOAntFh6BkdZivnJpl4yrysJMF1YVkl1hy4qBMwRACr9l3E1P7RGNSpFdqHBWH5rvNYspPCLC4A43pG4VrlLSzcnAcngHkbjiE0uJE8wYnGi+SfFADMnZQkC1mT+8WgaeN7mETJhPTSAUngbtOiiWmQiggR43pGYVzPKOw+W4Lnlu01FKRqRBH/O3IJP02JxfTBsVi89bSqPTJXHERuZjpys9Lx82X7sONMHdN7/9gwvDslGZfLb2JxzhnT/nQCGL8wl0nmSWO4FwDMXrYXosgmAR3cqSVy836QUsNAP2cAyDkegbqUNiKk1F09o8MwZ3SCnF6GBtq7n1u2F9kTk5A9MUmeswKkQ9fLI+v8eQrLKhEdHozF0/rgTHEFSiuqsXBznqq8p9PiMH1QHCJrBVMzTEvpgDfHd5fTwn1cm55LmRpHK8xbnT8BgoBHBsQgKixIPtCQcslcTOvcGrvPlmD76R+sM++Lde1xpviGnHNROUf/c+CCLmekEuTQUlHtlOczINVNefh6ICkCD/Vuhxmf7TYc/yKAAbFh2KFJw/f+N6fx6MAOsjCgzWM6oGMYpg9Ox5x/H8AWBl+gHW19xtB4LGLkxbx1W8SguZvk3MAzh8bjVo2Ij3JOwynWrauRIUHoGxtuSJY7KF6aK2sOFmHdoSLMGcX2OyNlEC3o9MGxqnUUANI6t8a7U3rhH9/lq9YGu1DWWQCQOToBPdqHIjjQgQkLc3Xf0yM6BIVllfKhl8w/LWpEEWsPFGJsj0jEmURzkncq9wmeG/QuADF/aoePQwAeSm6HVXsvygLZnNp8nIC0qCZENMeusyXIPVWsChgQUKeWtZLcXISU8/ONLw/LCzjxs7G8jojAl/svWk7yrH2/EitmpqBNiyb4W84Z1UVBAGYMjsOHlO8hCe4/2JJHTTvlgCQE0N59triiboOufeHyXfmmZuklOwuwbFcBsicm4e2JSejQKlj+fiJQ0AQskk80rXNry5O7jwGtAHnfnNHSgkoWbFquug+25ElJjjXXb1TfVgkSpFwlXlt9GPsKSjEsoQ01V9+ecyW4XnUbu86qF+NdZ0sw598HkHOqmLkx0cYa7dbXxiZiTI9IfLn/okpoEhUPsLos59QPsoDdu0MYtpy4ojrwzBmdgGfS4qlzMnv9Mew/X4oNh4rkd2rrzJovpL9zMofhlVFdkF2bZHrR5jzEhAdjcr8Y6nijKQI+3noW0wdJmuumgQGGc3RAbBjeHN9dPgwq7yN1SohojhvVNaqNJjS4EaPEuvyUyo0fqBM4nCJQWnFLvj8yJAh9YiWB1SpEAPM3nsLSXfm6cUpyJwcHOgyFtbmTJIGRWr6iIdYcLMLag0WY2LsdVu65QF0jAOl7f5oaqxPWiOb0gZ5ROmFABPDkp7sxtEtrbD1lj1CY1a8HLpQxDzBEKCPvXvhNHrLGJGBbZrpOeIoMCUKmQYq+bYocp8QCkjEsHgs30wXFT3LO4tWxiToBGzBeS1lrDQ0BgoBnh3bEAkUdQoMbISW+JQrL6GbdWUv2qnIer5iZgoKrldTD6Vtrj1Lzmmrxzobjckop5bf5Q25QLqx5EGeKb1AH8XuPJOOBnlF4aWQX3UQDjCeAiLromjPFNywLT04RyPriIFo1C0RFdQ3zOZrgIwJuy835ybazVK2eIAJje0TiI03ybqJF/ODbPGRTzF8OAXiKIeQBQEX1LVV72llAlILXM2nxtjRVREjUCgcipH6wI8yJAOauPwZBcbon/ZkQ0Rw9o8N07aO8rtUsbjlxRbfBA8AXey6gNcNf5uqNarzx5WGqJpKmVSCaiABBwOR+7bFkJ3vzBaR+CbzHoRPU7EApYNO0qQDbJYGWo1SpTTGqDtnU5yraXwSQWdv+tLlMK4+MG1b/KLHrXAn2F5RQD4OkLJIvUrnRxISzNQuiKPkA9e4QRh27gCTYlt+8JWsNWWucEZRaatrh5kZ1jeHzxEpAUFhWia+PFOGN1Ueoh4IVey7gN+O7UTWKxCcpOow+F2cv24sb1bcxuV8MWjULxJOf7lZd/8Zm5P1bE7rhRnUNdT3derKYmtA9NT4c2/L0Gqt5649hXM8oXfqj5bvybbkK1IgiBndqjes3b+NTign2o5zTaNk8UJfUPK1za8NDr9mwUK4Rr4zqop8/K6R10mifc4qQ1z1SL5aWzcowJXMQULvIuHIIdze4z5oHEdeqqc6WrowsiQwJQkp8S7nzC8sq8Z/9F0y1Pt/XngBp5RvBCek0yEoW7xCAZ4fG60797hwkLPOrE0DB1UpkaxyjiU/eXMbi894jyZg+mO1Ht2RHgc4vzc7eUiOKWLojH2sOSPUOb2YcjQVIggdJS0LbzJyQTqsAsL+gBAs2nTSthwhQy5mwKBcffJtHbR9yffmufJVPU1rn1pg9vBP1PX/dwtbU2tmUH+kXI/trJUaZ59slGuDsda4Jaso6vrrikGweIRvZf/ZfwKsrD1rOyysCmDWsE96aYE4zEiAIKKmspgoKG49etvw9AYKA4EAHUwBTwimal63UiGV9cRCFZZVY/r2x0FxSUS2vRyxBbOHmPHywRdKA2F2DaFBukABw8HyZ4f0bj15Cbl6x9D278pGavQmvUwQ1AvK7tp7EnCppn+kCIvHplOaptdypAqTgBBpCgwINBamx3SPl9Y9UlyaoAVK/rj1QqNI8FZZVIvMLa8FsBI5aN5fG99BXeqcorb9aweV/Ry4ZvsdsWKR1bi2vEe3Cgpga/crq25b8I52idECqvu3Eipkppv5pNBDlAG3sa8ept8E1ax6E1pauNS8QaH1OzBDbKhi5ecU4eKHMdgSjEX6U2BaLvlH70QgC8Ox98VjI8KVggWWaNALx/3lldBfMXXdM9gHLOVXMNA8QR/0ubZtRHYU3Hbtc76wKysCLjKHxOv8VLUQADy3KlU+fNLPH4q2nceryNZc58eR31S6kzI2qdqMurbylOhn/dEAHW+8JCw40/W4llu3Kx+zhnbDlxBW8tsqaj6G7oNRs0syEVvHeplOW3AVeGd0F/2EcQq5X3bbcbhOSo3CjusZy1Ph8hvBAq7MTwM+X7tWZ+rR4bdVhNApwyO4SLMxdJ2l1IkOCMGdUAlXrbRUC6oIOCssqmQczZR1F2EtiLgjAk4Pj8NHWMyot99oDhWjToomhgFgjihi/MNfae2r/+0nuWer1/x01FnBmpMXhlw8kYvfZEsxaan6weGvtUby97qi81izZcc72WH+wZ5Tkc8qwTgjQa/tqRNHU97E/xQ9QiW+OX0HjAAd+Pb4bMyjis+3nbPnBkUOfAODxgfbWOKWLEQDdvPV1BgNB9GVmcT+B1az3rqKwrBK7z5YAQp1/ErH9f7n/om0Toy1/MzfAziZNkNSuBQ5dKLddT1sLMCSH0KBAB15ffcQtZVoBSzDUwgFg8bQ+WLHnAtZSzGy+hN12XpWRijUHCi0fKACJJsNqMIi7MaFXFKYPiqU6JrsbL93fGX/474l6lyNAYvfXmtpo9wHs/vv9j5Pwyr9dE1ABadyuzEjFsl0FWGpgvn5+eCc80j8Gn+ScYbohWMXqjFTcqK5B3pXrHhHuaeZF+Rrctz4YvccMQ+5thXd+3ENy5l95wNBvT/fe2nfXRyvNQu8OodjjQu5YO+2aNTrB8NDpLZBxGNeqqcrvlShaPOGzZlX+4MIaPC+sueoz5a9oH9oE50tv+roaHkV866bI8yIbvr9DKbAP7BiG7zyYduxuRt/YMNnNgYX7u7bFf49c8lKNjOEuQcfbB1B/QkjQPSi/eVv2LxzZLQLrD7EPd92iWuDwxXIv1tDzEACMTopQ+Y62bdEYl8qrvF4PEWq/PJpfuTvBhTUb8KSwVlhWKUfwcTQc3M2bBwcHB4e34W9rboAgyJGhnoRV+YMHGHgYrkRLcfgevMs4OO5uPNjDtXzB9Yy3uGvhb2uurwMKtODCmofhjmgpd8APquA3+OkAY78DB/SRY3cy7qJP5eCwjKs3bpnfRMEv7u/s5prcHfC3dcjXAQVacGHNwyARodpwbKsIEAQppZHJfUblZo1JwOjurp0SXcWYpAhkGCSGt9oOw7q0Nr/JBgIEAT/u254pjJH0NZ5KoeJvC5KZ6UEAMKl3O0vj7+m0OMM+twqHwH6nAN8I0gGCgCwbKY08XU9Xyiff4C3U5/MFC8/b6QtXkJv3g+1nBQCT+rR3uZ0DBAGTercz3S9Y7bNwarKl/YIFZRo2WvnDEty7HpN3zpuUhEwX2sxTc8yfcoIScOoOL0CZkaBfbBjatGgisXjvzGdSUoiAKgJlXM8o2dHxD18dxxd7Lsj3j+4egdcf7IrdZ0uQe/oHLNuZL6fdmTM6AeN6RlG5faYOiMbs9Hux5cQVKsM6rW4TekXhy/0XTYMlNhwswsqMVLQIaiRTRhDyQ5LOw4z88/n0TnhkQAzmbzyJZbsK5G96qjYtz5YTV5D1xUHLFCECgCcHx6JNiyY6ShVlvZRpVD7JOYvFW08z66iMwmLRlWiZ4VnlZo1OwLheUZi/8ZQuvZUDwJuM6MoHkiKx7lChqn1aNmuMd9Yfl7MWmHFQ0b7lKUX6o5dGdsEnOWdVTOrkmSn9ozF7+L2qhY3Fhk6D7NQL4JEB0UiNb4U+HcJ071S2H5kLVkh0rfrCjO4egeiwYNX7tOMiNLgRM60NAUkNZlZPUv4P16vldzoAPFKbieF8aaWqDwH1upDWuTXWHijEW2uPGtZljiaFTmhwI9W8EwRg7sQkFFytUDHIK/H0kI74aOtpy3PtgaRIzEiLw9oDRdQxQ133aueJA8BTQ+IwtkckKqqdyDl1RTeeCEfarrMlzO93AJhfS/ILgDp+CQM+jXpEJN9N+qb23nkb6OON9HtkSJCUjUZAHV0OgJ8O7IDPdpzTRYuScpV9pCRM166TpL8AqALXZgyJQ+8OYRjbQ0o197s1R7HmoHE6QiWyxiRgYFy4vE8dK7qmzwJyX7yUKUWTzWZq/2gq8fWCKck4cL6MuoYq+0deOxRtFiAIGNmtLTYcLpK/UVQ8q5xjP9yoonIoDk9ow6RvokXuCpDoU8i650/gAQbwbjQoSTW1cu8F5oRfmaHPe6dN9bG/oATfny1B31rhT8nTph1waw5cpA7kpTMGyqSh+wtKsOtsCeJaBSM4sBGCAx14aFEuNUUO4TjKrBUuWBsGWVSUmxYg+fE1DQzAjeoaNA0MwNaTxVTqgydSO+DT7efknJDkm0gZhAfKSlYBUn9S9xmKzYAV6UPavGlgAA6cL8Oe/BKs3Kvn01owJRktmzWmtlmAIGDFzBTde7Sps7JqF0LyztxTxVj0TZ5OSNEGqxAnWEBKrRUc6JBDz8lvrM2O1lzKb9GmKiosq8T3Z6/CIQg4WliOhd/k6RjySc7V3601p6MhY71NiyY4W1yBbaeuUMskY7NfbBg1zdDGo0VYujMf/ztqzFmn/WYpaXp37D9fhmFdWmN4YoT8ndq2VI6PwrJK/O/IJby++jC1DbXtoRyrpFwyHoC6+aAUbMgGHhXaBA5BkAUObWRaYVklUrM3UetBBCbWN+w+W4LSWjLfo4XX5EOe7ntQ109mwiGtHUgO0ZLKaoQHB6J9WJBunjgAvDmhG44VXsNSctisfT46PBhTF+/Qlb90xkDEtgqmBnCR9SmpfYjq27XrHCFApZXvECQBRZlmLnN0AoqvV9XlYYVEJD743tbU9Tr3VLE8pllz7rfju+GnKbHyv2lpnZT9FRociD6KLBNKIZSsbYQoXNs2RgdspWAK1OVWJe1EGz+CAHlsstamLSeuYA4jPzbZg2jzRJmfk1BfRYcFUddsVwL5nh7SER/nnJEPQ2OTIjAjrSMzlZmnwKNBbcDfokHn1Z4YyOBVar6IJiO1k6R9YGmnzCYKWYB7RofphEmySWw/fZW5gCvfAYC5YRBh5UZ1DQ5eKNNpF8iC/O2JK6qw7e5RLXBIE55O8sfRNnRXyE+N8r1pU36xFlplxJC2DkRYJZv292evQiCCjkZ4ckBK/k0ENNppGwB+8a99Kq3qpN7t8Mef9NLVWblR0sZfxrB4vF/7LuW3rJiZouJTI+UAMGyPAEHAK6O7MLVcAoCe0SHYV1BGrTstnZi2TFp/advDDMoUNxOSo+RDk7K9tJus9r1Wcss6AMwZo97o505SC3DK+WC0iZrlJXz2H7upVA9C7f/QvoF8h9U5YzaeWGD1IQDTfLXk+Z8N7aibL8p5Z5SKjjWGieBFDki09WtCr0h8ub+QOZ5ZGhhljl4r0K5j2mT0RIDQUkCRwzKrPx5IikBsq6Z4/5vTKq4wWtosZXtpoZynNEESoI8lYikw2hvIHsXKwakljKeN48KySszfeNI0pZ0Wvx3fDT3ah+gOSd7OAcqFNRvwpLCWm1dMPbUZQWmOMlrIyL2sawumJGP20r2Gz07pHy2bGFmYOiAaS3cUMDUxF0orDRnMzYgilZsKAEwb2AGffWeNiZtM+C/3XXSJRV0pTCq1liSvotmzROP1/dmreH7ZPp22YFtWuqVcjzSQ55Wna9rpdcXMFOw/X6rLjRggCHh3Si+qVvVXYxNRI4qymY0ILyv2XKCaK8BYyJWwSwhK6p5/tQLPLd1n6BKgfIYcEL4+UmRIhkzDb8d3Q6c2zdmaY8Y3qA4mczep7rFqZhUAZI5JcCn3qfJwpYTVsQpI/ZObmQ4A+P7sVWabK+urvE7qcKzomq3xbNSHVrTitHGVNSYBz6RJ/pEsy4ESDtBTzWUMi8djAzsgJXuTlU9RgbZ2sARHMxDN4hur9fl3AclE/1WtOVCJqQOiTclzR3ePwOMpsbI53pU8z6tr+10pLM4cGo9B97ZC08AA3VwCJMHnkX508yggCXMDO4brxq9SiDNSRADA33LOMDMvWAVrfHrLDGpV/uA+ax6GUcoWFkTULU5mCyJTEBNAzVeofdbKaYQlqAGwlBLFbCMR5f+R8Ol350zLJCBJtF1Nd6NNeP1QcjuqwKLFa2MTMaZHJL7cf1G3eRM4IW1GrqY7IjlEX63NccfKV8dKhVMjioBIPzG/tfaoSntHhBdaPZ2A6UB0wD57eo0ommYY0F6rEUWq75ESNK0swbGia/hpSixy84p1z2vHofa9Z4sr8Jf/Hdf1tdXPFgGdr49VkDyvczUaPjtjSxSBBZtOyWZGI9D8L50Axi/MxdT+0bZIsWh9eLa4AinxLRHezJzaiDa3erQLlf9/SUW1aR1YvnYLN+dh26li0+dp0K4dc0YlmKbKMqqfUeYGFknukh0Fpoek9YeK8LP7Orp8oAWATUcvY/7mU6ocywu/ycPCb/KYQ8EpwjADBitjAVnTWTlyyRpg5EtsB6zx6W8+azwa1MOIDAnCA0nejcQEYD9juUlRgmB6mw4uPGL7WYdgbbE2gjLh9RcWBLUAQZAEtX3SKdVooSypMBaYzfBRzmk5UbNdGpgAQUCf2DBVNLISThF4Z8NxxLYKNsxJKcC8P0Z2j3ApMssVbaORoAbAkN196c58FJZV2m5LhwBsOFSIHWdKdNfsfLaZJsvwWbEuSX1hWaWlhO9aLNlhQVATJD8sZhk7CwxTN5m1q5ISwVVqo+DAuq0rNKiR/QIUUJrm7UK5dszzUbokK1rV1fsuGgqSZoJAq+aNmePGzmHLyrUAQTDU5JM1wI5m1+4QO3Ch1OYTnodPhbUtW7bgwQcfRFRUFARBwKpVq1TXRVHE66+/jsjISAQFBWHEiBE4efKk6p6rV6/i0UcfRYsWLRAaGoonn3wS16+b5230JmakdbR1v3ZguTLYREjJt+sjMBE4BMk/ws5gmTogGqsyUk3fz7o+pX+MLGA4IPmP0PBIvxiEBrMXa4fBO1xpGxLSDcDSKbq+feAUIRMzamlgzPrjldFdEBkShMn9YpCTOQy/qtXQKUFOkXGtmjLrOWNIR9Ow+v8evoQ5oxPcMt5YZTgEKUrQVBNjcI20J2lLq/V9dmg8Pt1O1/imJ7SxXA7rPinYIQnPpMUZPk/6y1WybbNHnk6Lw7bMdAy6t5Xtsh2C5Je3LTOdOtbIPUpKBO2YtoqK6jpdWd/YcNP2n9rfdR8kq+uvE+aH2uEJbVyux8iubZnXHAAeNeCPrFWy058VpEAKltA8qXc7jOja1qW1PEAQbNH5kPHRp0MYtT5W1wD5fkh5jedOskfF9M764/Ih2V/gU2Htxo0b6NmzJxYuXEi9/s477+C9997DX//6V+zYsQNNmzbFyJEjcfNmXV7KRx99FIcPH8bXX3+NNWvWYMuWLXj66ae99QmW0DM6DJN6t7N8/4whHeXFiyziuVnpeHpIR8ubAtGqzJ2UZOnk6oCUmJmGpwZ3xDNp8ViZkUq9rjxNOyD5Irz9UA/0jA6jbvIOAB9P64OlMwZSBToBwOzhnZCTOQxLZwzEtqx0zBmdSP322cM7MRdrhyCFd88YQt8AfzO+my2uJrKRTe4XgzPFNyxp4EgfKF8jCFIbLZ0x0HQh0xIzEsFr6YyBWGkiDAcIgrzgRIYEYWyPSN33kvIjQ4KYfTV9cCyeuS/esK41ooge7UJNBXTSjr+d0I16/f8GxWJVRqqung5IVA3TB8cZ9tloEw2fsj0n94vBbxj1UL43a3QCBnViCy/PDe+k62MaiM+acm6TcZCTOQyT+8Wge7sQwzJI/WkaKTOtVsaweGq7vjWhGxZOTcb2rHS8OqYrIkOC0DQwwLI23QH13GCNNdKHWudt5Zi2srFr50RkSJDhZuyAtE7Mm5Rk7YM075oxJI5J/aC9N3N0AlPwDBAEPDe8kzl/HIABceGq3yb1bodfj+/GfNYJ4IEeUVjNWKMnJEdRx8bUAdHYlpmOZ+6L1wnNwxNaY3VGKv74k17M9UH5basyUvH0kI7ye4hP78sjE5A1xtpB7jfju8ljSHswJWPMbA0gIOt/z+gwTO4Xg221e6gV+Fv2AsCPAgwEQcDKlSsxYcIEAJJWLSoqCr/4xS/w0ksvAQDKysrQtm1b/P3vf8cjjzyCo0ePomvXrti1axf69u0LANiwYQPGjBmD8+fPIyoqytK7PU3dQUDoNkoqqrFwcx7ToTo3S3ICpiWQJWHM20//IPueEOfwVXsvqqJ+lBE1Z4srcOBCKdVnxogaQuvkzop4NEp4O/Ofu1WRnsroIlIm4Usj/DnMCE3GfcprAtSRWizHfOLEquRbU7YjWQ9E0KOUjKLiaPcrQ92VbfTBljx1VKCg5mUzikxaviufGRZPq8fyXfmq79WWr6wL6zprDCmjYpWOyEPubYWtJ4tVUZFpnVtTo8Ro0YLaemi/4Wf3dUR400D0raX2UF43a09WJODH0/qoKAtY/T0mKQKLHu0jtw1x3hYATOzdDiv3XNCNVzIfaXPFiIrDrB2UHHQHLpTKwSNKjiyz/iflmkW7AgyeLEUZrMhoM/z+q2NMnj6jOaFc55SBM9q18OfL9mHHmavyczQfRy1HG239eGV0F+p7zOqhXKuMvk9Jz0QCS1h+iqyodDLfyHtpvGlKKCNZaZGRyvWB1Ses8a2lGdGCBMBon6GVpf2WfnFh2HW2hMoRqQVtDND6wVtBBg0uGlQrrJ0+fRrx8fHYu3cvevXqJd933333oVevXnj33Xfxt7/9Db/4xS9QUlLnR3L79m00adIEn3/+OR566CHqu6qqqlBVVSX/u7y8HNHR0R4X1pTYX1BCdQwnwpqVQaLkn+lTu6go/03bCGjCmDLKzGyzVr5Xy/nDqqOZAEjuM9rAWBw8Ru3Bmty0xYXWjtooNQeA96Ymy2Ury1TeQ1soWCHvtO9XfiMAw+fIs/M3nsKyXXR/JOXCo+RKo22y2rrQru8vKMGHW85gfS0RL0sIIpxiNE4toyhZLXccq6+VbURoUZT8U7T2pH0Pa3PT9plWCJw5NB4vj0qQ68OK1FXyQim5+2j8Z6Q+ykOJltTWal/Rrin7v31YEJVLjzZfF0/rgx2nS6gExTROMKM5bzYXAP06RMiJWfx/tDqwBAZaP/00JUbmdLRziDGbK6zrtCheAZLJThvxq/0+rdBD2kfJKWf0/aw10u5areQLtLpfkbFfUe3EgQulTFoeK2NE+41m36YtTykMKwmArRyS3YkGHw1aVCRpYtq2Vdvp27ZtK18rKipCmzZqH4B77rkH4eHh8j00ZGdn480333Rzje2hZ3QYnh4Shw81YccigLUHCjG2R6TpBNDyrw25txVyThUz+WJofi5O1Pl/LN+Vrzo1Te7XHmmd9elFIkOCcKP6Cl6vDTMXUMdZpAXrncooR1ImbfE14uAhoPFWae/VZpFQLoi0d0SHB1PrPWvJXlXZRJNBIzol30XjR9K2lfL7ac+x+IVIO709MQmzh3eikpYSlb52vLD6TFsXJZQnb2LSpJ1gSRlrDlw07P+mje/R0S4oowXJIpybV6xaaEn5Og0O6GSoRqTHpZX6HJAszrq/PNKTKuiyInUrqp0y8TRNY0XrB6OxqgWrr2ibk3YcAnqtMWu+Bgc2wqtjEzF9cKyKWZ9s7gLqyFhZZdDGIHlG+w3PpMWrsrYAoPJtAaDOEVq7EMJmWj8pybdfGdVFr01WjHnldfIe2hg16p8b1TXUqOK1B4pU/c0ah0MTWmNsjwhDoYdWL6P1dPe5EttrNQ1mY4+8V9vHrHHKGiPaeny5/yJVK8haf3tG182tntFhhtYhf4DfCmueRFZWFl588UX530Sz5m1MHxyHj2oXHyXeWnsUb687ijmjpE2Hdgon0WDKUOotJ+tC0J2iZEZK69xafob4uWjfl3PqCmJbBes2kiU7C7BsV4GOjb1pYIDu3dnrjwGCtMgqCWCjw+iD/qOc0xjbIwL5VytUGhEjMlraN7FMNtp7tQuukuVb+bxTBLK+OIjF0/owSSJJ2QkRzeX6x7bS198hAM/eF49F3+apqFiUbUX6UqttodWLvFNLMEwWoHG9otC2RWNdvQMEAcGBDmqfnbt6A7PT1amiWJqK9zaeVIXiiwA+3noW0wfFYX9BCXaevYr+seE6kw2r/6cPjpUdiWn1zc0rNhTAC8sqdZo5uX2hJ7plbR7QPJ/1xUGIgjrSL/OLgyruQ+0GQptbDkAWNLTzVVdfxXjQjlWtMKfVNJsJZSRbh7b/CciYT+vcGgfPl+n6Svkd0rMiLpff1JX34dYz+CjnDOaMStC1hQCgovoW8xmWViUlviXV9EfqrIwaJL8lRDTXCbhmpl3l/Jy3/hjG9Yqi8qaR6+3CguQ1y8x0SJvftHYG6uYFIGmLtWuAdhxO6R+NpbsKVGOVrHtawUybKkt7L8udgtTJyqGAJpQlRDRH5oqDujqStUypDdR+Mxkji7eekdc4msZN20/Kd9DWvfKbt/DyyATdN5CDlT/irjSDauEtnzUa7DCwKxcCq2S7ypRSAJ0pHgDG94rC6n36VEqAOTu9sn7K9Cx2QDYlVt49JZQpSlj+Pcp7D5wvZTKcPzVYr90EJP+JoZ1bY/Nx4xRGrtSfvHtbZjozL+vYpAisOajXDhtxKhHBluanRdNgKevCOoXOGBKHls0bG/Zp2r2tVAeFSb3b4aWRXUyZ7hdMSUZ4s0AcvFCmI+dlpWNT+rW8vfYIte+0bUI2N6XwZjZurMAsg4bSpGo2X8l4YHFhERJYM+0YK8OA8tDDwtT+MVRTOvkOQJ0BgFWelOM1Bkt30HMf08BiszfKxcmC1j/OyL+Ulc/36SEdMX1wrOE4cQjAyG4ROg40lv+mXL/a/7LK1aZ9cgXPpXfC/E2nLLW/GXk6ueeBnmofcFrmG21fGY0TspaZpWBUPQO9Ntgs5RorP2rWmASEBjUytdx4Gg3eDBoXF4eIiAhs3LhRFtbKy8uxY8cOPPvsswCAlJQUlJaWYvfu3ejTR3Ly3bRpE5xOJwYMGOCrqltGYVklVu61nipHeRJiacmUcAjqEzEAtGNouliCGiCZCaykT3GKcIkdG1BrRIygjATbfa7EmLdKkPiYWBQbThH4aOsZajuKIiwLaoD1+ivfTYgfadoWmqBG6mVUB/JfhwgsqHWQ3nLiCmYbMLwbnULNhCFArdEFJK66XtGhpgvv7GV7VYSiSnJeIw3InnMl6N0BlpjLRUB3ov/1uK5u4cPStpu2TBHW5ysZD6yxOm/9MQyMCzfUjr264hDendKL+g4r37t0J124EqHXYhmV54TE52YHSiJUpeZn3vpjhsnjacIA4aMjWnUWzYkAYN6Pk/Dyv/UapQ+3nkaTQIcpDQyNrFYZScia30bfU19BDQDe23SKWb6y6ABBMCVPB4Dnlu3FjerbKgHYSl8Zlavlt7QCUp5yL/wk5wwzWG+tQSL7ueuOqTKW0Cw3/gSfUndcv34d+/btw759+wAAZ86cwb59+5Cfnw9BEPDzn/8cb731Fr788kscPHgQjz/+OKKiomTtW2JiIkaNGoUZM2Zg586d2LZtG2bNmoVHHnnEciSoL+EKV5KSXdmMJ+qpwR11g84VRaoAa8SLRnVxB5QcZ7l5xeZkuCJQUFJpurE8NbijrYlg9J1W28CM+LG+cAIIb9oYACyRp9aIohxNZQfDE/Q+jQBQfK3KNLxeuUhaIedVPmeFOoWGGlHElWtVzOt2F0SzdtPOVya9hABp42Bcd4ow7R+SscLVeSiCzRPmhPvGKu0VrPlgJKgZlacUmFgcgiKAssrbzHLf20gXeMxADsmurO/pCW2YzxhxRlqFkr+SaN3DggNNnyOCDKECYvklWqF7cdc+QQR81qFtyoBoU1Je7b7mj5QdBD4V1r7//nskJycjOTkZAPDiiy8iOTkZr7/+OgDglVdewezZs/H000+jX79+uH79OjZs2IAmTZrIZfzzn/9EQkIChg8fjjFjxmDw4MH48MMPffI9duEKe7eWJ2r+1GTqfQIg+z4o0Tc2XPeb9jktZlL4mWiY0j+G+ryAOv4nARLBrd0JSziaACmMfuriHXjdID0LUJc+yIx3a/rgWImzzKRSAiSHejMuMSsM7kbEj6x3281eYGfDCBAE9Iu1V5+s0Ql4bvi91OvpiW1skZ0qyXmN6iAA6BMb5jLzfYAgYHgincT2ueGdZF9FJRyQ+KhocAgwbDftfGWNszmjE9CnQ5ghIbBZ/xBePxavIDEJGz0/0yBzgTs2WYcAJh8XbT4ECAKmpXRglidC4uaicZ6RdmdxhJExbxW18rQp5oxOQGRIkEtjdGiX1tTxt3BqMrZlpdsmd1VCQB1/5YIpyXh3Si+kdW4tR8CbQSsA0/pKyTPH+vRf3N/ZtF0cAB7qZaxwIQI+bXmb2j8Gs9Pvtd3+NGuUv8CnwtrQoUMhiqLu7+9//zsAyY/tN7/5DYqKinDz5k3873//Q+fOnVVlhIeHY8mSJbh27RrKysrwt7/9Dc2aNfPB19gHSzv2dFocssboyRXJoqbUlrE2/MwxCVRVbmRIEJMcMkAQVKSdhBD05ZEJphsvIZ6kEcASVvOnh3SEIACr9rFV09SyBYmjqk2LJjozkNFcpKVbUi64yvbsGR2GuQbfSJiwXx3TVbqX0YYigPceScbSGQMxRpNmbHT3CBUBKul/KwKNCEkDqDwVj1EQwCo3YuV30RZVwnau3Sx7RoeZamsJOWVuVrocUaUlfJ7Uu51MREnITrVtoYWSnFfbX8p3z52UJEeBaUkzrazLr4zuIvcfWfzImHhv4ynM+Gw3Hkpup2rn7ElJzIV/zugEud2szFftOCNz7Jm0eKZQwXoPq89ZpKGZYxJU76Y9zyL/pZnPJvVup/qOqQOijQVtQfIJ6hkdhlfHJmJbZrrhfCB1enN8d+b4CRAEjOjaVvVdtHZ/5r54ZI1JoI75LJPsHICUCzi3VlhSvkfbBqQvAXZ2BqNNd0TXtro2yJ6UhLE9pIAHJbkrbV4bzYEZQzrKEaHPLduLWUv2YtDcTdhy4oolwmCtAEzrq2fS4uU5zyI8n9Snve5ZZTuSb/7zI8mqPqONV9r+R/Yi2lpitkbQrFH+Ar8JMPAlfBlgYETYCsASn40VskPae5XcXFa4g5S/f7n/IpOPjUYAy+Lw+c2EbggLDpR9q7RO2kpqCJaT9oIpknZRSxTMImok7WrETWVErEmwv6BEl4hc2XesfmW9MzjQgbUHiqgJignHW3RYkI63y+y7WBxzhhxQlATrCxkEqOQZLYGn0T1mvEZ2+4tQSSjnAc2Epgy4IeNUy6dH40fTtiNtntnhnzLi51Jyehm9x2qfa8swet6M7BlQczNqv0M71l4Z1QXtQoOoZNAsGI3LxVvOYB2D38+M88zoHhbZM6CftzR+Lytca2Rc/HCjihrsI6COY9POtyjH25YTV6iEu4QvDWCvS7vPlTCDkIw4N804DFlE5lbb0Wy8mxE9a59fuiOf6tOnbH9vosGR4voSvhTWWAKINorTDFYWDFrIM4s404yQUPssYEzeaiRohTcLVIVvs5j+jQRbZei3EeGrEWjkk2ZtquR+Ui4URv1KzJNGBLlK0ktyGhThGnkkuc/O+DDjeDN61qgOdtrXbvnK76QFKtCEZVY//WpsIpXr0Gqd6/stRgSfVsvbX1BiiatNW56KzwzWhF5X+tWs/qz77cxxV8bOtlNXsOibPKpAaOc9RmsuK3rR6rpv9F3a9cMKiwBZl2gH6vlTk6kEylbrSEhwPTlnzMihlc+vOXCRKpQ+OiAGv3vIfkqy+qLBR4PeLaDx7SjVzVZhRFRotPFqn7OzSZNnrTxDi4YTAFmroXzugZ7074gMCcJDye1UkUMTkqNsCxd22shKmwrQk8PSvjdAEHDgQike/eg7w3pGhgTJBKRazY8Rj5KVvrLz7UYkkVaIiOvTvmbPsaAckyp2eAE60xjA5h4kXIfa9xm1oxnsfIuVvjUqz5X5QBvTY5MiqUIvWZ9c7VdX6ujp+4mJkAhqAvQEuVbfA9DJegGpb1kaPCvrvtl3RYYEIb5N0zruOMXLWOuS0gVBq6W6XnVbHgOujCXyjCscZlb7kDUvWaTCWrM+AMxKp+fG9hf41GftbkdhWSXmbdCH6o/s3tZtqlhaiLUyqsfVqfSHXgAAYbFJREFUe+0+Q/MxIvfTniPM28pyaFQnq/ZexP4Cfcg/raz9BSW6Mq1+g7I+NELij7eeNfxeYhJSctWZtW9kSBDCmwXqBAkWzUHWFwexv6CEWhYLRt8eGRIkZxFQYvmufDnII3ud+fcYvYPVz6S/7I5H5fuUzSaIYGbjYPkNutqmRnVy1zw0a9P6zmMyptu0aKKbt6+M6iJr0FzpH7vtYeX+wrJK/Gf/Baw5cNGtbfDOhuO217+sLw6a9o0WDsZhwm47KO8h41+Eek7TfM3Ie9M6t8Yb4xLx3PBOWDEzBWmdW3tsTzBDfcthPQ9Ivq9KX7inGUE5/gSuWfMhWJF6Gw4VyROLBavqfVYaHBLVoyyDde/usyVMbdcnlAwMSroCZT2V2hqa3wYtLZJZKhwWdQIpS5mChEB7QjNqo8gQPUP5U4PjDO8nIN9LzFmAXoNDe04J1kmYRXMwYVGuLmG20VhhffvaA4XoFxtmmjlDC+33FJaxU/zQTDWAMfEqGY/hzdhj3yjdEe1+0k+0VF1OAOMX5mLeJHuaWit1Yn2L2Xg0L48u4Gu/XzkujN45uV8MSitvYW7tQWPehmMIDW5ETclmNp7N2oO2bhitTWS90KYcmzHE2hxVgpZuyewZ1ljTDlxSjgiROnfG9YyyNL7qOzYe6BnE1JpriZ3nbzzlUjvaGeuufKvVdIxmY1riaJPWIFomDcC+md6T4MKaD0H4f7Rz1ynCcGAbqYa1g4uVBodmjkvr3JpqEpqtIUQkKCyrpHLckPBnVk42shjT6lVRfUu1YDhFIHOFlAqnaWCAjsFfSTmhFWhyTl3Bws15uvqRExYhPzQyRdPSmCymEOnSTBha/x8SjaRsXuVztIWBZvpN7dQS0WFBTDJfVpotmhnByAxIYCYw09oNME7x44Ca/JNoJMyIV1mmc2X7NQ0M0LWzIBiH5EeGBKFfbBgzQ0RmbTomV31ufrheZdkNoGlgALWc4MA6Qwir355btpea7kk7Pmns86xn9heUqA48ZP6smJliu52N6k/SWrFMV7T6BQc6qCnHaHMUkNY9mq8dEfi0IG3A2rRZ/WA0z2lr/qp9F5EY1UKOJGXByIxpVqfZS/fiQmmlvAZrBXdX29FKHYXa94uwbkqlrfcA3UWB1j9WXIxoa1DTxvegT23Am6+zGyjBzaA+RGRIEO7rQicVnb1sL6Yu3oHU7E14e+0RlbqfpRpWmqcGzd2E5bvyZbW30sjjhMTeTFMP04g7xVqBSat+ZhGTPjW4Iy6X30QmJSfbB1vy5G/Xmp+cAJ78dDeVkXze+mOYsChXJ6gpKSeUpprJ/dpTBTUCcsJimaJfGd0FAKiM8iKAwZ1aUU1DBMt35SM1exMWbz2jEz609AHEx0rbdwDd9Lv1ZDEeWpSLh5LbUScw+bYPvs1D9jr9Jqs0BxuZAQmUY4yV01D7PWYauG7tWlA1EkaCIM10nvXFQaw5cBEfbMmT248WyWrGoPvBljzd+NI+vvtsCfWa1gSnBOnX2Uv3Sbk+Bfa3kDYuKKGbedYeqGPLJ/2mhVOUTHdzFHxXWlPX/oISZH6hXkPmbjhGfWbLiStSe1I0FAVX9YTTVsPVaOuSCODLfRepZsXL5TfxULKaImZCcpSUEJ1SvghJW6XFvHXHdOMlNXuTTlAB6kyTX+6/iFTK3CTfMWeUnvpDWZYDdSZOciigYW5t3Vim8dy8Yny5/6KpLyZpW906DmkN/v1Xx3SuB6wsACKARygCytz1xwzdN+aMrqPcIOUoD+BGbhCANG8eMpiPrH0vde4mfLAlz3BdN9JAOgHMWrJXHhP1NeW6E1yz5kMUllXiW0ZKI2Vi4Q+3nsHinDOYOzGJaXpg+TCldW4tOVRqTijaOaBUD1ffduK11WrCWVEENh69hI6tmxlq7QDgevVt+oaJ2iTJPaWgAOIf8cbqI6Zs9Ks06bAcAFbMTJGj3EhZ354oxqZjl7FEkXCcBjPS2B+uVRuy5OecKsbMofFYuDkPTtSZhgglBitrgAhg/iPJaNmssSpkXatNnFPbd6z6OUXJX2/xtD546rPdOiGWlWarRhRloUQbTEAzAyqf2322hLoAZgyLx+BOrVXfQzN9KnHwQjn1d5rWAZD6+83x3XTjkiyuSrDanWUG3Haq2FCwl+smQJewXms6IhrkpPYhaBoYoOcFFIG3JnRDaHAg1Q1g/sZTWLqTnqrpw63qhNosR+kaUUSPdqHIyRymo0aYv/EkdW6IItA+NEj1DCDRPNDaM0AQ8PXRS9R67jlXgrE96qKzBUGgRrRq1yUR9JRFxBStPU6s2nsRj6d0oLaBAHoKPavjBZD4Ei+UVuo061kaLWtS+xBGCbXlKypeWFaJnQyhX6ytm9IKodXOa0F8MbWapbTOrZGRHo/5m/TjeuHmPCzcnCe/Z1yvKGYWAAHAjWp9lgeS9o30szaS3CyPdI0o4q01R7HuUKFuLTI76CnL0O57oiilPDzHWDd7tAuV/79RCjjaq62a+D0FLqz5EGa5LZUg2q1VM1OpavDc08XUU8InOWcxNKG16cAH6swsocGNqNdfW3VYp8bOnpikO5Ua5QV0itD5pbkCJ4CCq5XUDdMMSk3Dl4ycqB/lnMbYHhHMyewUpUVPKWARc62RqZAQ9Sp9upbsOEet+4JNpzArvROzDjWiiODARphLieBiaRwAdi68GoPOIOmQaLfcui3Kgq+Sf88VsB5zAggLDrSUkJwGQZDGd25esWz2sjP+BEHKM7hOkbN1aJfW+EZz2CLaC4CRtxLAa6sPI5NidgSAJQxBjWDOvw/gsyelvMeswwRxQ1CaupbvyscciplPVTdRHVWXm6dfUwju79aWmU/4y30Xcb3qtk6Inavx+6P5iBmll6IJpRXVTkzs3Y6aW9LFIQhAmqfR4UGYvXSv7hpZV18dmwiA7c4i16N2bUiIaI6dZ6+avpuMoe9O/2Can5jURen7OapbBNYfLjLVcpL3bDp2iV13sPNGi6K1ZO4sKPN2Wl0/lWD57gLAkp0FVBOq0ny75cQVy5pg8j5fZjfgwpqPQAQMGlgTXxSBf31/XjfAXhnVhZkAmggdVja5imppqbxYepN6XavGZmntjOCAtGnWR1AjeG6Z5IMxdz2dzJIGJbFrYVmlYZL3imonnq3VntGg24hrT5vtw+gnL23El5FPFyAl1p6V3gnP3hePhd/Q63DgQinG9YzCXx7pqeKeovkE0kBOpyKuUrVmBDOHxsvpkLRFLt56mkrk606QzdNViCJkjSJRdFitrwBgJqUPtIKa7p0GdSGmynnrjBOVa7HlpBQl2zM6jOnbRtIdERDNrREESGm8lDAyeW+gJDAn+OrIJXx1RK11EyEFjpCDAWv9syOMBwgCKqpvYcVe9wpqgCSMGh14Fiu0nJEhQZKWnTFHgdrxx7A2sGAmqAF03891Bn1Dw44zdE2fGaLDg1S0Lk6Rrhm1CrJ+9masM1o8OTgW0WFBhvulFu+sPy6bx80O+AKkQ5pTpGfF8Da4z5oPwDKTCZDSlWhTNimxZEe+7rlzV9nmOqcILN913nTgE8dglq1fC6IStpusWASw9kBhvQU1oG5xsFKUA8A8RdoWwDwZ+DZGgAIADGI412479QPyr9ITAU9LiZXpI8gGatQORAsZ2pSu6QQkPxfiEzVryV5ZU0jzCaKBOLnPXrrPsC6DOkmbLC3vpIj6b45mMPJP0oK1qCnNbXbqKwIICDBrSXsgpsr3GLl9jfD92RIs35WPCQtzqde1vlpWkt5P7N1Ope39z/4LhuuAK/1NxrPR+jfWJC2Z0t9zQnIUnvp0ty3tCA0k8EeJ9YeKsO1UMXP+iJAEC4LEKHMydXfPkQBBwFOUaE0aDFxSXYIAoKCk0pZm1AqIdpeV31aJD7eewUOLctE/ju4DSAPZt6xYtWYM6YiVM1Pxq7GJWDEzxafBBQDXrPkELAFn/pRkPFC70OZfraAKCrQBtnRHAVOL4gCYPjBKZAyVIoTeXnvEsgqaqIStaHAIREiTzM4zRrCyOAioS4+jRFyrpobPGZ2UWzdvTP192a58JEY2p177JPcsPt1+FtkTk9C08T2miwVpY2UUoBYi1EJI9vpjgAA8kxaPyf1i0KpZIJ78dLfhe6z0AzEfTB8ch48Y/jM0uGq21GLV3ouICGlieM/U/jF4sGcUggMdtrUYZggMcP+5NjjQgQPn7TssF1ytwGff0U3ngN43z8xMBwAr9l7ASyO7WDYPu9KvxDxrdMB7qHc7rDnI1gw90q+ujx9aZK2PBQHIHJWg8j2Tr0FKBK/1hQSA97/Jw8xhBpr12pcbWUncDeJn1qN9qLz+WpmPHz3eB8GBjbB81znbuZlpEAGU3Ki2fL/V8UK0u1bXGadoTzNIlBInL9N9ZgkcAFo2D7RNBuxJcM2aD0BLrk18mQDpZPu+gaCghQh6xA4APDIg2nSSjO4egZdGJjCpOLRQRj+yIo/MMKV/jC4pOevw5xCAqf2jmWXNGhZvqEESUWfi1YL5Thibdr/cT/fjIIsLq1xiQi6pMF/onh0qJRWmJUs3wjxFpNbwxAjDZ61uuO+sP245epQgQBCQOTqB2hZ2D/o1oohFBkEAJHlzSnxLtGlhLNSR9yu1NFmjE7B0xkD8dnw36v1xrZpidHdjrc9bE7oha0yCKkrY6DsLrhprsQUAvaJDdb9/tv2coU8kza/mKRNNBQkgsiSoCcAUg/kI6LVVQu1mRwKTaO0iAjhTXMFM2g5Ih6HYVsG4UV1j/cAgAuN6RWGexmIhCJIfXZNG9NXLKQKDO7VGxjA6nUaf2DBDLaHRv12FAGBgx3CItW+0Oh+DAxtJh61B5hor7fuyNJGdgDTOwpoGWiqDrAPaMmi4XC654NhZZwApVZSVO0VRekd4U/phm9R3zugEWwTm3gDXrHkJ2oiZ7IlJKsdMpT3crmnRAaBVc/rESe3YCst2FujKS4kPx4iEtqrE22bmEjIZtNGPJJqQRLKJMD9JpXRsiVnpneSk6UpzJnnWAeCp2jROALB0ZwG1zEGdWuNHXdvi118ewd6CUt11cqLXwuh754ymO8oKkAg3PzSInnrjy8OG314jiggLMneWDwuu69M//qQXHk/poEpkzQIxN5Hx9Mef9MKYpAgs3noGO05fVb3T6olXGQmlJEllCbRK38ATl66pHMCH3NsKW08WW3irGqx6OqAWRszGsZK7S0sMeuB8qe5+kqd2P2VsETw9pCMeGxgLQDJDKpPL0xJrA6AGBcnvrP3vPso7nbV10rY9jQXfzC9SicvlVab3Te0fjdnD78X3Z68aRlxP7N0OL43sgo1HL+Fy+U0MT2wrrzORIUHIHE3XdL219igcgqTp332uBN+dUTvkO0WJQqVPLN2vifYbIURWklSTPt1y4gpe/jfDd7h23UiJT0CLoEbIXldXXwGSgzotOh+QrCQXan1iST9Z9e19bWwiSiqqVQFMym8hWmNaajgat6RSgL9RXWNeAQ1CgxtR01D16aDnt6R9y5haAtvQ4EZyGSx8f7ZEHidW1hkCsp9ocyrTHpuwKBeZoxKo18m6ZYV82NvgmjUvgMWhRcvdBtA1byyQAffexlO6a0RbR+MB2pF3FWN6RKpMg0bvJQOFVFV70thy4gqW7aoT1GYOjWeWRZyZI0OCENsqWBc9KEDSUrw3NVnOt0kWeBr+33dnMWFhLlVQA+ocrrWcPkZm0IEdw3XcbU+nxSE3Kx3TB8cxv02EuVmR9MvcScYayb4ah++e0WFY8GhvbMtMx4Ipycw60AhQZ3y2G99pBDVSXyVYw05ZppYkVYtJvdvJvoGFZZVYsUfPE2c2vpWaL1YbCZBO1BAk0zqZW6xxLEDqw22Z6XL+SmU6LZa/Jhl3RvQG0wfHyv9Wlju5XwxWZqQiPaGN7rllte4LSjggjX1BYAunRFNBxqYASYgi30VglQKBlDE8sY1pvyzfdR4A0Dc23PC+VXsv4sv9F/H66sN4b1MeJizMVfFFPnNfPLLG0LUtThH467enmdefW7aXGcX9zo+TdP5ZyrEbGRKEB3pGYWwPyd2ElvqJgLiGAJIAruUNe3XFITQNDKDW8WhRuXQAVbgoCKIkDAxLoHNrkrreFkWqoKZ8N6Beg8mYe3lkgqrdtI7xtLnhADAtpQPzXSSYLCdzGJbOGIiczGHy/DHTfvVVRL5P7hcjl/HxtD7M+wkKyypVbciCcj95dWwitmWm4+khHZn3kwCf0RoNrnLdskJM7W1wYc3DMModR8YgmRBKwcdsgE7tH4MFU5KZi7pyktJ4gEjItxIsp/Sn0+Lw3tRkauj87rMl1Jx6f/32tIpkk8AByfRgRkz42urDmLVkr0q4fea+eKpJYt3BIubCNrV/DJ5Ji2cSBj/AMLl8f7ZEtbhsy0rHq2O61sv0C6j7ZXK/GGzLSsfSGQN1pp8h97ZimvMiQ+g5QwG9dsVKIIP8LIDMMfo+05L30khSlVi1t47Yk+XIqzSD05A5JgHbMqW2YTnhT+kfg6U783Wmin9+pzcTEkGb9CENLI12j3ahhtq6TE30pRKE3HPTscu6a05IBNJKd4DsSUno2LoZs79I/z6TFo9XRneR5/+yXQXYckIdPcj6HtpmPXdSEpVcWgtlqjojua5GFOX0VECdr6pqPqfFY1tmOn5VS4Ghfb6i2kmdZ04RzAjwl/99EKO7RTAJgZUws2A8OrCD4b2kjrTD8MLNedR1TRTB5NYk+YPnrrMe3a7sDwLSrkrBioAQ1ir7TgQQFcrWFik1StpcwWSNpPUhIBE5Kw/JpAyae8ak3u1UygNW/6Td20oeE2TsAlAdxD/KMY5OrxFFrNdEzSrXLZYGkuVO4w1wM6iHYTd3HAAmoSoB8c9hDWal6hlgOxgv3irReignCI2K46MtZ7AyQ8/vBkinXFauzHYhQTKlRPuwIFRUO+UTLuG7YhETsrjABnVqZYnAFKhNcTK8k8TYvuIgtcwZaR2pDs2xrYLlOtLSqkzuF4P950uxZIcx+a4Sz6V3wpQBMSpBipjGFz3aBxuPFmHxljPYcfYqtp4sxqC5m6hOraz0RQ4AK2eqAynscPk5IW0YK2amoKLaieBAh9xnyqwEZuUpF3eRIdWldGyJn/Rtj/GMiMYe7UJlwZiVmiy1U0sdL1mNKGKBZnwIAKLDg7H7XAn6dAB142a1qZVAGqKNS2ofYiuPqgOSRm764FiVOXZ/QQnTZEZ+Y6WAIvPE6HtY/QtAZVI7X3KDaiKsqL6FNQcumq5RLH5CZT0jQ4Iwtkck3l53lNruKfEt0bTxPZaJbAGJukJJ1AzUrTdWUkURKE1eRmmeTl2+Rn1eu+Y6AJRUVFPf99jAGDzcpz3yr1ZQv+2h5Cis3KvXJgqgu3hEhgThcvlNrDlwUSZwBqTDg1YYFCH5ubJglnKL9OHv1h6l7jHa/L+E+HZSn/YY2DEc+8+XYViX1hieqD6wsvatnFPFWJmRKo/dLSeuYNDcTbLpc2xShLUAGQMzp5W0Xt4GF9Y8DFaeNNpYOnX5Gn64Ye438pAizJ622OTmFavUzyQUWutnJUKf+JslXC7fdR5PDo7DR1vVaUmcIvDR1jPUb5q9bK/MazVjSBzG9ohUsXGTyav0h3BAH+GpnURW/awA4A9fHceKPReoWsGzxRVIiW+JSRpSzd4xoZjx2W7DKCCJzNa6oAYA8zefQrswSaOmJZN8KLmdrp7ajQ1Q+yAJqPODcUAy92ojXnNP2fMNIz5Dc0Yl6IQPq76UDgA/3KhCYVkl+saGU/vrQlklUzWj9TEkmkzlGJkzOgEXGGmZtBAhEToTZNWywxPo2rT2Ga2Wcs7oBKr51ynWEeEqxwuN9FVbry0nrsgmJWVdjNJekchDlqb7RvUV6hghmpsb1TVoGhiAG9U11NzDkSFBzFyZAHQZM7QwI0fV+v5oLQmCIAUwnSm+AQCWfKO0eP+bPDw2sINhfkfZd5jhU6gkUKWNwVdGSdGztEhSoNb0qRC6nQBeX32YOh/+8V0+luzIxyP96IEbfTqEYfU+fVYQERIJsXI8A8DMf+5WEThPqvUhZB22nKDvS8qUW2TsC6jLsEAQGRKEwRRfVBH6g3dp5S2d68uSHfkqQY4IhbR9i3BgpsS3pFp1jKKJCab0j8GyXfm69vx/352VtYc0Pz1f8qwJIuvoexehvLwcISEhKCsrQ4sW5nw5dmGXYd9MGHEA2JaVjsgQKVG30vFViUm92+GPP+kFQBIuUrPpqWMEAKtqqS2M7vMEyEk//2oFHIKAJo0cVKqJ1bX1219QwtTG2IFDALZlSm34i3/tozKgy/eirr0J/t/2s8xF2gy/ndANb6w+bHnzWTpjoLwwkROkEkrhQrngfX/2KmYv3edSHZVlzxgSh+mD4/DlvotUp3Cg7tBA5C9lfUorbjGfo2HWsHi8NFIyLSmTsy/fVSAHmSjf4wqmDojG7PR7cbn8pmFO0Kdrv50IL1be54AUfahNkUZDgCAgJ3OYrFEzqotV0DQ686cm42hhORZ+k6cqn3YYYY0zq/jt+G74aUqs4byanhqLCclRaNOiie5dRMAkAtacUQnYdOySbfLW59I7YcHmUzrtCGlvgt9/dYyqrVeuEYCkzXx340lsPnbF1hjU9ofRc6y1f8FUKfUVi0Q5Y1g8EiKaQxAE7DpzFZ9uP6e7Z4LFMUkwdUA0UuNbSeOG0j5ZYxLwTFq87bWG9Y0BgoBXRneRBTmHACYhONkPcvOKMXXxDsvfBNRaIDJS8bdtZ7CaQmOyOiMVbVo0kdcdrfbZ3bAqf3BhDZ4X1uwuflYWgQeSIvHLBxJxpviG4WBdbVEIEyDZ/tM6t8Zba45grYXTibsga4cEYFAneqTg0hkDkX/1hmnKHMvvhPS9CRHNLQl/Tw/pKKeXsZK6x472z7AcAcit3TCsLEwBgoBnh3bUbcr1rkftf42K7BUdgn0FZbr6vDull86MZYRfjU3E2B6R9U5JZgZ39VF9Qca2nQOdXUztH8NMZaUVYFzZAJUgEXVW1jxXI4PrA3L4AaS1OSV7k+m9Zgc6b8AhAI/0izbNe+wOKAVmo/poKS7q/V6G+V+LtyZ0w2MDYy0d3pXfQsiUV+69wKzz8MQ22Hzsstf41azKH9wM6gW4wvL/0v2d8Yf/nmDes+ZgIdYdKsSz99E5gAhIKPQnOWcMNwIRUvJwO6mj3AWlmpy2cDsEKQrHncSTIqRAj4f7trd0/0c5p+WIP6MIMmX5boGiIFaEkhI0ny03V4MJraBG6gPRHnHyW2uP4ne1CeU9ORT9QVATUJd+zVP1MSPG1polt9VDeBIAJvUBDVtPFnt9zTl1+ZqsKfmfJi2WEsQcv7+gxOeCGiDNH28IaoDafGlUHyu0Grbea7GsHWd+wGMDY5nZYlRlApj/SDJaNmsskykbjc1NRy/rIm6Vrii+Ao8G9QLsUHEAxGnUmF0fkAaSGXlu31riRitkt4D3BTUreGpwR8NUQ1P7G596WE3vBLD8+/OW6kD4newK3lZgNAlFQA48WXug/szj3oZDkMLqH0q2TuoL1D+FlY3p5hWw6iMCWL5Lz4PorveRlESGbhUKH8HCskosskHIrcX4XlGy+chqH4ztHmmZSNgMVp59bfVhpGZLUamXr9HzIANAv1oaCbPk6+5O5eQJpHY0plpxBTQnfW/hP/uLsHxXPgQLje+AlMc0Jb6lJTJlmi+oNuLWF+DCmheg5aMxG14ipKghKwKeWSDxd2euWsoN6M9o2TzQUKs0PJHNW+QQpHQy7sBzy/bi4PkytwoCAoBnDTjpHKjL2WpV4PYUXPnuObUcZVquNU/Xxd/G++MMHitA0pa4e78XIZkjczKHYWyPSMN7hyq0BvVdK77cfxFTF+/AeBvpvh7qHaWiyDHjHzSC1XeSQA1ahgiCHWdKMGjuJpTeuGVclr8NNgqmDuiAaQPpY/CXY+hZRszQk0IJ5U1krjiI6DBzbZcTwEOLcrF8V74l64QWvo4CJeDCmpeg5OzKzUrH1AHG6VpeW3VYirwxmUVmk2ze+mPYZjMi0O47rN7jKuatP4YCg8i/v+WwhZg5oxMwomtbW5pNFpyiRKZoJ3GwGUQAiwz8y0RI0XLuErhHd4/A00M62u4vhwDc14UtFNOQMSwez6TFY/7Gk4Z1j2jBTv3Cgitt8fG0Pi59e32RNToBI01SVQHun0MkKbaZRvabE1dURNH1qYcrGsIZn+3GlhNXVETCVhLcv3R/Z+q8HmBxfooAKqudhunYnCLqpWl0FRnD4rF0xkDTfcIqnlu2F0eL6Pkwr1fdNg1o0zazAGD/eb3bgxGURL39Y+u/hooicL6kEve2sWaFenXFIcN9hIVXRnfxuQkU4MKa1yFCxOXym1hqgfZBhMR6/daEbtRFySGY5+hzx2IjAsyciQQf1W6EnoBTBE4UXWNuItvy6GaK+zq3wjNp8XUktm7YDWtE0XZUmhmMTH4ipEXmQol71PD/PXwJY3tE2DLdTB0QjZUzU/ENg8yThccGdpAoTkz8bC6VV9kq11UEBzbCq2MTsSoj1WumqwVTkvHMffGmJ3pXhE/iOM3CpmOXsPFoETM1GgFJT+Yr0PIu9ulgvpnHtWpKJaTddabEcv8KgpSO7eNpfQxN1d7G4E6tkRLfEpP7RrskPGufcYrAzrP0datVM+PD0sqMVMydlKQiGp5hYlqn4Tfju8lEvT810DTbwZniGzh5+Yale4n/rN327NEu1Ha9PAEurHkJSgZ9OyYCJ4Cbt5zUE+ub47pRCVuVMEtIbgUCgBFd2+Jpg2TQZ4orMH1wLFZnpNbvZQy8t+mU7cXh4T5qQdaVdtBObLMJ4wktZI0oMvMX2kWNKGLXWWP+Ly1SO7ZyKafg2eIKmSvLCLSq9Gof4hbhmoD4ZRWWVeJGdY2UWNris1P7xzA1cmZVJMm+zfyeHLAnFAiQyD+NxvSKvRepNDhaKElPzchuPQXCEUcQGRKEpHYGNAaQAhlY2VnGdI807RtSRmFZJYIC70HmGOtjwipcGcPE9YFkv7DbHw4A93dra+lesrZP6MU2lVdUO2XL0IIpyfj1+K6Ibhls+9tEEbL2NCa8/mZFAUB1jfWMAiTN3xQb2krJf9z3JlCAC2tegZ0cfVoECAL6xYbpJoYAKWG4EbeNAOhSixAo8y5mjU6gpnHSoqXBCeyttUcxaO4mHCu6hixGDk9PgeWUvO6QZP6xyrxPg/KZAEHAnNH0fIWAdEpn5S9VQpnSqb4T0O5eQMaTneeMfPVaNwuk/CrhwIVSl3xEpGfL8OxQ8zFpFXNGJ8hM51MX78C89ccslz97eCe8OjYRuVlSzkHS/1aEgT98dRyD5m7C79Ya88w9Oyzecp/c26YZBMEa+acZCNknaRuzegLSdw1lmMTrI2A/t2yvnIqqsKwSBy/QzXaAlCheyTSvxdqDhabzPXOMfkzMGZ1g2VQuwHwMuLLmi5CIbu3sGcp6OAF8dZgd5arE6KQIRIYEITGS7X9G8mFuOXEFs5fuxWurDuO1VRJPpKDYRzKGGo/hN748jOW78mUhlPUdVrWiE3u3w3BKzl2C3jGhurRjW05csUVmLkKaw/4ALqx5AXYiCAWobftvT+zOzNlnJaXGQEoUkAApLRFx6B3XKwqLDOgeREiRkLQk10oQc0Y7C06f9YWyjbInJWEmZeNdd7AI+wvcE8HpAPDh472R1D5ElfPUAclMuHBqMnIz0/HMffGYamKa7tEuVPZfXJmR6rKPkAB7wROEjZyVc5QFpyj5DdKasPh6NfO5d9YfN/QRMdrsnCIQFswWBO0gY1g8xvWM0uXo/eu3pzG+V5Ths8r6KRNFG+XlJRABfLGHzeekRGKEMb/jyyM74/n0Tnjp/s7Iu3K93uM5Y2i8bJJK69zasmDwWq0ZWZuHFADGJEXIbeOK0KY0h5ppZFftvSjPbVoOYjNkjU6gjol3Nhy35CbgECSexlX1mL8siIBl7jIB0rdYMe0nRDTX/fbVoUvYX2C8tldUO+Ucw7oqiVIgy7asdDxmYtpU5sWmfZtsXrU4tlftvYg2LZowfQ73F5RhxcwU3ThnYWr/GKq7zxd7LmB/gXtdX1wB51nzAsxy0Cmh5IRh5ez74UaVJZJRJ4CNCs4Y5TsIK/OZ4hu4eqPa9BSae7rYUv1d4dVyBe9p2mjxVrqw+f3ZEozpEVnv+jgBPPXpbpmZf86oBPRoH0pltk6Jb8n00yLmOJIXMTev2GWzkwhJoLGazuy9R5LxQM8ol97JMjaIYBNZkrHAwuz0Tnhv0ynqNaVGub7jKDGiBTMRdwcTc4yIuhyRyjQ44c0C3UoEChPB70LJTWp6HFfgEICYlsGyC0VunrW5HSAIGNMjknn4+enAWGkuCPbM7EoQmgSztHI1oogJte4kZD4GOAS8VcvPZ4T/GxSLcbUUI7QxYcVNoD5zSaj9HyOhxAlrBLG/Gd8N8W2aoaCk0vTeY0X6HKZm30tM5KwAJxFSHa3uI7S82EBdPmsA+Kg2HaEZiOn8jz/phV7RobqMMjWiKKelAozHOcm3veYAPcMD4Sv1JbhmzQvQUncYgdjViW1fW05sq2CIomj55Dp/0yndyS9AEHDgQqms/p9tQfBbtqPA0jtJ/VnmV7sYlqA3t9DaqH8snUeI5EilOSLbBZnnThGYu+GYSlArLKtEbl6xnA+ThTmjE1T9etBCRJWRBupCaaVqbAUIguSPpXmAtBngWsQfy9QsAEz/LwESvxELwxPbMANniEbZbr/Rypu9VDLj0tpkeGIb07bYduqKyuc0NXsTtp0sdtkfSfeYCESHBRmWt3SnewQ1oE7DsebARRSWVVrigVTmSaXdTzb15bvyTQ+SSuuB7j2Q8soC5i4Fyvk4b/0xNG7ksNQnf9t2FoPmbsL/o6RkYrmdaO+JDpcOWl8dsmeKdgiS+U4rsGhfJwBITzAem8QVhqzhrq63LJoobZ+z5v9zy/Za3kcc0Pc9OQSQA6ydvYOYznu0D9FpFrWUG0bjnOTb7sjgN/UHvzUurHkJSuqO7VnpTB8xVphwYVklfrf2CAbN3YTZS/epaD3MSFW1a/yQzq0wV6FmF2HB9wISOa3Ru5R+AUqzGSnbFcLLLceLMWtYHQ8ZSaCsbSOWaY/8TnNEJnBlkRNFYNnOfBSWVao28kFzN0nfPylJV27WaCmXHiD152fbz1jKmZnUjl33dzYcR1rn1vLYyskchtDgRrrE2GTRJXn87GLOmATMpXwTAIQGNaKbcwUYmkH/e+QSnhwcp+rbp9PisC0zXU7vYtRvlNdJPoWa30VITOta8/WTg2Px3Rnztli4OU+XLHrhN3mqTd0BYGr/aDw6IIY5ngRIpkKWptuIONiOnOYAMKFXJFMYBqT5PGvJXqRmS+PV7DC5cmaqLgG6/O214wuAaZYRYj7clpmOpTMGIkvhv0k0abOW7MWguZsQGtwIWRY5wJzQ0x0FCAIm9W5HbQOnCKynCFqvjO6icztRHpZIuqKHFuVi6uId1BycLEwdEI03x3fDyr0XdLlblX6sgNQOxCpyb5tmVJ9l8h3kfqBOELLiT0fw129OY5SGWqZHuxa6Pp87KUn3rEipAwsCgOxJSTqXHuV6vnxXPtPlgganKI25hzQ5dWn7BBm3tHZZsfcCCssqcbGUTpJ885b1QAZPgZtBvQhycgCAkht0X5/8H+pC6InZ5eCFMsxdpx7AIgCHKCUFFwG8vuqw5QFOo2AgAhurjABBwPTBsbh07SZWU5IBPz+8Ex6pzSRAS8y8YGoytuUV23LuBCRV9qBOrdE8qJEsYM6tFXCeUaTa2n2O7lOwYNMp/O6hJEMNlqsKi3c3nsJ7G0+pyiBai5UZqcgck4DsdXXC2MHzpdhfUIJjRdds5YE8cIFd9xpRxNoDhRjbI1JO9q4tWxSBVs0C8bu1R/CxRRODFj3ahSIlviXyr1aokjqLkPyM3p3SSy+EiNI4Z40rUo4ASUibPigOAGR/JaUWx6oLQY92oXhzQje8tuqw7lq7kCDkZA7DJzln8VHOaVNKC+WzNBPTjjMlEACk3dsKOaeKsWSnpH0e1zMKq/fTzSm0oIAAQUBwoAMr99afOFgAIArAqn2FsnmwXWgQnlu2l9qGIqTNLjcrHStmpjDzLO46W4I2LZqoNj9VmrgTV1B922k6ph8f2AGT+8WgsKwSIkSM6xmFcT2jMH/jKVXuUuK/lpM5DMGNAnQmLhZESHRHJD8pIAVDnLp8He9upJvclaiouo3CskrZ7YSMFacote3P7uuI97/Nc2kOLd1ZQB1HTkjj9pXRXVTrBcHJy9fx+x8noazyNuJaBWPH6RIs3nqaKvTPfyQZAJj9TUONKGK9ZlweuFCOCYtyMVeRFzOtc+t6uSWIAJo2vgd9OoTJ3+qEtJ6HBjey5TupLVfbrk4A8zZI5ZL6F5ZV4tTl63Rzrgj8atUhbDx6mfqOq4z92pvgwpoPYMQ9tWRHPmald7KUxNoJKXWKOxi0HTDOhvDK6C4AQBXUAODeNs1lHyxtnZ2QJgNNUHMIwIM9o5jlCoIUjTRPkYNOBCSNlABZU/VZ7lnq80t35uMnfdsbOtAaCalmoD3nBDB+Ya7uBLfmYJFbIvi0ILk0p/SPRuNGAdQ6WaFwMEJwoAOFZZUqQY2gRhSZh4/XvzyMblEtcOgiO7JPBPDx1rNo2ayx7FhNBI2o0Cbo0T4U+wpKLdXzwIVSBDeiR6CWVkp1JJuvVRBaDZbPzhZFLk2nCKagRnueaKOtpMGxAlHxImIefG9qMuaMTtAd+JTPzN94Cg/0ZNM3vLX2KN5edxTZE5PkTVVZltWx/dl35xAZFqTq52fvi6cmma8RRXyScxaLt542LVf7PdtO/YB9BaW2DyfvbjyF+ZtOyd+pHCsipPR+rupYjNbpnFNXDFMHvvLvuvZmrVfE1cEooIr1LEuAyfzioJwXc/c5130RCWbVmmu1ioc5XxzEgqnJbvVzVub13HLiiukBmSWoAZK5OfAeh0cTupuBC2s+gFGkkwjgf0cu4fXV1jRlZoKaFUGEbIxGJrke7UINkx5r/aG07yypoG/mU/rHYGDHcKawJorA8u/puRPnrjuGgXGSfxiL8NEpwtRh2I3rg1fKZb3Lk0meK6qdTPOpQwDCmtIjN0URhoIaQY0oqpJCO0VYMhFr8c7643jhR/dSrx25eA35P1TY3hAe6t0OzQLvwaffWTd5WcWHj/fG8MQIFJZV1uvQwAIxd5ph6c58hDVtZFxWrdb4vXpsqtrk305RMinTIEASrF15FU34s1NHoi2mHTw9AdohSAmtcKOFQ5DMfiQvKwv3d22LrwzWcdp7Nx69hEYBDswxMXHbKZOG/zD2AC26mxz+lCBBCK5SNxH4Q0J37rPmA5hxT7krtdDkfu0x30LaFisUILGtgg2THv/ju3PIzSvG5XL6PVtP0lNeRYU2Qd/YcEP/CpbpVAQwYVEu5m1g8+AIgKnDsBZPuIld2xMQINEu/Gpsolffe+BCKUor6DkSx/WMspSjzwjuIG8GpMX5D/89Qb22dGe+S/lVV+29iBATQcZVPPXZbplbzNXPt+K7agYR1jKdOAHknvrBZT41O/08vleURyPKjaCMalciQBAM01nVJzOGq486AMwcGo95G45h6uIdmMAwZQOwJagRHCwoM6S8cBes1s2qoAZI/YV6mG6V8HVCdy6s+QBmbPBxrc1znVlB08B7EB0WZGkBmWegxRAhkTSOSGSzYi/cnCcvFLR58V/GRPz9Vyfw5b6LlshkqXUTgdy8HwzvadOiCZWHjQU7TsMAML6nMVeXOyECeP/bPMkXrB4bg128s/44czcZkdjWpQwHBHJggIe/h2XKNEONKCIwwDNLpVh7Ymf5XFrBEymxWDg1ud6cfVaFqKU7812K9rbbz8GBxoYfo6hSFpRBEUYZWQApkllZXwekA/BOg3Rz9Tlw3N+1rSqoYTglEl4LhyC16aJv8lTmWjtwCEDWGIP1103CjrchQOovllXH7Fndb4Jvo0K5sOYDGGnWBAAVVTVuob24eqNaFyXDAuH1YSF7/TEs/76ASqWhhCtzOnv9MWw6Zv/EZwUigDn/PoAFJmYG7TN2wPJR8hSI6cjVjWFkVzbrNwvadEBKRIezmeStQITkx+nPG8Kpy9c9VnaNKBrmvjXDJ7lnkbFkL7LXHXVZOzelPzuKVQsRkiP+qoxUxLa0sXkJQGhwI4zsZp7U3gFg2S5jU6YIie9swZRky3VXEuBWmUT4vb3umC5qfsnOAo+5N3x15BLu79YWC6YkY/7UZAw1YOcnEEXgh+tVluZO2r2tqL//KLEtQoPYmuPu7UKY7Xt/17Yujdv2ofaIuV0B6S9tsJEZktq1wDSadcXH65Mgiu4wPjRslJeXIyQkBGVlZWjRwphJ3B3IzSvG1MU7mNcDBIEZGWQHdiN3Hu7TDl/svuAxvwyOOlghvKz3O+C+9cUoAIVE3j2/dC/Td5DDv/FESgf83aZGmWzSdsaYUbCGXK4AzBgcZylaN2uMRIfz+6+Omfp90RDXKhhn3Gzaqu+8s7s2OGpf6qnDTtaYBGw8cskrczu1YzhyT9unFvIWls4YaJqP2y6syh9cs+YDmPms1YgifrhW/1Bhu5P337svYJxBQl9vY5CbJ4U/wdOCmkMA0i2YUaxAAPCIQQqtbad+QGr2Ji6oNWDYFdQA18zKTivPiECje6xtTfPWH8MHW/IM0+UZ4UxxhdvTRdUXdtcGwoFpN+WWVcxbd8xrc9ufBTUHN4PefTDz73FAioLyNkQAq/cVev29LCS187yW807Fe48kI7kD2xHaLhKj2H2xdFe+ry0EHHcQrAY7AIro0nq+z53wxVwY2yMCOZnD8Fx6J7eXzS0tErTZZ7wNLqz5AHGtmjL9wxwC8NSQOLckHncFIlyPSqIhQBAwhOErYYbAe9gaSHcPXE87t7sCVw/KDkGiUjHKe2mn/UQAYUHspOrckcI3MBoe7tJKuzIEzZ55IMlYe28n2MHsXleCEOoLXywlFdVORIYEYcoA9/OAuZJ55k7D1P4xMqenr8CFNR8gMiSIGv3ogJTWZboiBY8RBNA3dBIhRCuD9QxBgCAg0yDFC+t37bsckHyZcjKH4Z0f9zD8HoFSrlHeRhL5ZmcRFiBlWaDRcgiQ2p3lqDxrWDwz9+WgTvXbFFmfIOf4NHmW9jw5AbIoUYzGB6sufWLDkMUYs1bLcQD4eFofl8aCWdoho02ZvHfpjIFYnZFKf17zrFF5Qm15rLZl4a0J3Sy3FRmvrLHnALAqI5X5Pa+M6mLrXbT0dwGCgI+m9WEfLEHvq8wx7LEVIAiYkcZe3wQB1Ny2rE+ZqUhFR3sXSW21YEoy9b5hCa2pa9esYfHUdFNKZAyLp+b0VKaOMsqpq/33x9P6UOcY6xkCZQ7MyJAgahlmQmsGox0dgpQiyk60vtH8eGtCN/YeAvY30vqA9BMNAYLArIOdd5D3zB7ufo2lXdwxpLgLFy7E73//exQVFaFnz56YP38++vfv7+tqMfFMWjwgSj4XTtQxmfeMlkxX2ROT8OqKQ6gRRQiQ1NyxLZvi/W9Oo0YU5fsByPc5ADxVm7YnMiQIocGNqNcA4GxxBWJbBWPLiSvyPaTMyf1iMK5nlCrVivJ5ZXYFhyDVVVkPUs7YHnWUFsrvcUASFsb1ijKsR8/oMMydlISsLw7CCakO2ZOS5HK1ZSq/T1l35XcBQGRYkMzmTsrsGR2GntFhuFF9W/e+yf1i8OjADswyP9iSJzOyBwgCXhnVBT3ah+LAhVK8s/64qn4tmzWWfyNlaNPaGPWDsnxtu5F2JSdAks+PfI8AYAZjfCjL3XbqikwFQOoSGRIkpfcSoPpW2hh8ZEA0BsW3wvnSSt23Dk+MoPbb2KRIVFQ7Tcfk7rMlEARQy07r3BpniytU7a58L8G8SUkym7kAyDkPte80K482NpXPzKtNp6McR40CHNRvX3ugiDleWWOPrBW07yH5LWn9y6pbi6BGur4dnhiBuZr+enZoPAbf29q0r1htp62bcsz07hBGHZtknJF1R4Ak1D1zXzxiwoOp3xnbKlg2Wz3QMwg3qm+r1tSZQ+Px8qgELN+VT/2GRwd2oK5P8jyrfTdtvSDfz3qW9n3DEyMwPBG6Oab8HtbapjTPseYpbTxrv4W1lwDsehnOD80+QeaAss3mjE6grmdGa522n+ZvPIVlu/L1Y3eSvT2CtRb70vxJcEdEgy5fvhyPP/44/vrXv2LAgAH4y1/+gs8//xzHjx9Hmzbm4c/ejgZVorCsUp7U2gFBu2b1Nyvlu1oHV+pRn+uufp83r7mjnTxRX3d/j7u+qb5jxRNt4o128lSbuOtd7h6b7v5eV8uqb1088ayn5rSVe9w9Br01nnw9Rz0Bq/LHHSGsDRgwAP369cOCBQsAAE6nE9HR0Zg9ezYyMzN191dVVaGqqkr+d3l5OaKjo30irHFwcHBwcHDcnbhrqDuqq6uxe/dujBgxQv7N4XBgxIgR2L59O/WZ7OxshISEyH/R0WxaAg4ODg4ODg4OX6LBC2vFxcWoqalB27bqVEht27ZFUVER9ZmsrCyUlZXJfwUFnkuAzcHBwcHBwcFRH9wxAQZ20LhxYzRu3NjX1eDg4ODg4ODgMEWD16y1atUKAQEBuHRJnVvy0qVLiIgwz0HHwcHBwcHBweHPaPDCWmBgIPr06YONGzfKvzmdTmzcuBEpKSk+rBkHBwcHBwcHR/1xR5hBX3zxRUybNg19+/ZF//798Ze//AU3btzA9OnTfV01Dg4ODg4ODo564Y4Q1iZPnowrV67g9ddfR1FREXr16oUNGzbogg44ODg4ODg4OBoa7gietfqirKwMoaGhKCgo4DxrHBwcHBwcHF4B4XktLS1FSEgI8747QrNWX1y7dg0AON8aBwcHBwcHh9dx7do1Q2GNa9YgBSRcvHgRzZs3h2CU5ZyDg4ODg4ODw00QRRHXrl1DVFQUHA52zCcX1jg4ODg4ODg4/BgNnrqDg4ODg4ODg+NOBhfWODg4ODg4ODj8GFxY4+Dg4ODg4ODwY3BhjYODg4ODg4PDj8GFNQ4ODg4ODg4OPwYX1jg4ODg4ODg4/BhcWOPg4ODg4ODg8GP4vbB24cIFPPbYY2jZsiWCgoKQlJSE77//HgBw69YtzJkzB0lJSWjatCmioqLw+OOP4+LFiz6uNQcHBwcHBweHe+DXwlpJSQkGDRqERo0aYf369Thy5Aj++Mc/IiwsDABQUVGBPXv24LXXXsOePXuwYsUKHD9+HOPGjfNxzTk4ODg4ODg43AO/zmCQmZmJbdu2YevWrZaf2bVrF/r3749z584hJibGg7Xj4ODg4ODg4PA8/DqR+5dffomRI0fi4Ycfxrfffot27dph5syZmDFjBvOZsrIyCIKA0NBQ5j1VVVWoqqqS/+10OnH16lW0bNmS5wbl4ODg4ODg8Aqs5gaF6Mdo3Lix2LhxYzErK0vcs2eP+MEHH4hNmjQR//73v1Pvr6ysFHv37i1OnTrVsNw33nhDBMD/+B//43/8j//xP/7n87+CggJDucWvzaCBgYHo27cvcnNz5d+ee+457Nq1C9u3b1fde+vWLUyaNAnnz5/HN998gxYtWjDL1WrWysrKEBMTg4KCAsPnODg4ODg4ODjchfLyckRHR6O0tBQhISHM+/zaDBoZGYmuXbuqfktMTMQXX3yh+u3WrVv4yU9+gnPnzmHTpk2mAlfjxo3RuHFj3e8tWrTgwhoHBwcHBweHV2HmguXXwtqgQYNw/Phx1W8nTpxAhw4d5H8TQe3kyZPYvHkzWrZs6e1qcnBwcHBwcHB4DH4trL3wwgtITU3F22+/jZ/85CfYuXMnPvzwQ3z44YcAJEHtxz/+Mfbs2YM1a9agpqYGRUVFAIDw8HAEBgb6svocHBwcHBwcHPWGX/usAcCaNWuQlZWFkydPIi4uDi+++KIcDXr27FnExcVRn9u8eTOGDh1q6R3l5eUICQlBWVkZN4NycHBwcHBweAVW5Q+/F9a8AS6scXBwcHBwcHgbVuUPv85gwMHBwcHBwcFxt4MLaxwcHBwcHBwcfgwurHFwcHBwcHBw+DG4sMbBwcHBwcHB4cdwO3VHaWkpVq5cia1bt+LcuXOoqKhA69atkZycjJEjRyI1NdXdr+Tg4ODg4ODguGPhNs3axYsX8dRTTyEyMhJvvfUWKisr0atXLwwfPhzt27fH5s2b8aMf/Qhdu3bF8uXL3fXaBov8/Hzs2bMHe/bsQX5+vq+rw8HBwcHBweGncJtmLTk5GdOmTcPu3bt1KaIIKisrsWrVKvzlL39BQUEBXnrpJXe9vkEhPz8fXbok4ubNCgBAkybBOH78KGJiYnxcMw4ODg4ODg5/g9uEtSNHjpimegoKCsKUKVMwZcoU/PDDD+56dYNDcXFxraD2DwDAzZuPobi4mAtrHBwcHBwcHDq4TVizm5OT5/AEgERfV4CDg4OD4y5Hfn4+iouL0apVK6408FN4JBo0ICAAw4YNw9WrV1W/X7p0CQEBAZ54JQcHh4dB/Cy5jyUHx50D4pbTp08fdOmSyOe3n8IjwpooiqiqqkLfvn1x+PBh3TUODo6GBb6gc3Dcmahzy/kVbt6sQHFxsa+rxEGBR4Q1QRDwxRdf4MEHH0RKSgpWr16tusbBcTfhTtBI8QWdg8O98NS64DrTQAe31oPDvXA7zxogac8CAgLw7rvvolu3bpg8eTJ+9atf4amnnvLE6zg4/BbKyN87I+qXL+gcHPWFp9YFzjRw58LjGQyefvpprF+/Hn/5y1/w+OOPe/p1HF7CnaAtAjz/HVwjJeFOGS8cdeB96jo8tS6omQb+cVevOXcaPKJZ69ChgyqQYNiwYfjuu+/w4IMPeuJ1HF7GnaIt8u533L0aqTtlvHDUgfepu+CpdYEzDdxp8Ihm7cyZMzpqjk6dOmHv3r04ffq0J17J4UXcKdqiO+U7/B3ebueGrPGx6m/k6wwovurThtqvHBz1hUc0ayw0adIEHTrcvRqGOw93Sl/eKd/h71C3sye4nRqyxseqv5Grfkme4dLy/Nzhfljuhac41Ui5ADhfmwfgVs1aWFgYwsPDTf9cxdy5cyEIAn7+85/Lv3344YcYOnQoWrRoAUEQUFpaWv8P4eDg8Cg8RQXSkLWlVv2NXPFLasjUK9wPy33w1DhQltsQx1hDgFs1a3/5y1/k/y+KIp599ln85je/QZs2bepd9q5du/DBBx+gR48eqt8rKiowatQojBo1CllZWfV+z50Os9NPQ2ay5ie7hgO1UPWWB9KtNWRtqVV/I+t+SZ5vb2+A/b31Wbe8ueaRdx09etSj72GBNg7cWy5PoegpuFVYmzZtmurfs2fPxqRJk9CxY8d6lXv9+nU8+uijWLx4Md566y3VNaJl++abb+r1jrsBZuYET5iQvLUQclNJ/eEbYdc1oaohHyp8i4YsxNJhZ93Sjhtvms21a5Rv4bvABnevM3fLId2rPmuuIiMjA2PHjsWIESN0wporqKqqQlVVlfzv8vLyepfp78jPz8fWrVsNTz/uPn17cyHkJzs2rCxmDUnYbch+aRzuh9V1izZuvKlxVK9RZwC85pH3+DPcvc40pHWrvvA4z1p9sWzZMuzZswfZ2dluKzM7OxshISHyX3R0tNvK9keQAf3YY4/V/pII4xOQe05dvvEfMvu2uwtWfUkakl9QQ/ZL4/AkjNct43HjPk2TeTRyIoA4t72vIcHd60xDWrfqC7/WrBUUFOD555/H119/jSZNmrit3KysLLz44ovyv8vLy/1OYHOnmaduQD8J4GO31M8e3LsQatslPz+f6QPSkFTknjDt2dc4+oega63f7jyTHoc34Llxw7W+VuHudcZeeQ3RjcKtwppSAAKA6upq/O53v0NISIjq9z/96U+Wytu9ezcuX76M3r17y7/V1NRgy5YtWLBgAaqqqlTku1bRuHFjNG7c2PZz3oLnJnykG8rwDKxMHlq7AGD6gRQWFmLQoCEeU5G7c8J7fpH3DyHMCuyaNo4ePepV53DA/wV/b4MclpS+YHdjW90JgRzavrzT0FAFarcKa3v37lX9OzU1VUeCayeR+/Dhw3Hw4EHVb9OnT0dCQgLmzJnjkqDWEHAnTHg7sDp5WJFMLK1haWmpx/zY3D3h77Y+N4J1beAPABx47LHHVMK7J2BFgGyIp/X6o64PAKldNm36H9LTR9wVfkRsNEStr74v78R+a6hrrVuFtc2bN7uzODRv3hzdu3dX/da0aVO0bNlS/r2oqAhFRUU4deoUAODgwYNo3rw5YmJi6sXp5h/wrwnvqbBz+5OH1i5GWkNrWiU7J0qzOrveVv7V576FWb9dB+CEu2kIaKAJkFu3bsWQIUMsRRXeuZom0gd17XL69Ol6HZK0bdWQoVxTrMC3Ar++L30hyHivDRrWWuvXPmtW8Ne//hVvvvmm/O+0tDQAwCeffIInnnjCR7XyHnxFjeEZ+Gry0E+UAORNo6qqCo0bN6a0s77OvgjR97VWx7fCiDfHTSKAQmg1ekbC+50QsWY+vmiCtX3TO62t/v3vf9kqw1NmPHtzTL+mmH2H/wj8vnOZaKgmSm/AbcLa3Llz8dxzzyE4ONj03h07dqC4uBhjx461/R4tn9qvf/1r/PrXv7Zdzp0A31Fj3Glh5/oT5cGDB/HjH/9EIXAFAKixZG7zdlv5eoG7E4QReygFW6OnFxwbAq2MkSDA8hX1BGhtZT0rjefMeMo2aNy4Cb744t+IjIw0EJr0a4rZd9zpAr8VuMtEeSdqst0mrB05cgQdOnTAww8/jAcffBB9+/ZF69atAQC3b9/GkSNHkJOTg3/84x+4ePEiPvvsM3e9+q6D0sTmfdt7w3FUt4+6b1P7uxGBy665zTtt5QsfDKX2oiEIIwTuXcTtavTsjwdvBE+wBAEAzHXG83Bl7njOjFc3xmejqmohHnjgAQBWhCZXvqNhCvzuhdQGrmhJPR1Y5iu4TVj77LPPsH//fixYsABTp05FeXk5AgIC0LhxY1RUSI2WnJyMp556Ck888YRbqTjuJtBNbA3D9u6qecK3KVqUi62/t7M36mdk3vFvQd7ftBPGvll6U6s3CaVXrlyJOXOyUFVVqbjT38c/gfvGoX7tCYFv/brqvs1bUdDughHFkh6ua0ntBpY1lOhXt/qs9ezZE4sXL8YHH3yAAwcO4Ny5c6isrESrVq3Qq1evBu8s6g9omOZIexNP65TrPyla2LDrSGynPP/K32rfvOMvMAsS8CZop3+1T1MptKZWVw44rDFCH691/ngkjZ8/rzOePsQZ+5768mBiX5CvT1u5Qxtt349Xv87Yn6tmfdSwol89EmDgcDjQq1cv9OrVyxPFcwCgDUT/PSFYNU/QtTb+LZzadyS2W55Z/la7cM+J3L+1aFqoT/X0IAEjfj9XBQLWs7TTP13ota/NMh4jZuO1FNJcJVQ4nunn+h44tMKuJ+C/B+NS2BHk69NW7jIpuk7Mbm+u2oN/RL9aRYOPBuUAGs4JwSoVA20D81fhoH6aJv2J13gB0fqnbd261UZd6xY9rZM0DQ3NzMIC/VRfCtqGZ5To2z3v1cI941rZVyw+QglWx6v7CbRJ2xYWFmLSpIdRVVVpaa06c+aM7je6T2n9wdY4Gj/jiXlirq23JsjXp61YJkUABiZ8I7gyrkpRHy0zYNZH/rq3qMGFtTsCDeuEQMBWzTeMyaNG/WkK7JXXDEoB3RpKIY0TvZO0WruiP8n6GvXZEI1P9XUbnnGib/up2ryT5s2or4w2c+/OMbp2p+7AkZiYyPTbe+01I+HCXd/hiobcU/PE3dp6gvq0Vd2z5iZ8T8EVn0n/W8tcBRfWGgCs+0M1HCHHG2YMf0f9zCxKAV39rPl40TtJq7UrpfAW2aw53LnYGp/qjTVS9dE01V9Lxe7TUvhPX7FB1+6oDxzmJllPwhUNeSk80/b+7Rdq3YTvDyhFQ5gfVsCFNb+G6ycsd6jm3e00r4SnzBhm8E/TnrmQbU0LaXe8mL23ftF/dpya/UsY8aeoR6t9yq6zb6KoWVCOOd+ZZNlwD9WGe+Cfh+86s3Qi5Tffg14Xf5rTrsGjwtqpU6eQl5eHtLQ0BAUFQRRFW7lBOVw5YblDE+GakEg2Z8L2b22TMF6Q3LcINFx1uHUtpP+cyK3Xuf7CiDtAG6v+IeTUp0/VbetLGM9j3wgl/tG/DQk0s7QVU7VnoA/ecU9d/JVQ1yPC2g8//IDJkydj06ZNEAQBJ0+eRMeOHfHkk08iLCwMf/zjHz3x2jsYdhazUtjRRNA1TfY2iKNHj6qchgnbf/3g7kWgFO7S0Hh7kbevhfT9idx6nX0tYNIEGv8RcupQX5JYX0Uz+m4zZ8Mf+7choBR6szTtN8/DOGjI9br4M6GuR4S1F154Affccw/y8/ORmFi3yEyePBkvvvgiF9a8AjNNhBVNkz2eGglkotR3gyiFZxaB+mho3LfI26GDoJkdGg6s1tlX30YTaOov5PiX1saX46YUvtjMlTCOuPYnSo6GAppZmm6q9gQXHimLHbzDNpub1cMuoa434RFh7b///S+++uortG/fXvX7vffei3PnznnilQ0e3velKkX9NU20RY9MFHdtEN70VzGDexZ563QQ9ddK+JMviX/D9UTk6g2Aa23o8M08NjbHN8TDjx5mvsW+WgPsBJFZE+poc8vquLI7L/1vbHhEWLtx4wY1ofvVq1fRuHFjT7yyAcOeL5X7J547fIH8b2ADnlyk6ve91ikdSuG6VsK35iejtvcvrVN9QNsArAn0tPaxOl65AG4dvgpk8g7M/D19uwZYbXvXfHLdFz2vhD/PLYcnCh0yZIgqUbsgCHA6nXjnnXcwbNgwT7yyAaMUdRquCgMNlz/6frgOz06KhtJWVk+F9SGSfNLS3e4O5KC3fd3m4i3N09GjRz0oHCo3gN9qriUCiKM8Ux8n7YYyrv0RrP5wHzw71mhQjr9/4ObNCgYFj7U1wN1Qu2+w214t1GnnEQ316Us789K/4BHN2jvvvIPhw4fj+++/R3V1NV555RUcPnwYV69exbZt2zzxyjsAZhquUvja98M98MakKMWd0VbugJmg56lADlrbe9MXzJvmSFcCgFxx0rZ6HweBdzQlvjZ9m40/b5ug7a0p/uGTWwp/n1se0ax1794dJ06cwODBgzF+/HjcuHEDEydOxN69exEfH++JV95F8CcfLldQCu+d9hp6W3kDpahvf9A3RKO2d+VkbFcrZ6T18gdYd9J2/b6GB+9oeN1dF38fa95GKaytKf6ozfLfueURzVp+fj6io6Pxy1/+knrNHyIr7hb4r3+Q/04KwL99FzwDV/rDm4utuVaOPtb905+yIcNsTXFt7nhTw+upunhurDXM9chsTSmFv2uz/Ake0azFxcXhypUrut9/+OEHxMVZP1FnZ2ejX79+aN68Odq0aYMJEybg+PHjqntu3ryJjIwMtGzZEs2aNcOkSZNw6dKlen+Dr+A+vwd7mgjv+1v4K3gEpnWUwvs+MTStnPd94e5OmLVzfeZOKTwzljzv7+lZuGpSbEjw74O7v8AjwhorU8H169fRpEkTy+V8++23yMjIwHfffYevv/4at27dwv33348bN27I97zwwgv4z3/+g88//xzffvstLl68iIkTJ7rlO7wLd284VlXz1t7bMBcBV1AK1xdqf1TrewPuXWztjzVuhvIOzNq5FPUXcvxp4/b1uAYatkmRw51wqxn0xRdfBCBFf7722msq+o6amhrs2LEDvXr1slzehg0bVP/++9//jjZt2mD37t1IS0tDWVkZPv74YyxZsgTp6ekAgE8++QSJiYn47rvvMHDgQGq5VVVVqKqqkv9dXl5uuU6eg6eIGs1U82bvvTMXAXMtYn1P5Fytbx/1HWvc5OmKdty+EOF7h/aGdXg0H9f1X49KwdeeOxtuFdb27t0LQNKsHTx4EIGBgfK1wMBA9OzZEy+99JLL5ZeVlQEAwsPDAQC7d+/GrVu3MGLECPmehIQExMTEYPv27UxhLTs7G2+++abL9fAsfLXhsN5bijtrEfBG5JY/aQcaEkpxZ401b8KVcd0QD2INsc6lYI9rd69HfO25U+FWYW3z5s0AgOnTp+Pdd99FixYt3Fa20+nEz3/+cwwaNAjdu3cHABQVFSEwMBChoaGqe9u2bYuioiJmWVlZWbIWEJA0a9HR0W6r650J/1sEXPOx46lm/B/+N9b8H66M61I0POG4FA2vzgS0cc3XIw5r8Eg06CeffOL2MjMyMnDo0CHk5OTUu6zGjRvzTAoNGu44jXKTGcedCFfGdUMUjhtinY3A1yMOY3hEWAOA77//Hv/617+Qn5+P6upq1bUVK1bYKmvWrFlYs2YNtmzZoso3GhERgerqapSWlqq0a5cuXUJERES96s/hz2i4p1EeccvBwcHBYRceiQZdtmwZUlNTcfToUaxcuRK3bt3C4cOHsWnTJoSEhFguRxRFzJo1CytXrsSmTZt0tB99+vRBo0aNsHHjRvm348ePIz8/HykpKW77Hg5/hedTyLgPnF6Cg4OjYaFhBXLc2fCIZu3tt9/Gn//8Z2RkZKB58+Z49913ERcXh2eeeQaRkdbV1xkZGViyZAlWr16N5s2by35oISEhCAoKQkhICJ588km8+OKLCA8PR4sWLTB79mykpKQwgwt8jfz8fK5duSvRcLWBHBwcdybYe1FDDOS4s+ERYS0vLw9jx44FIEWB3rhxA4Ig4IUXXkB6errlSMz3338fADB06FDV75988gmeeOIJAMCf//xnOBwOTJo0CVVVVRg5ciQWLVrktm9xJ/Lz89GlS2Jt0lqOuxPcN4WDg8PXMPP7LUXDDeS4M+ERYS0sLAzXrl0DALRr1w6HDh1CUlISSktLUVFhXVARRdH0niZNmmDhwoVYuHChy/X1FoqLi2sFNT4BOBoOuCaYg+NOg1VN/50WyNFw4RFhLS0tDV9//TWSkpLw8MMP4/nnn8emTZvw9ddfY/jw4Z54ZQMDnwAcDQHe4KTj4ODwHbimv6HAI8LaggULcPPmTQDAL3/5SzRq1Ai5ubmYNGkSfvWrX3nilRwcHG4H97Pj4ODg8Ad4RFgjGQYAwOFwIDMzU/53ZWWlJ17JwcHhMfDTNwcHB4cv4RHqDhqqqqrwpz/9SUe/wcHBwcHBwcHBwYZbhbWqqipkZWWhb9++SE1NxapVqwBI0ZtxcXH485//jBdeeMGdr+Tg4ODg4ODguKPhVjPo66+/jg8++AAjRoxAbm4uHn74YUyfPh3fffcd/vSnP+Hhhx9GQECAO1/ZIJCfn4/i4mIeVcfBwcHBwcFhG24V1j7//HN89tlnGDduHA4dOoQePXrg9u3b2L9/PwRBcOerGgw4txoHBwcHBwdHfeBWM+j58+fRp08fAED37t3RuHFjvPDCC3etoAYoudX+AeC3vq4OBwcHBwcHRwODWzVrNTU1CAwMrCv8nnvQrFkzd76iAYNH1HFwcHBwcHDYh1uFNVEU8cQTT6Bx48YAgJs3b+JnP/sZmjZtqrpvxYoV7nwtBwcHBwcHB8cdC7cKa9OmTVP9mzOfc3BwcHBwcHDUD24V1j755BN3FsfBwcHBwcHBcdfDa6S4HBwcHBwcHBwc9sGFNQ4ODg4ODg4OPwYX1jg4ODg4ODg4/Bh3jLC2cOFCxMbGokmTJhgwYAB27tzp6ypxcHBwcHBwcNQbd4Swtnz5crz44ot44403sGfPHvTs2RMjR47E5cuXfV01Dg4ODg4ODo564Y4Q1v70pz9hxowZmD59Orp27Yq//vWvCA4Oxt/+9jdfV42Dg4ODg4ODo15wK3WHL1BdXY3du3cjKytL/s3hcGDEiBHYvn079ZmqqipUVVXJ/y4rKwMAlJeXu71+169fr/1/uwGcq/3/5/hv/Df+m9t+8/X7+W/8N/7bnfebhOvXr3tENiAgZYuiaHyj2MBx4cIFEYCYm5ur+v3ll18W+/fvT33mjTfeEAHwP/7H//gf/+N//I//+fyvoKDAUNZp8Jo1V5CVlYUXX3xR/rfT6cTVq1fRsmXLeiedLy8vR3R0NAoKCtCiRYv6VpWjnuD94V/g/eFf4P3hX+D94V/wRn+Ioohr164hKirK8L4GL6y1atUKAQEBuHTpkur3S5cuISIigvpM48aN5fylBKGhoW6tV4sWLfhk8yPw/vAv8P7wL/D+8C/w/vAveLo/QkJCTO9p8AEGgYGB6NOnDzZu3Cj/5nQ6sXHjRqSkpPiwZhwcHBwcHBwc9UeD16wBwIsvvohp06ahb9++6N+/P/7yl7/gxo0bmD59uq+rxsHBwcHBwcFRL9wRwtrkyZNx5coVvP766ygqKkKvXr2wYcMGtG3b1ut1ady4Md544w2dmZXDN+D94V/g/eFf4P3hX+D94V/wp/4QRNEsXpSDg4ODg4ODg8NXaPA+axwcHBwcHBwcdzK4sMbBwcHBwcHB4cfgwhoHBwcHBwcHhx+DC2scHBwcHBwcHH4MLqy5GQsXLkRsbCyaNGmCAQMGYOfOnb6u0h2H7Oxs9OvXD82bN0ebNm0wYcIEHD9+XHXPzZs3kZGRgZYtW6JZs2aYNGmSjjg5Pz8fY8eORXBwMNq0aYOXX34Zt2/f9uan3JGYO3cuBEHAz3/+c/k33h/exYULF/DYY4+hZcuWCAoKQlJSEr7//nv5uiiKeP311xEZGYmgoCCMGDECJ0+eVJVx9epVPProo2jRogVCQ0Px5JNPKnIdc1hFTU0NXnvtNcTFxSEoKAjx8fH47W9/q8oFyfvDc9iyZQsefPBBREVFQRAErFq1SnXdXW1/4MABDBkyBE2aNEF0dDTeeecd935I/bNzchAsW7ZMDAwMFP/2t7+Jhw8fFmfMmCGGhoaKly5d8nXV7iiMHDlS/OSTT8RDhw6J+/btE8eMGSPGxMSI169fl+/52c9+JkZHR4sbN24Uv//+e3HgwIFiamqqfP327dti9+7dxREjRoh79+4V161bJ7Zq1UrMysryxSfdMdi5c6cYGxsr9ujRQ3z++efl33l/eA9Xr14VO3ToID7xxBPijh07xNOnT4tfffWVeOrUKfmeuXPniiEhIeKqVavE/fv3i+PGjRPj4uLEyspK+Z5Ro0aJPXv2FL/77jtx69atYqdOncQpU6b44pMaNH73u9+JLVu2FNesWSOeOXNG/Pzzz8VmzZqJ7777rnwP7w/PYd26deIvf/lLccWKFSIAceXKlarr7mj7srIysW3btuKjjz4qHjp0SFy6dKkYFBQkfvDBB277Di6suRH9+/cXMzIy5H/X1NSIUVFRYnZ2tg9rdefj8uXLIgDx22+/FUVRFEtLS8VGjRqJn3/+uXzP0aNHRQDi9u3bRVGUJrDD4RCLiorke95//32xRYsWYlVVlXc/4A7BtWvXxHvvvVf8+uuvxfvuu08W1nh/eBdz5swRBw8ezLzudDrFiIgI8fe//738W2lpqdi4cWNx6dKloiiK4pEjR0QA4q5du+R71q9fLwqCIF64cMFzlb8DMXbsWPH//u//VL9NnDhRfPTRR0VR5P3hTWiFNXe1/aJFi8SwsDDVWjVnzhyxS5cubqs7N4O6CdXV1di9ezdGjBgh/+ZwODBixAhs377dhzW781FWVgYACA8PBwDs3r0bt27dUvVFQkICYmJi5L7Yvn07kpKSVMTJI0eORHl5OQ4fPuzF2t85yMjIwNixY1XtDvD+8Da+/PJL9O3bFw8//DDatGmD5ORkLF68WL5+5swZFBUVqfojJCQEAwYMUPVHaGgo+vbtK98zYsQIOBwO7Nixw3sfcwcgNTUVGzduxIkTJwAA+/fvR05ODkaPHg2A94cv4a623759O9LS0hAYGCjfM3LkSBw/fhwlJSVuqesdkcHAH1BcXIyamhpd1oS2bdvi2LFjPqrVnQ+n04mf//znGDRoELp37w4AKCoqQmBgIEJDQ1X3tm3bFkVFRfI9tL4i1zjsYdmyZdizZw927dqlu8b7w7s4ffo03n//fbz44ot49dVXsWvXLjz33HMIDAzEtGnT5PaktbeyP9q0aaO6fs899yA8PJz3h01kZmaivLwcCQkJCAgIQE1NDX73u9/h0UcfBQDeHz6Eu9q+qKgIcXFxujLItbCwsHrXlQtrHA0aGRkZOHToEHJycnxdlbsWBQUFeP755/H111+jSZMmvq7OXQ+n04m+ffvi7bffBgAkJyfj0KFD+Otf/4pp06b5uHZ3H/71r3/hn//8J5YsWYJu3bph3759+PnPf46oqCjeHxyWwc2gbkKrVq0QEBCgi3C7dOkSIiIifFSrOxuzZs3CmjVrsHnzZrRv317+PSIiAtXV1SgtLVXdr+yLiIgIal+RaxzWsXv3bly+fBm9e/fGPffcg3vuuQfffvst3nvvPdxzzz1o27Yt7w8vIjIyEl27dlX9lpiYiPz8fAB17Wm0VkVERODy5cuq67dv38bVq1d5f9jEyy+/jMzMTDzyyCNISkrCT3/6U7zwwgvIzs4GwPvDl3BX23tj/eLCmpsQGBiIPn36YOPGjfJvTqcTGzduREpKig9rdudBFEXMmjULK1euxKZNm3Tq5z59+qBRo0aqvjh+/Djy8/PlvkhJScHBgwdVk/Drr79GixYtdBsdhzGGDx+OgwcPYt++ffJf37598eijj8r/n/eH9zBo0CAdlc2JEyfQoUMHAEBcXBwiIiJU/VFeXo4dO3ao+qO0tBS7d++W79m0aROcTif+f3t3G9LU28cB/Gua82HlpNlCS8WcD5QPEytsEWE1shILMhCaJmhpYhlC0YP6xsTe1AsjIqEnshRCqKiUoJUZlInzKcPEckKYlWKak5R5/V/8cbQ78765dXqy7wcObOc65/x2rgPuy3V2LtetWzcLZzF/mM1mLFhg+1Xr6OiI8fFxALwec2mm+j4mJgY1NTUYGxuzbvP48WMEBwfPyC1QAJy6YyaVl5cLmUwmrl27Jtra2sSBAweEQqGwecKNpi8zM1N4eHiIp0+fip6eHutiNput22RkZAhfX1/x5MkTUV9fL2JiYkRMTIy1fWKqCJ1OJxobG0VVVZXw8vLiVBEz5OenQYXg9ZhNdXV1wsnJSZw5c0Z0dHSIsrIy4ebmJm7evGndpri4WCgUCnH37l3R3NwsEhISJp2uQKPRiFevXona2lqhVqs5VcT/ISUlRfj4+Fin7qisrBRKpVIcO3bMug2vh/0MDQ0Jo9EojEajACDOnTsnjEajMJlMQoiZ6fuBgQGhUqmEXq8Xra2tory8XLi5uXHqDikrKSkRvr6+wtnZWaxdu1a8fPlyrj/SvANg0uXq1avWbUZGRsShQ4eEp6encHNzE7t37xY9PT02x+nq6hJxcXHC1dVVKJVKkZubK8bGxmb5bOan/wxrvB6z6/79+2L16tVCJpOJkJAQcfnyZZv28fFxkZeXJ1QqlZDJZGLz5s2ivb3dZpu+vj6RlJQk5HK5WLx4sUhNTRVDQ0OzeRrzwuDgoDhy5Ijw9fUVLi4uIiAgQJw6dcpmmgdeD/sxGAyTfl+kpKQIIWau75uamsSGDRuETCYTPj4+ori4eEbPw0GIn6ZRJiIiIiJJ4W/WiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiGje2r9/P3bt2jVn9fV6PYqKiux2/La2NixfvhzDw8N2q0FEc4//wYCI/kgODg5TthcUFODo0aMQQkChUMzOh/pJU1MTYmNjYTKZIJfL7VZnz549iIiIQF5ent1qENHcYlgjoj/Sp0+frK8rKiqQn5+P9vZ26zq5XG7XkPTfpKWlwcnJCZcuXbJrnQcPHiA9PR3d3d1wcnKyay0imhu8DUpEf6Rly5ZZFw8PDzg4ONisk8vlv9wG3bRpE7Kzs5GTkwNPT0+oVCqUlpZieHgYqampWLRoEQIDA/Ho0SObWq2trYiLi4NcLodKpYJer8fXr19/+9ksFgvu3LmD+Ph4m/X+/v4oLCxEcnIy5HI5/Pz8cO/ePXz58gUJCQmQy+UIDw9HfX29dR+TyYT4+Hh4enrC3d0dq1atwsOHD63tW7duRX9/P549ezbNHiUiqWJYI6K/yvXr16FUKlFXV4fs7GxkZmYiMTER69evR0NDA3Q6HfR6PcxmMwBgYGAAsbGx0Gg0qK+vR1VVFXp7e7F3797f1mhubsa3b98QHR39S9v58+eh1WphNBqxY8cO6PV6JCcnY9++fWhoaMDKlSuRnJyMiZseWVlZ+PHjB2pqatDS0oKzZ8/ajBg6OzsjMjISz58/n+GeIiKpYFgjor9KREQETp8+DbVajRMnTsDFxQVKpRLp6elQq9XIz89HX18fmpubAQAXLlyARqNBUVERQkJCoNFocOXKFRgMBrx7927SGiaTCY6Ojli6dOkvbdu3b8fBgwettQYHB7FmzRokJiYiKCgIx48fx9u3b9Hb2wsA6O7uhlarRVhYGAICArBz505s3LjR5pje3t4wmUwz3FNEJBUMa0T0VwkPD7e+dnR0xJIlSxAWFmZdp1KpAACfP38G8O+DAgaDwfobOLlcjpCQEABAZ2fnpDVGRkYgk8kmfQji5/oTtaaqf/jwYRQWFkKr1aKgoMAaIn/m6upqHQkkovmHYY2I/ioLFy60ee/g4GCzbiJgjY+PAwC+f/+O+Ph4NDY22iwdHR2/jHBNUCqVMJvNGB0dnbL+RK2p6qelpeH9+/fQ6/VoaWlBdHQ0SkpKbI7Z398PLy+v/60DiOiPw7BGRDSFqKgovHnzBv7+/ggMDLRZ3N3dJ90nMjISwL/zoM2EFStWICMjA5WVlcjNzUVpaalNe2trKzQazYzUIiLpYVgjIppCVlYW+vv7kZSUhNevX6OzsxPV1dVITU2FxWKZdB8vLy9ERUWhtrZ22vVzcnJQXV2NDx8+oKGhAQaDAaGhodb2rq4ufPz4EVu2bJl2LSKSJoY1IqIpeHt748WLF7BYLNDpdAgLC0NOTg4UCgUWLPj9n9C0tDSUlZVNu77FYkFWVhZCQ0Oxbds2BAUF4eLFi9b227dvQ6fTwc/Pb9q1iEiaOCkuEZEdjIyMIDg4GBUVFYiJibFLjdHRUajVaty6dQtardYuNYho7nFkjYjIDlxdXXHjxo0pJ8+dru7ubpw8eZJBjWie48gaERERkYRxZI2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwhjWiIiIiCSMYY2IiIhIwv4BMOs/zNKUVssAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHVCAYAAAB4wWYZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eVxWZfo//j4PigIqi6AssokpLqBIqCDi1qSoJWql0pQ5uUyQNr+pFGpsWiyxms9Mbi067YlO5TauLVqKmKK5K5kIggopgaiAojzn98fhPpzlvs/yAIrzPe/Xq4XnnHPvy3Vf93W9L47neR4WLFiwYMGCBQsW7lrY7nQBLFiwYMGCBQsWLDQMlkBnwYIFCxYsWLBwl8MS6CxYsGDBggULFu5yWAKdBQsWLFiwYMHCXQ5LoLNgwYIFCxYsWLjLYQl0FixYsGDBggULdzksgc6CBQsWLFiwYOEuhyXQWbBgwYIFCxYs3OWwBDoLFixYsGDBgoW7HJZAZ8GChWaDkJAQPPHEE7clr5ycHMTFxcHNzQ0cx+HQoUO3Jd/GxMsvvwyO45o0jyFDhmDIkCFNmocFCxYaDkugs2DhDuDjjz8Gx3HiPy1atEBAQACeeOIJnD9/vsnyPXHiBF5++WUUFBQ0WR53AhcuXMDLL79sWCi7efMmHn74YZSVleGf//wnPvvsMwQHBzdtIS0Yxssvv4yQkBDZb9988w2efPJJ9OrVC05OTqrnUtjtdrz55psIDQ1F69atERkZiczMTNV7+/btQ0pKCqKjo9GyZUumcFxUVIRXXnkF/fr1g6enJ7y9vTFkyBB89913hspuwcLtQIs7XQALFv5fxquvvorQ0FBcv34dP/30Ez7++GNkZWXh2LFjaN26daPnd+LECbzyyisYMmTI/9Smc+HCBbzyyisICQlBnz59dN/Py8vD2bNnsXz5ckybNq3pC3gX45tvvrnTRQAArFy5EqtXr0bfvn3h7++v+e6LL76IjIwMTJ8+HTExMVi/fj2Sk5PBcRwmTZokvrd582asWLECkZGR6Ny5M06dOkVNb/369Vi4cCGSkpIwZcoU3Lp1C59++in+8Ic/4MMPP8TUqVMbta4WLDgCS0NnwcIdRGJiIv74xz9i2rRpWLFiBZ577jnk5eVhw4YNd7poplBZWXmni2AKFy9eBAB4eHjovnu31a2x4ezsDGdn5ztdDLzxxhu4cuUKdu/ejd69ezPfO3/+PP7xj38gNTUVH3zwAaZPn47//ve/GDRoEJ5//nnU1taK7z711FOoqKjA/v378Yc//IGZ5tChQ1FYWIiVK1ciNTUVzzzzDLKzsxEeHo6XXnqpUetpwYKjsAQ6CxaaEQYNGgRA0CAR1NTU4KWXXkJ0dDTc3d3h5uaGQYMGYceOHarvV61ahejoaLRt2xbt2rVDREQE3nnnHQDCNe/DDz8MQNigyHXvDz/8IH6/ZcsWDBo0CG5ubmjbti1Gjx6N48ePy/J44okn0KZNG+Tl5WHUqFFo27YtHn30UWadiJ1Xbm4uHnnkEbRr1w7t27fHM888g+vXr+u2yZkzZ/Dwww/Dy8sLrq6uGDBgADZt2iQ+/+GHHxATEwMAmDp1qlivjz/+mJreE088gcGDBwMAHn74YXAcJ9qIadWtsrISzz77LAIDA9GqVSt069YNb7/9Nniel6XPcRyefvppfPnll+jRowdcXFwQGxuLo0ePAgDef/99dOnSBa1bt8aQIUMMX39nZWUhJiYGrVu3RlhYGN5//33mu59//jmio6Ph4uICLy8vTJo0CUVFReLzp59+Gm3atEFVVZXq28mTJ8PX11cUfGg2dNevX8fLL7+Mrl27onXr1vDz88P48eNl49Zut+Nf//oXevbsidatW6Njx46YOXMmysvLDdVXCX9/f7Rs2VL3vfXr1+PmzZtISUkRf+M4Dk899RTOnTuHPXv2iL937NgRLi4uumn27NkT3t7est9atWqFUaNG4dy5c7h69aqJmliw0DSwrlwtWGhGIJu7p6en+NuVK1ewYsUKTJ48GdOnT8fVq1fx73//GyNGjMC+ffvEK8Zvv/0WkydPxvDhw7Fw4UIAwMmTJ7F7924888wzSEhIwOzZs7Fo0SK88MIL6N69OwCI//3ss88wZcoUjBgxAgsXLkRVVRXeffddxMfH4+DBg7Ir2lu3bmHEiBGIj4/H22+/DVdXV926PfLIIwgJCcGCBQvw008/YdGiRSgvL8enn37K/Oa3335DXFwcqqqqMHv2bLRv3x6ffPIJHnzwQXz11VcYN24cunfvjldffRUvvfQSZsyYIQrFcXFx1DRnzpyJgIAAvPHGG5g9ezZiYmLQsWNHzbrxPI8HH3wQO3bswJNPPok+ffpg27ZteP7553H+/Hn885//lOWxa9cubNiwAampqQCABQsWYMyYMZgzZw6WLVuGlJQUlJeX480338Sf/vQnbN++XbPtjh49ivvvvx8+Pj54+eWXcevWLfz973+XlZvg9ddfx7x58/DII49g2rRpuHTpEhYvXoyEhAQcPHgQHh4emDhxIpYuXYpNmzaJQj4AVFVV4b///S+eeOIJODk5UctSW1uLMWPG4Pvvv8ekSZPwzDPP4OrVq/j2229x7NgxhIWFie388ccfY+rUqZg9ezby8/OxZMkSHDx4ELt37zYknDmCgwcPws3NTRzXBP369ROfx8fHN0peJSUlcHV1NTT+LVhocvAWLFi47fjoo494APx3333HX7p0iS8qKuK/+uor3sfHh2/VqhVfVFQkvnvr1i3+xo0bsu/Ly8v5jh078n/605/E35555hm+Xbt2/K1bt5j5fvnllzwAfseOHbLfr169ynt4ePDTp0+X/V5SUsK7u7vLfp8yZQoPgE9LSzNU17///e88AP7BBx+U/Z6SksID4A8fPiz+FhwczE+ZMkX8+y9/+QsPgN+1a5esrKGhoXxISAhfW1vL8zzP5+Tk8AD4jz76yFCZduzYwQPgv/zyS9nvrLqtW7eOB8DPnz9f9vtDDz3EcxzHnz59WvwNAN+qVSs+Pz9f/O3999/nAfC+vr78lStXxN/T09N5ALJ3aUhKSuJbt27Nnz17VvztxIkTvJOTEy9dxgsKCngnJyf+9ddfl31/9OhRvkWLFuLvdrudDwgI4CdMmCB77z//+Q8PgN+5c6f42+DBg/nBgweLf3/44Yc8AP7//u//VOW02+08z/P8rl27eAD8F198IXu+detW6u9mMXr0aD44OJj5rHPnzqrfKysrNcdtamoqb2ZL/PXXX/nWrVvzjz32mOFvLFhoSlhXrhYs3EHcd9998PHxQWBgIB566CG4ublhw4YN6NSpk/iOk5OTaMNkt9tRVlaGW7du4d5778XPP/8svufh4YHKykp8++23psvx7bff4vLly5g8eTJKS0vFf5ycnNC/f3/q9e5TTz1lKg+irSKYNWsWAMEwnYXNmzejX79+Mo1KmzZtMGPGDBQUFODEiROmymAUyrpt3rwZTk5OmD17tuz3Z599FjzPY8uWLbLfhw8fLtNo9u/fHwAwYcIEtG3bVvX7mTNnmGWpra3Ftm3bkJSUhKCgIPH37t27Y8SIEbJ316xZA7vdjkceeUTWj76+vrjnnnvEfuQ4Dg8//DA2b96Ma9euid+vXr0aAQEBmhqsr7/+Gt7e3mL/SUG8RL/88ku4u7vjD3/4g6wc0dHRaNOmDXU8NRaqq6vRqlUr1e/Eyai6urrBeVRVVeHhhx+Gi4sLMjIyGpyeBQuNAUugs2DhDmLp0qX49ttv8dVXX2HUqFEoLS2lbkaffPIJIiMj0bp1a7Rv3x4+Pj7YtGkTKioqxHdSUlLQtWtXJCYmolOnTvjTn/6ErVu3GirHr7/+CgAYNmwYfHx8ZP988803ohMBQYsWLWRCpxHcc889sr/DwsJgs9k0bcjOnj2Lbt26qX4n12lnz541VQYjoNXt7Nmz8Pf3lwljWuWQCl4A4O7uDgAIDAyk/q5lV3bp0iVUV1er2g+Aqm1+/fVX8DyPe+65R9WPJ0+elPXjxIkTUV1dLTrgXLt2DZs3bxbtClnIy8tDt27d0KIF22Ln119/RUVFBTp06KAqx7Vr11TjqTHh4uKCGzduqH4n9ppGbOa0UFtbi0mTJuHEiRP46quvdD1uLVi4XbBs6CxYuIPo168f7r33XgBAUlIS4uPjkZycjF9++QVt2rQBIBi4P/HEE0hKSsLzzz+PDh06wMnJCQsWLJAZoXfo0AGHDh3Ctm3bsGXLFmzZsgUfffQRHn/8cXzyySea5bDb7QAEOzpfX1/Vc+Xm3apVK9hsDTsPNjUhrqNojLqx7M9Yv/MKxwpHYbfbwXEctmzZQs2LjCkAGDBgAEJCQvCf//wHycnJ+O9//4vq6mpMnDixUcrRoUMHfPHFF9TnPj4+Dc6DBT8/P+zYsQM8z8vGWHFxMQA0WACbPn06Nm7ciC+++ALDhg1rUFoWLDQmLIHOgoVmAiKkDR06FEuWLEFaWhoA4KuvvkLnzp2xZs0a2Qb197//XZWGs7MzHnjgATzwwAOw2+1ISUnB+++/j3nz5qFLly5MIYoYsnfo0AH33XdfE9RO0NqEhoaKf58+fRp2u12TDy84OBi//PKL6vfc3FzxOdD0wmFwcDC+++47XL16VaalU5ajKeDj4wMXFxdRiyqFsm3CwsLA8zxCQ0PRtWtX3bQfeeQRvPPOO7hy5QpWr16NkJAQDBgwQPObsLAw7N27Fzdv3mQ6NoSFheG7777DwIEDG6wRM4s+ffpgxYoVOHnyJHr06CH+vnfvXvG5o3j++efx0Ucf4V//+hcmT57c0KJasNCosK5cLVhoRhgyZAj69euHf/3rX+IVEdG0SLU4e/fuldEvAMDvv/8u+9tmsyEyMhIAxCsoNzc3AMDly5dl744YMQLt2rXDG2+8gZs3b6rKdenSpQbUSsDSpUtlfy9evBiAwMXHwqhRo7Bv3z5ZXSsrK/HBBx8gJCRE3LBZ9WosjBo1CrW1tViyZIns93/+85/gOE6zDg2Fk5MTRowYgXXr1qGwsFD8/eTJk9i2bZvs3fHjx8PJyQmvvPKKSuvH87xqjEycOBE3btzAJ598gq1bt+KRRx7RLc+ECRNQWlqqaguSByAIirW1tXjttddU79y6davJ+gkAxo4di5YtW2LZsmWycr333nsICAhgej/r4a233sLbb7+NF154Ac8880xjFdeChUaDpaGzYKGZ4fnnn8fDDz+Mjz/+GH/+858xZswYrFmzBuPGjcPo0aORn5+P9957Dz169JAZtE+bNg1lZWUYNmwYOnXqhLNnz2Lx4sXo06ePaOvVp08fODk5YeHChaioqECrVq0wbNgwdOjQAe+++y4ee+wx9O3bF5MmTYKPjw8KCwuxadMmDBw4kLqBm0F+fj4efPBBjBw5Env27MHnn3+O5ORkTZLYtLQ0ZGZmIjExEbNnz4aXlxc++eQT5Ofn4+uvvxavRsPCwuDh4YH33nsPbdu2hZubG/r37y/TCDYEDzzwAIYOHYoXX3wRBQUF6N27N7755husX78ef/nLX0QNZ1PhlVdewdatWzFo0CCkpKTg1q1bWLx4MXr27IkjR46I74WFhWH+/PlIT09HQUEBkpKS0LZtW+Tn52Pt2rWYMWMGnnvuOfH9vn37okuXLnjxxRdx48YNQ9etjz/+OD799FP89a9/xb59+zBo0CBUVlbiu+++Q0pKCsaOHYvBgwdj5syZWLBgAQ4dOoT7778fLVu2xK+//oovv/wS77zzDh566CFTbXDkyBHR3u/06dOoqKjA/PnzAQC9e/fGAw88AADo1KkT/vKXv+Ctt97CzZs3ERMTg3Xr1mHXrl344osvZFfRZ8+exWeffQYA2L9/PwCIaQYHB+Oxxx4DAKxduxZz5szBPffcg+7du+Pzzz+Xle0Pf/gDlULGgoXbijvlXmvBwv/LILQlOTk5qme1tbV8WFgYHxYWxt+6dYu32+38G2+8wQcHB/OtWrXio6Ki+I0bN/JTpkyRUTd89dVX/P3338936NCBd3Z25oOCgviZM2fyxcXFsvSXL1/Od+7cWaS8kFKY7Nixgx8xYgTv7u7Ot27dmg8LC+OfeOIJfv/+/eI7U6ZM4d3c3AzXldCWnDhxgn/ooYf4tm3b8p6envzTTz/NV1dXy95V0pbwPM/n5eXxDz30EO/h4cG3bt2a79evH79x40ZVPuvXr+d79OjBt2jRQpfCRIu2hFW3q1ev8v/f//f/8f7+/nzLli35e+65h3/rrbdEqg4CAHxqaqrst/z8fB4A/9ZbbxkqBw0//vgjHx0dzTs7O/OdO3fm33vvPbFtlfj666/5+Ph43s3NjXdzc+PDw8P51NRU/pdfflG9++KLL/IA+C5dulDzVdKW8DzPV1VV8S+++CIfGhrKt2zZkvf19eUfeughPi8vT/beBx98wEdHR/MuLi5827Zt+YiICH7OnDn8hQsXdOurBJkztH+UY6a2tlacM87OznzPnj35zz//XJUmaX/aP9I6k3Zm/aOkAbJg4U6A4/lGssa1YMGCBQpefvllvPLKK7h06ZKKbd+CBQsWLDQOLBs6CxYsWLBgwYKFuxyWQGfBggULFixYsHCXwxLoLFiwYMGCBQsW7nJYNnQWLFiwYMGCBQt3OSwNnQULFixYsGDBwl0OS6CzYMGCBQsWLFi4y2ERCxuA3W7HhQsX0LZt22Ybf9KCBQsWLFiw8L8Fnudx9epV+Pv768aYtgQ6A7hw4QICAwPvdDEsWLBgwYIFC/8PoqioCJ06ddJ8xxLoDIAE4y4qKkK7du3ucGksWLBgwYIFC/8v4MqVKwgMDBTlEC1YAp0BkGvWdu3aWQKdBQsWLFiwYOG2woi5l+UUYcGCBQsWLFiwcJfDEugsWLBgwYIFCxbuclgCnQULFixYsGDBwl0OS6CzYMGCBQsWLFi4y2EJdBYsWLBgwYIFC3c5LIHOggULFixYsGDhLocl0FmwYMGCBQsWLNzlsAS6uxTFFdXIzitFcUW1qWeOpmk0XTN5N9W7jryv9Z30N0fSbYx2bez0zNSpMcuvfFfvb7N53O73DheVY/muPBwuKjf9bWPMp8aeQ425rhgt++Gi8kZdV4y+35jrWVPU5Xavx3rfml0HG3Mu3u69p6nbtqlgEQvfhVidU4j0NUdh5wEbB8wdGY6ITu4I9XbDzlOXZM8WjI/AxJgg02kuGB+BhK4+yC+tVKXLAZg+KBRT40Ph5+6imYY07+KKamp6euWUpssBSEsMx8zBYao0SVn06iIts1Y+0weFon3bVli4JVf8DQB4qMvhSF/5ubto1k2J4opqfJiVj39n5TPbTa8PaPXUqpOZ8pvpRxsHjIsKwNqD55l/k37Tq7ORupsde8q2po35Z/9zCF//fF78ZkLfAPzjkT6G+sFIWY+erxDHHiuNtK+Pin2XMcF42yvnBADNdjbaz1plZ60nBLTxZSZvgvd35iFjcy54GJsDZt9RrjnS96R1ob1vdN2jrUXSsdeQ8iv7irYmKvNP7OWLrcdLVGuGI3nrtYdyrdZbg8yOkfd35iFjSy54RtmMrDdmx+TtAsfzPK//2v/buHLlCtzd3VFRUXHbI0UoJ11xRTUGZmyXLR4E0olG4MRxyEobKn5Lm8C0NDkAHAfVBFbmRxYaAKo0pHlLNx/yLaucyvrT6ps+KhweLi2pi4FeXaRllm5orHbVQurQMAzs4k1dFLX6iixMC7fmUuv2YG9/1Wa7Yle+qg+U/avVB8UV1dhfUIZnVh3SrGfq0DA8PyJcd6xN7heIVTlFqvzWpMSisqZW1ibFFdWIW7BdVX4tsMYdLQ+tuisPI8o0bQAWJUchOtiTOlaVZUpLDMeAzl4YuzRb9fzfU6LRw99dVVeOA7LThpkqqxLScgJQ5wEgO32Yam7T+lw5J2h1JWUC1HPDBmC3Ii+aYCPND5J8WHmK6WvMZ9ZaAQBvbcvF0h15qt/Xp8ahd6DQbrSxKO0f8g6tznNHhcsEVdYcJuV8akhnLP0hDzxj7Bkdy2bbhFXHdSlxqKyp1TwsaM17GoysMazxrRwHynGZMiQM7/6Yx1xDzY6R93/Mw4ItufJ0IIzlnacuUec9rW3NjMmGwoz8YWnomjFop4BAL1fmRKP9XMvzOFBQjsoa9skwv7RSlSYPgIj6rHnNA/hgVz5WZOVjWnyoKo1ankdBaRUAqCaKMk3pu1Khk1Y2AFiwORe2uokPCP99Yc0xvDO5j25dPtiVj+W78sW/bRyo5TeCpTvysHRHHvWUxio7Ke/CLbmwU55lbM6VaQW1ikXazc/dBR/VnSqVzzcdKUYtz4tpGqlTO5eWiAhw1xxrK/cVUcuTtCxbdfpd/P2vpoQ5kgcNtTyPpKXZMg0BbV6QsS/dQGhp2gE8vfKgbIPWGvMLtuRieLgP9fmTnxzA8HAf1fc8D/x8thyjI9n9pCyrVjknxQSq8wBwoKAcY3qrtRa0eujNb1ImrzbOqjTsAD7KKsALo7sDEDY5rbLTyqoFrfksHfNSvP9jHlWYA4CxS7OROiQMz48Mx4Gz5Zr9A9Dnrh0QNX+kjBlb2GOlluexRFIe1vqsnC+sNZ60ycR+nXTbhFVHMm9o6SZ09WGuI1ogeWsdRljjmzYupONy6Q/0/iTlTv/6KF4Z29PQGCmuqEaGQpgDhH5d/P1pZO4rZPaRdG/aeOSC4TF5u3FHbeh27tyJBx54AP7+/uA4DuvWrZM953keL730Evz8/ODi4oL77rsPv/76q+ydsrIyPProo2jXrh08PDzw5JNP4tq1a7J3jhw5gkGDBqF169YIDAzEm2++2dRVazCUCySZdG7OTrDph3STYVbmQaR9rU6L3P2HervBZJIy2Hlg+a58VRocB4R4u2J/QZnuAm7jgCPnL2NgxnYkL9+LgRnb8f6Pefj92g3NfKWo5XmgbmHUAw/IFuYVu/JNt6uyLNI2BfTblSbMkbJpCSBSOHEcQrxdUVxRLQqpSszfdBILNhsT5ggWbsl1aKwB9QsyaZPDReVU4a8hkPYda144cRzAqccJC2SDNvL+97mXTD/jeTD7iav7l5G87TyQyWjPy9U1oi2XloBlFLNXHcTRcxXUcbx81xnRdlDr8OIoanke5ZU11GdVNTdlf7M2aymW/pCHlC8OoLyKnqb0d9bcNSuYGoFyvmjNu1qex8q96r631a21BKw6agmfBaVVmusIC04cB1dnm+Z4MzsXjcIOYN7649Rnpy9ela3H+aWVzPqvZAhzgFB26d5Ea38O8va/U7ijAl1lZSV69+6NpUuXUp+/+eabWLRoEd577z3s3bsXbm5uGDFiBK5fvy6+8+ijj+L48eP49ttvsXHjRuzcuRMzZswQn1+5cgX3338/goODceDAAbz11lt4+eWX8cEHHzR5/RoC2gJZy/OoqrFjwfgIYYIYhFR4kaZFTh1+7i6Y3D+wQeWl5UF+MBJUeFJMkEyDZOcFTciszEPMb5SpOnEcokM8TbcPICwM0+I7N0iwJadQAj93F0wfFKr5zROxwQ7nZ+OAN8b3EjWZjblW2nmgqsaOuSPDG5ROLc8jR9ImSpCNy4njMKFvgOl+k+YxNzFc/N6J4/DG+F6IDvZUbY4c2EK/mTZMuMfbVDnP15k8sPII9HQxPP54qMc/ALy0/jiSl+9F0tJs5ubJMb6lwc4Db279hbo+8ACSlmVjdU4hQr3dmG3akDnFwrRPD2B1TqFomE7TSNGw+WgJKqpuUp95uDgDqDdzacia6GidpWs8bXNmbdjT4jvLtEMHCspM5UsOhmbXETLPKmtqNYW1if06IdBTW3ulJYw4crCct/44BmZsx+qcQgDQHKNa+c4Z2c3Q7cbOU+xD3u3CHb1yTUxMRGJiIvUZz/P417/+hb/97W8YO3YsAODTTz9Fx44dsW7dOkyaNAknT57E1q1bkZOTg3vvvRcAsHjxYowaNQpvv/02/P398cUXX6CmpgYffvghnJ2d0bNnTxw6dAj/93//JxP8mhvI4FPe04d4uyI2rD0SuvqgoLQKR85fxptbfkEtz8MGhmBFATlVZeeV4uj5CmRSTh0NBQ+goLTK0ESO69IeK/cVmkp/cr8grM4pQi3PiwuLn7sLJsYEIdy3Lb4/eRGLd5wWT8B6ZZgaH4LIQHc8vfKgqXJIMSvzIM5frhYdC6bGh2KFxhXGiF5+8PN0kV3lGIW0XrTxogUOwKzhXdC7kzv+e/gC1h0qlj0nY21H7m8mSyWHE8chJsSTWrah4T4YHxUAG8ehb5392nMjumHTkWLM33TSVD7zN50Ur0wjO3mIp+X80krMTQwX5wgZJwldfXCgoByzVh2kjg9y1W0DEBPiib0KodSJ47DwoUicuFCBaZ8cMNR3b275BWtSYqnX6DyAorJqpCWGq2x8iPaOV6wFI3p1xOajJbJ3jWp2x/cNwLqDFwSttg5qeR5xnb2xal+Rqg/5Oq1SVtpQLBgfgRfWHBPbec7Ibojs5IGqmpuG20gJT1dn6tjhecGMg5M80zNPICi7ptZecQCiQzw1r6nN4NWxPfH3DcdNp6Nc4z/KKsCKrDOw88KzPw/ujGU/5KnqOTrSV/z/4opq1XzWy5OsnQAMryPzRnfHvSGeqKypFbWKrO9W7i1i7jEcgCXJUegb7InPfzqrujYndoZVNXYcOX8ZCzfTTVVoUF4nD+nqg+2/qAUv1t65ts7mUK89eMjzuVNotjZ0+fn5KCkpwX333Sf+5u7ujv79+2PPnj2YNGkS9uzZAw8PD1GYA4D77rsPNpsNe/fuxbhx47Bnzx4kJCTA2dlZfGfEiBFYuHAhysvL4enpqcr7xo0buHGj/qrvypUrTVRLNvzcXVQLpHTS+bm7wM/dBbFh7TEg1As5BeVo1cLGVD8D9RPVieOQFOWPccvYp3gbB4zvE4CvDp5XPeMUmwsLRFWdsZl9FaLUpJhZACfGdMKs4V1QUFqFEG9XqscTC8rFn4dwwkro6mO6HFLwEDSL4ICZCWFiP6Z/fVS1CHEAXJ1tiAhwx6tje2r2HSsv6SIyN1FisA32lS45pC76/rTqdx71fQKAef1ipI1IOr0DPTF3pFpQ2ZF7CTtyL8ls7fzcXRATop6TRkC0SUrjaxsHPDU4DJ5uzogJ8RSN48f0dsHhc5epdSQasLl1Xr/v78wT21Y6F/3cXZAxgd6/ShDtC01oA4TrzXFRAbLfOA7IGB8BACphSe+KEaD3Ew9g3cEL4ib52U8FKsFQCqnmm1ZPou2fGBMkHjTJfCRz0ZHpRIQsVr485OsQ6TPy3+5+bXGi+Koq3Y/2FMj+tgFYMEFo48YQ5pw4DlU3a1VrZH/KwUCJOYndZGv8C6O7Y2p8iHh4Zx38kpZmi85e+aWVhsqZ2MsXj8eGyNZOAHgyPpTqgKWs4y2eF/cQ4qW+5ufzmvanNEwf1BmjI/2xOqcQ7/6gFubIGgJA3O+I3aERkPH56n9P0IW5uvVnX36Zymu9d6AnlZJIKx9LoKOgpERYYDp27Cj7vWPHjuKzkpISdOjQQfa8RYsW8PLykr0TGhqqSoM8owl0CxYswCuvvNI4FWkAaAukEkr3ctYplYNw2qiqscPV2aYpzAHCFWgmQ2NmSOMlUVWzXp83ujtGRfqJ9ZIKsEYwblm26MJOoGecTaA8QRPhiKZpSIryx9qfz8MOtuelEgu35OLB3v4yjaHSIJmvq4Ne32mBXPMePien2JibKFyVGtH2SPHM8C4YFt4BvQM9kZ1XSi3PjEGdMTrSl7mo2gAsrjtxk76V9pESxLg5oavgaLDP5HWRFDTjaztfb1ytpD34U3woU2jlIfTjgM5emJkQhgd7+1PnIpmnr288iY1H2ZoRYucUG9YeV6/flBnMk3JKNxQA4HiIArt0LfjuxG+G7CvXpMQip6BcpfEkwmWItyu2HpMLc1JPQ6Xm28YBz391VJWXq7NwYUaEXMD4XGSBB3DxyvX6+WNwE1+aHIVOni6orKnFip1nVJu4Mo2nhoZhYkwQsvNKDZVV6YnZL9QTOQXlYnvR1j0bgBmDO2NfgbamMjLAQ/Ubac9HV/xkyEFt7shwqiCvXF++Of4bXnqgh6mDMEC/hrTzwiHB7MGU3IzQxooNwAeP94WLcwsUV1SLXrSVNbVIU2jdk6L8mcKkE8ehquYmthyjH1oWTYpCoJcL0tbIx/W6gxfw3IhuqKypNVwfMg/uFJqtQHcnkZ6ejr/+9a/i31euXEFgYMNszBwFmWzk1KX02lF68LEEAx6CTVRsWHtDCxfL48coFk2KonrHEThxnEyYA+QCrNZplIDY2QH1dCRaXsDSvD3d1GUjwkCgl6uovQjxdsXOU5ew9uB5gBcW8sFdffDDqUuCZxromjA7D5lnVFllDd3DUtF3ZCFmpavUjnIQrnmVgmLGllzMGt4FT8QF49M9Z8XN5sn4EHygIcC88/1pLN5+WqQDUG4MHIDIQHcUlVfThbm60+7oSH/Z79U1t6h5iu0AYO5XR5B12timyoINgkG4lnexdMykJYYjnaExI+VKWpaNDIkGEVDTCfm5u+DFMd2x+VgxM29i57Q6pxDLNLz3lPkLnqZCXrFh7bE6p5C5aZLxodRs0FBVc1PTw50D8OfBnRHoJTjd7Dx1CXO/VgtzAHD0fIUqLz1HiXmju6OsqobpmQoImifCr5cxPkJ2eKUlzQM4XFSBWZkHRc1R6pAweLk5w5lxg/HuD3n444BgkSKIBmW7Xq6+iQV169PefEGDMyMhFFMHhjI9ZKd9qi3M2TiIZjBKGiSjTifEsUeJ5H6BKsck4gE/OtIPgHHt5CsP9sT1W+pryFqeh6ers+bBlHVYoO1JYpvxai48mnnFmro1WgpiZ3yGobXkOMG2VbmGkvoUlFZRzVlY63NVjdHL4KZBsxXofH0Fm4DffvsNfn5+4u+//fYb+vTpI75z8eJF2Xe3bt1CWVmZ+L2vry9++01uB0T+Ju8o0apVK7Rq1apR6mEGNJ44FglicUU11X2aNZFsqD89uDk76V6bGt1TaRorJ45DoJcLVuXQbSbICY8mpApp8RgQ6mX4apfkzxJUlHm/Mb4XXFrST1LEpoq0dYi3q0rbs0Ny4h/Ryxd9Aj1UAoETx2H36UtIXpFnqg5je/ujV4A7Qr1dMf3TA6pFJCbEC3vzy2TfsNIiV6rkasXV2YbCsird61KiMVubGifTVpK+fnrlQerBgYOw2BNNGwHhddPDzl9Ldd9RQrpBAMIi+9L644a0nTwE4S59VDjSR4UzDxB8XXuE+7ZF70BPlVackDGTa+8FFBMDLU2EXv3IZkPyWriVfdXK88CYCF+M6xsgajZYGoZpnx5AGkObA9TTRiz9IU/XyP9v646j8PcqGfmtll0nx0E80LVzacluewBpawTt7eXqm7K0Env5UrUuy3edkXlBv/fjGaxJiUVhWRW17HZeEJqjQzwxto8f1lPsz1Y8Hg1X55ai8BC3YLvqnQ925iOyk4fo3KI6VOv0+chevjKN/eR+gYjr4o3oYE9TNrLKV2wAJsaoOSMBwfb0jc0nDdM2cQDTNtCJ43C+opq9B9UJYf4erWV2swB7rEgpTDZL+lpqXuHn7oI3Np2gtu+iSVEY09ufeW36UFSA5i2Sq7MNfu4uGBcVINOe3xviif1ny6k27ncSzYZYmOM4rF27FklJSQAEpwh/f38899xzePbZZwEImrIOHTrg448/Fp0ievTogf379yM6OhoA8M0332DkyJE4d+4c/P398e677+LFF1/Eb7/9hpYtWwIAXnjhBaxZswa5ufo2KCTfpiYWpnHOXa66SRUU5iQa87pRQsnG31CQcgJQXVGy1N/J/QMR3N6NSmqp3Cgbc2DaAEyrO0GzCCSVcOI4vDO5j66TxNNDw2TXZxwHjOxJ32wMl7eur4jhekPb4+mhYVj2A52gkwViv0UcCGavOqjS1tHIp5UHD0cIm82CJlxyBjdAGwfsThuGi1euU8mCxTQ5IE2DDNrDpSVzXBGy5uy8UiQv32ugRtp2kEZBNlGWBpKsJ+T6qqFQ8jEqo2lIsSddTuS7+PvTTMeocX38sfbQBVXZHxsQhI/3nNUtl97hUM+UQlpWvT50dK5qmctkTJCvs2aROX0ACssqmd/b6jLSszsGo4yAIGBvq9OgKZHcLxDB3vR1n2B1TqFYPqNjf8nkKESHeCKWImADckJprbHIQub0AQjxdqWuYVLzFaJtbIpoEXcNsfC1a9dw+nS9YXZ+fj4OHToELy8vBAUF4S9/+Qvmz5+Pe+65B6GhoZg3bx78/f1Foa979+4YOXIkpk+fjvfeew83b97E008/jUmTJsHfX7jySU5OxiuvvIInn3wSc+fOxbFjx/DOO+/gn//8552oMhU0zrl0xsZQy/Oixs4saDY6DcGiScJkyi+tFK8oiX0eq3g9/NrhpfXHZXV9Yc0xeLdxRtqao7pkp2bx2tie6NKhrWj3RNraSPqCyl3fwFh1ZcRDZZdkFsQmZU1KLIrKhCuBhkBpr2UERDO1NjWOen3OA1g8KQoAZMKe1LOsKfjJALpTi7Jsrz7YE2cuVeKj7ALNtMj1OK8zKnieTSSbsTlXEBoY3y77IQ9BXq5I6OpjaMOfN7o7nFvaMG+d+orQjMDAuoIjqOV5BLi7ICttKFVoNwtp3wMQTBUYkJIg7zx1iWmzC0AlzJGyd/IyphHRWy/1qiw1dndzdmpQWma/4yFch+5OG4Y1KbHahw5KOoQPNDasPcJ921K/twNIjgnSZBp4+N5O+M/+c8zn246VMIUwwpso1Zymf30Ubq1aiBFapCY3rs42KgmyErNWHcTkGLY5FLkCLa6oxpBuPqb2P2LzylrDeAA2vt5D906TCgN3mIdu//79iIqKQlSUsCn89a9/RVRUFF566SUAwJw5czBr1izMmDEDMTExuHbtGrZu3YrWrVuLaXzxxRcIDw/H8OHDMWrUKMTHx8s45tzd3fHNN98gPz8f0dHRePbZZ/HSSy81K8oSls0F67TWHHSqRL1OyBbHLctGYVmlrot33kU6v96Tnxxg0kcY+Y2F7LzfERvWXmaLaGbDevubU7rv0IQJI1kk9fHXrAsxXGc5JwByTjUbgBE9OjDe1Aa5QlXCDoFlf/evpSoOJ3Kqp53sif3J0XMVDpVHC4RiQAschKtXPWGOpPd75Q1DRMpam67WuCL0HhsOXzCkGR4V6QdPV2fq8+T+QabmgF5+s1cdxM5TlzCmt79DHI5KkL7Xm2skGzOHLClsHERKHGYeJtOk5gO5sbsZI/nGAjl0aOXNtCuU/Mj63sYJ1FFa+FJDmAOEtYI1dGhrIol8IuWKI8wNvQM9kZaoz4HJ82ySbSKQrc4pxMCM7ZqcpjTMTQyHn7uLJn+dHYCXW6tmIcwBd1igGzJkCHieV/3z8ccfAxCuYV999VWUlJTg+vXr+O6779C1a1dZGl5eXli5ciWuXr2KiooKfPjhh2jTpo3sncjISOzatQvXr1/HuXPnMHfu3NtVRUOgDRgb6GSKKUPDmItUQ4Ufo5B6cim1MtU1t5iTGgA+NrDBSvNZlxqHGYM6ywho0xLDDRNEbjlWIrOfcIRcUguJvXwdSo8DdDd3whXIirLAccJVzO60YcicPgBzR4XjmxMXqe/SIG3TjAkRWJcax+y7pT/kYWQvX3GzJ5vH0ysPijZ1tLJr2XsZxaiI+nydOA5zKf2vFGz1hGpO8l9Sj3HLsjEuKkBWx8YE0a5rwQbgyfgQABBjtkrBAQhq79qo5ghk7hZXVGNiTBDmJHZTjQMzGwWxJdKba508jR+yaMnMTQxH70BPJgkvIHizN3S+2yF4oxOhQ09DRwOx05SOUWWxWIcq8kzv0KHVhB9lFQBgr39zE8MF2z9G2ka0wmRtNk3qzquj7ADAzMFhSB8VrjsPWeUinv5GbFaT+vjL+iY9MRwzEwQuUUI9RRtjzcFuTopm6xTx/xJYnHMAZDYFTw0RAsGXV9VQw4/QkDZK7d7NIhS1ARhLsVWRYvbwLhge3gFF5dVUrQzxSlJCz/5CVRYOopdeh3atEdGpncyQ1sO1pWHj8re3/YLnRnRD70BPVVs7gqQ+/ogIcMe9IULZOnm66PI2SUHaQunwkDI0DO/+cEbs7zkjtV3mH+7bCW6thCkc4u2K5OVsWgMaFk2KQvs2rWQ0HBnjI5h2YFuPlWBtSpxwBawg5JW+TwT+fQVlhm3YtDisRvXyqxOc6/v/8LnLMu608X0D8NyIbigorcLpi1d1qRNWTIlGdY1dVg87D6z9+TzWpsaJHs4fZeVTnW2S+wWZ9gRnadcJT17B71XYfKxYRj9Bu1qm8TpyACIC2uHIeTVnppHNWBo5ZqHCpMMG4BUGHUVyvyC0adVCdESwoT56SXFFNZ7UoIUh12EkzJZeGYnRPHEYeLC3YFbDojWxAYjs5I4FGmOaBpHA98c82dgg1DpF5dXU77Ts9CIDBG9Mf/d6h4Cdpy6p1vxw37b4YGc+Nh8tVpWXHJyGdPOROWYZwQe7ziDQywX39egoW/9sqBd8aO03LSEUkZ08DJGtz0nshpkJYfBybUmlttGya2VxuM1MCMOAUC9mm2jhwd7+xg4LnNAGUweGIKegXMZVSUCug6VEz9JIPc0FlkDXTMDinJPSeCzckivyaSkXQJYR6fYTv+Ffk3rLNsOuvm1VdnhkQTl87rJmORd9f1pFSCsFS5ibTHGb18LY3v4qRwmlIa2SvoM1b3ed/h27TmdjQt2mL6UlkUbaMLSpoF4VvzqnUJfPTwotodYOYGAXH7R1aSnGE83YkouUIWHMcv3nwDn854BwDUILCK/MW/n8fEU1xvSupxcRPKfZi6adF6IZHDl3mblxCQePzlTHARYWTYpCZc0tqn0Lh3r7PA4CNU3LFjYVEe66gxfweGwwtuf+hhUGvJ1dnVti75nfVPWwA9h0pEQMOt+/sxdVoHN24vD0sDAs3m7cNnFIuA9+/OWSql1ShoRh6Q45+7+UXkUJWrMurjMOj1uwnWoCYARHzl0GD55q/gGoSYo5CNFGdp66JAozPIC8i9dkRMw0SGOPkhB5Wl7qPIT0IwPa4eiFK1i5rwircorE9aB3oCcyFAc1ollbMD4CK6ZE48lPDui2gQ3AmpRYVNbUqgLDkyDusWFe9DIy6koI1h9d8ZNsHE+NDxV5AmNCPJFbclXm5ZrcPxDVN2qx9lC9Jp8HTAtzBPPWH8dL648jY0IEstKGinvNhkMXVJ7ZHAQh/r4eAmerEQ/byAAPpHxxgElSPX1QZ0yND8F3J37DS+uPq8Zl1ulL4MHLWB6UjnLJ/QPBgUPmvkLd8hgx+eAgODopiciVDhuEgaJ9W+d6O+9mYPqkRLPxcm3OuB1erloorqimLtRkkyYaEdYGANQP0oSuPiqPHRuAtalx+OlMmWYatxM2TiBCVgpMhCzVjCAlBdl4lJ6YH2UV4INdZ3S/zXDQe9OIhjJ1aBjepXiijorwxZajJY16zQYIbUnc/lfnFDI5xqQwIvSaMdpvaH86Ao4D1qXEMY2uOQDZ6cMMe0MbBfEopdGaNDTdrLShAEBdJ4yCA5iCD8cB4xVaVA71NCpm++7R/kF4fVyE+PdbW3NVApQRSMcwABwuKldpmszeDmROH4Aj5y4z18LUoWFYtkMdfosF1ryWlotWxoZ4OWvNQTK+iRZVa8xImQy0oqFwAB6PDcYnDI9jG4DddXNK72ZFa68yOoc4AOtS2XNc+S6gvmWQro2sMnMckJ02rEm1dGbkjztLa2zBELQCTy9NjkJW2lDMHByG4eE+jLfq7RQOKLhzAGHRKCqrbrAw15i2aXYeIvu6FCQQu6Obv/QKRWq3sSJLW5gTPgbCfdsCMOdcYYNgy6P3+rs76LQiW4+VYF1qHJZMjsIzw7sYy9QAyDUHMUo3goYKc4/2D5LZwxkJ7N3o4CEQI7Mf4/uTvzkcsoqFWp6Ha0vz9ldakF77mA2srgQPgZSX+owH1vx8XmbkxQMO0ScBQGznegP84opqw0TLShAycILKGnXILR7mTD30bD/f/SEPaaPCDW+enq50gnVpuWhlbAhlzfRBnZm2ZzyAn88KbaY3ZshVc7hvWyxKjmK+xwNMYY7jzIVWI3nS9qpanjd0IBpWZxZkpN9pba9cG1ll5vn6tmwOsAS6uwAsJSoPwcMGELiRoihG1FLU1t2J0ASvtQfZHkx/GhhiSFibFBNk2iCWBZYHGwn23hi5EKZ02sJBAw/BzuT9H/Nw+qI6RiQNtrrFLLKTu6azCMBewIlwGx3iiUn9zHk4aoEY9DYWtYiNE67WtRDu2xb/mtRbPIhMjAkSbaiaArQFjgeQffp3ze9o3thamDe6O9anxuFvdVe1rLKcuWQszqaWgbz0nbUpceLVUGM4/LRqadM0uqddUTsy5c9LDOAbKojOyjyINzadQHFFdYPbYG5iuO4Bw84L14tr6/r7ufu7Mt914jiUV9U4VBZHq8FxAon1q0k9me+QfjTSXsTT/eSFKw617YrHozExJsjUOmOHMEepnvUG8H3uRaz9WdsrVwvEs9lImZvTHacl0N0FCGJwLXEAdp++JFKH/GObNsUGieAwkcLb830u2y5jbB9/TU8ygsx9hZgzshsypw9A+qh6byeaR5ce5iaGo0O71gjzkXss9w50N+zSbgTzN53ELIqXJgt8nW3TS+tPGHp/bUocAMGWx8jETx0axiznwIzt2HnqEjImRDi82Es9W4lmR8vOxKgXb71woS3Q/X3DcczKPIRZmQJVRnFFNfY3IHYrB2DKgGBqGTkI44hW/FU5bL4twJw3NgA4t7ChQ7vWGB3px+wbO2CIRgUQHGQyJmjPubRRwhzJzisVNc1Pxoc2SKD5xzenMLKnr+HxJXqdm8wnY0uuWOaGCmE8hCgxZH5IqVfMJMsB8HBpqWt3RWzikpZmY/6mk0xqIxIRRxlwXit/IhzbOOE626FmqVtn7uvekfqYAxAdIhz+d9aFMFQ+p2HpD3mICWErDWjfhXq7ooe/O4orqvH7tRum+nlVTiFG9pJHc0roxr6FUoK1pz0/oqumlzxQb3+5Wyd6jbQtmwMsGzoDuNM2dGbY5VkgNjCORImQ2jQYCUC+O63ePoMY3mrFgVQiPTEcHq4tme+vT41Dh3atG2QvpARZTBvz6o84YZixtUsfJQiqrKssqb3UgYJyrD14Ht/nGqcqAepjTpI+0irf+tQ4vP3NKezSWdhmDOqMsA5ubFuTuv/yit8cbfM+ge44XFQheFZywAhGZA6z9k6kXKz3x0T6YuMRutG3XlQGMyA2QB3atcbCLblYR/E8l0b/UNpjTU8IxbnyaqaBOiB4a68/pM+Lx4LSDvUvqw7JwtLpYWlylBjzVxolQFoXIxQ0Ukjnh9Qj0Sj0IiYQe2UawTQZN6T9SVxXR9fuhZRrSqP2qSTCAW2NHBXhi2WPRlPnvg3AyAhfzXFjFno2jJr2flzja8CUUXikHsZK+0s9pI+qpzdpKtw1kSIsGIOZOH5M8HA45BexN8tKG4rpCaGaAp2dr2eAJ0HLAajie9JANjFAuNpkYX9BObr7t2tU+ybadVJDsebn8wjwdDHV5gu35GJ32jA82Nsfm44UY/6mk7LnxGbIq40zokM8ER3iiR0mQ2ut2JWPqQNDAejbAmqx0hPYAIyO9FU5NtgALK+jBzl18arKO1qvzRN7dsSW479Rnx2S2HrZeYGlngatwO80xIe1R1Ye+zp205ES5lzUi8ogxWtje6L06g28s53uMU6u9zPGR6BnQDuqQCf1jOUV367YmY+1qXGYmdAZn+wuwBrK9/d174j7enTUpKTQ2mxfHdtTvO7dcOiCKWEOkPe90sv/4pXryCkoR6sWNl0KGimI7VOIt6tpYQ6oM3tgHEhIRID9BWXUNnn2/q6IDvaSsRQAxjxEaSDRIXanDUNBaRV+r7xhiD6ERIZgXWVvrePmpNEK2QGHQhZqOXDoVV1T0GsCdZM0Cg+hJ/JzdxEI3E3mFxng0fgFbACsK9e7AIQ7rSH2aTwaJhCShdIIS/qszIN4/8c82VXQAR3DUXJ1szqnCGOXap+SjJCW3k5oGR/TKF607KMII7yfuwtGR/pRrwZmrzqI5OV7ZVdMZpqCCN3ZeaWGoiNogQMwbVAolZfQDmDvGSGclBbVDQssYY4GMwbkWtXNyvtd0yaMBxAT4uUQuSuBE8fB36M1SitvaL5HQq95uLQ0nZcdgkCYW3IVUwaGqJ6Tq6LoYO1ICzyA4eH06CM8L9weHC4qNyzIShHopfYM5MFjw+ELGLdMuM6ct/64qbFNnBo2Hrng0HrHMg8h9sp+7i7gGAPkH9+cQmFZpUyYa8jaLV0LYsPa6/aVWFaJfRztdTsvjI3XN9H5DB0Rokb0Mn5NbxRNeXVYy/M4cq5CFkXI7J7S3EiFAevK1RDu9JUrwfs78zQ9fAhx8Nqfzxve4GhBr2kg7tkATF0h6pHGAsLVy7nL1YbpHMhVz778sgbFpjWrzifkv1LNCMcBIxnXfcx8IdjHnP29ShU7kUM9pQCgH1DaUSoMonkh/WNmzJDvB93jjazTpeKVH60ptbQTRq+PjJaH9E2jpGdwbJitgxPHoXegO34uvGyqLIGeLigsq3ck6OXfDieKrxiOsKB8beGEep4t6XUnDf+eEo1pnxxQpSEl+nWkH6VXtlrUEGYwKsIXW4/RA8QD8mtR5Svk6u1y1U3qtTm5Xnv/xzzmtbqSRoWguKIac786gp06pgu0+ix7NFr8e3VOoSZ9CMGSyVEY09tfs6wsONKfThyHEb06mr6qNXul3tiY0DcA/3ikDwD9/VWJ23HdCli0Jf+TKK6opjLEA8CU2GD8bXR3rEmJxT8e6YPd6cNk4bK00FfHM5aArPXKE6cNwEAG0SYgLPhfawhzCydEoG+wJ7NurDTTvz6qGfjbCHgemJ9kPDRQytAwPDciHNnpw7BkchSWJkdhXUocth03t4jxAN7c+gsmxnRSnWql7VRcUa1bRy03/vWpcaIdDq0MQP31w9q6EGtGMCbCD+tS40RhTlluKZjEshDa0yj+FBei+ZwHcH+Pjoa1BHrvcbxw0Ogfqj0/aNVjpc0ByJjQy5QwBwjjVCrMAcDJ4qtIGRJmKPYszdZLagIxMSYIa1JimWlU19hlDhpEw6zX93ogphyHi8oNCXM2CHaDUocHUn0OQOqQME1hjpT1TwNDVJ1ECIUnxgRh5uAwqnPSws25+OynAk1KEyndhfSG4uKV66aFOQDYfFQeunBiTBDW1pmlaIEoBFl10YPUeSo9MRzJ/YI036/leWwxKcxxEMiL00aZDxdmFmMi/Ki/f/3zeRwuKsdb23JNH4oDmlGECAJLoLtLoOXa/+lPZzF/00kx3qCfuwteGN0da1Pi8Mf+2hPRzJUGiQc4MSYIWWlDsWRyFF5J6glHHezJV3q0Ba+NVbvf22H8ClmrdCcuXDXsGSgNlu7Vxhl9gz2pV41GQPj0aJ+SdjZKp8JCTkE5Err6YIkGfxQpS1WNHS+M7o7k/tpeqoBgNO1ovQnsAC5cpodQUsLGAX0NeJIt+v60YeGCh+AUwLpOtEMQpPbla5sKsNIeF+VP/f3rAw07hBDU8jyWUshqjYAHxDBfRPBghbMCgD1nfsfEmCDsThdiBi9Ojmo0jYoZXkkSTSUrbSgypw9A2ii5p/vNWruhdD7cXUClXyGhyABgYBdvav7z1h3XJcU9cv6yyDxAAs8bcVy6l3G43l/Hs2ekrwBhvZMe1Lv7mbtVIuY5YyJ98cHjfRHRyR1xXdob+s5sPvPWH8fCLbmYM7IbZg9rPI5NKWwAXhzTHbMZHJ5vbv3FIc3+7FUHxfi+zQWWU0QzAQktIg17Qn5zc3bC79duMFXhSrLchK4+hhi5pTBiuLsi6wymxofAz92lUVj0eQjl/fMQtmaIgxCP0VHDYi2vNADilScHIazMqn1FzHzuDfFUhaJxtP6ET4+GFVln0L6tMzNmp1HP0PmbTuKNzSepMUGVZQnxdkVxRbVujGAO9TElG3pluvag/lU/IFCPEPshrXqzNk1WOWmOBgROHAdwjtePVbefTDoOaKEhxjKuzjbVWGYhc18hnh7WRXRyKq6obriTVh2kvJJGkjty/jJiwwTh4tEV9bGLeUAzdJiRckjtofSoS1h4akiYzEPdzsPwOrmfYWdMW3eMYnVOIdIMsgsosfFIiejR3ZT6MzsvCFVrUmKxeLvxQ5lR8BDoWYaHd6Da8u7WcILSgnS/bS7xXC0NXTPA6pxC1YlO+tvYpdmYlXnIUFrEC9KMMMdDiKe5ZHKUpqaKGOkWV1TrLlIkGSeOw4S+AUyVei3Pa7LE8xBOzo4YFs8b3V2MoqHHW8cDWLWXLcxN6BuADu1ay9rV6MJjq/teGSGhQ7vW1PeJtyTNZiljQoTIbWcEZLGcrKF5m5PYDX7uLpqOK0oBjvxXejUzoW8Ac0EZE8HmZ9PKMz1RsFNx1Lg8uX8gstOHYcagUFPfzUnsRjVC13JoMYqEe9TaHz2MivCVmTkYBausRWXVhscymfcEpC+02sEG1F3VsccdmQe9Az0x3WD/LKzjrzNKUsuKu0orh/QgrXWtykLq0DAM7OKtKldDBBTWuqM1DokGlkQ5aAwBSS9PJWwA+pvgZyO3BHrci2L6dQUxUh6iOOjQrjUm9A0wXCYjIFfszQWWhu4OQxlahNiH0biQeNSFkUrqCU9XZ3TydKHGOtXiUQLUGgsnjkN0iKfuIimNLKC1SJDYsFKX8OdGdMOBgnIx0Lr0Xb0rjBBvV8SGtUdCVx8qlQerrKMi/cRFOqKTu+43hPVeGQdyxZRoDO/ui+y8UtNaieT+gZg17B6xDQilAnGTp4HlabZokmDozPoOEOyDPtxdIPutlucR19kbmXuLqP1GXO9Z/lGzh3VBV9+2KsoEHsDiSVFo36aVWKfHY4NVXE5OHIcXx3THyAhfJu2CckySMdQ7sH5TkFJbuDrbDMVpfCAyAH7uLpgaH4oVWfmG+y8ywEMUXIjDQEP4qgicOA4LH4rEdyd+M0XH8diAEMwb00Osu9HYt7RXjKwRyveV3nwTY4JQc8tOrcMzw7tgUr8g+Lm7YOORC1i5T631lb4DwHD/EOHSKJXT8PCO2JNH14raACyuoyKRalgcjZwS38UHId6uhsr13P1d8X/fntJ877WxPfFYbAh13eEhOD6UV9WoAt2bjQBD6IWmfXpAc0yTPAFhnaTtPzYAk/sHIXNfIfZKQrIpQduDjK7zJP4z2V8uXrmuS69EBK9/PNIHfQI9TM09gtfG9sTfNxxX7bfNydPV0tDdYdAmnZZ9mB2Ah4szPN2c0aFda5nWgmw4Wu7tThwnM0KVnk613LaV72kZfs9NDEfvQE+ZS7ifuwvG9K6LOFH3sY0T3tXSCj41JAz5pZUorqhmUnkoQRjayXeAMZd0Qp0ibZuMCREY3t3XcBpKrN5XH36G0A+QNnFzdqJSZKQMVRu721DPSM4qR+rQMExPUDvDEIFdybpO0v298gaKK6pxb4iXql85AMO7dwDP88x0pXXqHeiJDIXTzJPxIQCA6GB6yDYOwiYg1fYtmBAhE+YISBt2aNcak3TCjEmvkvNLKzE30ZjxtXSRJvaimdMHYE1KLAK9XNGhXWtkGIicoqonVx939b4eHQ2PJRsgCsyxYe3RO9DTsLbSieNkUVuMrBGyvCVllqK4ohoeri3V44WDTFBj9bn0HYDubMUqD2kL5fvKfMh1Lq2eJCTf6Eh/Vd1Y81JWT2V6EOYRAEPlmhDdSbMPnTgO9/UQIj3Q5juZe4/FhiBjAn2+GVmvSDsM7+6LDB2tK8lzTG9/jI70V41DJ47DU0PCsHJfoe4hPU0RSWjOyG6yvYK1zpO1vbKmVhwHvQM9ka5zAyNd57TmHgcgqY86b9IftP22uVy3AhZtiSE0JW0Ji62bdYKW2lBJIzhINT9Ane3EmqNybRMHZEiY3ZXfiN8prlOlkQW03hPLz9XTESgh/Y6DcIUIQEWbYAMwuJsPfqgLTaOkOJCxytdp1WwApiWEon2bVqIdi9Z30rIbaRtSfhbFQ78QT+yjnEozpw8Q7X6k6SivxW0QBNyZg8Po/TAoFFPjhX6glYPUVdqeZNFJ6OpDpZsh7SD9ltAicBBCf209XlJvu1PX1iRdWh8DwriWMvVzAKYPCkX7tq2QsVl+nUzKwKGeYV9rkVS2nfR7ZfmAeqZ9EskhspMHjpy/jDe3/KIaQ6x6vb8zT7gGV8w7aR0JbRBhoKdhj4SSRtqHxNYzwMMF2Wd+R+bewnpqHAjzRFkmMk6PnL+salNAXhflmFaOLxJJhpSdAzA6whfTEzqrBGuaPZd0DCnLqcqLUR+9OinnKLEvJpqat7f9IqP4IZQU0nYmawRrjBmhTyEHkFV1ggutDaRr8s5Tl1TzkdSd1PeznwpklB9SOg2xXHXz0gZBCJO2n3K+0dYC2lopbQetNV1rvuuNQ1nbSfqQNqek6dP6Tbq2kzWFrInv78yTPSN1pfWPtF3I3Pv9Wo1svWKtCVr7Q1PAjPxhCXQG0NQ8dMqFnWxENCGHh/pqalFyFKIl1wYkPubszEOqd3dLNhTyrtQZgyZgEhV3ZU0t3JydUFlTi1BvNwACQe33J39TcdnRrsy00i4sq4KN49DJ0wVVNXZknb6k8jyShvXZX1AGG8eJ3lzkKqqwrArPrDqkEpRIWYorqplXv6RtaA4q0rZyc3ZCUVm1Kg0aaLxUtHaQXu2y3gHqhRJ/j9Y4W1aFf2w7pbq6IG0kXXQ2HrmgyzJPvv3ip7Myrj0pONQz5uu1lVb5AzxccLlauC5Sjgdae5E8ADUPIgfgtaSeGF4Xu5LUm/auciwXlVUDnMDzJjURkILG5SWdd8o89xeU4WDhZdXVNyAPdwUAh4vKkVNQjpgQT+SWXGUKE1r8ZvsLyjB71SGVqcCrY3vivh4dqd/Q2jA7XeCZpAkGCV19xLFPu2ajXV1q5afVz9U1t1TXfxyEKDK9A9UOAtMHhWJ0pB/V/ETa17T+NTK2tKZ4Uh8/bDhcbKhuZI0i66d0vdYap6HebjInN5rww1IMrE2NE9fWvoqxamRNevOhCHTydGMKL9I1Uc8MILlfIGYNvwcXr1zHdyd/w5IdeSrTDLJ2SftEaz6TchLBDhD2JDKnaeu0MnwieVdvXLPWuqaGFfrrLoMy7I00XBZZBKpq7NTQL3YIXodkkl+uvimeepSwo555HJCfRslGa7OpNYO1PK+yGZIu9LMy1YKCHULYqPQ6jRNAv16Wpi1Nc/JytaNELc9TN5uJMUGaXr12AElLs0WtgFcb+jV3QWkVc+FUnianxYcaInVVquSLK6oxf+MJqk3MtE8PiKdXlv2LnYcmUShxihnT21918tZDLc9j8fenVWTHynIeLqrA6Eh/1fiRbjJa5ScebcUFauoTYuvCGqO0ducB/G3dcVTeqMXMwWHitzTbo1qeF23vpCd3DgLZs1KTWlxRTW1v5bwzSo4rnUMsTRcNynZRfq/KBwIlxN83HMfckeGI6OQubkS0vuEhCHKjI32xPOuMzHM+7eujmp7VhOIlv7QSAFSbHWves/qZBh6Cc5TS5piH4N1K83ClrS3S/lWOrUkxgdR20SKZXndIHQaR1ld+7i7YcPiCbA0h/UKLaiEtu3Js0LwraRRHZN1Tak9pwshHFPtFHsDzXx1F6pAwxIaprzTNevyv2leEkorr2P7LJepzsv6syimkriksG2YyBpbvypeRnbPWC9I/hWWVmuW3oz46CO0QQTSDzQmWQNdMII17yvpNiy7AzoMZzJ5AalO0v6BM5YyhJSioeJvqFpV3JvfRnMgLtuQCHDAzIQxuzk6aaZM0IzvRTyEcIIvPSN4P922rv5ECSFtzFAldfagG1TYAVTU3VW3ywppjKCyrkmkL7bwQD1VvEeMBhPu2Ff/WutIg7UAW6obE75296iAqa26JV1NGPd1sECgq9LB81xn07+wpu9JXbjJa5ZcKVTS4OgsWVDSHoRW78pnpSscawI6BzCv+S/5f+T2gH7LOzgtX1DW1dvx9vTZHGYd6O0ilp7he/xDbMQJl22iVj8xr6YGJNnaX7zqD5bvOqH7noU2RwgGiFoSmPaL1g9RO0YjXPLGB+r3yhqk5wRqftLFFc94gkVgWbs41HElFWbf80krsPl2qWkP0IjiQstOqKxUatQ5sWkIgQXFFNZZrUL4s/SEPJ0qu4KMn+sm+MevxbweYwhyB9DBpZk0hZZCSN7PWCyeOg6uzTbf80v2SdohYkZXPNC26U7CcIu4iNCQuIDGW3XD4AgZmbMeszEOGFkatAUK0QXqGt4RqwEgc2Fqex0FJ4HUpJvdXn6BreR5f7j9nqC48D3x/8jeqgbwdwJOfHKCmTyOdtMPYIpa0VCB7NipYkTYlfe3IBCUL4eGicsMxLW2cEJPVSJ14CG2l3ORJ2QHoll8rn+25F5nUFHYA0+I7M9PNqGPz33hEMAGQzhcjsyZjc66Mmb+8qkb3G0OEsxA0gMRR58BZOqk0C9PiOzfYE5OMiw2HL9D5LOEYxQYPyASjF9YcE52RAGEsSJ2fpGYl2Xml+O7Eb7oUSDwEjeisOg5ERyClmDDafklR/piZEIZFOuTcBMTAHwBe33RCpJ5qrJB0BEphw0i/1fI8Nh0plvUNoE/sDgA7ci/h7W31Aiir/USHNzQOd520zxxZE8l6oXRkqKyp1e1/QuekddugHOt3GpaG7i4DuZ7N3FuIRdv1A55zAJL7B2Hl3kLTxJvzRnfHvSGemrYRH2UXCPloXEvYeWDTkWLR48wRrdPw8A6YNeweKvHv53uNs3XPW3dcvGJ7fEAwPt17VlP7YAM98LuRKwagXjO4eHKU4XpLNWzebZzx5CcHjH0oAe2aXAvP3t8VQV6uDSYLlpZ9YkwQwn3b4oOd+dhyrNhw/d/5/jQWbz8tmABQTtdT40PQv7MntV14CH0M1BvfZ6UNRUFpFU5fuio+Y4FHvamAh2tLvKTzvhE8NiAInbxcZQbbw8J9dL8j4ABMrfNclNossfpKqw+1QsWx8oZGeqw8lNep0roTgcdITGipcbrZcijbQSoE/X7thqG1aN3BC3huRDdDxNYchLUiY0uu6fipemUH6snfpQKx0QMbASEbl2qWCGuBXjJLd+Th0QHBTG2Zkk5kw+ELuk4SRiAlkyb73+sbT2LjUfV1txJOHIfRkb6I6NROtCM0So5N6Jz0bhuU1+t3EpaG7i6En7sLJvcPMnQCur9HR6yUeMwZBeFxM0yRwAsG36y4gSQ02bgoNsmwFmYP79IgDaWkmOJ/P/lJR5jj2LQqNGoRZp48cLmqhvo+LQlit/T2tlxDwlwqoyy0urGK/Pa2U5ilcKJxBFLt4OubTmDcsmxsOloMnhdCCZlJ582tv8jaX0pHU31T/wKMh+DhCgCxYe0RGeBuOP8FW3Kp14AcBA9EM/Q1Q7r5yKIH8AC+z9W+epJicl0cTanGZ9yybCoNjZKWqCGwQXDUmTaoPjSekVSlgtN/D59XXVdlbMlFmpHYrRwwuV9ggyJiKLWCO09dMnVDId2w9dYeo9fneqDFTeUArE2Jw5LJUXhnch9crr6JgRnb8fom84IjMRPYeOSCSAelRTxOwAP4+Ww5lQZISpZeeu06Fm8/jYWM6Dxm8eaWX1BcUS2GPgOEUF56Y9HGCRrWccsEYv5ZmQex89QlsfxPDWHHuCVUQQRPxodS82tuPHSWhu4uAxmMR8/TryWV2HbiN83nHIBh3Tvg+5PysEmEywgQTkWXq29qnux5CAakz48IRzuXltSTmZ0XTrxrUmIxb90xHDl/xVAdAGB1ThGKyquR0FWI5cg6oZGTJqGQWPPzeYcXFTsPeLi2xILxEarNPcjLFXMTw2UbtRY8XJyp6aQlhiPA04VK2rvE4DVNkJcrxkUFyCgbaJg3ujvKqmqo1z9G28iIxqaW51VEnzyAzUdKTGloa3kev1+tkV3nsUK4sWDn651daHZGo3r5YsuxEuYVpBLDwn3Q1betYSFjSDcfnHGQqJYg2NsVcQu2y8pj54Gtx0rQpYMbTl+sFH8nV4QP9vbHR1kFVJs4I7ABGNc3ANM/rTdDMKq9nZPYTdNJiRf/pY2UIWENuqrkUU98zfKAN4Ks05cQG9Ze1A59lFWAD3adcbhcANA/1BP78unX7nmXrlLtGFfnnBMdBlig9dGYSF8xhBeB1KnHyNpBsPv075iVWW8vSWiACD2Lcpwqwbrx0EItz2P+xpOilp/YaaYlhmtqQu08ZOs/OSgr6Uyo30IIFwZA5gzRP9RTjD1s8dDdpWhq2hKjMOJFZwZ6C7TUiDp2wXbNtGwcsDutnvZDa2K/NranQ0zdpMxpieHMjZ2DQGHh4eqM85erDQlcWu1ArhGU187KqyA9rE+Nw09nylQLkBPH4YPH+zp0rUqgxVsozYdWDzMgbe/h2lLGD8XDuECY3C9I04tWCrNp08BBoLugOWFwEKg6jDDN3y5IBWbCS7hwq7FDAyCnZDBypWmkHGaR3C9IV/AwWga9JDgI1BrPf6UW1smaZDauNQ3po4QQdCw6HjMg9eIgcFdqRVRoSPrSv7W8lM2Ads1KxpueMDcmwg+Du3lT++qJ2GDcG+KFWZkHDY05ku/ndRRLTQXWAZSshQ/28W9yKhOLtuR/CFKbmcYU5uYn9RRCxmikR67PXn6wh2ZaHATBT+pCr1XMYwa1izSQKxtW+jwEugajgpaNE64yVuecQ+Y+9dV0Lc+LJzJlPmZ2u12/luLtb06pfq/l+QYJc0DdiVenLHMSuxkyBNYCj3rKkb8/2B2l12owPLwDckuuGg5AHtelvaZARxZQQiNB8zw0i6LyaqYGbtORYoyO9EO6zmn/doFsEoTCiEYnoQXimFJ8RU0JYwYNWWZo86ipysADmEMREABgVC8/XLxy3fC6qSVALticC9eWTvB0c25wWtKr2ZxGFuak6Uv/HtTFG7tP/84kvDYKFgUID163vzYdLcYmht1bJy9X4YBssBwk3+5+DVewaN0aaHnUZmzJFQ9bWmT6txOWQNeMYZbnxygm9A1AZ582hm1ILl29YSp9PaXv6v3nqL/fG+yB/Wcv66evm79uEiJG9vJFbslVrMqhb0I2oEHOHAQ0Yc4shof7mLK9kiIywANHzl1ucBmU16mLvz+NtMRwTacYKTYd0TZkFo3fG2mw8wDKK9meqlIj8ahAd6aH9e3Cwq258HBtKVLOaNFJ0CClELlTYGXdmGuYkfw21gkQjZUnuVXQvdmAEBv1i71F2J57UeNN89ePjmLXr6VYlyocXI1qyI3AjA2ZVpsZic+tzJdEptCDXn89NSQMVTdqRQc/o+DBpsW5U7CcIpopzPD8mDV/XvPzebg5OxmO5Ti8ewfNPHjI3beDvBwzEjUizDU2th4t0SU0zS256jCFSGPBBiCqjundLAjvUkYTaKB4CA4ERgWILcdKMKJnR830yH8zG0E7ZwR2XuBwpAlzHBqHfsFMWchcMkInoQQP+sHDBmDKgOBGKKFj4DghfuftbEvAnADZWILf4G4+ePKTA7rC3O0ED2D9oQtYldN4whwA/HlIPZ3O7epbrs45yojTBbmS18KyHXn42KQwR4OUYuVOwRLominM8Ey9OranKa87HkBRWbUhIWVuYrgQcH2C9qQgVz3ZeaU4cs6YluO5+7s6tAhEBDSeHaMd2po3IqyG+7bFy2O1r54Jhod3wGtjezZK+QjsAPIuXjP0bnK/ICrvkqMbFnHsa6zFIsDgCbaxNthLV2+Ymh9STO4XhEWT++DR/kGG0kjup+8tqAeyMbCIuAGY8tgldBqf7T2LQfd4N7h8joDnBS3xrOFdGpwW6QYzXGdmvHT1wAOa83uHDnmuWKZGKIsqTY49Bj/cXdDomttlP+RhdU6h7uGjMQ9Grz7YExGd3I1xjwKoqL6l+05jNEtz8Hi1BLpmCsJ9I4UN9Zur9Lf7enTEgvERpibMnjO/Y2JMENamxjHfGdfHHw/29kd2XikuV9/UTI9c9SQv32vI4YHjgBBvN4cm0lET3rF6MLIpkGvGl9afMJTm97kXMW/9cWa6NgBJffwZT9lYe/CC7jscgFnDuyArbSgypw9AVtpQTIwJEuMiOgKeB2YkhGJtalyjLMof7SlAIoVyo6mwaPtph69wV+UUYlbmIWTuK8TckeHInD4AryWxN3MjNn9GFt3PfirAuGV0Rw0njsOgrsYFM1J1Oy9cvd0JkM1ueHiHBqdF6jO4m49hA/qUIWGCWUCDcxeEpvt6dER6ojoclhFwEGiYlk+JblStFgdg+ePRqvB1ZpDcL0gcnzYAqUPCtG9n6jTKhBeRVa51qXEY3zfA4XJJ07qvR0fq/kieS+HEcQhtgJBlAwzfZDUHj1dLoGumUPIeOXEc5iaGI76LfCEn7tUJXX1Uwp4WMvcJ0Qs6tGuNpD5+1Hd4QOS90qIsIYPI1OmPFwIisyaLXlX6h3qZyIyeHmnTpjI3oqVL8lx/SF84czTPj7IEu6vYsPbiArNBJz8OgpDJavflu/LRoV1rpI1ybBOTlZEHvjn+G56INX4FKGWgH9rNOCmvmKfpL+o0WxIbmYVbcvF75Q2UVFw3nZYTxyE9URAIHzQgzG8+WkL3rqu7bnr3B7pnHwdjG5Aj4Dg4pOEjmx0AVNbUon+ovulAemK4rtBP04Qp6+7EcZgzshuW/ZCnyzk5xMC44uqM3wEgopM7npZwQBrZTEnxFn1/GtM+OcD01Hd0jE/75ABmZR4y/S3BrOFdsDt9GDKnD8Du9GH4Y2yw7typ5XlU1diRxhBwU4aGobCsCmsMUqMQjIrwVa1H5KaIxSPHQ67BnTOyG1ycHXMVcOI4LJgQgbkj9de8RZOi7rhDBGA5RTRrEN6jgtIq0QCUNrnS1xzFIhORCABhg5IGuqdhnY4Q8NrYnujSoS1+r7yh4lHTg+BhyNi0yL806vPYgGC8MCoc+wvKcf1mLd4y6XRgA7AmJRaFZQ2zeSAG0PmlVUzDXvKOq3NLhHi7mrKN+tPAEHy4u8BUmZRxBosrqnXt53gAGw5fQFpiOEoqrqsMhHkeWLL9NFZqROUwyzF3b4gXPt5zVvVM2fVOHIenhnTG0h/yYOeBHwxeaTUEY/v4q4Ruwt1lFmMi/PDimO7wc3fB+z/m6c4rLXA8cLZM2xxj7shwBHi44OlM82XVyzuykztVy6c1XRdNikJlzS2R7oPTeR8QPAiz04chzMcNS3WEMSlI+ilDwhB/j4843/TGpd64iu/SHpP7BaFvsKdITqzkYnN1tjFjFP97SjSqa+wyhxUtL9gfHRzjRtcVWvtzEJQDE2OCxIMgCaGnB1dnG2YODgM4iFRRNghOZ+/WzVszSB0Shnd/zJOV0QaIhMqkn2kgQp0dgpMRLeIMC+QAQLj1/NxdRDJjFmxcfYzmOw1LQ9fM4efughBvV00DUDsvePKZOZnbAE1hTg9OHIf7enREiLcreJ43rRUg+dMg9R6igYMwgXoHeuLJQZ0R1F5fpa5Mzg6gqsaOy1XaV8laICe44d19MTrSj7nA2AG4OrcUNWYk1I4ROHpVSNjgzRjXEy0Uq3Bf6EQcWTQpyrDtoI0Dyqvp3qeTFTaASg1LUztwpg4NQxojQogj2HxM8Ow1IljrwQ5g5V72tS4PoQ9PXbzaoHxYeS9jaAZZfeLEcQj0cjEdyJ0HcKCgHM+NCEd22jA8cm8nw+XkAbz34xlxQzYz31jIzvsdfeuckqR1IRFNQrxd0TvQE5MZ9mvXb9rh1cYY5QnA9n5tLOUrrRhK5zZAn7GA4Fy58M3MhDDsThM0fGtT47D1OP3QrgUOQHf/dtQ4zhmKiCssSM0MxIgzOvnOT+qJrLShmDk4THa7oWeukjIk7I5ftRJYAt1dACMnzL9vOK4bVkt6NTCpnzrQvVGQKxRpGB2teT97WBekj5KHidHLX2szHR3hJ5tAjnjVEpseD9eWpr8FhDBnxD4NEATv6YNCqe/aOHkYGa13ldBzpU/uxzbWt0PQwrLsTZjfmNQIAkJ7Rod4IqxDG0PvPzUkDBev0K8uB3ZpL7MBZBlAN5VXXXwXH+w8danRqFNItAqWYM1BIK41shgbeccO4UpPD04cJ4QxM5AmUKfVMdEmZJ0oKldz4vGArj0dWcp2nrqE/zCojlhQBnWnhUkzA2kfsrjYiiuq0b6NM/V7nqfbRbPA6pPGOsywtolansemI8WiUHdviJeheSYdF37uLogNa+8w7yVf9y+aDbkjc7KW5+HEcVibGkcNq0Zwoy6cYHZeqUyo9XN3QapGmLBw3zsXbEAJS6C7C2BkIZCG1VoyOYr6PlFT2yFQQjiyIdogEPEmdPVRnbpZ6Q3v3gERAe5YkxKLzOkDMCexmyYlBQfBu5aV3ri+9TZIq3MKVcbjevWSGrAaXbCU6OTpojqVTY0Ppbb74G4+yC+tlC0SWho9o+AgEPVqnT6JFnRclNog2ajnmQ3QtWeakygEXCdBz7Uwqu4aZvF2urandUsb8ksrZRoWmm3UulQhtuWjBuIacwbqAAh1raq5ifQ1xoiSORjzAj598SqTKigxwhczE8IEpxONipDYwg0N02pD/YHkH4/00c0X0L8ildru2SA40exOGwYAmMW4pt6ee5FtQ8sBfYM9RfomvbLR4Oos9EhxRTW2HS9hvCVPR6sZXJ1tzLF45PxlDMzYzhzT0SGeKrtolkMWB+HA7YiGmPSjE8cxaWpsnEBgzUp+/qaTGJixHatzCuHn7oKMCdoOd+TGRIriimpDawEN5HCobCtamzhxHJ6ICxbrrVWnpKXZCG7viikM293yqhrRZnxgxna8/2OeKNz9UcPed/aqg1jdyHQwjsIK/WUAzSH01+qcQjHcEgcgLswLu/PKVO9lTh+A2LD2SPniADYf1V7EyGZkhrh4Qt8APDeiGzYeuWA4MLSU/X/uSHbYLin+Nro7YkI88Y9vTmGnwmaHpOPv0VoVm5EDMCU2mGqbRbBkchTG9BaEwtU5hZiriPE5oW8A1h28oMmqzkHg1ZqZID+5vf9jHjPiAGETB0Dlvkvq44f1h4sNnULJwsWjvj325Zfhewr31exhXbBkx2lVO62YEo3SazWq+iuR1McPGw4Xa562ZwzqbOgKXzrmmO9wwkmctJcyjjDHARkSVvbDReW6obvWp8ahsqYWycv3qp4p7WuMzIXUoWHo7tsO4ACXljbkl1Yh1NuVaehO0h1ZFztWChKWrbKmFkfPV2Dh5lzqlduSyVHY8ctFw3E3abBxgnZ0YBdvWbgi6fpiFhzUES5ICEC9MFkzBnXGv7PyZfmS8RzRyR1llTVMu8WBYV5IjPBDRIA7tf9JuSI6uVP7XQpi76V1RbhkchS82jjj85/OytbWxF6+2KZztbgnfZjY1sUV1WI77Tx1Sbau95PECiW2xIaj3gBYmxqHorJqcYGgtV3CPd4YeI830yabgIzLwrIqzF7FvoVJ7heEMb394ObsVD+G665GpXUwMq9IuLuZg4V1tbiiWmXrTdJR9hkHYHI//egy6aPCcbjosuE+NBK1hoQia4qrVzPyhyXQGUBzEOgA4P2deYIwxMs3dAIyqDYcumA4jNFrY3vC09XZcAw9wJzxuxJGBUfy7vRBobinYxvM+cqYxkQP0onHEgT21MX3zKlzuNCK8pAuWXwAQV2vtXmYXaSVSB0Shu5+7VTRAMy0q/gNB6SNbJyQVw2NpGEqLwC76zZImkBOQ+b0AYLR+rJsVdtPiQ3Gp3vOmmo/WrxSR/pA+S0H4PEBwfjkp7Oq5yumROuGiTNTBmW4ouKKanx94JxDUU04CB6IUk8/vbkACIJ2h3atUVBahaqam8gvrcLlqhosM2FI3y/EE/s0QmhNiQ3GZz+dVaVndi1iHUSMBJyXOsYQu1YiUEvXdVraz47oire2GesTowcrJVhtYSQCjN7ctwGY3D8IX2g4VEnLwNVpEB2JnWskrjWJ8XvxynXsLyjHvSGe2HSkGB+YjMqiBFGmNDasWK53KaQTHYDs//cXlAmOERoGoUlRgtbJzAb99w3HMSkm0NRGdLtiRPIQPDYbslEqcW+IBwC6Zo7g5Q3H8c2J3wwJXRlbcjGgsxd6BwpXDrtPa3tE8eK/HMOyH/OwmOLR7EiSPG9urGjBzJgwGiaMmRcg2kfpXccB9VdiCxmb5ica2lwWaOGTGjJGecl/lcIc+X2jTtg0s2UgjjMkXNHOU5ccDlHHQ+gLaeijUG833b7OKSjH6Eg/FJZVOhyrWkuYA4T+jevshT1nymTtY1jwBTsCB2AsfBcJQ5Yo0SgRTeTCrfRxSdI2KszZACzPOuPQ3GJ9YiQtXQ9i0OcLqww8L8TOBQ8EeLqYY28AkNTbX9OTnNhDxoa1R+9ATxwuKm+wMNccSIUBS0NnCLdDQ6eM2wrI7dKMdJITx2Fiv06aXnC3G40pjDUmGrNc5ArwctXN2xLgfX5ST7y0/vgdjdephJn2jAhwx9HzFQ3KT+sKVYnUoWFYtiOv2YxDI9fOtxPJ/YIwa3gXU5oQFpRaire35WLJDrpdGYGZNe52w+g1nqMwot0zikDP1igqN8+R+L8GI2vR+tQ49A70xOqcQqR93bDbH6Wmu7FhRv6wnCKaAWhxW6UndqODrZbnm50wdyfiNxpBY24efJ2moylipdLg4eKMuQ6y1DcV+pkgem6oMAcIlDNHDYaYc+K4ZiUs8AAe7G0+UkhTYeW+QvxtrWPaMSWkjgivbzrBpDmRwswad7vBw1j0D0ehJcyZ3ZwtYU6AkbGUU1COw0Xlhp2fWOAgROdoDqTCgCXQNQuYiduqheYmOPEwHrfzbocdt2dT4gCcr6hGhkbkjjuBnAK1g05TwcYJnqgZW/XbwInj4NOulek8kvr4N9niaIM+abceGnuuf5/bOGTN58qrsTqnEHELtmP5rvxmo4W8G/HYgOBGjfoxsIu56DpmKG3uNhCv14aOTx7A9E8PNBsv1//V/rqrYIafSAsNMchuKmSfKW22p+/GhB7lQWMhZWiYJsm0FEbL09Byh/u21V0Y/zQwpIG51CMmxEvwJjVgrP3G+F64r3tH03lsOHwBc+tCdT13f1cHSypAGh7KieMw0IHwWTSMibx98XCNoqyyxiGth5T2hIWBTWBwfiehN+8++eksRvby1eQWBYxv4rtPl5ma677urfHO5D6G4u82N2WCETTWviQlcb/TaPYC3dWrV/GXv/wFwcHBcHFxQVxcHHJycsTnPM/jpZdegp+fH1xcXHDffffh119/laVRVlaGRx99FO3atYOHhweefPJJXLt27XZXhQklPxGxsVH+f1MhTUL629hYtdcxvru7CQ2xATIjyCf3C0R3PzWDOgtGhb6GLmy5JVc1+zi5XxCmJ3RuNG1DTkGZoTJLBT6zWZOoGUfOX8Y/HHQUIGjr0lJkz1+TEossSugss+ABbD5S0mRxWx3FpWs3HNJ6TB/UGbvThmHJ5CjmO7vzfm/SteT5EV2bfK2VQmojzcLWYyX44PG+mu88xuCbY+VpA9An0F333aU78jAr8xC2U6iQpJgxqDPWpcYZLkNjYkpsMDKnDzAUH7ghh0q9fiIk7ncazV6gmzZtGr799lt89tlnOHr0KO6//37cd999OH9e4GJ68803sWjRIrz33nvYu3cv3NzcMGLECFy/Xm9P8Oijj+L48eP49ttvsXHjRuzcuRMzZsy4U1WiYmJMkMiOn50+DNl1GwD5/yWTowwvNtLoASQouBYC3F2QlTZUczF1FHYAvQL0Fw8WbBzQvxHj5I2JMEbo+8zwLkgdymYHF98b1kXw5HOgLBwEkmYWEbTy3ZX7ijBr5cFG29TMpEPG0ZgIP+pzrfr7tBXY8wkHn1HYOIGEmJTTBmDGoFBTAu0La47hwNlyh/rHDsHbTutbI224sM62krDns9IjhL/pBg9YdgDT4s0LyjYIV8pmPtPTQJPnRiJU0DA60hd+7i7wYkRaIGgqbT/HAeP7dkLG+Ijbvilq9Z+dB/JLteNN07yiAXZ/2QEcNmh/CmgLnjYAU+NDmDGxh4d30B2fRoRLFj7bcxZVNTexL1/b0xkQ4jM7MlfWp8YhbZR+KMAVWWfuuJauWQt01dXV+Prrr/Hmm28iISEBXbp0wcsvv4wuXbrg3XffBc/z+Ne//oW//e1vGDt2LCIjI/Hpp5/iwoULWLduHQDg5MmT2Lp1K1asWIH+/fsjPj4eixcvxqpVq3DhQsPsWBobJGSKn7uL6v/H9PbHtPhQ3TQ4Dpg1vIuoEchKG4or17XjlXKckPeRc5cbqSZyNMQIflJMEJOWwKxg48RxeHFMd2SnD8OMQZ01v/du0wrLdLzznDgO9xi4bmSBh2DcbyTGoyNOMlKQxUi5MRvV4s0Z2Q0zB4fhxTHdme02ogf9avOd709jYMZ27Ms3bmc3PNwHKUPCsPV4ibihzE0MZ0bjYKGW56lhhAiMRHlgwQa5dpuVBqFJAMB05LBxwIIJERgd6Y+ZCWFYkxKrm78Tx6F9W2eZJnJGQqjuQcQO4QC5LjUOoyP8DLUnDyHGLg0jenQQ33EUVTWCe0BjmZ9MGRCMv43ubuhdW52Xup+7CybGBOEpAwe5xoIWHQog9HFMiKepNtF71ZEQWjShjoxZP3cXcIwDiK97a1HzyirXoSLH9wc7gCc1yLyl2HS0WBV9QgskVnduyVWRKBnQEJQl8/xOoVkLdLdu3UJtbS1at24t+93FxQVZWVnIz89HSUkJ7rvvPvGZu7s7+vfvjz179gAA9uzZAw8PD9x7773iO/fddx9sNhv27qVTHty4cQNXrlyR/dMc8Kf4UH0hpm7QEYHw85/OYqmGYCINsbOcwcVjZC1x4jisT43DjEHGNAZG0rQBWJWjDgjPQdi41qXGGY+NyNWH+/Jzd8HU+BBdjSdtkZBqPt8Y3ws5JoQUVVoQYry6OTtpvtNQ2Lh6TaBUm2h0Tech8NVtPCIcgNJG0TW+2078xkzDzkMzwgEn+S8HwUh/yY48mef3m1t/wcUr1/GkkXlQB0I0ygqPxvMCDczu9GGYYTC+LiD0/9zEcFlIu7WMaycSy7e4ohoLKY4c4b5tsDYlTuYpx9J4SPFAb1+VPeW/dxXgjwOChdiwGo20+/QljFuWjU1Hhcgkyf21Q005cRxmMbTW205cbJAwJ+Xw8nN3wdyRDffg/uSnsyivqtGsE1lHdqcNk0Ud0VovWekA7FBejoKsMbklV00JYNL5zQHo6S+nuhjRy9choVlZBGmZooPptyiZdfxzY3r7I60BnvmNYaO8fGc+Err6iDdhrPlKsCYlVhXiEmCvm82Bi65ZC3Rt27ZFbGwsXnvtNVy4cAG1tbX4/PPPsWfPHhQXF6OkRAjd0bGjXDPQsWNH8VlJSQk6dJAbdbZo0QJeXl7iO0osWLAA7u7u4j+BgYFNUDvz8HN3kdGA0AY4j/pTwvs/5mkuTtKTKStwOCDwMGmBCEsd2rUGD96QxsrI+jSpfyA1rcn9gvDCqB7oHSjE+5Nqn1j46x+6ItDLVVSJa3kWcwBOFtOF+CmxIViaHIU1KbE4VHTZIVJaAjuADYcuoLKmlvr8jwOCsPChCENX7cPDOzDrPy2+s0B8zDGY7iVaquT+gZjKsDV5euVBDMzYDg+XlkjWGRNmwTP+X4pankfSsmws35VvShh9euVBLNySiwf70K+L/7buODYcuoD2bbS9Ycm185LJUZjYLxAZW3KRvHwvkpZmo7CsktmPo3oJ+bLGXG7JNSQtzcYLa45g45ELKK6oZmo8pFh3SB2OjQSKn5kQhrUp7A1rqUJYXrm3iDkfiGABAAWllbrlMgMnjsOckd1ksY7PljVOHu/+kKcZ53hsH3+8MKqHLPxZkk4IORaWJkdhbWocJvcLNHfYYGDe6O7IShsqChSOCsw8gOMX5GvZN8d/Q8qQsAYLSDyAtK+P4nBROXaeontJ23ngQN0NS0Qnx69WeQCLJ0chmaElNprGR1kForKjqFz7enTTkRLDDBRkjjRF6C8zaPaRIj777DP86U9/QkBAAJycnNC3b19MnjwZBw5oh8BpCNLT0/HXv/5V/PvKlSt3XKgrrqjGh1n5WCHZzMgJTDrenDgOrs42/PfweV1etKcGh4lCDolIQUPmviLN8C5//UNXHD5X0WCCRiV+v1pD/X1VTiEmxnRCZU0tLlff1IyeQfCPb06JcU8XjI9AQlcfpkMAD2DVviLq84+yC/BxdoF+TEKN9pJiwZZcpNZ5QSrf//ynQnyunwQAUGO4EvTv7InXN53ACooG1gZBe1dUVo3sM79j1b5CzXLbecEubU1KLDL3Fenal5kdD3rvO3JVBAjlXn+IHWlhwZZc5gbHAXgtqSeGd++InacuqcLk8QDmfn0UryX1pPYjiRKQMoR9lcdDsJFcWTfuyIbryHwiWgKWgEnyU0KZnw3A4uQodPJ0wcYjxY0+vwHgsdggLNyaK0ZOGNFTHevWUdh5wT54bWocNcTfukMXEODpgoFdvOHm7OSw4MQDOFxUgadXGg+fmNTHHw/09mOGciurqkF+aSXKKmvMRWGB/pip5Xks/aFxiLZ5AGOXZmsKh7NWHURlzS2E+7Z1OB8njsP5imqsaiA9yIqsM5gaH4Kdpy4hTSdk4IqsMxgd6WuoTdekxIrRgu4k7ppIEZWVlbhy5Qr8/PwwceJEXLt2DYsXL0ZYWBgOHjyIPn36iO8OHjwYffr0wTvvvIMPP/wQzz77LMrL6+2wbt26hdatW+PLL7/EuHHjdPO+07FctdisOdSzzjtxHJKi/LH24HlTi4CRhXTGoM5YsetMo7GaNxQNCR9F4rnO+eoIdml4HDpaZw7A+L4BWHfwgqFg52QxvBMTkZR1zc/nTeWfOX0AduT+phkypzHr1ViM+o4KSdIwTVpzi6v7F6vb+wS6O2wzZLTs6aPq42DGLtjuUF5SrVxTCHK3CySKS97Fa7pjVauOyf0DERfmTQ127yiS+wc2OhH8qAhfbD1a4vBc6RvkgYOFlw0J/GbAcYKGzZH2IzGn9eaeUSyZHGU4dnnm9AH4dE+B7iFjaXIURkc2DVn4/2SkCDc3N/j5+aG8vBzbtm3D2LFjERoaCl9fX3z//ffie1euXMHevXsRGysYFcfGxuLy5csyjd727dtht9vRv3//214PsyBRJFiDjwewaFKUSIlgVpgDBGFQa8ByELzQFiVHmUu4CdGQY0gtz+NAQbkmfYSNE7y3dqcPM2xcLZYNwLqDF0TbqtfG9tR9/05tmDwE2zYz+RNbkak6tmyNVaf5ST2x1oS9JAs2CNdsjsDOC3F7jTivcLzgJU3D4QYYgHMQ2kKvHTI25+JwUTn83F0cuhq3QW4/5Eg/xndp3yzoivg6jXL/ztqkunp1fCAyAIGejXudtnJvUaPTpGw9VoLlU6Id/v5Q4WU8y+BdnJFg3MZUCZ4HLlfVODQmON58TFcWnDgO5VU1TIFVChuEyCfbjutrjJuLWqzZC3Tbtm3D1q1bkZ+fj2+//RZDhw5FeHg4pk6dCo7j8Je//AXz58/Hhg0bcPToUTz++OPw9/dHUlISAKB79+4YOXIkpk+fjn379mH37t14+umnMWnSJPj7N5/wOyzo3eHbOCDQywU8eKzez7aDaQh4AOOWZeN8eXXDN9VmsMo7cZygRdF4Z25iuOhAMTrSmCegFLU8j6oaO0K8XeHh2rJZbG6NAaVziZ59JauNCXWGEcxbfxy5JVdVHmpm2pRoF/QiNEjtCZUwOrXsAC4xzAV4CJpfR2AHEObTVtYOrDySlmZjdU4hJsaYF+jsAIrKqnHgbLnD60nfIE+smBLdLMZ9Lc8zrzaNgINwja11hc3C8O7apLyNLQjYecDVuSWTqio2zEubJgXA6Yt0jtb3d7I1nEbg4eKMjAlq6qJe/tpaJzsE202awPVof+M2dRyEtcvDtSX1ubIr7ABW5xjbU6MbkVqrIWj2NnQVFRVIT0/HuXPn4OXlhQkTJuD1119Hy5ZCp8yZMweVlZWYMWMGLl++jPj4eGzdulXmGfvFF1/g6aefxvDhw2Gz2TBhwgQsWrToTlXJFIgbP21QcRwwLioA45Y1PISJHuy84GU4pKsPtv/iWJggGwc8NSTMtBdZY4C0IblKOq9jECuNtenn7oI+gR74ufCy4fycOA5Hzl/Goyt+0u2bhlxl3E4k9w/ExHsDUVlTi+KKatG42GysS6PCFQHRsmSlDUVW2lAUlFYhxNsVO09dwgtrjhm61gb025iDMEY4COP03R/zHJ5XLFsfJ45DyxaOiTlEYzAxJggJXX1woKAcK7LycajosupdYrDuqAbo6cyGXS0u2n7a9LjmOGB8VADW/ny+2Zh2ABBPDlre6Ky6fn9Sm5RX61tHQLTnsWHtceX6TdVa+1OePin3+kYIS6fMg4Mg9GygpH3sAt0BTYq3FeTeNgCT+gWKXrRGy5XQ1YdZRhpWMmyplek2FzR7ge6RRx7BI488wnzOcRxeffVVvPrqq8x3vLy8sHLlyqYoXpODRJEgG5cNgvfnwDBvdPJ0uS3CHEEtzxsS5h65txP+s/+c6veYYE+8ayBYd2ODg2D4X1Vjh6uzDYVlVUhfo20Qu+lIMUZH+sHP3QWHi8pNC3NzRnaTcRdpwYigMbaPP9YfuqD5burQMFTdqMVH2QXU5zYA0xJCcfHKdazTcBBgoY1zS3G8SZ1LjEKohx/WHyo2vYER780Qb1fwdV8TwaagtApHzl/Gws25TEHASBuTd3gIHpKPxwbjY4YXMwdgSlwwPsk+S02begAD8OfBnXX5DVmwQ9C8ZUyIwOXqm1igE8+Xx529CjKbNccDXX3bNki4Se4XhHPlVdhpIBpHUh9/Q4cKnheYA3hGyYgTi6MHgMbqIqn2HAC6+6k1X0byamh5eMjtZ20Q+OoA6DrqEZADONNxjYPpg6Sg6atCbFh7ZEyIMGwbSuqjZfZUUFp1xz1cgbtAoLMg37hCvF3FgZOdV9osg19/SRHmAGBfgWOM/Q0FD4G4tLCsUsUpxML8TSfxxuaTWDA+AufKjZNFchBIeBvL5gOQa7O0Fpaj5yqYG9nsYV0wuX8Q/NxdsPHIBdMCHQdgedYZUUAg3q5ZaUORnhiOBToLtQ1CHNqlOxzzrlNqPIlAOTEmSNQUDgj1QtKybIeEGNp1C0uYI++P6OmHe0O8DBt68wCWNdC7kIfgUdsYaG6aYTuEDb8hZZoY0wnjlhmjHnFtxda4SUF4BGnaJaBx+rWhIN7qxNNydU6hw+OkMRyQSFtwEMxXJsYE4Y1NJwy1kQ3A8sej4ercEnvOlFKjjzgyx6U8cRNjghDu29bweqH1SnPgnyNo9jZ0FgRII0cQuDk76V6pNJbNmplktE4yjl4BcSbLIIWNE66qjApzBERoad3C2MIPCHXM2JKLWQY2eUfrw/pOSyvRVUIZEB3saTpvmrZH5DwbHIanNdj1bZywqJvZ9DhI7Nk4qDSepG8Id1lxRTUqa2o1qUEaE2QRjw42x+J/Ozf9prwK0rI1dDhNNEyjyAEoKq82PMeNxpmeVEc6TCOFJrijwhwnaMCIMHe4qNxhYY6YG5iNTMF6nYdgqvP9yRJNL2Mp7ACmfXIAR85dxvBwbRtEoyBriJTvsHegJ8ZHBTQoXQ7CIaK5wBLo7lKszinEOAOni2nxnR3uZCeOE2Jp6jgQsKCc5E4ch7REeaikezq0MZQWD20D++dH0D2zAKENKmtqmQs9IdSleSbW8jxu3DJ3XtUqK+BYpAtp2qwQTFogpMCrcwrh5+6CjAlyQmZHBG0i1KzOKdS0i5w7MhwRndwNb7QcgEH3eNfzC/LA75Sg70SgXJ1TiIEZ25G8fK/D15kkXyOQkogSkwgjsVebGhyEcUziwerBUSGEmDAQtn1HD41jJGHHSOSNhhxA+bp/GU3DDmA0IzaxFKtyCvFRVr6h8csaBkarZab6NqgjXby/M4/KuWcURNsY38XbUDuOifDT3R8ccUrhIXBD/pRfhgl9GyZ0jYnwRcqQMCzcKhCBk3WwuKIaaw+yo9doQXqlvHJfEeIWCGneaVgCXTNCcUU1svNKZVoH6d8Eh4vKkWZA2ySl3jDLsD1vdHesSYkVYmk6sPIr1wKuzr5jZkKYLPRK3iW6R5VRkNNpcHs2MfLU+BBqjEgSDH13+jC8MS4SwxinwUXbHQs4zkLK0DC8MKqH6ZA+QH04NEcg1WpNjAkS4/1mpw9Ddl28RTPlmDOyGwB9nrKMrbmorrllKF0i4O/8tVRm00Y73RMSbanm1YitHAtGvl2aHIWstKGyMF0TY4IMxV5Vwgbg6aFhojDoxHENjsDRu5MH+gZ7qkKC0eCwDMoBHdq1RmxYe/QO9HQ4VNf0OmGExJyeOTgMC8arvSDN4PzlasMCthPHYXqCfmxgOw9mWEQlaPNZGfOXBRuAFVOiDQlS46P8sTY1Thbp4v0f83TtKqXoE+hOzYtH3fzjgTGRvprl3XxMHa3EkWHFEkQWbsnF47HBGNvHz3S6/UMF7fnGoyWyMIJ2Hkhbc7RBXtzKz3gA6WuOqvbq2w1LoGsmkGoZBmZsx7P/OST7m0j/JDyNniDAQdCM5NeF6hnTW/8kKkVZVQ32FZRRB/yYCGOTS/opxwPhvm2RnVeKi1euNxrNiriRazTIgbPlACBb6EngZUIGmZ1XqhsKxij02ubdH/JwuKjcMMeXVIsxbVBog9qMaLUIiKG3n7sLokOMX8XaIVxBLf7+V9068DxwhBGUnoMQSH3e6O7495Ro5F26ZlhzNKJXR6bmlbUpNtR+zcutlcr4ubiiGvsKzMf0tQMY2KU+tuSalFiUXLmu+Y2eQPrCmmOGNypHrzeJkwCBoyGdNh0pUZmSkAgujmLBllx4t3FGVtpQTf5IomUVwwfqpNuQcWMHEBnggay0oRijoRF8amgYXJxbYG5iuG4brDl4AeOWZYv7QnFFta4dqxKHiyrwytieTM5EHsDmIyXUuWTjwFyLeECm/deDDcDCh+iCvJ0XIlGYcaSyQVhT9hWw5wHhxTMiPBulSLIr5sWdgOUU0QxAyIOlJwhpIHOiWQn3bWtYCCC2XGRyzR0Zbiq6gtYVWjvXFnh1bE/MW3+c+pxmbG0HHDZY10Pa10exTiPQ8tMrD4pG9FLaCz93F6zOKRTbntiCNKSINgBzR4XjzS2/MOk07DyQo7HYSOHEcViTEity2l28ch3Ls/IbFCWDXJOSepO2CfRyNVV3O2/c08y7TSsq/Q4P4NOfziItMRwuzi1MCatbjpbA2Ym+FfM8kETxqG2IwTfHQWb8TMLx/dvgdZwSUmPq7bm/ycL6UfMHENvZC9ln2MJjLc8j+/Tv5gtjEluPFePYhcvoF+KlSa2kheW7ziAy0B3RwZ6iQKcVU9oonvzkACb0DcBzI7rhjc0nqRqkOSO7iVrWiTFBOHzucqNHbZDiyPnLCPF2xaajbGekZTuE2NtG1yA7D6R/fRRurVrgsz0FpsvEA5i3jr6Gi3kAmBHfGf/OyhdZFqYlhGJ0hB8+2s3WWhrVmJM85nzVOI4+yf0CEezthozN+hpqDxdnLBgfgfSvj1LXhOfu74pQbzfwgCHHJ5tifbgTsDR0zQBGAgDX8rxhIYCAvEo45FIbyWB85d4ivLT+OPXUYuOAkb3oavqmolDgAazOoXvWEhChmGgHAbUgTYrnqB0P0frNTAjTvIKzcUBMiL4xvVSLEBvWHjtPXTJkN8kCB4jhnJQHiBfWHIObs1OTED9zAO7r0ZF5FUbsZXafLjXtYMCinRCeqYW5Sf0CHa+jJLHVOYWIW7Ady3c5JswRE4Sdpy6J6egl83hssKYwR2CGm4tZPp3nn+w5i9c35WLs0my8ve0Xh+wIyUYpvYGgmUYo8RwjkoEUX/98HhevXKdq33gIV3lS0xazwtzw7h1MaRIXbs7Fdyd+0+xjXvFfI7BDaMO9+eXU5xyAhRMimETDenDiOEyNDxG1yLvThyHMpw3GLs12iPqIhcbaGlbuKzIkzHEQePEmxgRhbWoctS/f/uYUZmUeNESoz9Udiu80dYkl0DUDGFnEnDjOkBDAQi3PY2AXH6QbUOcbgVL4IQa6a1PiDIVKcRTjo+jRBYxsYrU8j6Rl2UhevhdxC7bj9Y0nqBojEkot3YDdixQvP9hD5GXTYpWfmxguXvVopf7nIZ1FLYJS+HQUCV19qAcIcmCYm6iusw3A8HDjfHNScAAyJggLnZ6t2bs/5Mnyt0HbhsdsOQh3lcNXjRCuVIgNa0O6gpggGNG4cwDSE8PhzmC4p5WTloZeHxJnnT3pw5AxwbiA9vXP5xHu21bc9M3OG6ltpxEnEyXJLAv7C8oxMSaIGrLQDuCjrAIA9SYZZrD95EXTgtc8xiHYCIjDi5n1v2+gB7LTBYeJmYPDkD7K3NqvjAoTG9YeAHSD2mvhtbE9kdwvqEFOIjZOmA+sK3W9frGhfk0ChLWa9Q1RhjyloQyZPawLsiWOKXcS1pVrM4CSPNiJ45AU5S8Gd5dqasZFBciuY42CXO+EeLti4dbcRtGW8QAWT4pC+zatxCvMpuTGswGYEheCtQfVBLtGsxQ9JyEYyyrhxHGIDvGULWBGDY3nrT+Ov284LhLu0q6hUoeG4cHe/sjOK0VCVx+smBLN9ABbtiMPfxwQDD93F0NaXD0QgYR1RTZ/00nxej6ykwdcnW3iVe/+gjJ8n+tYhBAptARdO19va0SuxQFg89GSRqk7JH3vyNU64cIzogHQgx361+4cBMeBqQNDsfPUJdM2UtJ0wEGz/8ZE+OHFMd3FTY7wdBn1mNxfUI4n60Ka8eCxJiUWRWXVhiNOENtOIvgndPXB39Yew/e5+pEWWLi3LhxTdLAn9fmKrDOYGh/CtL+dPawLfNq1ol5LNsgsw+T1tA3A8inRcHFugeD2bprmHFL8/cEeMo3RzIQwBHi46F4fkmvVqQNDVRqnhlyJO3Ecqm7WYlVOoaE0aMLcDEm5iiuq8fqmk4bLs2SyfK8iOMqw7yUgezCrjITfsznAEuiaCWjkwc+N6IaC0iq4OttQWVOLw0XlDrtZ/3lIZ0MC1zPDu6DWzuPdH87IhMs1jADuuSVX8NyIenU+4cYzIjDaoE/xIQUPILfkKtJGhZvy5gKMb+BzEruJk7O4ohoLTW6ixK5lbWqcKsLH3MRweLi2xMCM7aLN3vRBoRga7oMdlM2WB3CgoBzRIQJthyN2SlJwgDi2pGVTln/hllysTa0nKQWAe0O8DIfAkb7DQ9C+JHT1gZ+7i2b4JHLoIBoBgpG9fLFZInz36eSOQ5RFmAguRolCk/sFYaWGZpeDcJVCQsb9eXBnTeJbM0KiDUCotyvzm+T+gZg17B4xUkmaTmQTVlnEOaZRMBsgE+YIzDgJ3Rviifd35gntw0vsdqGuX1IfP2w4LPeOpJGzbm+AMDehb4Bs/NJAjNhZY3tyXZzQl9YdN9WvWmsaOQQDwKzMg7pjiay/0z89INq7PjU4DE42Dot3nDZ9MA/0dNFcn6UE5IRlIdTbTRwbod5uhse5dD7K5o8DZkMkvchOHuLffu4uSDNAag7ID+rSegHa/IIEixmh7JpId+EwLIGuGUG5kfm5u2DnqUsyo33aABoT4Se6j7PeWfZDHoK8XEUvMta1zDvfn5ZpacgGOzS8A/Vkt3RHHh6t0yIRQ3sjE3aGRPPAMkpVgggH70zuY+Dt+kWk4PcqTWNkKSIDPMT/Z2nFknTCcBEHkIw6J4wDBeUAJyym0lBtPAQ6DhsH9PBrixPFV1Vp7TnzO2avOljvtGHCsYWGnacuYWJMkHiA2HSkGPM3nWSWn1wj7Dylr53jIWwISpoXqfZl0xF6PyjDFhG8/2OeTJgD2B6zs4Z1wfDuHVBVY8eR85c1NRlOHIe4Lu2ZAh3HARl1mlYSWoylmSOatJZONsNxiu0Apn96APH3eGMXhRD6gcgAcU6xSGK1NlaihZzUL1DXcWVc3wCqhoGluQr0dJEJexP6BuCnM2WyjZUcDGgpTIwJhpPNJrtpSIryl5XBUU3QgFAvpI8KlwlzH2XlU98lRuyEl1FJv7Ph0AXMHBxmOEzU0uQoXQN6qWBRWXOL2beL67RJrs422Zph54GldeET9dYD5Rw2sj53822rchZTRmUx0h7zRnfHqEjBo1dv/tDAEp6kDm7kKvlsWaWmDaSUN1JZr2nxxlgDyHyi4aOsAryg4VF9O2HZ0DVjsIz2pXDiOLw4prvI58QiqyUBzgEgjWEgS9IndgPkxJydV4pAT7pKmQfw89lypo0XyxTm37sKAAiayd3pwzBjUGdDru61PI/ySra7uQ3Av6dEI3P6AMxJ7IZlP+QZFuYAIaIEAUubNHVgCLLTBd62+Uk9Ndv7i5/OYtaqg3h65UEkLaXH3bXzQG7xVWq9M/cVyvqf44E/DQwxXB9ZmSCPruDn7oLRkX6a5S+uqBb7Vm/dc+I49A50pz5zdbahuKKayee1NiVOZYNSXFFNjf3IEv4XbT+NccuyUVhWKTqmsGxw3hjfSzPKA8dD1CqGeLsyhRMbgHWpcZg6MJQap1hrLNt5YPevpao5QrRVWoz/Thyny23GA1i1r0jX7mrdwQtU/qx7Q7yo758rr8ZbD0Vg3ujuWJ8ah+dGdGP2E61urs421U2DsgxEE8QCa+P6KV/uNKI15uYmhsvpUhQZLtiSi/d35mFiTJCmFz0Bz0M3coj0BkCLouV8RTViw9prEqKT9UBvDZLOYc0rfg7oG+xJZV2QrhsTY4KQnT4Mr43tybRxvbdOaNWbPzTYOGGPYrWjsjyzht2juR+sSYnFxJggar1W1B2ojYBV/hVZZ+44/xyBJdA1Y7A0RFJHhCfjQwDUhwbT4lUimpIH+/gjWeLtx3p38fenEVfHhTduWTb6hdCvMMoqa5hlZZ0GpXxofu4ueGG0IJQumRyFWQxeJIKX1h9nLkx2AK7OLXUXEdYcrqqpFxdY9l5FZYLx9pje/vjjgBDN9l6yI09mt8eCHcB0hVCb3C9QVU87gA93F2ikJKC7b1tqHaXtTmg39PrIKK/ZnMRucHGmK/2rauxMrQsH4SpdCUe0NNLFftMROnfVpDoNJbl6pvUdCeQNgFl/EtKssqaW+c70QZ1lTh60fKbHy9+ZM7Ibdp66xLRfI2GM/N1b4+WxPZgbOkl/UkyQ7lyX8meRK6kTF+iaUB7AnK+Pok3rFujQrjU2HqFrq8nGLOV+fGN8L6qQUsvz2HSkWHbYmNyfTrI8b3T3ukNgKPV50tJ6fjbWGErq44+ZCfWG7qz+I96wvQM9mfkRzF51EDtPXdLkkQuoM3sprqjWHN9vbvkFxRXVug5zdgBhPm2ZzAKkb3X3kjqNNMteVzlGdp66hJfWH8fGI3QHOOk6atb+d9GkKMwcHKZJWK3cP8YxQnjZIazXrHLYYTyaEgdgRM+O6jz4O88/R2BduTZj0IzXnTgOHzzeF2t+voDNx4rxwa58rMjKF1XQgHCC8m7jjGmfHFAtGB/szMOPpy6JV3jJ/QIR7tcWL29Qe3xKr6PsvGD4TMNLG44jbWS4KRsvms2M9HpZC3pZHDl/GTtyf9NMZ0LfAHxFcS4hGrriimqm3dqszIOorLkla28zgZ5p1wlOHIfRkb64duMmMvcVgQeQaZDjjZb+L79dZWqUXJ1tWJ1TqHttQpwAjNor/n61hjlm9YKbS+3syGZXXXPLoSvmWp7HgYJypmYmc1+heGgI9HLFcopjCrE3JO2khA0QwwmRuir7lVA+TI0PEW1hk5Zmq9p8dKQv2rd1RkZdrFqatkuKB3v7q2z5Eu7xZsbyzcwpBM/Xx+l898c8Wf/YAFTV3ER2XimOnq+QxcxlgecFb0dOY87PTQzHg7394e/eGjaOQ9/gehsm2hyYv+kk3th8EgvGR+By9U3qNZoTx2FUpB/83F0wNT6USvfCQ6DlSejqwzR4X3/oAmLD2mNiTBCzjwGhbgcKyjGmNzs/6bukTVgHF6n5RMqQMOa1ORFwR0f6aXKlcQCyTl9SmSUQ2ADm3FNyXBJ7zT15papySTkYiyuqddeOrNOXUHrtOjiOE+z2GPWk/R7oJWgw9QirSXkOF5VjjYZt+exVwnrNclRr39YZa1PjdNdvHsC247+pfqftZXcKHK9FsW8BAHDlyhW4u7ujoqIC7dq1a9K8yGZGDFFX5xTKDOtH9vLFlmMlVIEgK22oyk7ADKSG1I6Qryb3D0LmXn0PJuIMMDW+3ltpf0EZZmceMjzptWCk/Kx3MqcPQGFZpW772Thgd9owmd2P0Xb/95Ro7D1TjhVZZwRbDrD71SyMOJrQnBdoSB0ShmU/5Jm6KtmdNgwbDl8QhQKilUno6oO4Bds101oyOQqHz112mKhXWo5Fk6M0bZke7R8kXmfTxhfHASsej8a0Tw+oFnliYyoV5mhYOCFCdo1cXFGN2AXbVe8Z7Q/p+442jxPHYU5iN8Oeko7ABkFwrKm1i30ptXsqrqjWHQs0cBDoJqRUPvM3nsAmhjCzZHKUKECx0luXGiezUaO+J7GndKTcgHkHMPG7unbTIj7WGg8cBC0pzZknfVQ4ZiaEiXvO5z+dZQqGHIDs9GGiY13y8r2G68ABTFtRFtITwzGgs5eml3X6qHB4uLQ0ZN9ICN9ph1MbIGh8P92Po+evGCofEQzJ+taUlCVm5A9LQ9eMwDJEvVx9Uzy9bz5Gn3BEKxHodV3gyHJg1eFh3JCahpV7jROaEs3iyJ6+2KIRL/aZ4V0wLLyD7qIrhRFhlNj3SPO1ATh96Sr+rnGlK34vUbMTAXxfPj1UmhLFFdcxJNwHzi04LP0hT7NfzYAD8Oz9XfEWhadLuugbHRpLKTZhWrDzgoHw8l1nxDwIIz/rWk4KoxQXepgUEwSXltqXKCslBw9auXgeTDqZRZOi4NXGWbevD5+7LGodAeC7E+rTPSt/FvqHejJJZI2AeK5nTOiFOV81jEuPBg5CrOKlO+QHAXIVTngQHcmXB+DWqgWKK6oNafOPnr+s+ZwHqDcTqvd4Ifbn4slRDpV7eHgH9Axoh0Xfm48JTbR+WvnqPWN5gXbycJF5JmuBB0THJj2aD9q3u+psRY3uSwu25Opy1WVszmVqQ5Wwg00/ZQfw5Mf7caLYmDAHALOGdsGAMG8VBcqdhqWhM4DboaErrqgW6SwIiErcqDDTkJN7c8WSyVEY09tf09vPERD7J6KpcERLkjpU0GA5qgm9XWhIuCszYNVrT/owfHuiBC+tP3EbStG07WsDsCg5Ci4tbUyBT/Z+nTav9NoNwwHe73Zotf/fRndHeVWNYW9gR/JoKsxP6ol5JihMmjuS+vgzI60oQW6AAKj2KaN4tH+Q7CB1N+PpoWEyuq6mhBn5w3KKaCbQYu83Onn+FyaKFByE8CwAUPh74xqdpgwJw8yEMGSlDcWSyVGGT3oEPIAlO8wLc+Tb2wUOguDaFCG9lOjs40b9ffH3p+Hl1qrpC1AHvfbtE+jhUHsQIeLplQcNCXOAoGFZsCVXV5i7Dd1z26DV/vM3nWywMKeXR1PhXHnV/9Qau96gMAcAI3p1bDDBebhvW8c+ZMCGOzdv3v2h+Xi2SmEJdM0ENG+mhob7uptB7GWIjZ3Z6z89DOwihEHyc3cBTDhz3G3gATzYx9+hWJtKjGOEXSPIu1RJ/T1zXyHKq2oalHdj4si5y9QQZ0bQFMPEieOQ1kgh+RoDT8QGI3P6AKxPjRMOO3e6QM0E7/2or2G9G9qKAzBjUKipsbz1WIkhr1s9NNb8sXHAggkRmK7jedxUUHr9NhdYAl0zgTKGoTTcl/T3xu4wDoIqXEprYHS+vja2J5NnrqFYPDlKNDTNL6ULCiz0D6XTqxAQQlFAsFucpRMKpzHhaHNxqKcYcOI4JPejUzrQ8FFWASbGBInaSEcWZCeOwxNxIdRvyQbBAg9QwyfdKUhDjL02tqfh75pCmJs3ujuy0obCw2CcVrMwwu2oxIhefiIF0pje/kzeyqZCQ5eUh/oGOCx0mJ1bBBwEsvRsDToVGhxdz1OHhmm2k9azV8f2xNT4UFNtRGyGtah+9ODp6txoAu8rD/bExJgg3Xo0ND/W99I9pDnBEuiaEcimmzl9ALLShspoMcjvaxnEwVqwAcyNOGNCBF4fFyESE+82GJjbiePg6eZMNXJN7kf3+LFxgmcSGXRaObhICH71SEaVeGwAXfAABEeIBePrNX9GCHOlaAxtqVQwS2UEfZYK2YIRe30fZaUNxazhbDJNJQjxJeHO09PW2Sj5k8OF9PrWhvpNzOwGQZDcL0gM6K43LqTv2CB4wrHGNScpo/IVaYixx2JDMKEvncPKUfQPNaZVtwEim75yHNoA3WDqHAS7rqXJUcxDzKJJUcicPgArpkQbKjuNgoEEdjfbv9JDiNY75BUynljk6DQMD+8gG4/pieF4+5E+poQODoJHt3Rumalqcv9AZKcPwwujeohk3UbzM7qeS9sodUgYBnbxRspQ9dphgzAmWNObA3Bfj44qBQJpu4UTIqjfSccFjQxeDzZOMJ/JYKQvxbzR3WVznVUHAJoCphPHYV1qnKlyKsu8Yko0tS2lpNTNCZZThAHcTtoSI5BSmThxHOaM7AYnG6cK4QTUe8sCEL/hAEzuF4hZw+9hDsriimrBYzHrjCi0ERsiKRUFzZEjK20oNhy+IAv1Qlz/CW0BiVl74Gw5k15ihoTahMablp6opo4g+e88dUlG9zKpfyAGhnmLXFgATLnf2yCo+KXtSNo+spOHLNSUHkWBMki0tG5EyFa2E62fpONAD5nTByA2rL34N0nb1dmGTUdKRAoVqRu+Mn+pRxyhQ5g5uH5TMVMe0qa70+upX6T57Tx1SdbfpF2U8Y6lnuEc6oPZA5ClJe0zGs3A4aJy7C8ox70hnsgtuUrl/SKCot71fOb0AQjxdhVDHkkdb6SfkjoFerlSx+GSyVGIDvHEgYJy7Dnzu8ygXDpOSPmVHHfSuaD0CCVt1b5NK7F8yr6X0idJ++fI+ctYuDlX09FGukYo28GJ4zCiZ0fRu13ab+Sg9WFWvkh5QuaZknqDg0ClAYA6T8gaJqUHir/HG1mnS8Xxgro+Iesk8cI9er6C6RVJ+pE2BwD2ukK+kzIYAFBRU0nLSGJAP9jHv77t6xgPbBwwsqcvth4vkc1d1nhSjhnSRsq2K66oxuLvT2NVTqGs/SM6ucvGg/R7vVB7MwZ1FsNjkfRpYfek9Fu08UbaQ1kWZV8r57k0LWUIsmQGqwMps7J/5lL6vClhRv6wBDoDaG4CHaCeiDQvWQ7CCWN4d1/qN3rp07yZpEHDAbpwSSYbIJBykpAytDxZ+RAo+auU6enlr1VfvbwJlAs3qx0PF5Ujp6AcMRpCgXTBImAJdEZwuKhclxCTeGZGM/pAq04E7/+Yp6I/oNVFKigWlVVj1qqD1LLp8TexvL712i6NstgbqR8tf+kGYRRabVJVc1NF9q3lya7c+IsrqvHz2XIhxFSIp2wOKgU2rUOXDcDa1Dgx3qmybVj0Scr2OVBQruJ54wAsSY6iznfp2FDWlyZ8KgW993fmiZsxOWAZmSe0tZJVdiKw2zjgqcFhVNvdf0+JFqPROLquKMfJ4aJyfLAzH5uPFauEXEAwO3FzdqK2m5IcmJV/6tAwPG/CM1MmUEmESOV4IMK/m7MTisqqVe1KO7jtLyjD7FWHVGsD4cZrSFloAio5nABqL10boLKjVpZZurZL4wTfDlg8dP+jUJ6apYsJUT1LNSQ8hADg0sDKRtXELG+mVfuKMGvYPeLfJMi7kcnGwpPxoVjBYGCX8lcJV4b1kQQamr+yzZQaFAIeQmzbB/v4i22obEfaJrg7fRj11CiNhuDm7CS7buMhr68eKmtqqQKTVItAPDO12kRrbLBiqhLDYOU4JPXbeKRY1qAcB6SNDEdkJw9dwUor/JCUjFrZdkToVNaV5EXGjV7bknB0/Tt7UiOu0CDtX2VaSo2jtE5VNXYsGK8OeE7GfrhvW1TW1CLU2w2jI+WOKbQYnTYAHzzeFy7OLbB4+6/UcEfS0EzSvmfF8VSORzIXK2tuqcp97cYtavuSfLLzSql9e6CgXBW7+t+7CjB1YChW5xSKofw4CFoSvbVFul5KtdMAUHylWlUGHvU8aXYeeO/HM0gfFa7SRpI1NcTbFdl5parDg3JdodEGSccy7faB1L19m1bimkZbn8j4kdbPz90Fc0eGqw5g7+7Iwx8HBBveA8h7j674iTkeaOvegvERqt+0Dh9SRAZ4OFwW8h6L7N3GAdPiQ6nzYUZ8Z/w7K1+mhaNpi83sa3cClkB3l0B5tURT9YshqCRXL3ZeIMUkg/5wUTn2FZShX4iX5kmD2K0p553UOBaQn86kIYPsPJD+9VGE+7Zl5mM0soJy8WO1g3KyS/OnXSGRNkvo6sO8AqCVQZkWaxPMShuKF0Z3x+hIX9npTlkH2iKtFJSUbU02eFqoLSjSlI4FIiAUllWB4zhNrR3BgbPlTIHG1VltvcIMK8YDAzprjztpHZX1koYt0xs3pP/dWrVAdLCnTPNDuOFYmjzStywhTAkbgMUaWiml4CkFsU0qLKOT7dbyvKiBVV4Lujk7YV+BmszaDlAjXEih7DdS77LKGk1BWonLVTdVY025ySrnC2vMZp+hC3qZewuxZMdpmaBHDlgAqPOapfU2SqRL8o4M8FCFhSJkv6Qsyn4J9XaTHTRpGkkbgN8rb+BwUTlzbNTyvKysrPHj6mzDfw+fl81nWtgsO4DXN57Ei2O6M9sNkPcX62BFI7En68ucxG71Zebl6WrNW5r9Jpk/XJ0hm94hT7o+ksOydF1esSufuq6I4ffqhPeFW3Nx6rerWPPzeSZBtmVDd5fiTl+5slToNPX0xiMXqDZp85N64mDhZXwtiV86oW8A/vFIH2qeLCJfKcGk9OTC0m5JbeeM1IkGov4G6KSW6aPCERHgzrSHm9A3AGsPnmeesGjXiUrQroRIWnkXr+EDCs+YMowYB4H/ThlLkwZp3ypPiWK7UOwjzUJ5xUsLPacl1CiFIwCa4ZGU40EpQEnbdlxUANYdvCCrl9TuyUwdWd9Ix4NS0DaSj5bdmZ7gKbULNDoXHKk/DUuTo0Rtn145adfIADuUGVBvs8m6vmXNOTPxoGcM6lxvH6cwzaCNQS0iXZrdK6l3fmmlrq2t8rpWKeBJ7TilfchaN6HxTBp2KinKXyV0pNfZ3LHmIc12kLSbUhvFunbWbAtOLsiRdvwoK5+6TpJ3iImA2QPV+tQ4/JRfphLUWe03Y1C9Nk7vXRaUNslNCevK9X8MrOvPhVtyMSDUS9TWAMAvJfTwJX+j0EZ8/fN5jIrwhYtzC5WBafoaelSGpCh/bDh8QWUwzJoMJIh3zS276F2lVSdqGgB2nrqEQC9XZjusTYljbgZSIZamudMLhs4BeDI+BBevXJctMHYemPv1UapHnI0TAp5LT7A8jIfTenPLL3iwt7/moibVBK5JicWX+8/hcxPh10iZ0uo0WecvV8uudyb3C8SqnCLNhc7O119zchACx2u9z0vaP7fkKlOAsvPAuoMX8MHjfWXaJkcEGb3yE62l8rpPD/OTemJ4d8Hb7vVNJ7AiK1/UpBmJ9cpDIFv9iBG7lrbJ6JXL6MZUVinwAuppTQBgTmI3AFBdLx44W84sQ4i3Kw4XlVM1OAldfeDv0Zr67dBuHbDjl4u6a4MNkNk3knnt3cYZh4ouU9uAJcxxAJZPicbH2Wdl8Ubv71m/XukJmjyg1uDVCTZEaMpKG6qy3dOq5rBwdVtIbeZcnW0qRxhAmI9Xrt/EqAhfapxbmsbpcvVNlbOAnQeWmRTmbKBr0Q4UlDPJtTkIIQIBx6JQrM45R71dYWk0p8aHYHSkr0zraiZLqSaRdfNzp2AJdHcB3JydqL/beYiD0tGTO2G8l57UtIQtqXBkFDyAeeuP46X1x0VtEOtKl/X9C2uO4c9DOlOf23mIdkhGwoPZIbRbxnjBw9BIGT7YxT5d0r6P7+Jt2PaKBqlNkVYatTzvkPG+FDyg0urygOl4vjyA9Yf12eftAMYuzdaNL1vL88gvrXIoLrEZmI3IQuDh4owPs/JV9p9SIVcPrODjxKFp+qcHDJfLjJbh7xuOw7mFjXlIkmL3r6VU21TW5Q4PqLzcCcgVGblCU+L73IvgAIR3bIPc364xyzSpf6AqWL0d7Pi7WuAZ3205VoL3d+ZhZkIY1cZRL03yMjF7WZcSR7XdY6bB8zJbPCl9ECAI2KykzETjEK92GfUwOq5sHDCipy+2KOJSO3GcINwyvuMhHModIXi3QSAuN4qkKH8x4oWj68qcxG6GnYduNyweursAlTW1zGfSE0ZD9j1yUmsMNnAWeAh8W4QTLYXBwUZDLc8zFymiEZgYE4SpA0OMlaXuFH2+vEqXc8qRdt11mr3YAsb47Mqr1PZMSnBAg4S5Owm9Its4INQB8s4HIn1NvW+DkI+ZIc8BeDrzIJYznHnIO45icr8guDi3wGMDgg1/Y2YIkPnu5uykW86dv5bKNGEvrDmGw0V07RwBTZgD6rUb0cFsO0oe0BTmAMDbrdVtiaCzcEsuiiuqkdDVp0Ek6jwPJC3NxuubjAn6ALD9l0sI920rcpCuSYlFoJerGHKKddB3tHzMZwbTGN8nANuOqzWCcxK7IdDTRbP97DAvzHEcMM1kxIt1By80eI+LDPBg2k3f6XBglkB3F8DRwWf2E6mB6YLxEU0SxoY4VQDAwHu8DX+nNVB5CFeygGAnYxQ8gOe/Ooqe/o1vF6m1QDpxHNamxGFMhDYBKetKS4qIgHbNUpgjY8cGwYbRkYVmWnxnuDibv0QI9W5j6n07BM/FeBPj0ahm2REhgAOwKqcQycv34pM9Z80nUAdC0MoikSYekmYOVuS7pGXZmJV5iPkOrX1sHGRewA1ZXxZtP93kmlugfr3SurXoF2KMxsKR4u4vKIefuwsKyyoxblk2kpfvxcCM7VidU4hNR4odSFFOvN2Y+KrOTlmJ36/WYJwOtZIj4HhgdKSfqb1RuceZDf9HnFkOnFVr9JtDODBLoLsL4Ei4FSeOQ5pkMTfyrZINfF1qnPnCGgDxsDMqqNo4wY1cC+R0lFty1XR5jl24gifigm9LHEZybdKhXWtsOqq9ILNsfqQ4ev6KQ5FD5if1xPyknqa+5WBMs2jjgHWpcWLkkX880gdrTY4lDsDU+BDTUUI4AMO7dzDdJnYeyJLYTylBonqY3ggNbGLSdiXztKFCuhPHYVSkH2YmhDFDvpH5buZgRWB2c7YBWJsSJwvn19D9nVwHanUJB/1Dntb3pI201qr9BeUOHbifGd5FU+AGhJsHmjYo/eujTJs0LdggzM11Kcbno5lwkLRvm+oGgdDvzB3J3htYYx6oj8BkNPwfuXp+euVBJhk+zev/dsIS6O4STIwJwqLkKOZz6amLCA1kMc+cPkDzW+k3UsPO3oGeWDihXpA0Mqkf669vQ0A4sGjhZ2hYNClKCD+kIdRJbc6UMBLPMtDTtS4OY32YGCeOw6hevszvaL+z3iUhrkhIt8bY0ABhgZkW31n3pCmt04IJEfjjgBD8cUCIqVOqMi9Wf02L74zegZ6IDWsvjqfegZ6mYlxOH9RZ5JQyGkvUBsFrVBn/2InjMKFvgKzctHidrP4g8VYH3uNtWpAx8nraqHAxrNui5KgGjwulJkzgjPNXtQl5x4zQrBWOSas8C+r6hcDMrQMHIdzV3+oiDUjBQxgrrDHMA7ive0fNvFjtLW0jrUO1HcKYN7uZ3tOhrbhG0+oGAK7OLanaQbtGuVkgc793oKemGU9yvyDZOFkwIQLTzcSnlaw10waped8aC0Q4o1G0EEjXK9oe5+duIvyfhh0ggZTf8U7Acoq4ixAd7KnytuIAvCbxtlOyZEuJXmnGrRzYzO6AnLiXhFFiecU5cRweurcTvthXaJhrSI+vyYnjEF13pTFzcBjAgRqShxje0vJdNEkIteXqbMPOXy/hH9/8qnrn3jrm/RdGd8fU+BAZUTHLFmhOYjdZuK9pCaEYHeFH5ZyaNbyLrH1ZXFxasAHgOTUlwNT4ELHMWacvqWwNaWzyBKT9acz5tDpL82Lxa02NDwGg9gCbGh+KFUrqFYDK0j460lf0qpw5OAxXrt+k2lDaOEHzo6ybctz6ubvg8dhgkQ+wQ7vWWJVTpFsWoukCgN+v3aD2GQeB1b9/qJcu/5vyu7TEenoaMk9pPFl/HdEVN2/ZEdnJXdNRgmjCaFx/hKdSyXhPhGYtRw7CtdfJ00Xd53V9wIoSsDYlDh3atZZ5ySrJd504Dn8e3BnLfsyTtZ80qsXhonIqJQYZkwcKylWRScj6YdRhimDe6O4YFemnmivhvm1VkVnImFd6TpJny6dEqxykOACBXi5im4yO9MMbm0+qxh5ZK2nrPji2ppS8TzyuAzxcAA6i7SLLKc3GCWvVrOFdVNE1lHOXBuVaA0DzO2UZnDhO5dkOCO04uX8QMvfVhyNTXt/T6iJdr6R1UXqm/uORPhgV4ct0qkmmOOHQ6q7k0bvdMC3Q/frrr1i/fj0KCgrAcRxCQ0ORlJSEzp3pHogWGhdPxofK+Mh4AC+tP46WTjYxGgQNfu4uGN83QOalykHQaNDY55URKWgb5Wc/FWCzxC0+KcofHdq1xqSYQHGzlC48Wkz6xGtIxiOk0DQAwMyEMDzY258agYEm8JIFXUsQndA3QLYB0ljJpSDlmhgThAd7+6uEaCVL/DTK6Za2odHiVUrr8cb4XgAgo/qYM7KbTHgvLKukllWLzFfK+s/is1P2Ha2u0ndYHmBzE8NFj0lpnaRpJEX5i0ID+fb5EeFo59JSFR94wfgIZt2kFDkbDl+QeWrOHRkum0ussrwxvpfgsSmJYUuECiLEk9BUgMCxJ+17HvRTfURAO8xPoveLtFxko3p72ykZE7+M00wxv5Rpkvl89HyF2H5k7pMrUHJYktLWSGk35iaGi+vEgvERcjoeHsgtuYqJMUGyMUTKk1tyVdafhLcwoasPstKGyuZPUHtXqlcnGU/KTf7JusMDbQwrxyxNGE/s5YttdbFQCYgQT1tLO7RrjWmKyDbEhndiTJCq/6cNCkUPf3dkTIgQQwFyAAbd460a47S5QZtnJE9O49AsFap2nrokCtrSuZgxQe65y9X1DS26hnK9koKMUdb4m5sYTnWSUR6KyffDu/tifJR8rxrRyxejI/3wyL2dVIc3P3cXal2kESpokSqUnqnDu/ti4QS1NzPrZoisBbT+ulMwRSy8YMECvPTSS7Db7ejQoQN4nselS5fg5OSEN954A88991xTlvWO4U4TCwNq8k/ayYZG/klAI/JVxqtT5kOLJakVE4/caignw4DOXrpx8FhkoHsU5VN+o4xBqZzUaSPD4e/RGs+sOqQq6+zhXTAsvAO1TG9sOsGkKaHFJqQFMpcKnRyA6YNCMTU+VFYfaR0AOinv0joNKiCQOUttZ6Qbs5E+ljKv06JEvLUtV6UJU8b+VMJIXGGyeEsFBlp8XK04nyRtaTxfgM54zyJjVoJo16RCGckDHHCy+Aq1PV5N6gkPV2dqG0rbY+epS9SYvoB6fkmjGHAAJvcPxKp9RdS2ACAbN6w4tXqkwetT40QeS9K+JK0Nhy6IBww94l5aUHVSNha3GCtih5HxBEgEa8o6ZTTOdQ9/d9k40YoxrNWWyvorqYRSh4Thj7HB+CirAMt3naHelBDhQDk3CA4Xlat451iaK2lbaMVEls6ncwoeStp6xYodndTHD/f18FXNB9a+pSTkNtLfgDY9yOGicnx/8iI6tGuF4d07Uuclqy0AyPY25RpDK8+oCF/MG9PDVIxoR9AkxMI7duzA3/72N8ybNw/PPPMMPD2FipaVleFf//oX0tLS0K9fPyQkJDSs9BZUoJF/Kse6VngegE7ka4cwcL3a1A9kpfFtGoUE1sYBk2ICVenR9oyMLbkqBnXaZGSFl/r5bDlGR8rrJA1fRk6RpI1kafBgkrvyAAZ09pYFKJdOaJYwBwjttulIMUZH+qmCiUsXYumCzteluSIrX9UGpdeu4/fKG+J7qrLyoPKdkfdJH1XW1Gr2sVRDA6i1NIeLyqnXmsrYn6yYwiROKitckDKM0cItuar4uKw4n8R7jAijfRXhvKQbkFGGeVIOEi+UQEubS9pj3vrj9UHUFRufUqPt1qoF1YiaUB0kdPXBhkMXZFeePIBVe4uYMUCl9okkTyWMkAYTHjzp3CSb6sKt9WNFWlaa/SexYeUhPyzQ+lNafykptbQdpfWheRQCciJfaZg35fe08cgDWLm3CNtzD4gayxkUwV66Jmi1pXKMKh0Blv6Qh5+LyvHTmTIm35t0bkhjRxNsOlKs+tYOYEykPx65txP10Myai2T9AgCvNs5wc3bCrMyDuutVUXk19Zp33aFirDtULOtHWpsREyEPV2cEetZfOUu1gSyibUBODC89iCgVEeTGiuBwUTn+s7+I2hbKg7dSmGaN4S1HSzAqws9Q+MTbBcMauokTJ8LDwwPvv/8+9fmMGTNw9epVZGZmNmoBmwPutIYuO6/UUOiZ7DpNDEtjRNP+SG0tpsWHMgUZmo2CI2BpEpOWZOHQuQrV+/OTeuKPA0LEv5/9zyFV+LLnRnTDxiMXTHE8AcDTQ8Pw3IhwVcinyf0CDZHq0jSSgH4oMmkYMaXgoWxnVh6qstRpI5UCrPTkT4ONA3anDdMUgoiNVGVNLY6er1CRzAKQLaYJXX3wwy+XdEosYMagznhhdHdZHEaahm5OYjfVtQ1tTBptLyVIKB8zIemkUGqwpPNPL7TckslRmJV5kFpmpc0YIGgGlj0aDUCbqd7IuiGFdG6yNNSZ0wcInrE62nlyWAj3bcskT6ZBeejTCz2n9z1gPMygVBOtFBAmxeivCaN6+WKr4vq2IZCGl2Kt34AwHrYeK2Fqvll1l/aZ1vouXa+M2iFq7SfKMa28ZdAKHSj9hmiOaVFZpGNZuWco0wHoa/jMhDDxRmN25iFmmZqaVLhJNHT79u3DZ599xnz+2GOP4fHHHzdeSguGYcaA3ix7tVQbt2JXPnNiN9IaJZ7kiVbQz90Fh4vKqcIcILDxExwuKldNzK9/Po81B887xHG07Ic8/KFHR1XIJ6MRElhZ6oUiI22gJUDZeXp8SWZZeDDt77TGjZ2HbkSKkb18VUIW+Ta9LsSRdBwZFeYAQYvZvq2z7Kpn0D3eyDpdKl4hzRmpFuaAxh2nu09fQmxYe1Mh6aQgGqzL1TdVtnoLt2o4G3Bges/ZOOCxAcEqLrrNR0twuKhcpTVXznWzxLNSLRONEsPGQbxaUtqJKjWJPAQhf9Hk/5+9N4/vqrrWxp/zjQYSlBAkmIGEhDCEIUCYAyEyeAsBf8jQVsBWSgUsIPa9HSDxrba2VoK3fa8yWQVr8baA916ZKoJtQUWIAiIQRAYJCQkQJjOgSSSS7/n9cbJP9tln7X32CSCx5fl8rDXfc/bZ49prr73Ws9J81YG3BKK+DD/Dwb/PW0xl/l+Od2FlkBEPRkFTTya8+bGbVPdawFNgqKLieT9mE/VWT8PyN1a13ZT8fxG8vNIF208oGSgOgQnrlkFm/aXAW44XbTkqtWRfuPylUplTyXD2by95QM25mwXtSOvz588jMTFR+ntSUhLOnbu+E/oWLOiQIJpo2Jh5QZTz+iG8kX9WeqXJIwhgcCMTDj82oqPWcwaAx9butwkyX3y3AP/9oUJYGpYil1dwCduOXiAfoWR0/T6pRNAEth3xzhvpF0Gznh9JQbdRXl0rVUieGtcdj43oiGmDE31tZpS1yut9plDITvDTBrXHlo/lVgddhncrLdDd7vfrFVFeoWaZCWZlJmFn9nCktou4bgcKGZa/U3DNDPLsWplff7keG8LwLm1RXl1LfnNBVgrataY3iMXbTngy1auoKSgEYCkRsk11cj3dTmllDR7on4B1c9Lxi7Fd8ZSExytYfxrx251MgXgj/2yj1ibbzEsra5BXcMmu787s4Z5yyjT1NvGvA7ybQ4vQEF8ciIu2HLXlJgs+0ZHR1CcCAI5f+Nz3GmR0LjpcqCaANbuL0SI0xD+HJNxEyQasubynqIx8J6v73erMFaaV7US0Qsvq1hRIhQEfFrovv/wSoaGh0t9vv/121NbWXpdK3YIbPL2E7Hom76T7rj8IiwiRKThei3JXwWe+6xYA0Cs+QsuKaMLp+6K6ijLgzjGqAz/Xw0u2n/BdvhdCDMOmPJEhMjxUemX45MbD142jjrqy4zG6RzQZHRwAMGd4Mpa9XXBd6tI9tiXeOnze9XcqmTfDSzsKMX1Ikq+8vxR03g2asH3TvKxPsjIN0NYHFbYdvWAfVPjo2QX1dCayFFvbj17w9KPdpSBKZvXlqS+CACYsz8OC0SkkTcbavcVYvacYAQOYkBaH9fWZAWT7YsAA+iZGYnQPd35PvlyqH70odFRg649FqfOuATrrnSkIX0cmChmMemsoADLC1wtBsyHPNxuvdR55uFl07Ob8cw6fMhPWAcIvdCiVeCzefgJLtp9wulVIXEnE74guGSasVGuyLChbCFkkgroRWDI5DXkFn2G1kD+2KVCWAD6JhVeuXInFixeT/6xcufJG1fEW6sEIQnMnpZK/r91dIj1BsMnJkz4O7xJ1XeoVBDBj1T5kdGxzXfMrNlaeXotV61rBrghVp3xGpZI7yZ1eTXXFqmN1FDF3WLJykb/1sSXYRNLZ2cOSsewdtTInY5Af3iXKkflg2qD2OHTmsvt9w1JcVHNm6fYTNi1BYxCARdyrMy/ZFRez5qyZOQgrpvV1PWfAYtufNbSDo/0m/I+PA6YV0bwrZ4QrwpF41GVhYBY2wPKdWvaOfPOclZmEvJwR2DBnsKPOQdNyyF+Q5c4yw1sDX//ojMOqSoFZqKn8noA1z1g/XkumDOYnysoU1x8L7tL1xQsxDGRnqTM4XE+QX6mv6MGScmQTgQU689kUxsur7YM73oW2LZvj8bFdsSt7BJZOSbMUW791h5uUObFNOF5QzEe7zsQfBnVo7ZBP4ng/M7EHxvVyZwMxAbzwbgHGpPrL7SxDiGEgvnUY1u4tdv02P6vLTb9uBXxY6BISErBixQrPZ64n6urq8Ktf/Qp//vOfce7cOcTGxuIHP/gBfvGLX8CoH1HTNPHLX/4SK1asQEVFBYYMGYIXXngBnTp1ssspKyvDvHnz8Ne//hWBQACTJk3C888/jzvu8Jfz8WaDOUBndo7C0qlpLutVEEBmxzbYITmZmwB+Pa47rlwNoqK6Vnla4k/OtgMqaGsFK3vHp5dgALivZzTeyL9x1+8yi4uqfl6YOiABa/fKCZF1wMhIVX5YPIs/b3V9/+RnWL27WCo8fzgkEX3aR5IWy5EpbaXX0UM6RiElpqXU0smsOjzpLJsbVF0MWEEjQzq2gQnagvrO8Yt2BOiCrBRU1V4lvz1veEc8ck8yWoXfLt1s/7K7GN/t1w4P9E/AwdMVnuSeIoIAjpy9rDWu/BVXTESY1AncrH92ekYiVrx30vWbCr+531p/T28+QpbbukUzAFZAA4tKlmFESlu8fbTBZYBZ2BZOTEWLZmrRziJ7qcjJOtNEXEQYnpvcCwHDQFlVLZ7YeNijZW7ERYRJr00DhsWhWFxWjZ7xETY59GdVV3xb5eeN6IiRXduipKzG1jB0IvDF+jC/1YczEjGuVywGJbW218ML75xU+t9dC6YPScQfdxW56vv0G0fw5iH3+DBL0bnLX5LzSBeiHH3v00sYkrvd9sVsfYe3Pyn1832pMZiZmYSq2jqUVtYgJiKs0b6pJixLY+7EVKybk+4gBufpQvIKLkn9h78/KBHdY1riP/523H8F6mEA+NE9HbCnqIxsR8+4Vo0u+3pCW6ErKiq6gdWgsWjRIrzwwgtYtWoVunfvjg8//BDTp09HREQEHnvsMQDAs88+i8WLF2PVqlVISkrCE088gVGjRuGTTz5B8+bNAQAPPvggSktL8fe//x1fffUVpk+fjlmzZmH16tVfe5saCzHYgboWAaxFKYMB4JebDntHexnAHGahqX92liQLgggTuKHKHPsGj6we0XgoPZHkMNNBiGFg3siOaN3idixVKLleZfBkpNLgEuGPMRFh6JtoXTGpqv3HXUUorfySvBp9+xitzAFA/pkKz90sPDTgyVcGNFzRrd5TgrV7SzCqO33y5ekXZIEaADCia1uUVtYgvnU4Vk7rK2VpH78sD9lZKVjjocxRmR4AvZy44pVJaWWN0gk8/0wFTJhKayogRCwbwL3d7saFy1+S7wQMOK4KvbDtiHvcmTXKC8xPjQp+4K88G3vVrbo2DcCSL/zcMGBFOmZ2jvKdQYVd1QHuQ6gOxKvGl95r4Ho0YY3L7HuSlRZPHXyr29342yfuqz5Z0Jss1zOfPUfMLuEHMgWIOfg31tVh86FSvPlxqeO6WzauveMjcKCkUl3P+jmtor9i1DIi2Jr63TUoc4DVB7LxbyrXrUATz+Wal5eH+++/H2PHjkViYiK+/e1v41vf+hb27NkDwLLOPffcc/jFL36B+++/Hz179sSrr76Ks2fPYsOGDQCAI0eOYOvWrVi5ciUGDhyIjIwMLFmyBGvXrsXZs96CvimASs787NZjmE34B8gWn+5VBmMLX84pcyasE33bls195f6kEGIYyMlK0UqIrHt9+7fD55HYJhy94iOViZpl9XlmYg9sOnC20coc4Da5D0+hr7NNuJ3XdU+vWz4+hznDkh1Xo165Ehe9eVQZZQkAJWXefGW2gsLNQZlfFA9ZkZP6xOHouc8xJHc7pq7YjZmv7kNWD4mCCLViCDTkC5Xl21RBzH0KWFxiqu89u+UYaiSWR1Zn6vpo08GzmLDcTePB1t31cMhXXdszsFR5sudU16kBA47cuDJQ7QgxDCzISnFZgE3AzsO8cKLbFYGha8ydpFwQ2+xHmXtmYg+0bdncxRvJygiakF4XZnZqoy0P//7JeVe7DFhKvuxwJIKfqzERYVryTlY72d+v1cHfhPN6/vF1HwMAWVcvZU5VJi9DAbo9s4clS9M3Xg80lQwRDNoWusWLF2s9xyxn1wODBw/GSy+9hOPHj6Nz5844ePAgdu7cif/3//4fAKCwsBDnzp3Dvffea78TERGBgQMH4v3338fkyZPx/vvvo1WrVujXr5/9zL333otAIIDdu3djwoQJru9euXIFV65csf/78mW3/8/XCRk5ZGS4PEiFgeVglF2P8fhuv3b493/rLP3evqJyhIeG4Ff3d8PR0s+VV4QUvjcoAd/p2w694iOx4j218hQAsOKhvggPvR0nLnyuvPLhncHDfVA1TEyLxbTBiWjbsjkGL9yu/R4FZnLXsXSJzut+aGkiw0PtdEnhoQEUl1UrHbiDgHJ3U+XAZTAA/Pr+7lrXbjon+t/c3x33drvbwY8VNIGtH59Dv/aR+PBUuesdE2pH9cWT03BfvR+NjMiXx/jesdh44KwjSIehtLIG+4g68KgzTRQqNj0ZlQdPrszwdH0uZi/F3gDwg8GJeCWvSFk3LzClID4yjOQE8xq/R4d3xJSBCfjZqC5kDmBZGbxLgsw6xK7/a+uCeGKDe77NHdYRfRMjsTm/VOu6kbKUivUB4BlRSwVKGAB++q3O+E6/apy48AWe9wgcMGHxLq587ySCsObIwnrf0K0ahyM+Ty9zv4mL9FYk5o3oiMWSYBBqrJjFSZdCxAtM3qW2i9B6/jf3d8eTmw4rg0BEGSpjcYgMD22UP6aOdfqxEdY6aCrKHOBDofvP//xPz2cMw7iuCl12djYuX76MlJQUhISEoK6uDr/97W/x4IMPAoBNk3L33U46hLvvvtv+7dy5c2jbtq3j99tuuw2tW7eW0qwsXLgQTz311HVrx7WC2vADAJLahJOTjj3LTg9je8aSSb9F/M+Hp5EcdQfG9Y4lo9xk0bWOb0Pux/bnD4qxencxFk5MxYDE1spyggBmvroPCyem4t5udyuvipkAkhFIyvjc1u0/iw0HzmJGRtI1CS72fR1mfvF5lmNTzGE7R3LF0y8x0vbv0vmWistOlQNXRHVtnbbSyeYktZmGGAbu7UYrLyZAKnNAQwDFQsKnjL+CAqDVHv4a1oRF75PZOUo7y0SIYaC8mo7ql5GdGqAV0uLPajyv6hlkBxbdsWFKwQeFZa4UTnZAgSKiELCuOJe+fcK+9hLzp1I5iQ1Yc5eRR8vkFru6urfr3Xhygzva+0xlDe6LiEWd5i5twvKPpaISxwiZXlSQRVLypMleYydGfTL/r2c2f6Ll48fyFotE6KrvhhgGRnZt64oeZfVfOiUN+acrbeukaK3WvXLlfRBF+c9H7HrNUyYfQm8LKNchf8354o4CqVzon+gtC3iY9f+j42K09O0TiIsMu2GEwo2B9u1EYWGh5z8nT570LsgH/vu//xt/+ctfsHr1anz00UdYtWoVfve732HVqlXX9TsicnJyUFlZaf9TUuLPEft6g+KhY5Gl4lwzYAnsNTMHYWf2cMdkezgjyb6uoMzTJiwakU0Hz1pXV9yzOtc4T4ztil05I7CIiN60611vLm/bsjkm9YlTlseb611RTvXPMAEkI5BkisCMoUnkVU3QtFLcyK53QwwDc4clSzmLeJO7ztUpe37H8Yv2deNCMQOCCXwvvb2rf7J6RKOqts6KfHud3oQMOCOZZVx4y6am2fNjR30Qg1gOgwl35GOIYWBSnziXABHnyUTuao7vK798bxPS4jCuVyz5jnjdrcPbKCIIYMm2E9JNhJ3cAUtoPtC/HXkNN3VgPHZlW1Gq4pyVTY2VO0/azuMzhyZJ62gC+MO7J8moPdO0vk31D/tTiGFg4aRUfHCyzJpzgrK5bk46HrknGRPS1OsScF578VHB6+akI7ZVc7LuE5bnYeqK3ZiwPA8T+8Q55phhuJOpzxnudil5dssxHCwp93QjYAgYwLyRHV0R/ePTLGuuTJnjx5vN20FJ6kMof4ih6sFflbLUbaWVNaQfo6OuvWOweEoaMjtH2b6d4tUwL6vFeveKj5TSd8S3DkNy2xYN7jWNPNk+Na471swchPVzB7t+Y2WK65LJEEo+ZHaO0pK5L75LK3Osv3vFRzq+qaPwmLBcjD4oLFP2R9Bs4HkVr39vFrQtdDcDP//5z5GdnY3JkycDAFJTU3Hq1CksXLgQ06ZNQ3S0JdjOnz+PmJgY+73z58+jd+/eAIDo6GhcuOB0Hr569SrKysrs90U0a9YMzZo1uwEtajwe6J+A4s+qHVYbaq6ZsCLw+Nx44jXgyJQoPDayE0rKa8irqUVbjmLOsGRPWgIefFAAi958fd9pfHDyM+w84eS2Y+by33+3N8akRpOKqfgsK7PoUjXyz1TY0X9swcmiPHvHR9gWB6O+7duOujMZDOciBg1YTtsZnaLsqweZQ+xLD/VBWOhtDlJamVL34xEd0Sn6TsRHhrmSbPNg+Vcn9W2HManRKLpUjfLqWix/p8DTb82EFQF31x3NlNcmrVs0szcUio1f/O8600TPuFb2dS+zLgxPaSu93jQBrP/oDFZMs67Ow0MDjsi3CWlxUhZ3ERv2n8XwlLZSvyxWJgOL2n1pR6HUuVzEmj1yF4IlU9LQNzHSzvsoyxwwuEMbRx7XzM5R+Mcn5/Gk4rqaXTXGRIRhekYSVipyWdaZJsb0iEHXmDvx//72qcNaROV+Bawrty7Rd9qJxin3AhPAa3tPo7isGuv3640Jc8O4r5elpGw6eJa8Uubbyf69Yf9ZbJg7GCVlNaioqXXl9txx/CKWEz6tdaaJvUV0blcKk/snYNOBs3hbyF6y/qMziIsMI8vhr2LZXN9x/KJyzTLIrsQfHd7Rzn7BQ+dac+NBK08qS0FGPf/r+7sjOepO22q1r6gcMCxrNQB0jaVTRuWfrnTwXpoAFtTnxWX/rYNfbjqMBaNT8MWVr8jftx05jw5RdyCzc5QjWrVXfCR+NqqLK8G97HDMX3OWVtYgV8L1+dS47rYxI7NzlB2x3S4yTCtwrs40yew0IhjP641O/6WLJq3QVVdXIxBw6tQhISEIBi2xlZSUhOjoaGzbts1W4C5fvozdu3dj9uzZAID09HRUVFRg37596NvX4pTavn07gsEgBg4c+PU15hrhxSvFY2d9GiP2nngK3Xb0IrYfvYjsrBTSchA04TtAYHxarCOP7J8/OOVIScMjxDAQHhqwsz94LZr8MxX2ifbC5S9d1x6q/IIfFTc43ZoAthPKHOCOGEy4K9yhFMssLEwZZQt6QVYKKQgMAEvePqG9ET26xlKS2PXd8ncKtN5lXEksS8AhSUo11qcywUm1N/9MBRLbhDtiO4+Uqv1LgwBmvLoPE+uJTZkVIzsrRVtxACwBC5Ou19Obj+CZN484cqn+cWchVr5X6OsqXfasAcuSAcCVdF3EY2v3o6r2qi3Ydxy/qEUUzc/xhRNTpXPagDx6VObqsHj7CXt+xrcOl9Zl9Z5i19WkF1h7K6q/UpKEi6gzTVTXBlFVexVPbnS6U6j83gDYmTW0fE5b3E5u+kHIyXKvmqbDUsisYjpzyTBoX0/xmprPXezVFj4QSXaQ+OTs5/jeoER77r9cfyhQkQobgNQv1g8ZPaubavyfqL8+58eWyYFH7kl2+aHJ0tYt3n4CLZrdhkfuSVYqw7/cdBjVtXW49MUVR18snJiKBaNTtOaqH9nBRwffTJ86wzRvJh+2Gj/4wQ/wj3/8Ay+++CK6d++O/fv3Y9asWfjhD3+IRYsWAbCoTXJzcx20Jfn5+Q7akqysLJw/fx5/+MMfbNqSfv36adOW+EmOe6PwRv5ZX/xMUwfGY96ITii8VCVN0K27WHVgZxbgomNl3+RzderAgHUCrf6qjjSv3wjwyZ1f21uslZSad6hl/y0KscZAl19PxuBPfZdRNazdW4I1mrlrRYfhQR1a4/2TdGqd6w1WX1Wid8rPyS9ka0KVbJyqx87s4QCglRSeYePcBof39GsM0qEQAPDU+O6Wgnkdpb7X/JTNw7nDk/GC5kHFUZ5hEWbrHHIaw00ZALB+7mC0bdkchZeq8NreEmzUoL7RLXvO8Ia6Bwzgns5RLguiXxiwCLT9zH0d+S/KtBsBtlfxilBewSXpvgUAOWNSMK5XrK/1BVhr81fjujWKV1EHa2YOchgCrgf86B9NWqH7/PPP8cQTT2D9+vW4cOECYmNjMWXKFDz55JN2GjJGLPzSSy+hoqICGRkZWL58OTp37myXU1ZWhkcffdRBLLx48WJtYuGmoNA9vi5fO2k8g5U/U552p7F4oF87vPbh6eta5teFEMPAqB53S62HPNbMHITENuEYvHD7DQt7v54Y3zsWmw42Lv9lU4YBYObQJFz4/EtsOKC+Pr2RKZtkPHcU1swchLePntdSAHnMHZaMrrFyIuhvIqYOSED7u8JdVpFrIQL3cxht7MHV6z1ZRPY/I1iQwN6i8msiM5ZBvLI8WFKuPLwZsLK1HD33uR2Qc7PBGwGuJ/5pFLqmgput0JVW1nxjlIqmDFn0IQW2OJds+9S3In0L19f6ez3LulbMGtoBL+8s9NxA5g5PxvJG5sHVIVv9JiFgAIunuDPbADdWAQfUUd7/6vCzrhprdfYD9g3dyGPDAHLrSYv/8cn5G2Z10wEL1LgRPnR+9I9GEQsHg0EcP34cO3fuxI4dOxz/3ML1x/XiAxLhI8jwGw8WfZjaLkIrU8YzE3sAkPus/KvBz1zZOHcwcif5iyxTwc/cv9HpN8f2jMbO7OH4xdiuyudkqdN0cLOVuevdhUETKK+iKV68cg1fKyYPpIMIePSOj2iSsvBGs/7f3ztWOxKc533zS96uCxZko6PMAdZBgLEgJLe9OWk8A3AyBtxs+J4zH3zwATp27IiuXbsiMzMTw4YNs/8ZPnz4jajjvzz8Ujx4IaPjXQgY135qbYpCUIb/r2ecFl1GWnwrrJ8zGA/0T0DhpSpf3xiZ0lb5uwFr8eeMSflG9R1gzRVZJgcR1bVBm8pi6ZQ0TB6oJ+iutU9YUvVrhaoe1bVBxESEYWzPmEavSZ09tGdchC2cAwByslK0vjd1QMI1yYonxnbFrzWyuAD64xUwgMgWNAn6kI5RJNXF9cLgDm08+yP/dKWv69vGwO97y6amYfHUtEZ+zfre1IHxyu9uOngW80d3wZqZg7DRYwx43jddgmBZvWTw49LAwBRNnT3yZ9/qLP3NgJPuae6wZPSOb6Usj2WnGdsztsmQC/tW6H70ox+hX79++Pjjj1FWVoby8nL7n7Kyr8dB+l8NIn8PNW8NWJaRWUM7KLnmAGDnic/0CGJ5biPhtwCAKQP1Ng9+sfDvTx0Y7/0yURaPEMPQUpDCQwN2ZNmCrBTpxN9fUoEJy/Pw4rsF+OyLK9qbowEgLaGV53NfXLmKcb1itS1JAdAp0G7UxkKNNcNbH5/DqG53S361wJMm/3FnIeat2Y/Vu70jJ0MMA9ljUhxzfNqg9p79z34PwEr2Pq5X7DUphgHDyik6l+BAA4D80xUArDW5IMu/Yh4AMEVD6Tp0phIrpvXFmpmDsCtnhBY/HMtJvCt7hL1JPzaio37dDGBMzxjc2+1uqYzh/382oWSK84elNCurukKu3cQ24Wjbsrmcvw3u+a+aoyLiW4cpU4kZ8FYgWLrCNTMHYcPcwcqyKJnGAhZ0rGGGASyqVxLiNbJAyGACaN+6BbLHyA84QdOiqGJpE3MkhyGRbFgWOa+DucOTpfuYCeDIWX9ZmRhpsWqPDMDq06Gd2tBlwJrLbN3Mz+qCF94twIGSCuW32cG/KcE3bcmnn36K//3f/0XHjvqC4hauHQ/0T0BFzVc2zxPv/8BSyPSKj8TRc587fFKyeugFRWR2aoMdn15y/I19JzsrBa3Cb7edT9m3V+8uVnK7MYzuEY0xqdE2D1BJWU0DR5IiFJ/BAPCb+vRIv3vrmIO7bHxaLB7JTMa4XrHYV1SOTy98TqbgYYm3WWTZgqwUfPZFLVa8d5KkbWEO3CzKy8vPxwRcCaAN7jf278fXfYxfjevmmeLJRINfBurf4/22GmtdncmlHhIxMCkSe4rKlWnE3qpPLs7qyLeRJ032onkY3zsWfz1YijrTRADAwxmJGFefuovN8f/afQoT0uKwYf9Ze96xbzEnarYmgiawaOtRfPbFlUb3zdQB8Zg3shN2HL8ozd357NZjGNc7FjuOX9TOEcnmj7huZmUmYfqQJPyftfuxu9DpXG/CosTJnZSK9OS7UFpZo6R5MYRNl/27bcvmZJYACv3bW5kcktq0QO6kVMfVl+hvZdb/ceHEVEeWiGcm9kBm5yjsKyqHYQCnK2rIyEueHDav4JK0fgvGpKBV2O2Ob4xPi8X6/WfsPp2ZmYSe7VqRPnrVtUG7f/h5HQAweUC8p+wJwCJc7hUfCcDi9KTqysYyJiIMvdq1Qs7rhxzpvR7on4BBSa2Vjv5s/rGxY9RDMjw4MEGZfnHhlqOYOjDeiiZ+u4Bc80EAr+wswuNju+KRe5IBA67xWjA6xVZcSitrSFLnucOTkdExCjtPXMQyBeXVkI5ReHBQezt1Ic8JZ0KeM/fHIzoiqmUzm/7EBvcfjPeRcUWy+bEgy6p/XsElUDBhyY5W4bcjs3MUHlz5gbf/HoCj5z6350VTge+giBEjRmD+/PkYPXr0japTk8PNDooArIUkOqOyPK192kfafEnUM16RZMwZ9S8fnCL55wIAFk9NQ3y9Mqabu1GEAStzAKPVYEEKOpxALOJUbJ8YWSTrA9GUz967cPlLpZBl7/+6nu5Bp90GgKWa+XN5sJyeAFxEmwdLyl2pmmQwYBEjv/BuAdnmfafKrzmKkp97rL4st+yP1x7wTO/DHKyZ8JXRrDC6kuraoH3lw/oGcDtoG/X/o9NPItWObtDM0ilprjUQAPDTUZ3xu7eOk/Wn1g3fD4Nzt5N1NgwgL3uEkn6ItXtDPe2JiNf2FmvzqAENyjLbHKlDD3tuV/YIAO75CsgjFcW6qmhalk6xcvSWVtaQSgDQ0Mfi3xlNyy+FdcvTkug4+DMqCllwGstNzLed1ZfvEy8qDiZn+yrkOYMBIC/H6nvVQRZomNdxrcLI9I1sHGXf5GWsrA2sj/7jraNShU6U1V79wWPj3MGoqq1Tfhug5T8v61Xk0CGGgeen9NaWjTcqqlXEDQ2KmDdvHn7605/iT3/6E/bt24f8/HzHP7dwY0ARwAbRwPivekZl6ecDAJZLTkeMDXvC8jzkn64gc3DqXIGYAF7/6IyDMf7Zrcc8r175ZNHit5kPBQOVXmbG0CTpe16nYMBqf3LUna5yZWmaTFjjwnKK6iI56k5XaiCGqto67WjAJVPS8PPRKa76MotI3/aRvvyfKPBzLyYiDMVlVZiwPA/z1qiVOfH6hifqpaIRGQEt6w++b2T5YE3T6S4gQxBw8CayKygvZZTy8wkC6JPQ2hEMwqdean2HO0k472ieK7kWNE3go1Plnj5CJoDxy/Pw2l739fYD/ROsq0LNQWckqRcuf2lZOhTPsfqL8/W1vcUYLzkomWiwnAHWmp06gJYBrM7sG1W1dWQ/VtcGyVRrT2xw54AOosEXcuHEVOUmyPuOfVhURvbFExsPY0judkffU32S1KaF53x8dPV+uyxV/Uw09P19vWIxeUCCtGwmZ/smRpIyi40jQO8hvIyl5iHroxffLZAqc+K6l5UlG4vq2qDy2wyy+r+ys8gz0wcjL9eV2eLe0xTgW6GbNGkSjhw5gh/+8Ifo378/evfujbS0NPvft3BjoDOZZc9kS3zGWKJuFgDgdVINmsBKIu8p839qjDN2nWkqHZe98n+KfQDAkVtyZ/ZwTM9w53Fl7+k407JnqXKpV1mScVG5VC02PjE5Bd3AGD5RvVhfdm0SExGmHTzw1LjuWDolTdnvVDYSEeyKcVf2CLseurlvZf2i6hPDtBzLVT5PAbgteaoDEJuLlKIumyOsrV5z94H+Cfj1eDoYwTT18tOyqD8qr2Sv+EjkCnNRNZ10UmzJxkaWTo6BmuvzRnZy1ccwYFuAGVT9yAfiGIY6YT3f7+slyq4rUb2i74OKvmfQXXdinlyqfmLfe5XNlA+VLAS85yl1YGYGAVkaLgO0vxlV1gLCL5N9X/ZtHSVRdTDhv9M3MVI7D7RKNt0s+FboCgsLXf+cPHnS/vct3BjoTGbZM49kJmNXzghHwARL1M2uPXQVhiCAGRkd6G/UO5U+OjxZW7mjFhHvhCwqIl59wPcFM8OzQAjqPUrpGtMjWvoN/uQdExGG3ElOy4oBZ5JxfoNfr1AuZmR0UJruqbbnZKW4xpSaE6KlAAAeuScZOZwSrhIE1Pjw31EpZgFYilxezgg8Pqabp/A1AGV7qD6h6s4siG1bNseMoW7FW7V5ZAtzRZyLLCBCVk+qz3Xm7r1d6WAElnaMn0s5Y+hDmspqwL+/K2eEw5ooIsQw0D9RbmFWjY2Xor5gdIrrPbaW7PloWBxj1HOqfoyJCCOtoap6U8quePgA4GnZ1rHYiOtOpyyxfrK+Z2WTh0wAn1VdAQDP/vOap9ShRUWtlT0mReprJpb1yD3Jyu/LDkwAHEFvXjc0Ivjv8N/g9zIDDYc9L9l0s3CLWFgDTcGHjqG0sgb7ispRXlOLyPBQ299CfIb5b1y4/CX2FJVhQGJrO60Q79vBFgFLiM0sLQaAKQPjsXZPidTvh/m0VNXWIalNC8REhOHFHQXKBN0A7NyFbFGw3IZ//+QcLn1Ri5EpbaUCoLSyBh8WldkBFvy3Rfyu3p/DRIMfSc92rRx+Lay8ipqv0Do81OGPKOsnAPb/Z23mU5LNHZaMIZ3akPV68d0Cl88g84fxEg4HS8rxjyPncXfL5hjZ9W5HG3TrSvUnG8c38kuxgshsYMCK/EyJvhPbjlxA1J3NHD5DlN+KAWDeyI7o1S4CYaG3kd8XfbvYdzI7Rzn85Pj6821T+RcGYDnUsytUNp+7xrR0jPNre4tdTv0P9E/AwZJyRwJx1TrJzkrBuN6xnvVkdZWVy+rDHOrtttTP3dhWzWEYhr3mZe1mfliqsRfn/emKGjy75ZgruMGRFxTA7GHJyOgU5fKXE8umfM3YNSifFUBsv9g/rDxxPrcIDbH9KsV6yPplydQ0h8yg5hYl03i8trdYao32Wsd8/tbismpHkBjlX/nSQ31w8lKVVHbLvvFhURk+OFmGNXuKXb6pvH+kqq3bjpzD28cuYHiXthjZVU1XxL5J+c7OHZ6Mn49KcT3Lz2NZmbwM8HpHHJfxvWPwb92ibQsv5YsYMIDvD2yPOtPE8JQoVzvFMqcNao9+SZEIGIYtP74O3PBMEQUFBXjuuedw5IiVAqRbt2748Y9/jORkOtT/m46mpNBRDs6zhiZhekaSa4L99L8POCJCs3pE4/vp7Z2bR/2E5ZM4M5+43ElWFCHbFPkNj9WF39iGdVHnJOQ3P14wUW3KqU/aLLadirwT08YAwOw/73NF9wYA7OIELqVQZGelILVdhEPAqb6rcqLnhaeoAPKRZLLv8hDHcminNnj22z09NxxVH7EN5tCZSk/fMb4s9v9zJ6U65gIfBQ04r7zEvmgRGuJyYgecG4A4v/gcwGJ7/Dj+G7BSibE1I24eVHJzVX5co/5/TOJ5vt2qcvn2bDtyDjNW7ZO2hZ8vh85U2ooYXzdqE5f1FaVIy9j6qXnEwCssXv5KIYaVd5fNO1l/AHDMAVmbVHOZyS2RJYAva8Hohv7k60R9o0VoCF7bexqr97j9FZdyQQ08KEWQL1+Uxb3jW+Gj4gr72Ul94vD77/Z21EOUFbrymAWRvJFf6kpc/0D/BJes4b/Ng1ETsTJEZPWIxgvf62v/t3jwFWWIWDYbT1FWiu/IAsb4Z3n5FAAwIzMJp8trHCkgxT6WBaSo1sCNwA1V6N566y2MGzcOvXv3xpAhQwAAu3btwsGDB/HXv/4V//Zv/9b4mjdRNBWFTpUCzE8uvIABzL4nGcvfLVBa0piJmbdEMCVLNeFVoISkrE05Y1LwSGay3R5VlCcfcaRq+6yhHfD42K6e6dR45VPVTq3E5NxmzzZ3P8Ji25FzeHjVPnfZ9ddSfF+q6soEeVVtnbYSpwIfHce+/49PzlvJ34nnxfkk+7Ru4m1+zBszH0VL0R93FmLle4XXPSsLpQRSYEqO3wTrc4Ylo2tMS5eVR8TG+shOKqLUQEPkqc48EqP7RGVCV7FWPeeVtovVY9PBs9JbARbR+sHJMq1oeqqO80Z2RDBoYvk7BVrto2ScKlr11/d3R/VXdZ7jvrE+dymv+PHz91pTcjGrICVrNgoR1DoHKH6eUDcTgDNSminLvKJJgZc7XvXgrabizRW1R7CI5Vd2FirzMIvGgRsJP/qHbx667Oxs/Pu//ztyc3Ndf1+wYME/pULXVKDyU2COtJmdoxATEYY9RXKS56BpRfd5wUSD07iJBg4uWYShDsR6qtq0aMtRjOsVq8VrxkcMqtq+cudJTM9I9EynZsLicdp+9LyynV6UMKb9Pw1tf35Kb2mZYv+8trcYC14/RJdN9KWqrnWmqU19ogM+yhEAdhy/qMynKM4nGRZtOYq4VmGe84sf88bMR9bXFTVf+VKi/EK33DrT9F0PE9Zanjow3rP945flYYokmtSEFSWbOzEV8a3DPecRP+5iUMz1UOYA77VVZ5pYsu0EaSnjyygpq5E67HvBBLBYoAPxrLePdWkC2jlItx+5gCVvn3CwBLDvNFYe86gzTbyRX0p/++gFxxW4KuiFL4/5Acr6P2g6qYt0wEfletXDRAPPHvN7BoDVu0+Rzz+x8bD0QOqoA1duU4LvoIgjR47g4Ycfdv39hz/8IT755JPrUqlboOEV9s4voAGJra/79/nyW4SGXJdyVG0KmsCa3cVawoOPnFO1nQkDr75kEAlfqe/KsgpQ0AmNZ/3DBKdXeTp9yXA9PWYNWI7WpZU1KK2sQbZE8fSLoCnP/clDjM7TGU8RdaZpWXca8e6NQGPrsWZ3iaejvQlgjYJI1zSBnNcPoUVoiGdfnrjwuT3ub+Sf9W0Zvb93jOdzXnUIAFijUOYAa46UV9d+7ePrd13qoM2dzUhKjn1F5dflGyGGIc2J2uaOZvb/33dKHf3Ml8foplSPr/ChzAENsl5XiV2586Q9V/MKLqG0sgZtWzaXPq9bFVZuU4JvhS4qKgoHDhxw/f3AgQNo21ady/IWrg1UVCUPtoBKK2tQVVuH1Dj962HDAIZ3iXJEPYrf4TfQkvLGT+QArFRcgGXVUWHx9hNai3b2sGT79NUrPhJjUmlHXj4EXtWXupg9LBlDOrbBo8OTtcs6cu6yMjSe1fEVxbUDA6/I+qEjuV5gvFmv7PS+qqTm0+AObuU7xDCkuT95PNC/HfadKkdpZQ1iIsIwWjPXLA+KuoSHAaCnj3UUMCxfHC/aA/aczpwZ39s7nZkJIKMjndpIfE6FIIDX9p7GZIklj+GJjYeRvnA7Bi/cjt9u9mf9WjA6xSbQliHEMDBnmPygxKIXva78xqfF4kmJBexa1r7h8X6IYSA8NIC8gkvYdPDsNSuUk/rE4d5ud5NK+6Nr9mPTgbPXvPbHp8ViUp925G8920Ugr+ASfvfWUS3iXZ7OxCuFop9DpoEGFgFtZoZ6K+CQ3O2YumI3huRuR/UVb/5RnXL3FZXbSmJTgO8r15kzZ2LWrFk4efIkBg+2Evru2rULixYtwk9+8pPrXsFbaEBpZQ1OXPjCcV/B/i9bQDJnZi+YJmwHWgNWuhQ+3Rcfps38FlQwDPlCDQKYsDzPDii4HqfnF94pQELrcNsBdisXECH2Ee/30NhvB2ClNHvhHTmZpgzL3i5AzpgU7MwejqJL1fivD4oczrnj06wUWFTEqYgFWU4KiFbht2v7MDGEGAZGdb8bbwpBJGN6RGPr4XPK6yKggZ9Q9V0WdcpHUs4f3YX0q5mf1cXmelPN49V7SrB6T4nt7/jWYe8UdzxCDAM/uqeD1P1gYFIk9haVI/+MXn7JqQPjMW+Elbqpc/SdDgdwBgPA2NRozMzsgLYtm9sprFSYPiQRXWNbkuUxBADsPEGnNuJhByO8eVR6pam6whTRmPWTu/UoNswZrJwvmZ3b4IV3neMSgDXfWaT6pgNnyXeHp0Rh1tBkO6sE9Y0cLjhLXH86yK7381yy7QTW7HGm32LrqbHuDUxOpUTfiQ+LytGPi/gd1Z1O5bhwy1HkjElBDhfZLVvXMqz/6AyGp7RFzpgUx1yb1CeODGCSwYCVVxloiC5l/rN++yNgAKO7R5NtiIkIw4S0OEcAB1kGnATmjGhZbKfq/ckD47Fmd4lrLjG/1a87UEIG30ERpmniueeew+9//3ucPWstqNjYWPz85z/HY489piRf/KaiKQRFyJw/xRRM1+oYyyDSk/CUGDrfoPIMigJcJy2Z3zrLUgDxKdIAdTCGjrP2iml9MfPVfY3ua94ZmEpVo5uC5v0cZ1CCn/HP6hGNh9ITER4a8IxK1MHUAQlKZYClb2Pz6e+fnMOTG91uGr+5vzu+n57oiEzzgl8lFlCnEwL8b0A6ATeszIABzMhIUjpe2+/U/1uqLGuWxUf9MQfxv+afwerd6nymfvDE2K64apqOyFuq3sumpuGLK1e1I5NZcAPvxyWb60x2ydKliY7yjZGZy+rlCZVm8KH09vjT+7SPFsOobnfbeZF5sPR/MoohVSCXmIqNSpOmA3HMGrO2qHSLTA6b8E6JyCJRx6bGkKne2N6kEzj1cEYiuTaoFH4inhjbFWN6Wu4Bqr7n63W9AyVuWOqvq1ev4r/+678wdepUnD59GpWVlaisrMTp06fx4x//+J9SmWsKUDmh8imYdH0bGLz88fYVlbtIUnX9FlKi73Sxm4uvXU9lDpCz24sp0gB1gMmszCTld4IADpZUXpPizMz1lP+RnxQ0PJGpX8fovx0+j8Q24VZaMf3XSAQMYHDHu6S/81fdbD7tKaSDVz4+WwmggUSUylQhwoQ6xR2F7UcvSP3FDPi3JjCfGtXc4tOMMaumF0yoN9TFk9MwtmeMVvszO0fZdUxsE455Izo1KsMLhRDDwJieMRjXKxbPTe6FZVPT8NNRnclnCy9VIb51OJ79dqpW2UEAe4vK7ast1VyvM02s2V2Mgotf0OnUoE51pQPTpH3JgoCnMhdiGOgScyf528kLVSi8VEVe4Xn5ovHBAiZMlJTXNK5tHv+tgyDo9Hg6KRENWMr742O6SVO9FV2q9hy7B/q1w/NTemMg4dYBAOXVtZ7K4JieMZ7Be2K9biZ8Xbnedttt+NGPfmTzz915Jz0pb+H6QjVx2UbpdQ3KrgjfOnzeceWlSkT+2Nr9qKq96gi/Z/4QqoVgAIhsIWdrv1Hg2e3FE52YomWX4nrqxR3eVpMl20806uTKYADS02EAVnaAhRNTlRYqsV3Mp0S335kAYg7Vnj5wCovVgqwU6TUpny84r+CSTU3wRj59FdTi9gaxFBMRhvt6heHtYxeUVysBw6oDswzp4PltJ7B42wk3Aa4BZCv4BWVgSnpZ9RW95+Ft1fRCiGHgTKVFTOvVbBPAv689gN1FZQ4aHa95pgM2xrzLR8AAJvenffF+/7fjvtfO05uP4Jk3j9jUP6q5vng7nageoFNd+T0In6msQS5xXadDYzR/dBcM6tDaFT0LAH/MK8If84rIKzyvdRoAkH+mAg+u/MDB26eqi+Gz7bqgLHTMr7DwUhVG94iWXnObsCKTq2rr7AOXaDFk46cau//+8DRe+/C0tB8iw0Ol/SmmfWsRGuJpsTcMdfrGrwO+gyIGDBiA/fu9r4Ju4fpB5vwZMCzh8GFRmWckaBDA1sPnMH90F0ealQWj5Y60LCy+tLIGr+0txpDc7d7J12Fd6/hNTK+ClwMye4YlQvdKXaNKIq0L1gU6TQwxDKTGOk3lJuSCiPkYVlR/hV+O6yq1IFGpZx4mcjWqUF37FQovVSFbkjLIUWfFuA9Kau1KxWWgIYUSANsp+f5leUr/wCGdnJa+0soarPPwkxnSsQ3G9YrFujnpvix1VJPmDEsmUxBleQRdGLAc1KlrZAohhoF5IztqpYKSvT9/dBcXn6BqvXxQWOawEua8fggp0XfaqY78RGzzWDA6BZmdoxz+u0ETWFvv4yjCS4cYk9qQfo8Hk0kXLn/pa66zxwIAHs5ItP8uprrSwege0VhEREazQ4UyAADAoq1HcfTc55jUJ076HC97xfel7wDIfbNhLnj1MZNB43vHXDdZDTSk1ePHhwWoTFieh6krdit9Ftlhd+qK3bQrSH2ZLAWfDKbwb7GO8a3DPC3pgOXuNIHIPCL94E2E76CIOXPm4Kc//SlOnz6Nvn37okWLFo7fe/bsed0qdwsWmNARma5DQwLI3apOs8WDOYPy9/yp7SKU77CrV91AC97PZcHolEaReYow4c+S8UD/BAfrPa/0lFb656SSneJMWP5eKh6pJ8Z2Rb/ESExYThMdyxA0oew7E9b1GQOV+mbjgVJPGcMyEgQMK7AgrlUYDAOOVFA6+LCovIF4tL7DDANIjrJoEPwE6jy8ap8jU8i+U+We7Xjv00sYkrsdMzKSyPXgx5r6wjsF+N6g9q559I9PzpMO6Qx+5DlvAXgkMxkdo1qQhK4iDAArp/VFeOjtUuoGE5Z/UP7pSk9+ryAa+Oce6J8AE2ajDjvPbj2GuEg3d2AQlm+hH56xqQMS8MzEVClBOM+nyA4NY1NjsLeoHE9vPiIt98GBCVizpxgvvVeIlTsLbQsYG+fN+aXK9xm2fnyOHOvFk9NwX69YRzAZBaas7cwejrqgiQ2S4A7+Cq/wUhUKLnzhWbfG6BQbDpRiTGo03vr4/DVZaQFL3pVX19pUQPz46PjzMTJplVJq1l8t7zh+kbSS6mB+VhclU4MJa4xSou90Z/gA8BQh99lV/s3M7+pboZs8eTIA4LHHHrP/ZhgGTNOEYRioq7v2cOBbcEPcXDYdONsoZUkkBfXikwsxDJfpXIXN+efsjd1LWdRFiGFgcMe7lAodW4CMzJMnkeSh4wvBw4DF5E4pbQEDSnqNgAGM6RlzXUg/KTBiS5HYFbCEtA7YK0HTij7M4zI/jOsVq73J9UuMdNVDh0hZhoVbjgIG8EhmMnTjtphfmngNwxzqS8prtAJNeMJk9o+YDokv+9fju+OJDXIyUvGqJgBg/ZyGg4+KPFqECSA89HakJzdYMSkXg76JkbivVyymZyRi2fYT+PNuxdoxG9aO7vW7iDrTlHIHht5maB86A7AyMwBAVa18L+EJql9+rwjThyShTjHJTFjRu6YwN3l5MbZnDJ5584jnXJX9HN+6IYF8Rc1XyghKdlDeKFHmAGsc+SvUG4mtH5/D+jmDUV0bbHQwRYhhoKy61nEgMGFF6/ds18qzPAO0okR9Jzw0oLyV8roe3fXpJez4VB0VrvLJjgwP1XLt+brh+8q1sLDQ9c/Jkyftf9/C9QcjRARgC3KVlYnikGMQJ51KaLLrSj/XpyveayBb1OUJosCb6lkdvIrScUr1W6fsMSnoKVFM5wxLVtZrRkYHX3xJfsE74V8PgW+awEenyu3/ZpucTt3btmxO1sNPgIeIRVuOorSyBv0SW2tzhgVh9Tt/VbpwUip6xUdqz2Oe2w+w0s6RypwBLJyUig5RdygjD7OzUsj6APBNyCzWTbwyFF0MYiLC8J1+NLcYD/6gp+J/k9ZL8duydwqUCiIbEtY3uodNBqYcLdoql4lUkIsoL0SXAa/6iqiutbznSitrsMjjsM0OytJ5A5DX6V4w4JSdXm4CDEHTqn968l0utxXdb80f3YW07pomUFFdqxXYxBQlGZhlmwqWYAgxDMeao+ClzLFymE+2+Pe+id6uPTcDvi107du3vxH1uAUJxKTNC+tT81Bz2YCVHLpP+0jsOH7RZfanJh3lFEzRfIhXvibk15B8qpWFE1OR8/oh0lF46oAEDE6+yxUcwOhHqmuDjivT3EmpSpoDnRMSq5MXXYKB+ty1mcm2Mi1iSMcom8xXtJYGAEyv99URr8xVofR+HLTFrBfUa6w85sOy/qMzSqdtcdOjrvup91k9ZNYiyvGeuQ7ER4aTp3LWvvTku5A7qWEeGQCGdmqD9z695GpziGFgekYipmckuq7cxbYwOS2WIXL7yVLJzRve0aYAocbNQINj+7hesaQLgF+LsVg3QO1iAFhE25P6qPm6+LUzpFMbrdSAPIIAntx4mKYmkjSQ8coxPjix7rLDpmh98bpFkAW5UPLigf4JaNHsNqklV6csrwOWeFAmnzUsQl7qN5UFlfHjsf4svFSldBOg6g8451T+mQqX+wVrAz/vCi9VSctvFRbqyRnHywrZnsGutWVrjil8/JprDDUPax9Tbik+Vq91dzPgW6F79dVXlb8/9NBDja7MLTghu8JaNyednMzZY1LQp30kCi9VIbNzlE1cGx4acClHDJSy8czEHhjbM9bxXGbnKDw3uRcChmErjLJFt+K9kxjbMxq94iPxQP8EpETf6SLZDMBi+q+qrXNEJ/ILSQRbQPuKyl1+XpSyyqxXSW1aOP6e2TlKaZIf3zvWsXHKFBUmAB+5Jxkw4CD05OtSWlmD+NbhDiX1wuUvSYVu0aRUVNZcRUV1LV5456QyIpmnAqGUSkox/tmoLvacEB2ODQB9E+X9LuO24uuhI/zE+VhaWUMqdAYaMoqwebS3qBz964lWSytrHHkgKesU6382D0QhzB98mILxSKbTQiVLJdcz3mLPT2rTwqUoThkQj3kjOznqwtr614NnYBgG+raPlCrjBqz1zOa3rG4MMhcDht9/tzfGpEbjnaMXMSwlCpe+qHUcFPl+k0V+yhRgcH9nVhs2HtS8ZdfUrcJD0bf+0CjWXRZRz4iRxXUfHxnmWtMGgN9wvG4yonQRlKLFykqNi5DKLFX/Me7K8NDbER4asJVVWYRx0LSuKsW5wa9pXtES5wery4XLX3peP8r6go1LYptwxEY0R8Aw0C4yzLWX8O/JlM2w0ADW73cqcwYaomxFWUHtGUzhY98U19yIlCgMS2lr+xbz9V+7p8Tbf88AZt+TjMgWobaMAWjZI/ZRU4FvYuHISKfA/+qrr1BdXY3Q0FCEh4ejrEyeGP2biptFLJxXcIkkxlwzcxCKy6pcG1Gr8Ntd1jxd5mpGNEopfZSVkFkmfrH+Y2w7esFVnmHAdrRmZfDCdHxaLNbvP2OXuWB0AwO8nwUiq7eszoC8XxmovhN9qCb1icPvv9vbsy58PdhGP7g+RRNlBeCJZ8U+8arDizsKXEqlavy9ypMpxDrv+T21Somz68cCgHQ8GzN3eejUV2xzn4RWOFBS4SjX67QuttGAZXUG4Pw7t3Ya05cUxH6YkBaHdR+dsZWw3EmpdpL3pDYtXIrujMwk3HVHM+S+6Z3ZZemUNNx1RzO7zl5rXxwTcc2gfk3wc/pgSbm9wR4997nLh1Q2/3X7k5rjA5JaO/pQJbPENrO6UPNRNyCDapPu3KfKmj+6i6fM1Vk/qn5jkCl64lwRv031IQ92qFvx3knXuhLnlDgHN+w/65rfTH7ybfXbB9cbfvQP3wodhU8//RSzZ8/Gz3/+c4waNepai2tyuFkKHcVizrNkf1hUZlvMADdrtgFgAxd1qoODJeXYU1SGAYmtbSsIxYa+eGoazlTUKAW8yJzNhI/MyiM+yzYXAKRiIYK90yI0RFm+Djs8//zBknLytChjBVfVg4eX87lXndk49BUyYLA+rqqtI/ustLIGHxaV4bG1B6RtenFHgRWpRijx1Dz79f3dcW83muFe7BfZOB4sKceG/Wfxp7wil+VQ5Mtilgq+jWL5qvUjfl+c9xS2HTmHt49dRK92EVjwujvyjUV4U+2Usfzz7P77ispRUVPrsFw1ti/FZ73mO9/HTFmJbdVcKV/Ye44r1vr2iJZyJqvaRYaRa5ONJbVmRBcQlaLCnleNBauT7O8fFpXhx2sPuOpAZT5Yr5CvvNKpkqXr5w5GcVm165s8dGQ5L3eo8ngrIX893FgZQX3XTzCF7jip5JlsXRloyAYilsWUR3582rZsTsoKWeYh1bhfb/jRP3xfuVLo1KkTcnNz8b3vfQ9Hj147TcUtWJBdYYnkncyvjqIvGL8sz3VakYE6lU7q246M8tGJFhQjapl5Oq/gEuk8z551ndDr26I6HYnviAucL3/H8YueUXfs+R3HL5KWI7FtuvUQofKZ479B+eWwceD7hbVPdqJUbYbse2IENR8RKKPJeGLjYTy58bB0rnmdclX1MkE7tDMlm1mcRKtPwYUvlPOMQcf6ytfvL6CznoxfnoeJRD0e6J8g9ZXj/QSrai/iyY2HPS0Bfi0GOkEzfB8HzQbKHJV8Ye85/tsEdhy/SM43lqKMGhNV3lM+0wsV0U09X10blPaTzt+pMsXGipQvPGS+z9QaZq4PTKmm+sGEk0FAhJeSy77FIqRVc0hHRshuIPzIO8a3Sa1dVhcveSZbVyYafLkZ+OtRsf1DOrYh56UsylU27jcbvqNcZbjtttvs3K63cP3A0h8xMmCKvPPxdR9LUxiZsK6qqFQyPKhIvtc/OoOa2qvXFKF5utztKCuLXgsPDbgEtgkntQZFtkm941W+l+DxCo2nHKp168FgwnLyXToljRw7PqJRFfHH94vM75L6jfpeeGiAjKDms0rI5oNsrqnqRP2uC14Bef2jM47yc14/RJIX60Swvv7RGRwsKZfWX1ZNk6gHa6ds/Fh9vPpIVhfqORYVz0ebNxa8fNGRAybUc5HRyrjeU4w9P2Y6yim/dsV+OlhSrvV3EbKmm5L+9yuj2b8N08rnSj3HotpF6K4fJrOuVUawsfAr7wIGsOKhvg7ib2rtqmSD+Ltqbuv2V9C0eCyp+iZJguyocW8K8K3Qbdq0yfHPxo0b8Yc//AHf+973MGTIkBtRx395xEQ05L+UUUNU1wYxc2gS+T6zAqggi+QrulTtm0mdx/z/PYTX9jo5sGTRa9W1QU+BTVGT6NJ26JQPeIfGi07kfuvBl9M3MRKt7wglhSGjPQHU9DKAOr+hbu7DGRkdpHldmSD3onag5pqqTrLfKTBFQGcmBkFvMHyfAvJ5/2FRg0Inq59OPVg7ZePH6uPVR6q68M+xjC5TV+zGkNzteG1vMWIiwnBfqpy+QkVzxMqvrg1qywHVfBNpZXQ2IH7MWBCJCuPTYqU5QCmLi+zvDCGGIZWt7H2vnMpeMpohCCA56k7yOZkc11Vymcy6VhnBxsKvvJvcPwFhobdp347IvsH/HhMRhlk+9z3des/I6ICwUPklZlPI3SrC95Xr+PHjHf9tGAaioqIwYsQI/P73v79e9boFCVQRl9MzkrDivULSn+CzqisorayR+tt0kJx0+tX7f7DoUln+URnYiZ0ReMraYAA4ceFz9GwXobyGpCxjOnn2+PdU5fOkr1RovEgKy8NPXkij/uqA9Qn1nelciiKvsln7qKg23bbHtw6zLTHiM3zUb2bnKPzq/m5kiivRAiarewANc1Kn3wyo2eNd9ah/SdWngHree9V/0bdTMf/1Q42ed3x9VOua9y/yeo6yZmR2jsKEPnF4g0i39HR9FChFcySWn558l5YcCECea5PRyoztGY29ReVIahOOma/uU5Y1tme0HU0si+jmsWH/WYxJjSbXgSzXM/V3Aw1RsgCwcmchWU+dnMq8jJaV4/VcAJYFne8L2ff4d5j/IdCQS1kVta9ai2N7NhwMZO186aE+ZNYTRhjttda9cu2K/e1339ORN/zalD3bFIiERfi20AWDQcc/dXV1OHfuHFavXo2YmJgbUcdb4BATEYYJac4cgOPTYm3/gNxJqeQJ9tHV+zF44XY8s/kTl5n4tb3FmEEswKGd2qBty+b2hkKRKeZkpWDW0A7K65g608Tm/FL7u8zKw5/2TVh+WOOXWT4V7De+2ADcljEqz16IYWBMj2gXOTHro4UT6T4SSV+pvh7VI5pU5lgfLVAQWgYATB0Yj2VT05CXPcIOMii8VIU5w5Id9eUJVgGQfn/sK7xvJdUX80d3sTmiVFYWWf/PHZZs0yEwCxClzIlKKg8+ryPztXl09X4Myd2OHccvuubVpD4NdWC8h15g5bOob2rsCi9V2fPwtb3FmPmqe95P6hPnIP5l48rP8SCABa8fwkSur8R68/NOHD8DwIIxDUqybflkbTAakt3zFjeqr9g39p2irU+v7Cwi25nVIxrfG5RoU0XMz+pC5sFl8oX1RXzrMNd48jBhzVdxnYvz9OnNRzDz1X2YkBbn2Ij4eT2hT5yd/5NZHB+5Jxk5itzDdaaJGa/uI9dBcVk1Jg9IcMkGikzXhMWtx9pC5WkVc8MCtNz4Vve7PdegwVn+KTnF/O2mrtiNwQu348V3G7gCqby2TI6M7RnrmEfMb40fF1FGyBSDzfkNhwLZXnTpi1rX2Cyql2fUOz1iW5KyGqDlnrgHsH1PBC9j+FsicV4GAFeu7Ql94pT+1nyfNaVr10ZHudbW1qKwsBDJycm47bbrElvRZHGzolwp6ETulVbW2BFzzMmahxi1SEUJMbCFaXLv8fQMAB39RkF0aJXlagwYsNPQ5J+pIEPJZX0RADBneDKWv1NgO+pmc3lBAeDFdwtIImAxckkWHZgzxskHJjrYzr4nGcvfLXCnexLKp5yPqfrK6mEAmJmZhOlDrCsHr74Qx6+69ivyJB0wgIfS22NV3inXuMvGeqrAu8bAR8vKwEdu81FoLCrtlV2F+Nsn5+UF1Jcxe1gHKyuBqeZMM2DRx6zdW+Lq+5XT+mJkV8sKoePwTXH9idF0qvHjx5qnNWG/UdyDVF9JaV/qPyRzHVBFL/PfnJ/lzlrA5h+Vp1OM0FbJC6pvZfk/xXL/8cl5PLlRnnaN9cGc4clY9rYzY8V9qdGYmdnBsSZlEe18+w1YWWK+qjNtDkTdvmTPybg5d3GRmaWVNRicu125dsakRmPrx+fsb7G+5OeWbM/g+exEGZsSfScpmw00RI/KIt4B93gymanqG3E9yPamnHryZK+Idh5UdK5KNskiXA1Y5P2nK2qk+9L1hh/9w7eFrrq6Gj/84Q8RHh6O7t27o7jY0nznzZuH3NzcxtX4FrTh5VPAW9M6RN1BTnDesdSLqd6EOygBgO3TR1kFZBAdWmV+RUET9gbJbyLi+9S3g7BSDfHXc89uPeZwsqWc/llkHA+ZrwVLScXKE6+5XninwCUkggBKyuSO0wxifVX1MGHlsZQ9I/aFOH4y/5CgCfypXpnj31ON9Wt7T7v+9uK7BVj4plqZA5zz1+RmIyMFlSlzvCVn/uguWM71Oz9vRZgAVhNEoyasKEBA3+Gb+Uax9dBQVsMbqvFbuOUoXtxR4ArWMQEy7RMfZci+KQv0CRjAjKHuqFKGoGkFj7yRf1Y5tnWmiVyiLmz+5Z+u9PRzYikL38g/S5YjYuV7hSgpryHL3Vfv3xgTEYbvpycid5LT2uJqJ4Clb7vTj71x6BzGL89zWG+qauvIiGq+/SasNc6UOcAtU1V9/vi6j1FSXkPKiKJL1XZQy5Ltn3qunTcPnXN8i58/TI6ofPpkMrZty+aYOiDe9T0TDekBZRHvVJWZzFT1jSj7/vHJebKs3DePuvxE/fpel1ZaCpmsf2V+lSasa3zVvnQz4du0lpOTg/z8fLzzzjsYPXq0/fd7770Xv/rVr5CdnX1dK3gLFniuH5lPgWgpWjA6RXr/z0ctyqwPFNj16dieMTalhwhVefyGJItQYn5YKuVV9m0q1ZBI/0HVjfK3kNUvaFqcYa3vqEJZVS2pSFE+ffPW7MeZiho8ck+yUgCJ1ACHTlfSD8I5jtRYU5sTGz8/Y8/nZFXNJ966oMo3zCPEcCYhF+k+ZFjJMe/vKSrTPlio6uEnmlJ8B6DpKjI7Ryl9dhZtOYq4VmHkPPL6nqquiyenoW9ipNJni1HfGJCvW1X6rjrTJLN8qPpFB8F6zYDqt8fW7kdV7VXbIuKVyUQ1x00TyF53yPbxlflLkmMjkTOq9cqeO37uc1KO8+vgWsHWev/ESFcfGBoytmssbQ1iMsWPz3DQlKcHFL+9r6gcB08XklHqgJtiR5U9iYH32ZUFhojPN7s9QI4RZfGW0Vh93fBtoduwYQOWLl2KjIwMGJwfQPfu3VFQ4C//3y3ogY9co/wfnpnYAwBclqJntx7DgqwUskw+XZPM706GpzcfweCF28krHi8FgRf0f/7gFPkMc8CnKDICAE5c/FxqkRhFJKOmnGwpUP4WFAxYm8rUFbsxr34zFL+XnZXiWly8RUYVrccrl16KET+OC0bTYy3i6c1HMCR3OzYdOIsZQ5O0x/5MZY3Uv0bcwF/Z6XZSphAwrCTkuW86T7zZ9fQnsvEakxqNbrER2H70PCYsz8NvN18b/6Xou6OTGN4AXCneqKCETQfPKi0tvPLihflZXVybBtVHLE0S5bNEgVWPWm/9iXRwKohR4KWVNch+nVbmZBtQwLDmG9VvlEWEWQFFXzidA4tpNlidxChu5o9JjQ217sNDA1i01XsuLt5+wnIN4Pw+f3RPB9Iqey14evMR3C+k+ANgd4ps7uSfqcCTG+h0fGL6LZ3IZ15Oqd4xYB18ZcocBWZN4/2XDTT0LZsDvHxX7QPs+Sc2HHaMEZMR8ZG00sbSFN5M+K7BxYsX0bZtW9ffq6qqHAreLVwfUJvEhv1nsW5Ous1NxywZ1KkhLiKMnLj8xvBA/wTk5YzA0ilpUg4kETLTugr8pvniuwVY9jZ9AOgZ1wqAW2DwC40Sek+N6463Drsj+VhbqcAF0TIhXp3IwF+/iCffZyb2wCOZyVg8NY18d1G9gpYtUbaBBuGzZNunykwc/MaZ2i6CfI4a/6BpKZdMcLJgjd/c311ap2e3HENm5yjsyhnhCIQR61FaWSMVyKwqAVh+UuvnDMYXV74iCWo/OlVOzoG5w5JxT+coDF64HSvek0ceyugMqDqtm5Pu8IHxoolh77G8kYClxFJrMHeLOl0WU750FHK2NnjERIRhtHCQ4QMZxByaMpiwrHprZg7CxrmDMWtoB5gAdnMULjpYPDnN0Zf7TpWT7f/xyI7YlTMCi4gD5YLRKdaVmOQbKsoIxt25dEoaGeRBwaU4Gg3/bhV+Ozk21LpXUR2R75v1EdyA7evqBVWTdHdgE7AtSlQAB9X3zMeNDwRgff3YiI7Sb4kKPs+tmjOmQRYzZcSrC6g2Pr35CBZtOYr5o7tgzcxByMsZgQ1zBmNESlup2xAV4MfmDHveRAM34PNTeiOzc5SSdutmw/eVa79+/bB582bMmzcPAGwlbuXKlUhPT7++tbsFpf8D80sB5ObvvJPurAyAe2OIiQjDfb2sBXd7SAA5rx9CENYimz0sGR+eKsfuQnWe3gDoa6Lf3N8dHdve6XASV1md8k9X2G1j1yleVAkhhoHIFqHStlLX0T3btcJnVVdcWS9U15heJ37DbNjkz5TTPhXsyvaRe5IBAw5na8ApfNbsKZF+a/7oLo6NUxbiP3tYByyVKM/se6/tOY15IzoBgNTJnPVLevJdeHxsV0zPSCTzSMqutacOSMC8kR3td1i0o9Snpv7v4pUaS2skG4cnxnbFmJ5WxL3qupFvvyiMda6TmM8Tm9PSKyKiDDaPeGVYppAzyGgSXny3AG8KlCQb9p/Fz0Z1kV4tjUxp68rBzFv1SitrsHLnyUYd2voKFj1Z3F2ntnfaEbYVNV/ZaQQDBvDZF1eUfa+ijLAPY5rXgYBlDWTvUlbW56f0Vr7Pr3tKRqyfMxh7i8pd+VpNyf9X4df3d8eTmw67oqZZzlsd8FQ3osL/1sfnSDk+ZUCCHaTDu0XERIRhysAELN5+gvzW4slpuK9XrONvTF6YMO3gDEoW8xjfOxYLslKkFDvsVmpn9nBphh+gQY7xcoXJMCqLURAWAwDLSkO5MjUVChPfFrpnnnkGjz/+OGbPno2rV6/i+eefx7e+9S288sor+O1vf3sj6vgvDZlJXJw8siu3tbtLtN7n8UD/BOzKGYE1MwdhwZgULH+ngFTmDMBhpaGuJkIMA/d2u9vhNO4ViCEGBcREhKH1HbSyxr7xzMQe6Ns+kvw+xRr/7NZjSGwTLn2Huh6wr1IVx2DesVl19fLY2v0WBUNmMnZlW329ZGqa21Il/xTZT2J9WbCAF3gfEIoCgIG/VuAd83nIrsrnjezocJD3YubnFYOYiDAUl1VhwvI8zFtzQDkXxvSMcVA/iKdw3fUkUhtQV2y8z51f5WdWZpJtYQfU7gCiFZRBdjhSZfYIAHj72AXXO7zV3i9pLFUGQ7/E1q6+48fXdlCv/y1oyjNKAPK+AJzuKTJ3iLnDk13vPbtFHUDgdSXO1r0MHxSWYWzPGK1rdZ5+h6r/vd3uRu5EdyCIH2VORTLMfIAddQKwdm+xNBAgJiIMOcSNA6XgA243xYikTAAAxKBJREFUouKyKlIW8/jrwVIADRa+X3BpvRiYD54qGxDPlSnKMNkaNIW9g7/lUc3Hrxu+FbqMjAwcOHAAV69eRWpqKv72t7+hbdu2eP/999G3b98bUcd/aci4nKjJQ53wRWZ26n0xVRD7LouAki2MmUM72MrIzuzheOSeZK26MiJgGajrFNnGtGxqmr0pyvpKFi3HFBhVncXUa2IbRbBN3mtD5AUiEyoy5VLGuUX1k1jfuEi3s72q3qyMpZLr4r1F5Z7RXFSfirx6qv4JAMitf57NTa/UTACdwcNr/FTr6YH+CVg3Jx2/GNsV6+cOdkRTiu+plDGA5mpjEcoMMgWUd60QIbvOFDN78GXKIl/juD6QtYe5KMjQM66VS56wQwLvl5bLzQedjBI6fSGLTBZdA4Z0bON6V6UAM6VExc/Gr3tqPJibhc4hYf2cwVgzcxB25YxwzTnGfZbZOcqe14uJgyAFUV4CcoNBtqCwUHNGlD+MH1DmisEgs4KK/SNCjJymFOQQw0B5tTtQjQdPki6COshR9egZ18ohV5pKTtdGEcglJydjxYoV17sutyABZRqmILtyG9szGqntWiJgGOjTPtLxvipJs9emOz0j0baEyOoKwMFszr6ny67PwBYaM7Uz4RbZIlTZVzuOX8Q8wowvKjCqOlNtrKj+yuUbJSoUXld2YmQU1cZnJvbAA/0TMCiptZ3EW9VPrByem0wE4+V64Z2TqDNNBGBd3/JtZMqlWP+nNx/BM28ecXBu8XxQfB+p5qwsmvDX47ujVXgo+raP1E78HQAwo56Pj/fj4+vlp24M4vdnDk1ycc7xfb5wYqrtqsAjxDDwq3HdXNGgVGTcA/0TkBJ9J/YWlaN/fZYWGWTjCzg3LerK2it6VJyLfB/vOH5R2k4+SpP12fSMJGWfy+TW9IxE17U+79sqjpuMRmPJ5DTcdUczRxmyKzN7HDmZ6FBK6icif8UpKi7UXGVRnpR8Etc7P+b88zJOzoMl5WRWjNnDOth+eazssT3dV58ymTOuV6xDJoruC5T8eSQz2fEetbZkBNh8/1AuNvz3eH/oZ7ccs+s+Pi0WTxJR12xcsrOcHKIUMjtH4bnJvRAwDLSLDCPdQvLPVJC3EzcbjSYW/ldCUyIW9sJre4sdi3N8WizW7z9DKmxeJMUyskZdIkXKb00kShWVC16gUGAkpSrCYf5Zv/VXKbhe5RqwLA/seX4sWLYDUSETyS75NvICUSSONQwgVzEGOm3niTWptvL1FxFiOMlWG0OuqZqroj8hBT6tke4hRReNnfullTV4ZWeRzVHG5jNFykyNv27ddcmKeegSJYsk5dTmTLVz/ugurvWt02esbpRSIas/VaYO6brO90SC59xJNKm2bP5RxOUAkCMZF1kfi89QbaMIn/n26JStUwe/8kcGGQG2bC1QYyTzh6YoawAnAbuXAkbNsYrqr1zjKZtXNwJ+9A9thS4QCHhGsRqGgatXr+rX9BuCb5JCBzQsTmqCBwAsnpqGvu0jUXipClNX7Ha9v2bmINvPSVRKREuIqg6UAKScbdfMHITENuFagkdWNrXA8gouke1bOsXtpAvIWeJ1y2XPr5uTjqraOpvHTnUa1xGIsr7kWeVFyOr4m/u7I7ntHWgRGqJk4ee/vTm/1OXMDbi59hoj5FRzlQKzrMj6z8+mroLXGHuVJ1PKVePvp+5+57aM1Z/qbn79e4Fvp0yeUO2gLLsqpUK3b3QUQ6rufB2o7zw/pTfpsC/rq9+9ddQViHQtSoBsvMUxpDLSXCsaI390ywG8Dy5eWVdYv8rmn2xN6NRPNfa65V4r/Ogf2leu69evl/72/vvvY/HixQgGr3/YbmJiIk6dOuX6+5w5c7Bs2TJ8+eWX+OlPf4q1a9fiypUrGDVqFJYvX467777bfra4uBizZ8/G22+/jTvuuAPTpk3DwoUL/2lTlrErJlnEzqOr92tH6+heT4mgKByCcAsg/qpDt2wVGabOVY7MSZc6OfJ+G6oE6fzzTCkUBVVj+1LmY6QispRF6P5y02GphYbqQ+ar8sybR9zKucYYeEE1V0UYRkNKOFn/6c4NFUora/DXg2elv+uUR81nr/H3U3c/c1tWtglaKfcbrceyYnitC9YOmaVNJQN0+8bPGqO+pwqKENeMwTnXixjcsY1LobsW8lkpcbjwnJjxRuYS4QeNkT+65QDA5P4JUqVbHCPVPPC7JnTqpyJUFwmumwK0gyLuv/9+1z8pKSn405/+hN/97nf4zne+g2PHjl33Cu7duxelpaX2P3//+98BAN/5zncAAP/+7/+Ov/71r/if//kfvPvuuzh79iwmTpxov19XV4exY8eitrYWeXl5WLVqFf70pz/hySefvO51vVmgghoAtaO2n2gd5rTvZ0NUsXwz6AZoiPAT+Ss6uIq+Yuybsqgo5hdEJUiXLR6RxZwiQPUjCHXby0Pm3Cs6jOuWySf/DjHoiGbAopyh4DWuXkEFrNJtWzZX9h8VcONHSXltbzEGL9yupIvRLU8WbCSrv59xpoIdZA7oeQWX7AwzYtmi87ssQIRqCx+p6LUuWDsOlpQjm3CI9wq08ds3fFo0L3mi85341sR8UxxAdOvrVT/2OwClzKG+IY6PF2G6rD6ygDS/RLoyMvW1e4sdqRT9ygnR/1GczwC05oDfgBjduft1olE+dGfPnsUvf/lLrFq1CqNGjcLChQvRo0ePG1E/F/7P//k/eOONN/Dpp5/i8uXLiIqKwurVq/Htb38bAHD06FF07doV77//PgYNGoQtW7bgvvvuw9mzZ22r3R/+8AcsWLAAFy9eRGhoqOsbV65cwZUrV+z/vnz5MuLj42/6lSt12pKddtmzf/7glIujisfSKWkwYZIBE7Jvev2uuq5i4K8GWBmHzlRKfbLE7+hcrbB38k5cspO2U+b9N/LPkiZ1ld/frpwR2HTwLBa+6c0Kr7rCkl09sb8BIMdxUp84/P67vaVl8OUXXar25Hjiy+TL23H8ojMwoD5pelVtHfJOXJJeKwHAh0VlMAwDZzwSWfPjzxycVdfzsr6k0kvJrjap/pJdCYnt0ymPCqiYnkG7Koj9zbs4LFD4XbFUgDKLpSgbJqTFYcP+s641Q11riWuNSmcmu/oC4PCvY+1oFX67lBvsF2O7Ymw93YwMovuHrG9Y//xxZyFerr8p8JIn/DfEOi6alIr41uGe7iliuSoXC1X9VPKw9mqQTLXG+p99Q8d9RGecKX9gBtValu0Xz2z+BC8Rh/01MwehuKzK5RuX2i6CHCNZPUsra/BhURkqa75Cq/BQbdnjta+UVtZg9e5TWLLdTQHlx0WhMbghV64AUFlZiWeeeQZLlixB7969sW3bNgwdOvSaKusHtbW1+POf/4yf/OQnMAwD+/btw1dffYV7773XfiYlJQUJCQm2Qvf+++8jNTXVcQU7atQozJ49G4cPH0ZaWprrOwsXLsRTTz31tbRJFzKhSoV/V9R8pZVCxgDsSCKZU7zKCVn2u06OUHY1IMvxyNqS2TnKoVTw31FdreiUCwB/3FmIlYSACcC63qOY34MAlmw7gbXCiZdy5Fddy1D9B8ChCIjlMaz/6AyGp7T1FFjsyqK0ssZzTDbsP4vO0XdKiY5NACt2WP3F/86jzjTxys4irHiPJqXl+5/aRHgHZzGq1wBsMlRKCabG+0fDOmjPaR3utXVz0h3+STrr0gTw0nuFWLmzUGsNzc/qYieDX7T1KFqF3+75jrihlFbWOBSToAms238GG4gra/5ayyuQiY3f81N6k9dTLE/w42O74q47Q+12MK48WfeK0dMUbAJiRd+wNohKWdAEcl4/hBbNbpOuGZmlvqLmK2RKrvO88vjuzB5O+lIuEKKTvWR30IQ0olkMzvByH6HW3ex7krH83QLX7QJbpyz6ml+TQdOZB1cnoGd6RhJJ9r3zxEW8wGXKCJqwAxGoslg9eYVV1m6xj73qK+4rqjzEjXFRuJHQtpk+++yz6NChA9544w2sWbMGeXl5X6syB1h5ZCsqKvCDH/wAAHDu3DmEhoaiVatWjufuvvtunDt3zn6GV+bY7+w3Cjk5OaisrLT/KSmRX798HZDx9sjCv3M1lDnxCk40H8u+qfN7TEQYZnqkXQoxLMJfWY5H1hZGEin7DnV9Jdvc+XJf2Vlkp44SHwsYwMJJqegVHym9Jli9p9hVvgliw5LUgeq/nNcPuRQBqXCC5Qu58E33ZiteAbBTqxfEuUN934T62jYASJU5/juMfFlG+Ny2ZXP3iwaw6eBZ8hpJpowtf7tAe07rXPue5rJ/+FmX1Pdkc2BRfeSx7jvUmFP8dKZp1V925UuVTSkXdaaJ8qpasn9YnuAX3y1wtEM1l2X9Q9VP1Td8G8jDBNRrRjaHeA45m/TX0MvjC8DR30zRpuAlu6k+ZLJqbM+GVG8q9xF2IBLrym4wxPrwPHMl5TXSFH268zImgibAf+Ftedozvix2Zc8fMh9f97H1d4UyJ7bJa//ir+xVylxTIRRm0LbQZWdnIywsDB07dsSqVauwatUq8rl169Zdt8qJePnll5GVlYXY2BsbWdKsWTM0a9bshn7DD/w4axpQM4az05wJSFNexUTQDOJ+fpedxICGhZB/utIzxyWVvocKVPBynBX7YIUirRGfqoYpp9Q1gQjKAmaCdh6WORr7TjcgQHS8Vp0uRVCBDjrgI08fzkj07CuehFU2tp9VXSE3j1xiQ8/sHCW1CpuwrKn39YpBWZWbcJTvL+aDI6NqAYCyqlqbo9CvEzX7fV9ROVrfUUXWh5oDdaaJf3xyHslt7/BsQ0Nf0fVXyQZpIBMROKGCrQgqn6JBtYUpWzptb0yGC96pnppDQbMhCwRlGZJ9l7dYsvp9WFSm5FP0W3fxeVn7eQVUJwAJcFufVHPKT0CPjABfdYOgsvzXmSa2HbmgJTp1ZI/OXsLSCzYlZQ7wodA99NBDnrQlNxKnTp3CP/7xD4fCGB0djdraWlRUVDisdOfPn0d0dLT9zJ49exxlnT9/3v6tKUK8UlJF7/AbkNeVGk8uWVopJ9cEgEOnK8n32e+yOvEpVRaMTnHx9wRgXVsdPfe51BeErytFcCsSmIomeVW0XYhhYHDHu/Dep5ek3xWjolTKKQ8T8iheETq5QhsLRnrpZak0YG3WTBmT8YixNsm49HiyXQCk1ZN/XkW+zMY2l/BNVEXWpiffhews93wDLGvq6j3FdpYD1fjwxKbz1ux3tYNFCauixNm6lFkM5q3dD9MEWZ8AQB5i2FrRaQPQkG6Lf84ApBF/skCmgAFf5K0MlCLIzzcZVNeYOm1vzLrineqpOWQYsNMHipYhdn1HyUvAfZUs20Nl/ro64OshI+xeP6eBykSnj6isK/0SW5PPsjnldSXNIIvAVyEASHMLhxgGou70NsAYQptc64Nwj5Htc01RmQN8XLn+6U9/wiuvvOL5z43CK6+8grZt22Ls2LH23/r27Yvbb78d27Zts/927NgxFBcXIz09HQCQnp6OQ4cO4cKFhtyFf//739GyZUt069bthtW3saAik1QRbSy10dIpaWQ6rYABMmWOqszSSjoPqZinUYx8FAWA7CRWUia/dgC803nNH+0k0xTN+9Q7rA/WzUnHTokyRwkxqjwviH0CuKOsWJmqBcg2QL4NS6ekeV4LqvJSMoQYBnInpbpSt1HXIQasMaFSETFme3ZFERNhpXniq2j4mINsbMVqM8VCFTn4yD3JmDowXtovrEyv1EQxEWG4r1esI10VUybE62FZlPgD/ROwRJI+jb+GFOuzcFKqOoLaRxtU6bZEyFJWzcjogEcyk+00R+vmpGP9/jOe1hAqgpbNNyoHJ2uT6hpTp+0660oEL9fG9Y51p2kzoUwfKJOXDOwq/Y38s4iPDCOVl/VzBpNp6eYOS1amSeTrAcjT7vF+n159xBRAypdRrAr7b92oa+pZOxetUC4/zrJ0dWzO3Nvtbk+l0DBh+06TIMr3066mgG8EEVswGMQrr7yCadOmObjjIiIi8PDDD+MnP/kJWrdujZYtW2LevHlIT0/HoEGDAADf+ta30K1bN3z/+9/Hs88+i3PnzuEXv/gF5s6d26SuVQG5H0Zm5yhlEEBMRBha30Fv3vz1oQgxJVBVbZ1SEegZ1wqA+9Q8S0I2LDvdwJBbEg0AX1y56ihLbLuOuVzWX3kFl8hv35cag/97X1fpQmUO2V5RrSacqYZ2HL9oRwNSvHQtmt1GRp8ykz4AVxuqaq+SqZfEvpCd1kV2ex0lvHWLZrai4sXzxVu5DANk9LT4rGpsgYZ53Cr8dlcUGl/2vBGdsHZPidIPSUwFJQNfNypKmM/pSPWHLH2aTn1k88JPG/xwssnmyvSMRADefIFTByTgtb0lyvRR7PsUr6EB4Klx3R0brm4qL6rdqv4TweQa+yY1XHknPpNaoHSueXn+z4l94lzZe5jCRa2HZe+4Iyt5NJo7tN5EZdT/fz6NGUVMTPWNiQaXEj/zzWttieMMuFOPiZbH3EmpyhsJnjtP1hbmDsG78TSWP/Rm4Buh0P3jH/9AcXExfvjDH7p++8///E8EAgFMmjTJQSzMEBISgjfeeAOzZ89Geno6WrRogWnTpuHXv/7119kELXgpKnw0mojGkirGRIS5okhVhMPUqfnl94owfUgSWf7DGUl2aD5/jSq7HhavMvh68v+tMu/zV9Zi9J9s41Ipc6zMRcR1ngjW55RDLa+gs2/JrpR5k75YLzviTKAlEPtC9Anjr9xl8LpKZ/XxEmqWlUtP8OmMLZvHXsLVyw+OHx8/dVO5KMj6Q8cnT1YflTIozjE+77Cs/jrtpOaK7iFt3siOmDeyI/YVlQOGVX/Z98VvMcvKExsP45ebDjui5WVzwatNOso0K0+8sqVk09q9xa6rZz95mxmCphWh/tT47mgdHkoedrzWg+gqIbPQyvqIkuEBE1hKpDHjcb1kg/isbG2J48znSg4ALsujaKCgMuGoXIYMyFkf/LTrZsIfM+BNwre+9S2YponOnTu7fmvevDmWLVuGsrIyVFVVYd26dS7fuPbt2+PNN99EdXU1Ll68iN/97ndNMktEYwhkGbyuUGXEirJIwznDksmrDZXSyYNdHa94rxCmaVnx+GtU8VqOKk9Wb1VbqStrvhzZlYTXYpWdwqcOSJCa43X6qrEm/V7xkZiYFuf6u/j+A/0TsG5OOn4xtivWzUn3ZDXXrY9fwlZd7Dh+0el3VX+lAsAxhipyYeaGsGbmIOSM0SPOFSG2r7HjxLtEUFflohsDg+yanyfHbgxxrKqdfL/xV+OqevH9sOP4RTy2dj8eXb0fgxdaka5e32KuImzIxWhD/prdz/hR9Vw0KRWPDk92uDFQV7ZUhH7QhG2NlbkOsHp6Xf0FATyx4TDmrdmPHccv+mpHABan4fo5g5XjJENpZQ3eyD9LBr8wK7xuXaj+a4xc8LW2DOHfBEyYaNuyubJM2bWvzI3nm4JGEQv/q+HrzOXqJxchBZEk1IsbSJoj0Gjw9Zk6IB7zRnaylUOvnIpez/CkqPmnK13BEQaA7DEpnonfKUJUKl8lO82KnFMqE7oYmKJqE+C+FgXoJN18Ll1REPox6VP1ofI4ynjSvNIBqeqjS5rrRTKq26YFGnPBq1wqZ6esbl7EpY25epGtMy/S6Q+LyhAwDBwpvewgx6Yc6MV16AUd3jBWD6+8qzJS5pwxKXgkM9k1Z7LrSYFV/cITzfLv+AFfz00Hz9pR0qryvNa6LiGxDrzGjJeVm/PPNZA1N2IdqCLe/eRmla0B3fmkKpe38Iry0Wvfkck6LzmvIl6/0aTBOrhhxMK3cONxrff1vGlY58pPmiOQ++/Ve0qwdm+JvUAXZDVssNRpSmaZ2ldUjoOnnezoC0anuK44TIAMehCvYa1nG96U+dzIyDJFgUFlR+AFk9eVVOGlKnsMZI7SJhp8afyY9MVNVUZ7IuZxFMc/+/VDpIJLfUMmAHVIc1/cUWBvnrrCXUabIaMq0VHOAHffeilsFDdcSvSd6BUf2eirF53rKh6iAgQ4rVi5ROCIn1yhOrIBkI+j2A8qDrdBSa1dc2bhlqOAAYzrFUtGG7KoUv6dZ7cew7jesZ7KDz8PWD3Fw5WqPNn1s0wuqLjfvEBRmzB4zQGZTPRDvM33x47jF7UUMGoN6M4nVT1l/Qt4uyPJvr9uTrpjj5C15WBJOfm7mN7M7yH168Ytha4Jws+moZpgOsEDovCSpVxiC4RnMjdgXf+IQkDmnyDSQARNkBGN7DdVvalNOSX6Tlk3ScsRy1IJTpmyTbHrBwK0T42OQGZgY0ulAMrsHOWpIPhRcFXClIds4+bL2nTgrGPz1G0rRZthACThKXNeVqWLk31HtfHIFOXxy/OQ69PiwH+z8FKV0gdLVUdqfVB/03XPACAlJefXhqgEqcZRxeG2t4gmWl605Sgu13xFknHLokp1lB9KSc8l/F/F9vKyVFzrABwWIr4vVNxv7NA7f3QXxLUKs320eDBqEz7VFQDPOSAqNKr0iV6BGyb8KYgi/PDQAXoZSfiDlNeBSPZ95mfsdTtRVVtHtos/IF+rBfLrwC2F7hsMrwmmaxXghdfOExex7G06qooxmfO0C9Qpl1ISTdBCieKrori4xKAHalN+fkpvRW/R7dfZPFWBKVRdKC40CroCjwdr687s4Z4WQx2+KVU2DtnG7UWaS7Xfy3okiy6cMiABa/c6s3Lwzss8dBRHr41HSlCsUTYFWWozlfXdDzkuq6sf/zJ2PShCXGM6ShDDjuMXpUpm/0Q6CCpogpQ1Zv3/UPOMShGmo6RTdQsYDbxjMlnK2klF96qiyUMMJz8jK6eq9ioZJMPLjYABzMigaTp4sPHSSXOoKwtUh12VEtMiNIQsc+eJi2RaOjIjifCueJBSyTuvmyav2wmvvbIxFsibgW9EUMQtuKGTasWPs2lMRBjCQwNYrgiRD4C2logBEYDTMX1xfWYKskzD8mXhU+owLi6/wQZsE5DW33DzzOlsnirLh+7mG4Dbj1dWrtf1COtz3rH8+Sm9XRxL4viT9TLgmY2DKpMSHCGGgfJqOiUUv3lSoAKCAgDmjeyodF4WIdZbdNK+lsAjWZ/IIAs40qUQ0QXP26hbJ7H7xLWhowSJZYowADyckYi2LZsjO8vNbyjlQTNgkzNTc1eUdV7BR7L+XJCVoryu42Wpat7ERNDBGzw/IwNbszIuPvb9le8Vur5nwM3Bd+Hyl8jWkBVUEICXPNJN5wXILVwvvONMvZdXcIm0DrODvQiT+6YqaMeWS4rAFBPyoAevvVI3GPBm45aF7hsKXRO3rk+el1MvuzagHLFlmyGzZpVWyhPDz8jogFZht7tS6qjq7ZU5Q8bRRnHyya6HvWgBVO+LYJxyO45f9KSFALyVRL7Pva5KWT9uzi/F05uPuMqakdFBSp0iG1dW5is7i2wnbdaecMlJfTJn7aAg81uKiXDyW8mcl6l6y6wLqpO+TJHx6hMKfq+hVH0xf3QX0m/OhHd0oledAPfakM1rpgTplAk4/Stzxjh9b2WZSdg3VHNXtKqq5i91Y7AgywrWkNXfyzVFjKz3ckPhERMRRnLx8QgCmJXRAS/vLHR8j5eJO45fxPhleZ7ZgVg/iDLVSx75mb9eadN4OVV/hnRl/Jif1QWL3nRb6nSpuwAnabdsz5G1pTF7jh958HXglkL3DYFuOjCKi021CFgkXTZxagcaiGjbRYahqrbOlx8Qi86qqq3DnOHJruuVAICxPaMxYXmDUDJhmcapwAUGSkA/XE+Amtk5Cr+6vxt+ufETl8CgOPlkm2dsq+YIGIaSl4nh4YwkrJSkuwoYsDnlMjtH4bnJvVzlin3VIjREyUHG09HIHPirauscY09tIIw4llkYVIEuPFh9p2ckYnpGoivakRKk80Z2VPYhQAtUkVOQ4qwS+wYA/nrwjC+Sbn4MqPKZBQuwrt/YWKn8impqr5J/P3Hhc08rnWyuiNfZqjXPwP9dl6/SSwnyKhNw+ovmvH4I6+cOxvo5g7G3qBz9EyPRKz7SQRTNf4Mvv39iJJlPVqaw8fOAcfRRPnF/PXgGhmEgPjLMl2sKH4lJuWyIbiji+mbj48WXyK8vRvwOwJHWz0uZmz+6iyNYi5epjM+SHw8eLUJDpP1O7S9U2rQAgOrar1x9xKyN7LDF2BwGJbV28WsG4A5OEKGyPAdNOm1hAMBnVVdwsKTcJS9FUDJS7NumgFsK3TcAMkvDhLQ4vP7RGfu58Wmx9olRx+/BK3E7e/eLK1dtkkYdPyCq3IABjOkRja2HzzmUhqraOnIjWPC/+Xj14YHSPhGtRC+9V2g71TOBwYSRl4LCC/v8MxXaTvY6ie9nZHRQjomsryakxWHD/rMOJVPsc6kDf/2pXfQFuh4WBq+5RflSTeoTpy3weIGqO++zekTjofREV2YOEbKTvvgdvu8DAGbUZ0KhypbNEZmfGuAm0BUha/cj9yQDBkjFW2d+sb/L5IYI3SCghRNTPQOrggDuX5bXkBeYq6P4DVWQEkCvZ8r6RGVoYeXztxEGrOwN/HqTyQvRIk75uvHzTLa++baLSecZ9yL7PmWFj28dTs5xXj57yTLVWma/icqcKtpXnJ9s3Ges2kdalsVbGcDi18wVFN0ggAnL85SymIqQN+HO2iPmPeet/V57JS8jR3W/27YuN6UAiVs8dBr4OnnoRMj4d9bNSSeZsGV/F7mOZLxRDAaADXMHo23L5p78P171FevHOwqXVtYgfeF2sg4bBU41P98C6DRXKuhwHel+G7D6MC9nBABoj6H4u+hULdZh8MLtnqd0kSPQiz/MT5tFfkGqPgED2JWtx3Hl9S3V/Abc/azqC6/viPNUNa+9eBivtT6NGUOqr2QBR7r8dTp8jBRL/7W0nwfFtei3jrI5un7OYM/1RvEkyvoTkM9H1TM8J5ysLS891AcPr9rnKvflaX0xsmu01lpV9ZGM41JnPzhYUi7NYiODThkquaQrdxjXHRVUJfuGznr2ywHpB370j1tBEU0cMj8GigpA9ffN+aUOZ1YvP62ZQzugV3ykklNOt778e9W1QYejcExEGEam0AmTP5R8Q7cNQQCllV8qy/AqT+ZkTzn2ipg51LLO+RlD/nexr0TERNCs9qr6x0SE2VFnsnbInH29+kfmf8b8aPzA77zfV1SunA8yq4vsO2xjL7xUZV8vqcaKb59uoIzuupSNoZfDNtVXQegHwDDwgSVeflXpyXehV3ykMvm76rs6a7qkTJ2NQFVH1RwVx1yn3CAsKzzvTM+u4lQygq8PVSa/pqi2FErGKzz0dpRW0tkgxLUq2ydkQQvVtUGt+VlVW0cqc3bgG1FvnTLYOhfHXjam7HaER0xEGFrfEaq9lln5Xuu5qQRI3LpybeKQ+bz0T6Qd2am/A+5wf5UzP/NtY75C1HPz1u5HVe1VLQ46vn7hoQFH7snX9hZj21E6/U0/RR7a0soafPbFFc+ABL7dXhkSZH3N6sxzPAFqp1sDVh8Ccl8U2VgxyPxGeP+V6RlJrqTVPChfIK+rYplflpffpoy6AJBHuMr8vmQ5d2V99tja/Zh9TzJJgaOy0sralH+mAg+u/MC+UqHK5r9RXfuVPa9lgTYg3tdZl6LfkuiLJeurpDbh5BwV/8Z8iUora1x9xF9PGmiISBe/Jb7vlW+YIf9MhX3A0FnTBpyUNXwWGwaveSrrk10nLuLBlQWuazSVf6Xo68Zfc8q+xfossU04Llz+UumnRvVHiGFYY0vMdb4NInhZJpPrLPiEClpg/UfN7erar+z/lu0Bs4clI6NjlGeeVYCWmfzY8+Mjm//T6/2qgQZfcZnPJP+eOJcPna50PyigqQRI3Lpy1cDNvHIF5OnAfvrfBxy+MJP6xOH33+3tGbH6fr05n3rOMICs7tHYcvicTcg4IS0O6z86Q0aOLiXSWIn1YuiT0AoHSiocm+TydwtIgd8noRXWzRlC1p9nr+c3Si8Fi0Wuso1JTPvj8q0xgIlpcVi//4znCY3asA0AQzu1wc4Tl1zCi43hnL/sw5uHzpFl6vq9AJA6V3dq2wKvPjxQ+zqQr5vXt2TPUmApoHg4fKWM+jHhnqHm0aJJVh1kkcwi2JqQgVoDc4cl44V36U3RC7J+Gp8Wi3UfnZHT98BKCXemoga5bx51zMHc+vJUvli8jGBQrQf+GcDt1wZY1173L8sj3zGJ/6bm64s7ChwKjqssA8jLHuGKgqSUX1mbDAC5k5zflclGQD9NV4hhYPawDo6Ua73jW+Gj4gqyXN2rdlbniX3csoWfP1R/sLmkI5PEtvDv6c4NE06ZAICca0BDX5RW1uDHa/Zjj3DDwl9LqsaHl+9ebdqZPRw7jl90jWcOJ98pn8kszp+bby/gnMuZnaPI69wud9+BY+e/IOt/veFH/7il0GngZit0gD/fpwuXv1SGsz84MAG/nZDqy9fnJ//WCf/xt+Pk7+JpVleoqSDzu5LlR2WRuDq+OwxTB8Zj3gh5jlpeCVTWFcCKaX1xpqLGFV1LPct8gKi2iPDj9/KPT8678uICDUrBA/0TpLkzGeYOT8bPR6V4fouP9APUvmuAezxl84QJYplfDPPtLCmvUdKXiHX24+/ptdkFACz6dip+/r900ENjfcpk31o/d7DS15K172BJuSeNBQ9KcWK+d2/kl5KZO7zA10cMbhjXKxYbD551vfP0+O54cuNh19rz0138/JLNnfdznPPvH5+cx5MbDzcqZRcD395nNn+ClxR9pqtEZWe58/Q2VsYBFm1SYptwzHh1ny+/Nr4+TDli1soz5dXk/H+0ns1A9pk1MwchsU24VLaIWWa88Jv7u+PJTYdd7WLBIbGtmuOxNQeUB/05w5LRNaaly68uxDDwq3HdSJkqoqn40N26cv2GQAynlvkyiBFTFNbsKcZ3+7XDnqIybV+fK1fl9pCg6Z0Gxy+Y3xUvgD8sKiMXexAWFxcVMavC6t0lWLunRBo1ZoK2ElDf1xWWzBeltLJGS3Dx/klLtn8q9V9JT74LX16lyT1N08kYr9pYXninAN8b1F7pK8MnTddltefHs7SyBk+/8Qn5zqItRzGud6zUL8aEFcU7Z5heknY+TZh4VSmbq17DyPy4VN9kYxITEUZmGdBFEPLUWfy3YiLC8NqHJb6UE9P+H2d5lFVOF6y/TZS5qCo2EcocALx99CK59vyA99NcvfsU+f7S7Sfw2wmW9SsmIgzJbe+4JmUOcPpOeSnAOt8yIc+a0BgZFwBQXl2Lp1cdaVRbWX3G9Y51WFFlUClzjJRaJlvW7C7Gku0ntOtmAFKFPGjqZewxAfzh3ZN4fkpvsk4XP7+iVRc/eZRvJG4pdN9QyPwGVu5UK3OA9Y6fKKSAAYzs2hZLtp+Qlq1Kg9MY8Iz0Xtd5BiD172C/y6rDlNEfDevgrkP9yzpt8XPyzT9Tgc+q9AQF88148d0CrN5d4q4j108VVV+5fmfglQyKL4qBbYwqf0L++iJoWuSxXtYH1g6v6y7mEM7yWVIwASxTZDThIfpcAQ0WZa/cv6p5fOozuQO0mE3hWtZEwJD7DTLkn6lA/ukKcn7cDMgiCGXN3370gnbZveMttw0RAQMOv0cKa/YU49ERHe1NVzUuuhZCNq9VhNR+QR2d2XcuXNYP8mJlLZWkcvRTxpJtJ1wp+Ciofp4zLNnue6rfF3soc/yNiSqdpF/UmSbyTnzm+nuIYXjuezx4f9CbhVtRrt9QMF4xPrpqxlBvSwmDHwVkQVaKxQ80KZVMqQI0bGKsXtc6sViEklcaLB5inwQAzMpMQl7OCOQQqYcY6kyTTHm2YEyKZ7qcxuDZLcekKbK6Rt/pSu8DgMyrCTj76YV35YKbd9p95J5kTB0YTz4njiM/v56Z2AMl5TWkcBvfO5b4q7sdOmSovPO6Cl6/y9KEMSW+pFxuZQsxDKyfMxhrZg7Co8Pd1sC/SqxNgDu6TuxLP5iR0cGOGpW9v+jNo9L5wcOAus+81mzAsHyF+PVAQbZWAwCmDkyw6xAAMGtokq9NOf90BR4dnuxoh1F/vaby1WP1EqOFxTmek5WCNTMH4aejOnvWhRHi8oEpuggxDEzqE6ctJ+dndUFMRJg0xRaPaentyTRaPJhyxOqyaJKVyUP22po93srcsC40WwHDkI7W741ZDyGGgdxJqdiVPcIznaRfBACs3Vvs+vv8rC72vqeDZ7cck0Zef124ZaH7BoNiPxcjHgMAHhrcHq++f8o+2eg4kzPMHZ5sO6o/0D8BLZrdRvou8ZuYLMJN99t8hJLOFa6Jhus8GRnqI/ck41RZFWnFMEAruD3jWiE9+S5pupwArMgt0YE+AGDKwASpEKwzTUSGhZJWgD9O7w/Ut4fVP6/gEim8DOj1E0XZMW9EJ6zdU+J6h0/tRPXlXw+6g10AYGTXu5ES29LFpM6TIXtdPfIbpKzNPKYMSMBre0tc5MvhoQFU1waVacL43L9inVg9GNeZCdNl5QgCmDogAav3ODcCMbqOwSsFGzUX+LJU76vWFGsfmwOy9fvE2K7olxhJ+mcZAGbWkyvHRIThZ6O6aKVho9q3encxDFgHrelDkgC4ZZYKQdNSDB4c1B77isphGECf9jS9kghV9gdRXuhY0Pl0aSJxtwxi1PXPRnVxpNCTycieca0AqK2KLNNGarsIrHr/lLIOjFNObPe4XrH47RtH8MahUsc7JkBG4770UB8UXapGv8RIVNXW4Z1jNGOB2Pde64HVc/awZGR0inLUkR1gr8dNUIhh4OGMRNL3kfU528+8XBGawrXrLYXuGw7Rt47KBsBYvP06aOcQkaBU3k9qExMZv9mGSzn7zhmejBfeOUmytOtcV1GC2iTUAZkSY33frZQx2hC+j6kNIOGucLLPHx3RkSSxDDGsVEu5kxryzgYALJyU6hBaDLI+mDM82U49I7uCl1F2iBuQmNqJf45/t19iazLKsW9iJO6LiMW4XrHSvMGydogKg+pZHvNGdsS8kR2l3/NKE8Zy//J9MEOoh6wuIYaBeSM7on2bcDJzA0XHEhNBp2BjgQib88+5cuOKbbq7ZTNynCnXgJwxKRjXK9YVwEK1haWnE/tj8oB4pCffhX6JrR3t0N1UAwB+LQQ9mABefq/I7mdZ/uUAAJNQIthY902Ecv7zV3Sq7A/iHAesvlJdu7L5w4NPDUZdOxsAZgxNcqzHmIgwPD62qyPFl4rSw+4vzodVzNyjkx6PHVYoufB/7+uKNz8udcvpYW45PbJrtP2M7Lv8QU38liwloRchvNe84fcUWdov9g3AfagQ95Re8ZGWFbP+e8y2yJfZFKhLbkW5aqApRLn6AWPDZkJc3GDEpMyjut/tCuH2TBkmKCKytCd8dK4YXs5HX7Lnqmu/wslLVRiQ2NoWOiJtC19fpiimtouw26ZKTcWXZSsx9ySTofjU+9RGzQI2ZLlfZbQzgEUNIculKCsjAOCeLlF45/hFm05BpDrQTUfD+p3lilTlJmUQKQeGdmqDZ7/d08WuTvHLie2gFCjqWQrUgUPEizsKHDQggHPe8X2gyq/K02/wY0iNvUj3smB0ij0/2e+y+UDVpbSyBn/cWYiX6zcdPjqVKV0wDKyttwiL89qLeoZfP0xWiJxqBoCZQ5MwPcM5VmK/jE+LdaXQklkFl05psHCVVtY4LFWsXpe+uGK3uzGUOqpcpey7Mm5KVwoyw5lKUCUX+DE2AAxIirSDW7zkingLMEPod9EPlVoHooxekOVO1+jVdkoeMuVRJi901reqr2R9yzjkRIqsF3cUYOGbDe4G1J5C3awsEPpMVgexrrIyqXpfL9yiLbnO+KYpdFRuSsY/xPPrUESYPGSh2Lq5YvnFAKhT3ABq7iiKtmVfUTnyTn5mb2TUiZrxXIkChdrA/+Oto1gmXK3JaBj8KlHUN3X7USxj54mLZD3nZ3WxlRcDbm4uGfzUQ0b14ZU/VBTQXgoUg1caIYrfjm8XFYAhzjsviBt7tkJZyuwcJaVwEel9dPpA1YYpAxOwenex47dZ3Aaqk6ZLlu/T7zjz/aI6xPHg32GQKpNCu0RaErbOWbvYt70Od17znm8LX7aoxFAKfN6JSzaHnQgvucLnqdaZX+I68GqbTttl6bfmZ3VR5ohVzW3Zd2XvUBxyTK7JUrGtnzuYVDZ5fjudevudHzfqqvWWQned8U1S6PzknQO8+cPWzBzkiNzRzf0pLoYZGUmknwIrX0ZiKsvnqksOCgDLpqZhbE+50z5rlywvqow76VryYvrJoapbT8rHRZb7UKVoq+qh4rFjV4c6uYR14cWbJ+Mr9FoH4ryWwW9O2een9Fb6lRkGsGEOveHofNsLfH/I+o61XTUHCy9VXfM469ZfVEa81sYb+WfJPubX+bXkMvUzT6+Fd1PFyeZ3fok8fNej7bL5oytnRPjtc68crbI5yurndUDxy1F5I7nmVLiVy/VfEH5yjKryCPLg/cgYdPOd8pGpQdPiaBKDmnifgz1FZWQdqHyurHxdGVpWVavM/QjI8wGquJOuJS+mVw5VPn+mTj2pwA6qLq/tLcaQ3O2YumI3huRuxyuEQ7osf21pZY0ymk+Va1U3V6gIr+jBoEnniVXNbT69jxf85pRlgRYymKbFo8f6/zUiuk63DRSCJuw8y1Tf8WtOtZa9xnnbkQue46zLSbloy1Ff+WxlNgj+z6oc1H5zGKvQWN5Nnu7E7/yihoVfBzo5l2V9w4OaAwHQckbMSUxBZ+8Qn6e6ls1xlhZNBKtf0LSu4FU5iGX19lvXpoJbCt0/AfhNet7q/Z50DkyYeG6WACYsz3NsOl6bBEAvBhP16bmMhnd4R9kBia3JOlD5XP0K0V9uOuzYQCkFQtYXLOqTyucXgHvzVjnGeo0Tz9XGK11e/Q8ADxFUBWJdKEV75XuFyjaIddlx/KKUlibEaMhPq9snL+4owGBJWwFvigNZ2bJ+Ytfyj67eL1WovBTYEMMgaWf4QAsVJQObuvyGQ0HWhoBhzUvZF+at2Y8X3y2QUs+IgSdiG3Toh5ZsP+H6vqgoMxJrL4hKuZeMYYE5PAzAEaRAlWHAykHttf78wC9dCfuOiu5EtY76JkYim6BgMowG7kOv/pPV+bG1++31wJSgBVkpjvmzoD6Xr4inNx9RyledeomQzR+jvq7z1hxw7CnUXPU6oPD15sFyyerWtanglkL3DYe4SbPNgucyE7mjHq6PSLWFttHwztxhyY6JLG46MRFhjkXNc4zpWHEM07oa2Zk93OGP0LZlcwzt1Mbx7KQ+cY7rViYoWGJpV9kAMju1sYWAUf8Pr8Bkv37IVlAGL9yOZzZ/goMl5S7hFUC9s3Gm5RO0aKub54vx1LFFFAAdzQVY/ijZHuM0f3QXfFhU5lK6xP4XufHG9IjGf31wykURM390F0ddKKtEEBblDLXpUwogyzixK2cEpg5IcM2DXvGR5Pyg+uTFdy2HZupEzVBaWYP41uFYNyfd5oQT+6zwUhVKK2scGwnVT1MHxlvXMaC/V1pZg99u/oRUYPn+mT+6C14geAt/NKwDCi9VIbNzFHZmD8fSKWmeCo3q1E+1YVZmEtbPGYzUdhHIlvCGmbBY8l/cUYDMzlF4bnIvcs1R5fNz5oH+CdiVMwKzhnZwfUecv7yiPHjhdrz4bgEuXP7SFzkvGz8ASkU0JiIMuZOc6y47K8WeB+wZUflgh0qq/uI3KKWE+pvXgUPE0+O74/kpvZHZOUqqND0zsQeOnvvcmRfagD3XB3VwK7Smaa1vau5Ta/DhjCRXGUHTypH8+PoGGbloy1HMH90Fa2YOws7s4XjknmSpUifKV1HBA+Cabw8TFD9Ag0Ipm+O8HGV7yvq5gz0PKNQ4MTlwsMSy3r64owATCMotmRxrSrjlQ6eBpuhDxyZ8WVUt6VPxm/u7o2PbOx1BBEu2ncCaPcWO5MMAbF80A1Ykm8rXjXcsNWAJ0lbht7ucgos+q8KaPTRzPe+/JEbwAcCgDpGYObSDIyRedMAe1iUK7x6/aEf1ZXRqg50nLjmcqHu2a6XNk4X69k8ZEI9usS3RKjzUjqhS+SIVl1Uhe90he/HLIs5k/n5Lp6ThrjuaKYNT2HMsIhBoiI5NahOOma/ukzrh8w7aFGO86CTPz5c38s/it5vdiuzSKWk4eLrCMWZTB8Rj3shOriTrlNN74SUrDZcs7yibH14O1LtOXLSdzpmY5ufx9IwkR7tkPjf2OBJjxPyZisuq7UjWfafKyXlF+e54+XoaAPJyGnyfqKhDPhL5jfxSu9/Z+FZduSpl2afqJMKxpg1rzMb1inXURea3tnRKGsqra33lRB2SfBfeP/kZgqabdJpvV2yr5tLIcaBhDVRU12J5Pe0QFaykwm/u747I8FAHI4Cf4Cc2ZjW1V1F4qRoV1bU2XQYFpvjy81WMHi0uq8aP1x4gA1JkwV98+VRwCptfoqzVAR9E5JW1h6oPuDnIxvWDk2U2Tycf8FF4qQqHzlQ6gi5m35OMkICBti2boVV4qHQetr4jFIfOVOLZLcek0ao1tVfx9tGL+PNut2Ve9A0Uf8uVrJ8bjVtBEdcZTU2hc4XTg4juhDPKUZbUXnTqV3FawXTnx/OTHgtwOu+qNjteaHpFOk4b1B7/tfuUy4H1pYf6NCohNQNTDMb2jCEdlNfNSSeVEt7JWxXE4Cc4hSmbgzu2wZmKGkcEYGMXsGyT9yu0VZBF88nqzRQcAGS/sSAZaj6LEDfeRVuOYsMBd4aHaent8apg4RTrxDbeCWlxWPfRGc8+Z+1WRXkCDdGZYkQmRXUii3ZdMa0vHl61z6NGbsd4pljLyIT5gx8VXRmAZaUWaWF0MXVgPAYnt0G8IuE8r5zLgq4oqDZnsXzAqVjlbnG3hwoE4KM9GVgZ4aEhvpRcWXmNBRX1qhtERmHW0A6YnpHY6AAQHXjJMqbcUWn/+Pkq8vJdL3kWALB4apqLOuVG45ZCd53RlBQ6mYJALQZ+c0xfuF37GwMTI7FbcJD1m2FCBiZodKNxeSoOv7gWZYcH28hFfq2DJRVYTVgheaX1v94vwhMbD5N1Ywq3VyTnjcLSKWnomxjp4lm63kKbRfPJFFsebM5KrWCwLBDUpkuBzSGeq+rrwtIpadK8prrPsQ1KJORuLH4xtivqTNPXgUClnF6vNeYFPwe8rwuqQwk0FUqd8hoDMepVtfa8yKHZM4unpClvPK5nflXVN7z2Ia+I3muug8LafSPgR/+4lSniG4Z9p8rJBfPdfu3w2oenHX8zAZtgWBcG4FLmAPUi0jkN21cB9adGncCGOtPU3rgpXK81HDSBDfvPYt2cdFTXBm3H2AWvH5I+X3SpGjuOXySVOQbmR/PZF1euWZg35v2j5y7bigQTUi2a3XbdhV9im3DpvBVhwuo7aSQjrKhI3SrWmSZyb4IyFzCgZbkOMQzlc0HTau/1OEwBcKVZ0ulH5ueX2TnKtda/Lp2K+TlV1HzV6APe9YRqvZlQ/KjA9WwTk0ExEWFYsu1TpTK3fs5gbNh/Fq/kFSnLU1Xw6fHdMbLr3dh04Kyn5fxaEIT3fsOn4KKi+Hn8cEgiXtlV5KvveV/ipuZTdyso4hsGWVJ3GazJrz9dGyNUZmZ08JxIS6akOXypWoSGeJZLhcgrn9dUXAMABibRUbUyMCoBZsZnKYdk9QgPDSBnHa3wAVY/v7KzCENyt1vRWpJydBBiGLi/t5pnj8IyLt0Zc2ie58PnUAcsx6+fORgeGiAjGRn8KDfMauAHBoD7ekZ7PqfC5P4JdvooGZilN+x29ephm9jNAnMs16FEupFo7AEvYAD39/K/PmQIMQxMGRB/3cq7EWAHqdLKGvIWgWFGRgccPfc5/qRQ5hjiW4fhvlR6XVz5KoiYiDCktotobJW1EGIYyOaCSGT4rOoKDpaUYwXhD87jjma3NWrPa6oUJrcUum8YWoXdTv69R1yEO5TfsBJX95NQgjiebWR9AgC+qL0K06OA+NbOk0xVbZ26XAMY1UN/U2UnzV+M7ap+Dhblw14J750KfIi7SiFdMDoFVbV1nhx/jAVehhkairIB4Ef3dCB9wwC5Ukgpy9f7usRAQ45flYImYsLyPOw4fhG5k1LJdwIAxmsosAED6Bbrz0UiAGDD3MH4v2O7+aaj4LF2b7F1RUlRTMCyaDD/SS//NxbFyTaxeuPfdYWsPBbV+8edhaSyb8AZ6Xoj4feAxxA0gY0H6fXhBwaAx0Z2xLo56Xigv3+F7uvUyRndkurgaQAY2zNam9OzujaImZkdyN+8KFG6Rt+BR4cnOyJc/cKAFen7SGayZxT5o6v3S4Ou+PJGdm3bqHXeVClMbil03zDIOJju7Xa3Fcpf/2OgPionJiIMmySbPYPKihGARWUim/RBwEo/5CERqmuddhUvjqqgCWz9+Jy60HoYsK4Le8VHYmzPGCmlCfs/LBq2MQiaQPa6Qygpl5NoLtp6FIdOV0r7LMQwMGNokqf/4PSMRCwY41YIeJgAlhNOwoDlyLwgK4XkU5JRD6jQ5e47pL/xdDFAfVTYpFQX1YTOJ/krjbx62gy+rkEAGz3mNAD85N864+Ozlz2fY0WHGAYWTrLmkV86ClkbxvWORc4YN33GkxsPY9OBs8iWXNvzMGEd5HZmD8eamYOQlzNCuy91MUCwWGf1iMaamYMsH9YtR7HivUKSsT93Uip2ZY+wNlfNChmAY3OXQbSij+oRfU1KNoUxkkNjAMCDAxNcyuribScwflkexhNZbVQIGMDEPnHSAwr1d92mTh2QQNItAfKbEObD63XwZGAKzNFzn5O/z3x1H17bW2zRxYx2y6wj577A8ncKbAqUyQP9K8QmgNwtR+3v3NcrFjOHJimfVyG3fq2r+BZlGJ8W2+SuW4FbCt03DhQHE9s4H+ifgF3ZI7Bm5iDsyh5hR/epfBpkm3sAFrfPrpwR+PnoFMwepk6CrgIz//uFrs5lwPJHA2heKN7fJWgC7316SVpPrXqZQEV1rVzJNYFntx7DQ4Pak3VdNycd0zOSlAofo3JYpOGPQl7Xwjp9L9py1MWntG5OOh65J9nBQUhZfUIMAy9P64snxnbFy9P64vj5L6R12HXiM6yc1hePjeiIp8d3R179/OPBfLB0wPvBPD62K9bPGex412tuBADU1ulfzvL8YAwP9E/Aujnp2mWIYOz7qXERWPFQXxe/40LN60MTlnIIAOnJd9lrfeW0vtp14S1pFPYUOi3Wfzt8HuGhAaW/4lPjuuOB/gmIiQhD6ztCtRWD3Emp+NmoFE8ri2hF/9vh85gzLFmp6AQA/HhkR++KAHh5Wl9sPew+NAYMYOGkVPRsF+HgrWPNEy3ZBryvxH+QniiNjl4xrS9yJ7n5BvNyRuD9nBF4bIS6PQ/0b2cr++vnWhyFjCtPdhMyb0RHZHaOUt40UFyjMjcSntNRdu3K5GJ4aABrdtPXwLZBAhZ7gQizvg6sfSo5qkIADT7M8a3D8dNvdfb1/ob9Z7UyzXzduBUU8Q3EA/0TkNk5ikwKHBMR5vhvlcn9h0MSMTOzA3Ycv+gisVw4MdXOi/ja3mIsJzjMZGDryxaAJrDj+EXHBi9L69IYBNHgAAxYC/WB/u2wZk+J9jUiC8tfsu0EVu+Rp2NiaBUWioUTU/H4uo9Jzqk608Sf3j/l+rsJYHP+OTw+tqvjfXa1xYfb5xU0zpJowNqQqNN3EE5rKV/1iX0aInkZySzjAswruKTsxzrTtCliAgZwe0jApdD5yfAhXmlU1db5um4zAdTV6b1gAnhi42GSr83LNYCH6ChvAHbQybUGvfAKLkNYqL74NqG+rhR/kqWf4vHLTYcReps1zuyqTfX89wclYM7wjg6r7X29wpB/uoLkvqRSLy17p0Dp4L9wYireOXZRXgkO6z86S9Z38WQr+lsnKhuw+m5WRge8vLNQyj9XVl0rLWvGq/uQOzEVO7OHkzL90hdXlN+vrrX810TqG0Y3Q43L4u0nsPTtE5iRIbdwPTXOyWXqJY/ErAzUs2xeUcXMGtoBd90Zitz6COxVH7jlJ+AM+GAHeJkcliEIy4fZy+1lfO9Y0p2FHdbu69W0rHS3LHTfUMREhNmndRVYAnYKd90Rig+LylxUBKbZYPHymzc1YMDlN8QsDDqptnh4WRXs5zgL4Gt7izF44XasrlfmtOqMBl+vtYrcmny9+iZG4oH+CbaVwc8pceXOkyitrLHf51nY+THVCRyRIbNzlLSP889UuMbVhHXqnD2sAwzDEniLth61U+LojJcq44NuGQDNbO83xZIJ4A/vnsQYiRO363lJ3XW/GzCA7DEpLh8hMTNIY0H57FzL/BBBWeib3R5Qtp3vK9lVG49v921HyqvpRNYCGWR7dgCWD21K9J3Youmq8cahUnc5hrW2daOygQb3CLaWh6dEuZ7ZdOCstI2m6bbAApbs/evBM1KCdvZtFvxAZXUBoMyQsFIRNPDkpsMoLqtypIpTjROflUE2FwIGyLRmshsFCgacNz68HM0Z4x0wwcrwUuYMANOHJErbzKdKayq4pdD9kyMmIgxTJRFZv3vruDTC8qNT5QDkVpWAAVdKsVmZSdiVPQKp7SLIEz8fFeSVK5L55ywgnMpdqP+YjvIppkJjflPMgdjLgsR8T5xWhlhXShsV+NyVKsXcyzpkAK50aUAD9YdMsD675Zg0OTnLvMDqyW/YfnxNqCgwXb+0+aO7uKx7jfFpqzNNfH9QIjbOHYwnxnbFxrmDsUjD94yvO5Uei8KMjA62s/aamYOweGqar0OQF+ZndXHNEV3roc6Y8enfmDXxiQ2HHbkyqWryfeUV4di2ZXPy7zERYUpfKC/wvo97GhHsxMNvVDZ/+GBreeZQd+BAEMBMIoUag7heWA5lmXwWv61KJs8UHipgLAjgvtQYsnzTdKcdlI2TAWdqLNlcmJHRwfZbE2Wwrj8fBdb3/BrMGZMinftjU2OkRNZAgytTVW2dtP9lB9ebiVtXrv8CmDeyk339yEO1dpg8o8zn7DTcKz4SPxvVhbwmEN+hLAwP9E9ASvSdLpJQVn7bls0xJNebENmExben8uMJAFgyNc1OI0TVW+faaAmXgotP1cRfg4eHBqTM94C+T6FXfUwAuz69RLLYs/IpwVpnmiivqiXHVbYpML+tlOg7cb+GQ7gsCoz1076icsxbu588jT+79RjG9XY7HbN3//HJeS0WftbPMRFhdk7gXvGR9vcNA2gnyVKQf6bCTk/nNba8hZdt7KWVNa7+FV0RWD8xfsP8MxVSjrV2rdwKv858vS81BjMzk5TzkVmYpmckuvrWBBAwgaVT08i+opK+y77zj0/O4/vpieRv0zOSsFLgDPMikRXXNAAM0Ijol8GAOypbNceYPyqfbxqg+0HVx+z38NCAnatamQUD1njw7ZZ9k41NTEQYxvaMwTNvHnH18czMJLz5can0ipS/6p+ekUQGyJgAKmq+UvYBs8LlFVyy8x2Lqcl0XBP4AysFXrkelNTatb8YACb0iXW1mV+LrE4HS8qVdaFcIW4mblno/gUgBlJ4GQTYlSJ7d0JanOP3CX3i0LZlczvhsmhh0kkOzdArPhK5xGmtV3ykL5+rx9bul0aWMp+ysT0blATKMuZlBQoxDLtf2AmaT0LNyvSKnGJWAC+w+qjGKwiLB1DW17Irw19uOozR3RuiBmXBMaJi1is+ErMkp3RZonOqXff1ikWupI9UHE87jl/ELzfppVRi1A2y74/tGYte8ZGkFTN3y1FXEnZ+bHmLHfUdcS7JlLlnJvZAr/hI27rw6/HdybZQiq/O/Hjz41J8UFjmet8gxmrH8YukohwE0LpFM9Kywo+zV32e3HhYekVFyYwFWXRidva7uKYBa35O6hMnecsJA25ZuOnAWVuueclM0R+VgfJJ5q14309PdARBhBgGxqfFYsLyPExdsRvjl6mV71yi3ToylxofE8DRc59L5ZW4/lVWukVbjtoJ7gG46jOhT5zdxiG527Hj+EWHDNa11PqhDBH3F9bmma/uw4S0OFd/sbXI6uRlBW9q9CW3Un9poCml/roW8Em+dXMnUqlTDFhCSkxULfsefwKjko9Tz7K/Ufkj5wxPxvK3C1ynd5bmiSVntt8R6qiqB1+XXScu2km/xUTPYr34dDMMVIoiPtG1DrxS1wQArJ9rWTOp/rOTXb8pzzZgoCGh92t7ix2BGqzNPA6WlJNWuv/4dioqa66if2Kky2ohw3+8dRTLhIAbqi9Ze2TzYdnbTmf5nPr26ECWeH7Z1DQ7MEicM3xCe681sK+o3JXai42b2E9UmiYDVjo0as7o5OgULbjs27wlQjXPxPGg1irfRzW1VzFj1T6yTrKx5ctgZQN0Pt9lgnWKwrYj51x14OUWC0KSpVTjgwpkMlM3N65szevIY76MJfVW0qraOk/ZJY4N/7tMdgHOQIEAgBlEHl1VKjE21/z2n6p+4rg9M7EHMjtHKWW4CEoWUxY5qr9Uubgp+Xi9cSv11y2Q4CNgqQjLz76oxcqdJ/HSe4VYubMQCyemIr51uEvQmHA7kVNpUPjv8QmSZRugKSwbMYKJX0ApMS1dm3CdaaJnXCusm5PuWLx8HalIML4e/MadnpyCBwe1dwlIlb+KaC3IJervxzzvZaUMwiLiFdsh9vfkAfFSxngTDdecqghqBtmpdf7rh5QKjqgUlVbW4AWCQ4/yF5P1RRDAkI5ReHBQe8c1alVtne375wVpmrH6P4t9yXKr6q6B1nfQ9aasO8yanvP6IQRhbaoLOZ9NHjo+o9Q1Ovs2u1IurazBG/l0xGfAAGnpEesj9tHEPnEkTYfsisq57qx6ySKrW7do5jmuI7tGI3eSe+3xc1u1ttiY7swebteHkkUxEc7k79SVoRiFz8D6URY9GhCUmC+uXLWVItkao8aGh0x2bc4vxdieMXh8bFdMz0i0FTt+L2DfiokIQ3ZWCkmHJa4J1n9UG6m5IJP5/LjtOH7RVvp086qWlNe4rNR1pulYB36gc6i4Gbil0P2Tgz858ic7ceMG4DgZsQW5bk66p5+OuDAPlpRjT1EZBiS2Rq/4SGkEFtsAVcqe6L/ENuq+7SNJH43Pqq7gsyr3FVWdaWLN7mIsfftEo+rB6F9iIsKU/iqi0pLZOQrPTe6FgGEoBYDMaijzS+I3DrEdVH+v2VOizIHIjyGvuLI28/WT1YkX5jmvH0KLZrehb3vLAvXHnYV4ud5HivUtdVgAgJ5xrci+qam9StY9PDRQf41qjSHb9ChrM9XHlL8Uczug+pLKrcpfE4vfkPkTUVc1jBdLtKBR0HFJ+LdubfG3Ty64rnr5qHCZv1YAwIqH+iIs9Db7+pnqP6qPNuw/i5XT+tpUNnyZzFeMlSNbd7rrTFYv2drjn1HJNn5NsHERLTpi26mimFxiBwxxHsraKeaOFuVzNrfGdBUL2dp9evMRPPPmEduqxkeAUgeWR+5JBoz6tWDS/o48tYeXjx8PSuYDlmuP114iorSyBn/cWUhG88pkNg9ZtHPrFs0AwDGPmwJuKXT/xKCENS8w+c1bdoKqrg1i4cRU5bUOvzB/+t8H8PpHZ+zfJvWJw6S+7aSnMwCeC5T594hCnz/JsQ350dX7bd8Ysb6Lt59w1d2rHhU1XzUILa7vqFOkWMcJaXFYv/+M50lSpUiKJ1bWLpXlg9rozfr/kSl1sk1e1o4JaXGOcRYR5MbCZbFQHBZEIa9SOBiYpYvaXJmFQTUWMRFhmNjH2Z6JfeKk1hMqQXiIYSD/TAUeXPmB6xtsDPk1ZMLNzUjNA5X1IKlNC89E5W99csHx37xlSewv8bnxabGY+eo+Wzlm9aYOO9T6Dg+9HblCu4OAnZKJt3bK1r/XOpPVS+dGQCxfBKNDUo2LigWAt9g9unq/UiZQ7eSv46l5yJerY6XyanPQtLLgLJmSpmVNeyQzGeN6xaLoUjV2nrjocp0ALN/mqtqr0jaq/GwpmV9w4QutugFqdwRmeVbd2LD3RajW+s1Gkw+KOHPmDL73ve/hrrvuQlhYGFJTU/Hhhx/av5umiSeffBIxMTEICwvDvffei08//dRRRllZGR588EG0bNkSrVq1wsMPP4wvvpCz3v8zQCasmcDU4Qhjm6uK4Z9fmAdLyl2b/OsfnUFN7VVp2arrS1lbeKFvs80bTiZ3QD/zQ3hoQFoPRnLJf5fikMvsHOWq4+sfnSHf5SFrG/8cz3enGgevfIoAYJjWdQHP16Ta5Kl25Lx+COv3y5U5HjJdgz8syBy5VQoHAx8xLNtcvcaitLLG1R7GBC9bF3xuVdsfSzJXAHeWDBPuOnjNAxHs6ksXBlCfh1SuiAHAE2O7Yt2cdFvxYPW1lTLTm6tPJTv4cvg+Y+DXv9c6o+p1sKRcuy8da0v80QQuXP5SWZas7evnDHbJJdU8FNspKgcqDjiduUK1mcpAIcuCI7OmxUSEIbFNOOk64beNPKj1kPP6IawgLG0Ua4CXO8LiyWmkzGZ1lb0fMOC51m8mmrRCV15ejiFDhuD222/Hli1b8Mknn+D3v/89IiMbTi7PPvssFi9ejD/84Q/YvXs3WrRogVGjRuHLL7+0n3nwwQdx+PBh/P3vf8cbb7yBHTt2YNasWTejSV8bVNcxzGdCjOKTba4qwc8vTBkHVNGlamnZqs1A1Rb+VEbRlZiwFi3FvSSiujZI1oNKBi5ylLGIKJ3rLyp6U0ehZd+S0bKIfk5sLKnFzSIWeb4mfgx12hEEfU3lh/iXjbFKyOvUhY8Y9kM+LF6RquYXNXfF/kttF6EcR9k39hWVe9ZBhUcyk5GTJefb4mHC6bcnW3tjesZ4coKpuPp0ZAcDs3by4K8oWfm660yW4ULVl2xticWagGdZMRFhjuhw3rqmkw5NJk+oOk5R5D/VmStieZ0kuZlZFhwdlgLAe516tbG0sgZ5BZcc+5HMX5b6DMUaoKoTYyuQcXEWXaqWvr94cprnWr+ZaNJXrosWLUJ8fDxeeeUV+29JSUn2/zdNE8899xx+8Ytf4P777wcAvPrqq7j77ruxYcMGTJ48GUeOHMHWrVuxd+9e9OvXDwCwZMkSjBkzBr/73e8QGxv79TbqGuAVnck/0yI0ROkfwnwmFoxOQWq7CBeXGlOoGC8SdTU2pmeMox4yDqh+9VGPVNmHzlSSIf7sd5nPlhf/FU8xInIv8WDlUNc7sii4nScuwoTp6SclgvKb8uNfJXuW93Ni9ZFx/Hn5jei2AxKfn5KyGldEp+t9QgFl1kHeJ8WrLjyvFXtn4cSGgAIVmC+Xqs07P7XGmeLMYvUGIF1vOhxt8+qvpKgUTV6UCGwMx/WOxbjesbbPUUlZDeat2U9aF0QKCn7Os3RvrF2qvhfrJvNX8xpDMTJdvKIUr7J0ymOZCKi+9DPvAwCS2oQrx4WPdjbgJMXWWUu6Y3zoTKU0/ykrR/RN9EJCa/d3me8o8/+VRc77lX2UzAQgjRanyjTq/0f0yZyekajllwg0WNi8/OrYs475YDTQefldq18XmjRtSbdu3TBq1CicPn0a7777LuLi4jBnzhzMnDkTAHDy5EkkJydj//796N27t/3ePffcg969e+P555/HH//4R/z0pz9FeXm5/fvVq1fRvHlz/M///A8mTJjg+u6VK1dw5UpD/rzLly8jPj7+ptKW6PiEUL5PLDenFyj/AVlZsnDt1/YWY4HgczC0Uxs8++2ejkXs5Yi9YEyKy28NgEvZYopoTEQY6bv3++/2tr8n85Nhz/GKMO/0/OK7BWQ0l6zP+DqOT4t1RPoZsLitqH7jfT1kz4nfCADI6NQGO09cks4LioYEgHIuvba3WKkUTeoThwFJrR31WMDRhKj6O7NTGywS5oP9TaJOL+4osOcCL9BZ/1L+SKWVNQ76BfasuBYMNNC1vLijAAvf1BtnWZ2pNcLTK+w4fpHsV8MA8rJHYMfxi56UMV79xSCuB9WcenFHgU1oLPqh8b6bfN/zdfOqi2o+ZPWIxvfT26NFaAipiLK+EeUHVZ5hALkKHzrAe96L5Yrjys91SjaIVByUH5ch6UcezJn/ZYFsmYJqLchA+lfDiqiW0Tupxlk1xjwca9uj/6TjDEvp95JnoqyckZmEu+5oJiXvFtvErwv2XbaGdOidrhf80JY0aYWueXMrVcxPfvITfOc738HevXvx4x//GH/4wx8wbdo05OXlYciQITh79ixiYhrSl3z3u9+FYRh47bXX8Mwzz2DVqlU4duyYo+y2bdviqaeewuzZs13f/dWvfoWnnnrK9febpdDp8J7JnmGRUuGhAazYUUjmLxTLvHD5S9+cPSoeK37j9OJVA2iHc8aTVHSpGvlnKhwKn+hYLesfKjsBsxBQgQ+AZSWcumK3Z58xC9OHRWW2lQKAFl+d7vjyUX2v7CzCivdOugSTrHx20paNrfiOjJuNf37TwbMO60Q2p9TJ+Nf8tJ8fF1Y+b4ny4rUSOc3+/sk5/HLjJ64+yxmTgtS4CO1xVtX5pYf6oPBSNfonRuLouc9dG03t1SCe2HjYVT7jvPPiEVN9m5+HFJfXkqlprohIkveOU6LYOMIA4iPDXOtfl5NRNh/4+o1IicK2oxelfcPDi+ORV6TY3BFlBMUFKOMrmz2sg50Wj8mc3C20YrBm5iAHJQzFnShmuOChwy0IAD/7Vmf0bd9am+ONQVYnvi9kVD066+2zqitS2cHeWzcn3Q6OEcH3HzUeDHOHJeN76e0914KMyUHEUi4LkGwMZGXfyCjXfxoeumAwiH79+uGZZ54BAKSlpeHjjz+2FbobhZycHPzkJz+x/5tZ6G4WdHjPZM8wnp3SyhpsVihz7HmZouDF2aPyWTAB6yRmAKlxbv8DHqr0U+zbLLoI8KaR4K/H8k8Xkj5xuVvknGJe1wnsO1S0FEXLQUVkeY0vJVxX7nSPkax8dqUpE1LUOxQtDP/8vqJyRyJtfowfyUyu90vS4+tTBaTw5TOuPF1eK77dquCKRVuOYv2cwdoUFqo6M5oO5hbGHmHz6lf3dyPLZ+3kI89leIWw2uhEOVPXmBQtg2lauZzH9qQjDXkZoMvJKJsPfP0oZY7VR0RVbZ3r74zvDYDDod0ELSOCAMYvz7OterJyqRzHiyTKnHitLfMFk3Hp6XALMvy/vx/3JWe86iSLFvcjY5mi47WW9hbRdCBi/1HjwbDsnQKU19Qq286vJxnfH+B00VGNgazspoImHRQRExODbt2cArBr164oLrbSx0RHRwMAzp8/73jm/Pnz9m/R0dG4cMEZun/16lWUlZXZz4ho1qwZWrZs6fjnZkIncMDrmcJLVd65LwGskCgKXj4COg7pi7YctX2NKIQY8vRTzD+EcmSlHKvF+pZW1pARUga8Ax+80oGFhwbIaCmqrVQ/qsZOKlwVgknGbyYTUtQ7qsCKEMNw+dAxLOJSZunMW9lzXgEpsndk0W6qQ0TQhCviVoToqC+b77wCSinOkWGhrmhF5rekA9k85jdC1Vpkc5O1Q0WqrBN5qzvGXvWSQdY3qu/KFBZqaE2zITKW9xfmQc1FWXliGjg//QPoBQLZdfApZ1R14n1KdftPFfm6cGKqUs4zP0cROv3HY83ukmuef6JPr2oMqIjapoQmrdANGTLEdVV6/PhxtG/fHoAVIBEdHY1t27bZv1++fBm7d+9Geno6ACA9PR0VFRXYt2+f/cz27dsRDAYxcODAr6EV1w5VFBmDKn8gQE9mAw2RiSGGgSGd2pCnIXHCq+qoktfUxhliGMjJSrGjBR+5J9n1O5/ncF49txkPikZCrK9MoZ0yIMFTIPCRmBTdBxURyCyaYh7c8WnupPN+owRlvm2qcVLxZcneeaB/AnbljMCsoR1cUXx920fS+S1NSJVhWbQc9ZxXXllqvpmw1oFOu6lyZePMfHYeXb3fkbdXzOnqBWYF4HOEBmD55eie9F/Z6U6MDjgj/bwOIbxizEiVeTAlSmUJZNAdY516iVD1jeq7KqoZWe7g8fXyZcLyPFeOT9lc5GVOAPXp5jKd6eZiIty5sCkZwKBSYAYQiq0O/Y8IahxYxpnX9hZrU/V47QnifsS/R+VElvWfKi+2CWvuN2b+BQDMykzCruwRrsAbGXTzcN8sNGkfur1792Lw4MF46qmn8N3vfhd79uzBzJkz8dJLL+HBBx8EYEXC5ubmYtWqVUhKSsITTzyB/Px8fPLJJ7YPXlZWFs6fP48//OEP+OqrrzB9+nT069cPq1ev1qpHU8nlqsqhKPOZiedy/1FO1zwjN+XTYADYQOScpOr2YVEZHlt7QGoiZ74TVbV1ruADqqyAYaBdZJjLP8SAO7cfc4aX+TTI8o9unDsYR899LnXwl7WV98v4sKgMP157gPRJ0fVtEdvMxgxw+30wBYNqS9uWzaVs/l5+M7IIQNE3kP2mk4eVvVtZ8xVahYcqWe3F8XM5NQt5JXV9D2W5GNnzstyQMr8vvt9YnSk/Jn6eBmClXxvcsY2dPUPH/0b0nZS15eVpVqSzTv3ZOrTSIZk4W/mlneuXOcZndo4ivxUwgF2cfx0LJCouq3bND1WbbF9YIsdwAMCvx3f3nC98WWI/8sE0fBBVTe1VV/YKEaIvZK/4SGlAgJcflcq3mclBMTerLCiJn098Xy2u940E3HOKWtN85hUqk8d6QSbqylhWNuWrKvMb5H00ZWPNZMj2Ixew/sBZ11gxv++9ReWOPNIqecbLbzGTEgCkL9zuqgcALCX8UG80/ml86Pr374/169cjJycHv/71r5GUlITnnnvOVuYAYP78+aiqqsKsWbNQUVGBjIwMbN261VbmAOAvf/kLHn30UYwcORKBQACTJk3C4sWLb0aTrgmyO3uVzwwDE0Iy+gVZ3sSZQzuQyhy/WHg/Gxl4S5vMHwdwO+POyEgi22aa1ulq+pAkRztkC62knCZ9rK4N4oH+Caio+comEV609Shahd8ujVqifLPEQ7UJYHN+qZZvC1WOCWdGDFWuSIbN+ecaEmsLvlLsdCpjo5dtWKro0+XvuJU5/nTslalE1q8MjEZHzCvJqHbKqtT+M0C95VrSX0+M7YoxPWOw4/hFW3kx0BDJJvP7En2v2LdkOSiZX+rqPSVYvadEGXHKQ5wXUwbES9vy8CrrBoLv35gIKx1aVe1VV/S1eHibOiAeQzq2sTdcmTxgFgpqbA04A2NkYONs50jloosNABP6xOHJjYe1IjapNf/a3mJHMM2o7nfbDv0BA5goRK1SvmEzVu1zrEGAu07n2uzlRyXzMXQFdHDtfKB/Alo0u80VWGACGNqxDXad+EyL4sUr0peSJfzcpvYKqx70LFQFc8j8Br1ya4ttGN4lCu/U30axNcYHZ+lENKt8a9meQ8Hg+pqn+2pKFrsmbaFrKmgqFjoZdCJHAXXkk8qCJSp0MgVEhqfHd0dqXIRWVCJlRZL5a6naI9ZXpFNheHlaX3SLjdCK1OOh0+cyvjavNvNg0Z6yUHs/32Lfo07xMisCNWY/GtbBZZmjrH2ydumOm1c5MmzkrGdedQDcVi8DQF5OgxXKTzvE/pVZCHlLl592qxR6nXpRlkS+TrzliVqLu3JGAFBHC+aMcV+dXUsbr/d8EaP/Zf3BEIDbJ5KPBL7W+vD14iMoKStRwADWzxlM8j16RTqrZKmqLgwq2hIdS7jf6H4d5gQALuqTa5W7fvpJhyLmWuFH/2jSPnS34A1mKVvA+TfIoGKzZgmQRfDM8oCl+GVLUu/IkBx1p9TPjK+PzF9sRkYHqe+LmPGCgZHUsjRAMshYwXkWf6pcKjhDRBBAVo8Yl/8ZE1Y65dSZprcyZ1jXkar+Zd8D4GJql7VfxpJP5WxkUXI67aJSu4lM8aq6eaGkrCGRvGwzYOPwYVEZmSGAH/uHM5JIf0E2R/i6M8sT619Zcm/e15CB7wcvx2wVZJlg0pPvUmaA4IMeYiLcGRAW1vuzeY1J7ptH8Ub+WeW6VLVR/JPOOme/6WZsKSmrgQkTbVs29/TrozIUmCaw7ch56bzl15uur6VM5jjqYlrrjMpC4ZWZRJbhRTa3ednx14NnlAEyqqA7mZ+uKlNDaWUN3sg/Kx1LE1YAVi7BEUq1U2ev4d/n/fK8/MKbStovoIlfud6CGhSdRVyrMCVTf/6ZCpJ6hOUKFC0VYqJ0HX4kHrwju6t8w1k+WQfDYgIf2zOa5CNiGS9kpMheFo1+iZFo27I5GWbPJ5amytWxlmw+VAoDzuthv+V4WebWz7F851a8V0j2rxfx66HTla5y+Ug03ZMqn7Ba1S5+TnjVjZoTXnhMkX0BgENCG5KN3DDcV8bU+mBrTXZdRCX3BtzRctRaptptApjSPwGr9xQreoBeFwA91jx4Gh7+2tJPBgQT9DWgbht120PNHemYc6DGbWf2cGzOL8XTm49o1MbCExsOu8iYZfVi15deFkE2d+OJLA4M+WcqMK5XrKud/LqixllmeTJBW0VF2SGCd2+QBRIYsOQTdcujk/heBVU2GFXfAGq5EmIYmJ6RiOkZiba7hAoqipivG7csdN9QUJQCz249hr6JkcoT57NbjumfJrgiVLQXBhqsBgbcEU3Sia4jyeuf6RUfiVxJu/hTktgvqk9M6hOHXvGR0kgqnXJ5C8akPnFk/UwAL79XBMA9bmI5fP95gVlNpAErpndy8dLKGiza6j7lzs/q4opEU2H2sGQHnYrYLr7OvJXSb0J6EUxx5MHKAUCOq8l9h4rWNQygXWQYsl93bmRs8wYaBKeqX6XrpX6T569/qLU8Z7j72jIAYO1etTLHoDvWPCgaHhNWfXgrpFdEu/h9P23k5Ymf8vgx56Me+XUpGzcAGNszxrNNPNjY6tYrPfkuzzXFnlfROz275RjZTn5dUeO8YEyKMmJUvEkAIFXm2HNMSdokBCswZI9Jcckn2doIGO7E9yoEQFvPDMBxY6UTkcvXgX9WxvfJQ0UR83XjloXuGwiZOZqdFJgzOXXilJ0mKJO5WX8tpLpmMQDMHJqEsT1j7KhVwB1tRZYPOOoie2ZfUTnu6xWm1S4TppYweHlaX4zs2sBDKHNEVpVrAlgyOQ133dHMbuvPRnXxXT+xHABSawGzbPRs18rhp/VG/lmy71TJxVXj2jOuld0vmZ2jsGZ3MRZvP+F6jvmypLaLcF3F8u0KDw24opp1CbNlw8kEtWrcVOO6r6gcre8IRTaRaq6kvIb87q/v747kqDtx4sLnrowPOv362IiOmDIwQevKu2t0S+RwdQsxDDyckYiXCB6639zfHVeuBpXrXUVdw8pX0fDw45LZOcqV0YWCat7XmSYyOkahZdjtjjayYJK1e4rx/LYTvsrj5R8vg342qguKLlUrxy09+S7MHJpE9i8PyrKjUy/Wd3z9ZPWprg1iQVYK6W6haicgv07sGdcK6cl3kdlKKFnmRcTLK5DU1Sf7phhtqkp8T10lA1YA01XTtHP+su8XXPjCNV5m/XdlQR2sj6imLZ7ckC1Cl/JIV1n8OnBLofuGQWUCF3m6xvaMcSWml50mZMmpq2u/chBu8r8b9f/Dog/5qFVxgquS0PP0B15Xnzrt0rkmDA+93fHfpZUWhYPq2pky47NE1qyMwktV6J8Yqbxe9ioHANlGA8CKh5yKqNd8oK5NeZJcalzEObLj+EUskShzK+vpMmTJ6cV28ZBd3f01/4wthFuEhrgUB5ECobTSzUzPLE15BZcQHxlGzl3+2k1Ukv/rgyKyzq3CQlFcVoUnifRdfL/J5nvn6Du1++GxtfuxcGIqdmWPcNAsrBT44UIMAz3bRdRTh/i7huMDBPgDgtecUB3w+D+r1iUbo9S4CNvRn9FX7Dh+EYu3ueecV3m8/OPnXUxEGDYdPEvm6+Xfm56R5HJd4PG9QQkY3iUKM1/dpy1/2G+iYhMTEYbw0ACZ6pClN6TqwRNoU1G2qjX92t5i6dwV16pq7TFqJdYmsp6CG4bqWpxdB1NyJADg7ojm6Ns+EuN6xbqCjqj1wH4X+4bfaygZzZNYe7kWfH9gAr7dr50npdfXiVtXrt8giOZ8HtRJISZCn9SSXaOIZJMPr9qHqSt2Y/wyJ+Eme0pMmSW7LqOuaUwAv3vrGIbkbneQeqquPhkezkgigw1k16ci8s9U2P//xR0FGJy7HfPWHHALJq7Csm8ClmLF2kHmKDSd/cBfAT2ckeiqHzV2JoAZq/bhxXctS5jOfBCveJgQYyS5O45fVJKSqq4OWX1khKw6ZNQLRqe4/r56dwmG5G7HT//7ACYQ+ToXTkpFn/aRKLxUZTvwq8ioxbpR127Pbj3m4L97coN70zMAxLcOk14X8e0Vib5Zf/HkxHw/qK78gYZAFlVb5605YPu8sd+8rCgPDGiHti2bOwI5vEjKAWvjpTB3eLKjbvNHd8GHRWXYd6rcdQ3Gj9H4ZXmYt2Y/Hl29H4MXbid9dfk+pvpBnLd8wMKL7xaQypwOaTqPP39QjJmv7pPOdVm9dhy/aMsHNv6v7S0m57fXtaMJN4E2D1kdACivOtl6AiyZSOW0XTgpFV9cuWqP25Dc7Th0upK8HhbdMGTX4rxMEtcqJa/4uaorTwF9GS32o+wa/r92F9tkzE0Ft2hLNNBUaEtkieIZnxZ1GvFLx6FKhmzAIhnenH+OzPcKOBMri9ClFPjVuG5kAvM1MwehuKzKocRMHRCPeSM7udqjSi7PvrMzezg2HTjrCnsXMWtoB5vfzQAwU+C/06UmEJN2M341yqneq0xVQnlqPqhIZhl9B3U9IZtzFChrjxf8lA9YysXEtDis33/G1W8qag6+brLk4WtmDkJim3Bpv0/qE4dJfduR9eUTe+vOc5FGYfXuU1iy3R1BTK0pLxqSqQPjMW9Ew7pQrQcvuhIDDTQuDLJxY33IiIP5K0N2Pd+zXSstuhARfB+L/cDPNyr4Ildi7RLL1J2PXnNdJK+lKERMuK9uDQOYmeF97atD5SL2jaxtUwckYO3eYru/RnWPxpaPzzmeYbREbVs2J/eU+Vld7OtQA8CcYckY0qmNdI6w/OJK4msPahaxrdciT8W6MegEAvqh1WkMbtGW/JNClpKFUuYAtY+SDKpkyCaA/NOVUkdR2XWuH6qPOtNEZHgo2U7RWRsAVu8pwZ8/OOWiD2DJ5VXf2VdULvX9YAgAtpAArD5YuaMQ+06V+6JKoPqGL1e0QnqVKcuLq5oPpZdrlP49Ip0J4C//JvP9ocpx1IOznvjN72mawOsfnSH7TUXNwagq0pPvIucGGx9Vv2/Yf1ba5/xVjS51BluHzHJAKXOyNeVFQ7J2T4njv1Xndr4PZSTlr+wq9Bw3/qorsU24y//LBJC75SjCQwNK+hQKYh8DDddnIqcilftYdiUolsmiH73gNdfZ+Fy4/CWWbv/U1VaKCgWw5vdL7xVqUdN4Uf+Ia1qWw5Upc4DVX6Iyx+pbXRuU7ik941ph9rAOtkXthXcLSMudeC0uo1+prg2SEbmq/eta5KlYN0B9O6Fbp68btxS6bxC8rhlEUMKJ9+WSvaMSJu8cuyh1rKbqwpu5qTysIpjgptop2wSWvV3guMoA9PJG5p2k2fD5ulD8bkE4r85k10+y61kAnnkyvcYhaNJ5cVVj8NvNav8hCjr9qFsWXxc2XuzK91oEkShQZX332Nr9ZB5Wvt9U/a6bn1dXSc0/XeHbjUKETAEJmk6eOypnKw/Wh7K6r9hRSI6bbO7J/KpMWJkIZNd0DAbU60ecR2zd6yaWB9yJ4AFrvs8cmiSvGBrq5DXXf/rfB3D/sjz8ZXeJ6zev6TFlQILjGlF8nv++rC9EUPOekm8UGM2OTJHfeeIilr5d4Ij8fXbrMc9oU1l5+WcqSIuyrN+9jBeU/6jXHNPlwLwV5XoLjYYsskkXpgn848h5REryJLJFT+USBIDtRy+QDuaisz5AU3QYgO1oGzCACVwaHn5Rie0ErJypoiMrj6AJ5Lx+CJmdo+wyUqLvxN6icpwuq8af3j/leH7t7hLS6XXu8GRkdIySOqHz33t83cd4fkpvsj5PjeuOjm3vtC0SzIpUWlmDFcSVCs9NxnzoXv/oDFk2EyLpyXcp54NKYdD1H2Jjsa+oHI+ukV/b8f5ashyKovUk5/VD2JUzArtyRjiuTPxAFKhsDovZQdh4pUTfifjW4a58nfy71PxnVuL1+51jsv6jMxie0tZeT5sOOiPQDQPI6h6NNwXLx7NbjyEuMoxs78S0WEwbnOjpcB0TEYY5w5Kx7B23dS88NOAYi9xJ8nXNW9cmD0jA6t1OpcCE01+WjZssklDF82XWW80mD0zAmt3F5DMzh3bA9IxE+1pZXD8UNUhm5yhpMMrkAQlYu6f+WhH1+Zrrs1mI83V6RhJW7CyU3lSo1s3BknLsKSpDq7DblWt3/ugu0mtgALirRajjSlfMw8183mS0REwGim2j5KpMvvHgld8FWVxUOIAf3dMBywmycWa5E+eIWCcxZd780VZmHAoPDGiHC5e/dMkXVSDIwZJy5BI0LtljUlxBFjxk3Ho8/Ppg3mjcUui+gaCidwBnBE9VbR3KqmpJgfFEvcO3ASunpJiYnClCz7x5FLsLyxzvmgBmZnRwXUPOfHWfy2eBolYx7f+xFt+ApNY2pYAouNk/qkhOEUEAS7adwDMTU5W5VtmzszI64OWdhXZexwVZKRjXOxaFl6oAuHOgiqgzTcCkI2t/uekwJhD+XvGtw8lxYXkyWf+JigMP5vgrU54YVKdM1hyvMgCrH/omAmNTo7H5kPtKhoX7q4iCZdaT375xBP/3vq6YnpGI1HYtceLCFy66Chl4h++8gkt2GzI7R0npJVR5NAF3DtmgqbYSM4utzP8IphXUICp0qrmzbv9ZrN9/1s75WlppJSg3DMN1EBvSqQ2p0PG+rsx/7fkpvREwDJyuqHFRQLC1tma3t5M3v86oOaNy2mfvi0ojQwAWmXhMRBiZ6zO+dbjUGpPYJhwPZyTh5Xolhc2B1buLXQTfgDzfqcp0/9S47ohvHW7LKcBaQ/P/Nx/vfXpJ2e7vD0rAnOEdERMRhlbht0v9sxZvP4El209g5tAkTM9IcihiLAKWbx/VF2Lf8flHmQ8byzK06M2jpKLP5g1Tfl/cUWDnTQWscVz+ToG0u8JDA7YcL62swW83f4KV9coyv+54JVNFVbR6dwlW11s8Wd2YvF6QleKY0/NHd8EfdxZipSRquWdcK8deKsrB3711TFILC4zUvSlFud4KitBAUwmKoMAm4aEzlS6fFabEqAaYWcxEgSYTNMwBVhb+vzN7uCNZsheYw7UsSbMsSENlqQOAucOS8cK7BUolkH0bqE/1ZABnKmpcnGSsHlSu24BhOQAvJU6o5Dfrn5flQq2qrUNSmxYovFTl6ZzNjy+VqQDwdgamxp9XypmA48eHalNeNp3jk+X/ZAJdlu+Rb4vOvGVlr587GB8UlrmSc8e3DvcVbKFytmaHjeKyamw7cgEbJCSqXhDnLPvmjuMXpZazgAEXH5l4EGsRGuIKMKCSzvNlMvoINu/7trc2Jb95c8W8rUzx/PHaA74trYA1l3I98sn+W7e78dYn513v/mBwe6x6/5QtK1Ki78DRc184nuHHWRYAAsjnHrXmAEhzRYsQc2MzZ35ZkBngXJe6ATdUHma+DRP7NBw0DQAPDWqPV3efckY3w6IlYjcvL75b4BlAJoIFycgUKyY7REu+Ki8s1R42Hox+SAzIESGud1Gxn30PbfVmkMnbGwE/+sctC903GF6WK7Y5eqXpEa9STMhTorCQegp1pokl2054piUSv79k2wmXY+7j6z5GRc1X0kXJ2jYgMRK7ifyHqlOjjXrpLFNW+OsLWa7b/u0jtZU5wOpr6npidGq0LYCZYPLi0+N/Eq9aGBg1iEwQi+PPyuD7xFPBqv9BZoF7ZWcRHh/b1fZPoiL4TMn/VyEI4LW9px3zjbXhpYf6aJZiQUa4zaxEflPeySCS+DKL+MHTFbblgUfQhOvwZMI6cPGKuOi60Ld9K+yR5AVlfTQ/q4vj8DIjQ8+fiseiLUcxrlesb0u6DIZpkRYD8vlEKXMA8Kc8p0uFqMwB3kTLXlUX11zO64e8HeLqwTLT8IiJCENyW/XVHr8uvfj/vPyNWRv462ATwKoPTmFMajTe+vj8/9/emcdlWaX//3ODgigCKiqooLhiiYpLipqTy6hkNpVjZmbmN20yssyalNZpxtSamZZJW7Tt228mrSm1vi02jlpKmgvuipYrpKIiAioICuf3x+N5uJdz7gUengWu9+vlTDz3cs591uuccy3ukwiGypOXwZ2bWxqQ6eG6cHcv+UlarowB24+fx+ju2jFrwdgk232O31PBgAWrDmDlQwOkhjCANpYzIFYFedNEmNPv8voTZBQRoJjpRqlhcB2HLZyQbOu9MuurR4Z2RMacIUhqEylNMwjAUokw9+jQjtJxb+mWbMM7yxkz1THBtXzKJi0G6xBajLl25szK0UxZXDFJ3zRdwW/f7s3VDChcodhJB5VZWyW1iXT0Dn2ZyAR8DgPcZSQq8nczjritzaaofPlVF1l7K2cMRx1anamdLas5VVjiMWGO98Wl0/ojY84QzU7oUoEwB8hlBQatH72VO05i+UMpWDqtP5Y/lGLZLnn/Ur/jXRvWlXq48YXVeGS3HVcAtg2DqoICo1NtO0wZ0E6qtmFHgFUAPDGyi+F3p5aUZla4i+5OdrerqpTdqr25WHxvL824yYXJzOPnHfUBdRgvSyFZcMP4vvHYmD4Uf/nd9Q5Sdb1r7YEzlnXCFw2AeOFg9ri/CnMACXQBixMLnN7tmuCWHq3wgA3rLdkY0CWmsakVoALg5qQYqXuAu/rFY8HYJOG7RcKXAuuwQvxZGWk3VTo5lVmKiUzj9fngeiB6C7FpNyZUaaLX50P0rVyh+Mf0oXjgxva2BmeZtZWTwT0IcB/F2EWtUC+yEFRbXPJyrO7AE6QAUyXlH6TAHSFDjawI+O6GyOmvmT6PU3hf5K4k1O58RGlwHSE7VVfOGLYeO4920Q2lu8lqgmBscxVw6XE6qRs77l6CFcW1OLHxIXrDILsW1k7QO9W2ersCl3sTWR3Z+S6+6NFjdxzn0SFkfYwBaNooVOpw1w4VDNiVUygci7iupx0UuIzkzBb/6nv1rmM4rt3LcHuJqogODzXNq74ueEQMNcGKgn4J4nz5i4sSESTQBSh2Jmm9BY7V7oiiyCeQNk3knrkHd4qGogBfCZTlgUoLqfF94/FF2gChYDVHZd4OiAU1ru+l+UbIB5qF6w7jyVFdsHRaf/yYPhQLxhrdLFj5q2MAblvk8gY+vm88lj+UgmdGd8Xyh1Kk5Zk2pAMWTkgW7hAq167z52S6gGoh6anRXfHjnKGud0ryyT3My3xiyYQo9YSkwDWprzlwxvI+/m16c39ZmWQcOuv2kzW+b7xbUOW3qt9pFnSbwxjQTDJwz05NFAZBt9plBIz+q8ws3fR5Trupg7Qt6etH7WriYYE7HwUuJ95/+E0HLBhrFDpEycz9OgsD5q/FV7tOShddgFzAClYUTBnUDivSBkjbrv5+M3cvCoC5t12PjDlDENWwvlAPVs/0mzpo2vD4vvHImDMECyckW7o5sULd19RqHVbPzElNlI4Tc64FvFdHNhiW2FzqLkrvL87uYouh0tBE1MeC4Fp4quFlZ3eXSwGEIf5ErqSs8jrto0xL1zRBgHuRr/ehxxG5GwHMhcvubSIt88ojBYmidfB2/dpdxvHWn1yUiCCjCBv4m1GE2hBC7Z0bMMYhVVvJ6Z/RwxXYRTplCuC2uOK7C2ae6jmp3WLw1j29Nb+pLaXUyqV//e6AwVhAzdherXFDQlO3xWkQXLs0zRqHmlppqb3cW3mWlwlYeuV0XrYANPmZnZqIP/ymg/u9+uO6sSplZJ4/fXp8EuHvUWNWRmbP8W8XWW4mxjTG62sOYa1AkOM8oHIjwQc0mSsCs+gb6vrWl/tDN3XAoE7NDW4aggDc1S8Oy7bkWCqwp13zUM8t1awin8gGP7U3e5GC9rCuzfHI0E5oEdFAUw6fbM3WuGAYeX1LfLsvV9PWB3dubqrYzutFrXC9K+c81mSdQYuIUAzr2hJ/++6g1C2G/vvU1tv6vHJjDB5Sjac5/Z+ZwmgBb9ydjAb1gwzuXgCxTi/XB31plTaUVRCA2TcnGsYiK8McmbW5rC4VuCK7dG8TJfRrZtYG3OV3LU8FJVc07jrUfZ1HPYACxDUJM4SWUuAS/kQGV++sP+z+nespt44Kw4xlOwyCBo/q8n7GUbclr6zsAHmd6L9H1JdE7+TfufHIObfLGbNFqTqCBO/HXWMj0LRhCHpdi9krs4qXGYCkDemAxJjGbmtt/djP32PmskpmOMINrXi71vdnfb/k+bTyElAdyCiiFiMKa8ODip8puqyZvBgqV6HqgWT2qEQEBymY+3WW5t1cf4W7LdG/a/GGo3g346i708VGusLJmG2r/2ffaY15/ydbszWGDvzZU4UlQmMBNcu3n8ATI7sgY84Qt2CyeMNRKACGJjbHmgNGVwkMLj25W3pU7jCKOp36O0XoldMZXIrpGyW+uE4VluDQGa1StsjyVpQeA/DSqgOIaljfMDiblREDXIKUAoPlIR9wnhrdVSOYrf/5rDiuoQq1Gwm9wQXPl7pNTh1kPBLi8J2RxJjGBj29Rd8fRkTD+kjp0EzoykBvNCAShN/64TAWfX9Y6yJG8HH/M6AdPth4TJhH9SpcduS6Juss1h04a5hA1fnmix290cnrE3qa6potvrcXwkLqufuNvnwvlZaburTh8MlWLXgY2r6iuvEapwpLsEoSLWBXTqE0vBL/Rs0zDEJd2Aq43EYsfyhFM87IDHN4WhlzhuDr3acMY5es/b5xLbTXqcISoZGR3V1btRGKvkwBuWGV+l36cU8/Nitw7eL+4TcdsPFwnvDoU++rUb/rmP75HjQKree2WjYIczC62jDzSMDdEZl9p6wM9X7o1O5WRIK+3rBL5HwduGbwpmoTK9IGGNqQvr5Eedt6zBi5iEfE4Azu3Byv3dUDQYqCXgK/rWZumnwBHbkGECJrHHVQcVHYLpHy88urDiJBsm3Mt+1lIcD0R1KyKAnq9LnOgUzBPH35HltKt1w4A4zhuETCHMfslMCuUrJZfmIjtSF2PtmajQHz12KJzkz/re/N3aio0Zezk3y+9O0B93MiL/I8v4A4WLeaIMW1cyNbeYrapJVyvWwwBVyTHs+7ulyt2hlgNBR4avleYaguBcAHG49Jv/vJ1MqjUbN09XXE4fmWhSCDZJIBrumxfZTprq93fjgsDGVltx0xuPq7yNhD5JCWC/+y3S5ZeCX+PlkeRHC/k6IxS2+Yw9MCgNHdY23r43H9LJGqiBPUbUtfpk4M1NTox2b1e2VhuvSOt0WCMtcRFAlEaoHlVKHLRZNMmNOHW7P7nern1aHgXtLNQ/MF7ZjPFzLn64DRKj/nfInhG/T1Jcqb1RzIx84ZS3dixtIdBt+KZn3IV5BAF0BYhTeRDQKiAVNmBcg7u1UIJJ6mlQK2nd2OCgbbSreKYl+RGHBNQr3aNpFet/MuBcDdN8RJ86PGTPAShSBSIP9udTk7+WaZ5aF+wLF659394vDjnKGmK06Za4mpg9pLdViCFQV92zURCjUMLjcGeuwo+uvhobpEE7lZUXZvHWU7XbM4jrKwRr3bNTENL6WesETCmyyUlZM8mo0lsr4/oV+c9Bkn7ZNTXFYhLSORsZLa5Ygd4UztqBuo1ClbOq0//nF3srPM6qhq31SjQDw2i77RSZguQL6w0o/HVsf+VQmFBRj1t20bf1zTNbRrjOTEYEMf5issRHxAWVxWYUtYq0qs9JqGBLoAwiwgNiCO1SdTfhZZAXJLKvW7RA1EnaaZ4Kf34t8oJFg4ifOVtF65WI+iuIQzJ1abc242xmtUY/UuBS7l9BnDOgkVnfXCotUgOUcX23DB2CS3wYNZ3cqE9ftS2grTkVkeljOGr3efMnXboABIT03EvNu7W+qEyNrklEHt3JNn+s3GeI494prgLomQLNoxkCnd899kVswNQ4IQ17Sh26XHP+5ONp0o9ErPVu1DpiSt9sIvimVp132LSHgTtaP01ESNkYlVHs3GEpHAlJ6aiBlDO0mfceomQ5aWmbGS+jvUwtmKtAHCvjHlWjQVNXz31MoYCqhsT1axVO2MISIm3BBv6xsXTkjG6xN6CncmzRaE+oWVXkiTjSlq9ydqbBniweWnTb8QtNs+uBAuu1+2QNK3V1F9rXhogMZlkFkfyDxuPEGwEzPa10YTZBRhA38yirCrpGmmqM2f0SvtK6g0olC/S6RIr9ft0sfi43p9ej2Y25NbY/n2E5VpKpWe4fV5N1OYVSt0i9ArLZvx+Kc7NQrmXC9F/a2nCks0isgyfQkzT+5je7XG3+/sKTTMEJWjVTnz63qlanWeZXnh+Qe0Rh1THTjNFBna2G2T/LeU+Ws19ynQGrGoEX2/Ws9Ob0gxqFM0Mg7laerLzCBBlnd1usq1TDJBX1CXh15XiPcHWX0HwWXhqdex1CuW6+tXVKazP9uN9aoQVLzd2SlPfd9XR5IwG0tE3yMyZOF1LBpnRMZKorRESuh2xkU9+n6vhivHy2Kp6vNiMFBTtZEnR3UxGIUArigbUWH1Lfu8fvzUx77mET8eWbbD0Ha4EYUsXqlZuYnKWVRm+jFfNnaIQjGqi0QdVYbfr5+f7uhl/H7Z3GGnPejb7OzURGlINn10Cavy8xRO5A8S6GzgTwIdIB5o7Tyj79S7cs4bFOJFjVb2PP+dhx/ig596ctFPnty6KCe/xL3DpbeS1L/fLPC8OsqE1cAiSkMWXuiNu5PdedMPRNNUQo9scpEFdxeVrZ1y5te2HcsXKujaERL1iAZ8ALYstsyMc8zqU/gelaXl7NTKeJOi59TfKcorbxOiaCX8e7/cddJgVahvM/r869MVCR9m4fJk9a7vy2aCg1mAc/X7RH2O17OovMwme/2CanDn5tI2KHqfKFyUmdBup3zMrCLtjotmix3eJvTtULRQFvUBHiZOXUaiclDXiyjfsrpcfG8vqZWxaMFj1Q9FbUDkiUC0GFJbhVr1eX0fGaxacMkWFKL0XrjtereVrFkd78o5j63HzhvKSY/6W0WCJmBu8GDWhzwBWbnWcswGNRl6C0XZBGQWAsnOgM+V7QG5jkFxWYXGcsrMUkhmlcrLgQtzCiotxETI0pDpgHEnnXpdCgbgvQ3HMGVggvSd4/vGo1FoPYObBFnZqpF9r5U1ley58X3jUVByRRh7l+eHGx7YtdiSGedwocWJ5Zcs6LjsOf6dsjS+3HlSGnpObyUoazOyd4ssfHl5mEWTMKt3mSWnfoJQ169Z+cr6nPq79d8kEzT1dawPN2ZWPxxRlBKGynBwVpiFoNNbRToZF2WqEc+O7oqrjAnbofrbZH1AH06NPysqB94usvMv2R6byhnD1I8yDS6fAG1f4rtUXCAyKw99nemFT17OIutsbmRh1edFusXrf8mDAnkoLdnY/OzKfZb162QsUxuGyPqw3tpXjdkc5W1Ihy7A8IRljZnivl0dADv5sKNjUNXvEQlaautOu3mVWTFySyfZoCqywkv/fI87/bgm4g6ud/5ph+rUOR+wRKjrwkkaZsrAVcmrzApO9pwojfTP9+D//XTMNN6k3kqQwWgBWpX8bzuW70gvzyotABqraTvP8PzZsY7Ut1URsnBITtugnXBwMkR9XLYAdVpvsrGpT7smttqhrA/oPQrwZ2XpNQwJkuZbpkemt/JU501vwV6VcVXUh2TGB1bfwJEJ0HyBLMJM787p+OBkLNOjtpb2d0igCzA8YVkja8R6yyQZpwpL8NXuk5b5kCk8W1lO2fkekdIqDwSvxywNmRVjTr58gpRZ4anTl71X7ePILtWpc7t17SQN0SStKJXWaVXJq5PnzFbusrE5SIHQSlCfRlXyr5iYnIrafHXSsnrGrnWkrK9w7Cix26nX2Eh5ODhunCPDzmTLhWWRiw6z/IkMP54c1QVf7z5l6z1OPArIrFbn3dFN6trGrjWvkz6iNoiSIbMuFRmu2fkGjpXXBFG+9N8ves7Jt3PB32mkDr21tD9DR64BBm+Aer0K/Q6AmT6D6B0ih5MiRJ7H1e/Q50N/DGAnL1a7hPy4WMS7GUcwunsMLpWVu7/dKg2Rw9FHlu3ApbKrGN83HrNTEw1GB73bNhF6SH834wimDGrn6LusdE+sdhHNsFvXsvts7ygy+XsAV6gd9XG8nXzKykuWhoy7+8VhfJ+4a3pN5mmY5UNWT7K2sEilhwkY67kqbd/OM/o+B8DgExGobKuiNscnU7XCuH6HzO64M2VQAt4VCFxzv87CvG+ypMdhom9VAPexL++LZ4ouY7HAZxl3gSGDqyPwXTWz6Cb69+jLJ1hRMOL6loboGnwHa+PhPAzu3NxwnH6q0OjwWG/pqndUXZ0+IitzXm8lZVeFZfDQtZBsovHc6ht4ec0elSgtY1m+eHr/3X8az36xz/CcaHzisVn1UTZ2nyjAxHd/MhzDqutRj8xa2l+hHboAw86ul96Z7Ds/HNasSkTvmD82yVKY029l62GAwfkiT092hCTKy5OjuuBo3iV3ftWrKrPjYsA1qNz25kaDI11ZmfFr+o7Aj6WeWrHH4Mmd69NM6Gd0u1HBYLoiF+kh6h3/6sk5L15R/yr5XY3duhathisA3P7mRkP7Ea3iGSq/e/aoREM+1A6D7eZTtrMVGxlmK9g7d7fRo00Ubn9zI2Ys3elSfL72nCgNWT64PpKonmIjw7BgbFKlCxUFeGlsEkZ3b6XRexM5eJ5/h/Y5qx1yu+WkPno7mnfJtK3KULsGkcVCNht3eBmZ7bSYHf+KvpW7+eHuJwBXrGURVjsrev0pGbL3qMtn+UMp+G6fMbrGyG4tcbtqPFr/81nNWGinPnld6uMTi+7lYyUA0zJXH0Gq623q/2YKy2Bgx+aG/Dj5BgBoLVFDUedL1BZiI8PQoUW48Bn9icc76w8bQv25LY11x+Hpn+/Brpzz7nrUu/1RFHOn6v4IWbnawN+sXAFzq1MrVxUiM287jXbj4TzcvWSz6T1qiz67lo7qvOgV429Prox9GqS4wkqJVuN28mNm9fTV7pPCWI+y963/+awt03Yrq1WZRaL63v/bdQIzlu405OXuG+Ix75rrESvs1rVZ7FMzazd1vmX5XThBrljsJJ9mu8ScR4Z2xIR+rnZuZcVslQ/RO0T15KRPquMm83akwOjOQ4bTchJZ79mxurabrp22fKqwRBi2C3DFCpYZSVRprIPWBYYIO+OZnfeYvUu/c6sowMY5xvc5GYvNLNpFVsmyMl86rT/aRTc0jSsM2G8nVhbTZoZDakRtwU77ElkScyvcS2Xl4vpRXG6zZBa8duq+piEr1zqAzLLGTO+Er8wGd27uvlftlsFK+OK6U2adkhsMXCoztzjTpxcbGYYzRZc1cQUrGDQ+jypYpfdz2SCu11DjuhN6a7lpNyZgyqBKyyruaNTqGE9tEKG/VbTDYmYBZabroX6mT7umwueXbsnG+L5tLHdWrfIBVNZH/qUy6Y4Fbz8Zc4YYjpvU311QfEX4vImqmSYPojbIrzUKCbYU5hQAE/rJYw2rrZjN0ufXRe/g7YDHCAac9ckKAM+s2It1B8+42xGD1mpThLocmElPFBkUKKhULzDbAVW/Y9uxfCiK4nanIftGM0es6p2c0d1j8eLXWYacL9ngUpUQtWWnYx0fb6wmYquje9F71OVvpdYhGisZc0VCGd1d7kVAloZZecgMAZY/lIKQeoohL/xI1KwMK1ilbqFVe9T3GfXvgHWIQTVqVQD1e+bfkaRxccTbL2+nImMOboUrq2vGzC141X3cyQaFryCBrpYh0h9QU86YxnebaBeMr+z0jTc20qXgbLVD9vDSHYag0eqJSuTjCICtFVwFgAcGtcd7GUcNjoxFOiYAkHHorCaOKgOweMNRvJtxVOOSwEyXghMECA0iALFpu9ngvOfXQsM79JanvA4eEJQ7g+t4ecEdcpN8/YQsQr+TYya080l6fN94JMY0Nux4frI1G88JdF24z0FZeZi5GbCzI8fzHATtMYldPTWz9HmEE33yM1R6lmbIFkJrDpwx3Gvm4kRUDjKXDDIr1TfuSkaz8FBLf3bvrD9scHXzgG4RpM6XSKeV62BuPJynmfBFY4isLesFAysdRMCebiV/7+zURKFLHwB4fERnqZNf9zfqdLHUbeiuvnH4eEuO4b2i4YXnR+2UWp3G7FGV/hn15cD/FgnUvxMcR3NhHgDOXSwV9o/pN7XHonWHUQHgpVUHENWwvqUDbV4O+r40dZD9kGWAKy+Zx85j169aR+63J7eu7OiKa+H44tf78W7GUel8x/Uf+fgu8g+qtuCV6VIDkI4P/iTo0ZGrDfzxyFWN2WBQFdTHM6LGO2D+2ioFs186rT92/1og3BaXCUl6zLyff7I1G7MlE4vMtlTvdHXjoTwsXHdYmr4Cl4Lwou+N97w3uTeGdY1x/202AcgiFqTfnIg/DO5gGBQn9WuL//3puOk36I9frKKAAOIjVrXiuYi//O56FF8pNwzmsm/iO6LNGodKJyu9J311vVgdCQUpLiMPvWNrdVmYeflvFBIsVDY3O1p3f5vuCE02uE96bzM2qKI3mMHbgBqz40XRMZ7smJc7geXlIpqk/vrdASyS9AH1fXzB8OiynZZ9V93+zL5F3ZZlR8bqHfb1P58VTtIKzCOO2Fk86p0pP7J0p6njaP3xuWicUOerquO2e/GiqwurfsKfXZk2AAdyL2jGJv5OvkBe8O0Bw1HxyocG4Kvdp9xClqgclj+UYuhLouN+QCxAmd1fFfR9SeZM/8nULljwzQFhmqLFGO9zVfEJ6xQ6cq1DmO1eKABGXNcS/9l/2lHnUN+r312rKsGKguKyK0Irpwp9ohK4UYJ6x5DDjxxEmDkK4U5Xl2w4YquMGIC3BMIcAEz9KNO9wyAzIOHlKdriB4BzF8qExycyYY5/g3pX51Sh0dEtg2sHNDGmsWZCF01sDMDjv+2Mv/3nZ2F6emszq28CIN3VlVkX8m9iYJaT1IQb4k2PnUW7iXphQZ9EOWP47/7TeO4LuSsUQHuEZogock3oAIAMm8IcAMz/5gD6JzTVfJOZKoX+GE+9+8TDUQGVRi5cSBEd0WXnF0uFOfV9BSVXHAkhvP3xcWR2aqJwAlW7otAfGavftXjDUSzZcBRzUhPxwm3X49mV2jbJAPx3/2l0aBGuEa535ZwXLvpk36p2pixDpIbBAKEwt+Da7rGdXWcZ/BG9Cs3AjtGWiwYGl0umOcv3aBZxDC5r8BlDOyHz+HnhUbFot09NOWPYesx49C4TkvgibPeJAk1b8IQg5w79qFsYHci9oM2HArfBhCxd0e+MAWuyXOODvg9Vd66sDiTQBSB29YkYgO/2n652emqBQeanyAwFwMCOzaQWVPweq/cyVG7/J8Y0xpZj+bihnWvis+OzSsbiDUcc3V8hyS9TdWiz/PAtftE7Fm84gu5xkY6+RX+EKKsjhspjLT6hy5LZePic/QzA/NiiKtXCj0q+3HnS8t6U9nJ3KIA4TJl6R1CWP5GbBBGMiXXW+LH+1EEJjsvgtkUbNTuqVvqrPx46h9HdWxm+dfpvOuDN7w9rhIDZn+/BwruThUd0ZsKc+j7ZboYZDHDr18omUH5Ma6c/M7gWA7/rKTa04cI43zmRRUyxSsPqDEvml9LAta0n0YKrqjhdkAYpwP/76Zjwm5ZtycGMoZ1Q1UO7YEVB33b2dJEZgK3HzmN091js/rXAI2XBmTKgHXq3a4LebbWLPOFCl7msb6syd5wpKrWlA+1NSKALMKx2Fpxi9x3c34+Vjp7s/ett7FDwgcAsT3xCUjO2V2s8MbKLR8rDDtwnlwjeoa0m4LimYbi1Ryt8scsosPzfzpOO/Kw9mapVWpb5rQPMlYDVOBXouONRM19TTpg6qD0AlwBvhgJzL+76QVy2I1hVePoyAcTKkEcGg3a1b6W/umyry0BGv+umFubUrNl/2pYSv1n+qkJBSZlmV0MP30WcPSrRdpl9ufOkeIHF3ykYM/Q4rR/1c9wvpdU7eN9LahPhsXFKAWwLcwpcAr5IXQSodGPTp11Tx2MpV2XgrlXsCKxzv84SGsiIcOt6bz9heuICAP+76Rg+2HjMcAQq2nkEXH2hKvSIi3TsR7KmIT90AYRoF6A6zL3tekvLQw6P13e7xKWFCJuvBuD6ln/clYyl0/pjZdoAR89+vv0EzhRdxpxUo/+z6pI2pAMeuLG921cY97wvKwLuXDk2Msw0P8VlFYhvJl7F/Wf/acxOTZR6SNfTvXWU5m9ZlAqOLIxPdeC+ukQxK53CnXmKLCf1zLk50XQ1LBvEq/Pp/NkgVB6hmQnRFXCVj9365Og94Y/uHitPg8H2cRcAfLHrpKaNBSsKJtxg9FXnSRQFiGoYYqo3Bbi+5eVVBzX5Mys5BmCaqo9WpW5XPDQAS6f1R/rNlWkG2XjXP+5K1hhVWd1fzhh25hRKrwcpwN0264ELXY4Er2B5DtXCyNQbE2yX47OjuyJjzhCN7pinFgYKXLFef5wzFH+/syf+cXey5f36I1Du106287hScApg59sbhtS37TvTW9AOXQBhx8TcTmAprt8jG1z1iOL18ffIHr8lKRajkmJs+XbjafCdlqN5lzDn5kS89M0BW98DANuOnXcFWVcgPQ4KAvDn26433SHQM6hjc6R0aIYpg9pZet4HKp0rD+7cHEltInFfSlt8uEmr/8YHzoYhLfHGWuNqmQFoHRmG1+7qgUNnLuL1NYek+ROtCK3cMSjX/md2qrMylqH2pm6V9m09XbuSZlZp8+9Iwpe7Tto6HtMLs2pOFZbgYG6R8NrverbCl7uM4etEuJXQ4bKg1Udh2Hg4D/mXyqTPBwHoHheJ5Q+lICe/BDOW7rC9K6GOUHH4zEXpvbLjLtmYUMFcZbf8oRS3bmGLiAZYuiXHo7vc7rHpWr2KdrJk7oa6t47SRFbIPH5eOJ4EKa72N7p7DLYeO4+E6IaY9lGmIyODFhEN3A5zb+3RShPgXmb5rh6zALh02ap5TMAY0LaZeYQMBcDQxOZYe/Cso7QYgObhocJrfKdR797pgcEJ6N4mSjqOBysKbu4eq9HflekyO0VvxAO4YmSLToj6JTTBlqPGxZv6CFS28ygbx03zdq1vpnRoZhoJyduQQBdAyCbL6Td1wKCOzdEwJMhgwcNRFGDOqEScu1iGdzOOYPGGo0IXFdxk/c1rbj7M4vUxuJzbfrxFG90gCMDTt7gcQ4ryG6QAo66Pwap9uZo09BZDs1MT0b1NFHafKHArd8vGyz7XBtaosPrSzjj75kTc078d6gcHaUIamVnA8klb7/tJdvzFoFWkVgAM6dIcP/x8VvOt/H3dWkVg70mt0KHAZS6vtu4TEXRNofdo3iV3Hvn/y0z0OQ9/vMNdxucultk+tlGnrf8envbtya01/gPVtG4ShqmDEvCuQCDmIcl+OpJv61jU7HjDSumcC3MKgJu6NMe6g8YIJ4DGSwJmpya6dyH07ndEfUn9PC/v+XckYU6qvWPp2amJmj4hg0/G/LhLb9FbUGw0RuKhkPSWygvGJpnqGzrlhVuvR+nVCo0xisaiWpIGr1t1vztxXqxPqS8nfjy3csdJadgyNQww+Mvj/60OdaUeh0S7MR9I3GfYUSVR5+Wlbw9g9s2JhrQGd26ODzKO4d2MI1hzQN5eJ/SLw9LNRsE8SAGKrxh37wd3isZLv+8OQGtRzgC8t+EYlj+UIhzHFRj9blZHl1nz7mvtUS3M8T6tLuMguOa/t34Qqxbox/AFYyvHxarK3jxvovbia0igCyBiI8Xx8N7+/gju6d9W+tzc267HsK4tARg7rALj5Dy+bzwm9m+rWXXsyjkvfPf4vm3QNrqhIdYpb+D6eJBTBydgysAEt9m+zBs/P3bJmDPEsGr+23cHNQLD2F6t0SOuiVtfSgbfzdHHI/xy50nhBKvXTVMji0/Jy5WpynjdwbNIG+ISutWruFOFJdh/SryDZHWsHgSXWwQ+Eer1Rfg38glA7/qBp8HLeMqgdsg8dh6KAvxaUGKp9L7k3t5oGFJf6L1/xQ6xMAfArXSvwDWRZBzK07SbFhENhA5CAdfi4ZOtOdIJVZ0HKyFIXb7rf84T7qTy6/z/X151ELf2dIXz0nul1/elIAB39YvDsi05hiOgjDlDUHT5itw1CFxCyq09Wpm6olAATFP1J0AcO1kfTk5t2SfK249zhmqej2pYXyMk3pbcypYukwLg+S/3GYRD9ecoDLi1ZytDGqKQViJ9yrQhHQzlVMGAlTtOYvlDKW5XNjL3JoB1zFc+YevHIX3+lkjiya54aABy8kvwyLIdttRVKuCydhfFfeV9WYR6R6tHmyit2yJe/rq+pQB46ffdpU64yxlDcVmFcN5RALeFLUemO6yeY25LbuUWtmUoTPtuUZ9WR4EQ6QWKBE7ePzKPnRfWh36M1F/7y7W51F8EOD0k0AUYIh0ltYsHUUPs0LyxtMMyGJ2NAsZVh1k80T8M7iAd6EQTDMeON36+clbf+/c7e+LelLbYduw8+qic2sr0pQBxsGj+Ppnel9lxnp1dMDVvfX8Y9/Rva2s1K/qGu2+IdzuDdscmXGWckNUm87GRYXhqdFf3cfG5S6WGoxNexikdmmmiHtzaoxUyj53HL2cuCI98G4bUd8cKVWN3hc7gsszU+4/beDhPfFyuADOGdcSMYR0tjzec7hKUM4aR3WIR2ySscscK8qgjAIRCp74vHc27hI835wjf8ceRiYgIq69ZCHEH2eqyMPuONySh1PQe+/VHYAoTW/ap24JVH743pa00RJwadft86Vvj8X4F4HZUbXZ0JavTQR3FFuVcEOFtdHzfeDQKrSc8OrSK+apGthsjsyyfOqg9esQ1EZ5wAMATIzrj7//52fAsj5ag7mNm7VptlABoBRfu1FvmbJqPsWZOuEUzSwW0O5syFBj9RD4xsos0JJno3bJoK2ZRIACjwAm46rBpuLgs35iQjEtlV4XjOkPlXOqvkEAXYFh5vje7Jnu2dzt5FAGOTKGU/2y27WxnS9quR39OjzhjPFZZHq2CnjtNmyPaBTPTWdIPfqJ0RU6WgxXFIMzYDRsGVJb/qcIS298ZGxmGW3q4nnlj7SHbZWOlQ6fPr3rSNXt+dmqiRlA1w0kegMrvUe/AiKKOqMMlyYROfV8yK2+zhZDVd+j1t2TIJkKRixmzetX34R5xTbDAJLKKaJemAjDoP5mpNaipzrjHkenvcf3P6iDry2a6pcGKgrG926Co5IpBfcPJeCGLS8z7sBqzcuKLVNlOqZ0yFvUNBhj6eWykKwzcvG+ypO1b/W6z+o+NDMP9gxIMO6RqYVWP1VyYGNPYsGDxtQWrHcjKNcDgnU5kWWN2zepZK7hCqRoF5i4jPPVddhHlEXCtDs28d1cnbb4L9uOcoVg6rT9+TB+KdIF1q2gwEKU7f2ySaf3y3RM+IFmlUd3vdPqM/n6uzC3CTpkEAUgXOAg1Q/QOmS6iqI+kdGjm1kcTfbeo7AGt0CnKh6js1HVq9R2yPJshaye928m/zy7j+8YjY84Qg3VosKJgTmqiMN05OstaJ/2squOe2TvUYeKqg9W7zfI4ZVCCrb4sS2N091bVLkOOuk7Vlqt2y9jJuOSkfVul/z+DjFa5VgsUs/fxBYs/WbDawa9Df/3pT3/CCy+8oPmtS5cuOHDAddxx+fJlPP7441i2bBlKS0sxcuRIvPnmm2jZsqX7/uzsbEyfPh3r1q1DeHg4Jk+ejPnz56NePfubk/4Y+kutf6ZvZGbX7FyX8cnWbE1w5PmCUFLVpap580Qeq5u2mnfWHzboFcryIUrXTl5kIa2sqMp3On1Grx8pUyp3UiZOUb9Dba0oOt50+t3qsnd7pf+NWOis7rfw5xuGBEnDm5lh1k482eb17zILuVbVNKsz7jm9rypUdex10pc91Z48Xf5V+Rb1O+20b7P0qzIe1tRc6UmcyB9+L9B99tln+O9//+v+rV69eoiOjgYATJ8+HV9//TU+/PBDREZG4uGHH0ZQUBB+/PFHAEB5eTl69uyJmJgY/PWvf8WpU6dw7733Ytq0aZg3b57tfPijQOcr/KGBW+EvefRGPvzlW+3iy/x6Ou1AKntf5TWQysjX1KayovbmOWqVQLdy5Urs3LnTcK2wsBDNmzfHxx9/jN///vcAgAMHDqBr167YtGkT+vfvj2+//Ra33HILTp486d61e/vttzF79mycPXsWISEhwnRLS0tRWlrq/ruoqAhxcXEk0BEEQRAE4TWcCHR+r0P3yy+/oFWrVmjfvj0mTpyI7GyXCX5mZiauXLmC4cOHu+9NTExEfHw8Nm3aBADYtGkTkpKSNEewI0eORFFREfbtk8dpnD9/PiIjI93/4uJq1oM6QRAEQRBEdfBrga5fv3748MMPsWrVKrz11ls4evQobrzxRly4cAG5ubkICQlBVFSU5pmWLVsiNzcXAJCbm6sR5vh1fk1Geno6CgsL3f9ycnKk9xIEQRAEQfgav3Zbkpqa6v7v7t27o1+/fmjbti0+/fRThIXV3Pl4aGgoQkPFIVIIgiAIgiD8Db/eodMTFRWFzp0749ChQ4iJiUFZWRkKCgo095w+fRoxMTEAgJiYGJw+fdpwnV8jCIIgCIKoDQSUQHfx4kUcPnwYsbGx6N27N+rXr481a9a4rx88eBDZ2dlISUkBAKSkpGDPnj04c+aM+57Vq1cjIiIC1113ndfzTxAEQRAEURP49ZHrE088gTFjxqBt27Y4efIknn/+eQQHB2PChAmIjIzE/fffj1mzZqFp06aIiIjAjBkzkJKSgv79+wMARowYgeuuuw6TJk3Cyy+/jNzcXDzzzDNIS0ujI1WCIAiCIGoNfi3Q/frrr5gwYQLOnTuH5s2bY9CgQfjpp5/QvLkrPturr76KoKAgjB07VuNYmBMcHIyvvvoK06dPR0pKCho1aoTJkyfjz3/+s68+iSAIgiAIwuP4tR86f6GwsBBRUVHIyckhP3QEQRAEQXgF7ge3oKAAkZGRpvf69Q6dv3DhwgUAIH90BEEQBEF4nQsXLlgKdLRDZ4OKigqcPHkSjRs3hiKLNE4QBEEQBOFBGGO4cOECWrVqhaAgcztWEugIgiAIgiACnIByW0IQBEEQBEEYIYGOIAiCIAgiwCGBjiAIgiAIIsAhgY4gCIIgCCLAIYGOIAiCIAgiwCGBjiAIgiAIIsAhgY4gCIIgCCLAqXUC3YIFC6AoCmbOnOn+bfHixbjpppsQEREBRVFQUFDgs/wRBEEQBEF4mlol0G3duhXvvPMOunfvrvm9uLgYo0aNwlNPPeWjnBEEQRAEQdQctSaW68WLFzFx4kQsWbIEc+fO1Vzju3Xff/+99zNGEARBEARRw9QagS4tLQ2jR4/G8OHDDQKdU0pLS1FaWur+u6KiAvn5+WjWrBnFciUIgiAIwis4ieVaKwS6ZcuWYfv27di6datH3jd//ny88MILHnkXQRAEQRBEdcjJyUGbNm1M7wl4gS4nJwePPvooVq9ejQYNGnjknenp6Zg1a5b778LCQsTHxyMnJwcREREeSYMgCIIgCMKMoqIixMXFoXHjxpb3BrxAl5mZiTNnzqBXr17u38rLy7F+/XosXLgQpaWlCA4OdvTO0NBQhIaGGn6PiIgggY4gCIIgCK9iR90r4AW6YcOGYc+ePZrfpkyZgsTERMyePduxMEcQBEEQBBFoBLxA17hxY3Tr1k3zW6NGjdCsWTP377m5ucjNzcWhQ4cAAHv27EHjxo0RHx+Ppk2bej3PBEEQBEEQnqRW+aGT8fbbbyM5ORnTpk0DAAwePBjJycn48ssvfZwzgiAIgiCI6qMwxpivM+HvFBUVITIyEoWFhaRDRxAEQRCEV3Aif9SJHTqCIAiCIIjaDAl0BEEQBEEQAQ4JdARBEARBEAEOCXQEQRAEQRABjk/clhQUFGDFihXYsGEDjh8/juLiYjRv3hzJyckYOXIkBgwY4ItsEQRBEARBBCRe3aE7efIkpk6ditjYWMydOxclJSXo2bMnhg0bhjZt2mDdunX47W9/i+uuuw6ffPKJN7NGEARBEAQRsHh1hy45ORmTJ09GZmYmrrvuOuE9JSUlWLlyJV577TXk5OTgiSee8GYWCYIgCIIgAg6v+qE7d+4cmjVrVmP31xTkh44gCIIgCG/jRP7w6g6dU+HMH4Q5giAIgiD8k+zsbOTl5QEAoqOjER8f7+Mc+Q6fWbkGBwdjyJAhyM/P1/x++vRpBAcH+yhXBEEQBEEEAtnZ2ejSpSt69+6N3r17o0uXrsjOzvZ1tnyGzwQ6xhhKS0vRp08f7Nu3z3CNIAiCIAhCRl5eHi5fLgbwTwD/xOXLxe7durqIzwQ6RVHw+eefY8yYMUhJScEXX3yhuUYQBEEQBGFN12v/6jY+3aELDg7G66+/jr/97W8YP3485s6dS7tzBEEQtYjs7Gxs3769Th+FEYQ38IljYT0PPPAAOnXqhHHjxmH9+vW+zg5BEAThAbiO0+XLxWjQoCEOHsyq00rrBFGT+GyHrm3bthrjhyFDhuCnn35CTk6Or7JEEARBeJBKHadn6rx+E+EMvrNLu7v28dkO3dGjRw2/dezYETt27MDp06d9kCOCEMPN4uu6STxBVJ22vs4AAOrLgYJ6ZxcA7e7axC+OXNU0aNAAbdv6R+cnvIM/D7LVPTLy528jiLoEHf/WLJ70B6e1XgUuX74HeXl5VF8WeF2ga9KkiS0rVr1/Ohnz58/H8uXLceDAAYSFhWHAgAF46aWX0KVLFwDAsWPHkJCQIHz2008/xbhx4+xnnvA4NTHIelKI0h4ZzXU0qHjq2/zJcaY/5YUgnFCdvkyYU3M7av5huRoo457XBbrXXnvN/d+MMUyfPh1//vOf0aJFiyq974cffkBaWhr69u2Lq1ev4qmnnsKIESOwf/9+NGrUCHFxcTh16pTmmcWLF+Ovf/0rUlNTq/MphAfw9CBbc6tw57vGnvg2fzp68Ke8EETVse7LtLPujNq8oxZI457XBbrJkydr/p4xYwbGjh2L9u3bV+l9q1at0vz94YcfokWLFsjMzMTgwYMRHByMmJgYzT0rVqzAnXfeifDw8CqlSVjjfEXjmWP2qghRNb/6qvq3+dNA6cu8BMoK2d8gwcQ5dDQrx7o9+ceOmifxpzHYCr/ToasuhYWFAICmTZsKr2dmZmLnzp1YtGiR9B2lpaUoLS11/11UVOTZTNZy/GNFY0+I8o+82sGfBkrv5iVw6si/IMGkatDRrBhqT/40BovxmduSmqCiogIzZ87EwIED0a1bN+E97733Hrp27YoBAwZI3zN//nxERka6/8XFxdVUlmslgRSOJZDyGgjUhBNZqqOqQS5DqgsZ56mh9uT/1KodurS0NOzduxcZGRnC6yUlJfj444/x7LPPmr4nPT0ds2bNcv9dVFREQl2V8P8VTSXez2tVjxGzsrKE9/v6WLLmV/CB1J78idovmPjT0bLTvPi63zqn9renQMXrAp1aUAKAsrIyvPjii4iMjNT8/sorrzh678MPP4yvvvoK69evR5s2bYT3fPbZZyguLsa9995r+q7Q0FCEhoY6Sp/wHoE3ABqp2jHiKQBBuOeeewz3e/JYsqqTIx1VEb7An44CnebF39QJasPYWlX8aVFQVbwu0O3YsUPz94ABA3DkyBHNb3bcmnAYY5gxYwZWrFiB77//XuqiBHAdt956661o3ry5s0wTfoO/DYBVpWqKtgUAKiASmOy8z86A5ZnJ0f4Kvq5NIHXte72BtxcSZnXoNC/+pHDvrbHVH/uAPy0KqoPXBbp169Z59H1paWn4+OOP8cUXX6Bx48bIzc0FAERGRiIsLMx936FDh7B+/Xp88803Hk2/tqDuZKWlpQgNDfVJZ8vKygIg7+j+NAB6hqocI5oJTOL32R2wvDk5VncCsZoYRAKsL1fhtWUx4k2c1VfNHwXar0OnebEeB6oiCDkpP0+PrXrVkOzsbOzZswdjx45DaWkJAP/pA7XldCHgdejeeustAMBNN92k+f2DDz7Afffd5/77/fffR5s2bTBixAgv5i4w0A9SQDCAcmFnq7nV1Tnw40TATkcnfSonOB+wan5ytLuryIV8NadOncLAgTdKJ1Z1mw4NbYDPP/8MANyTifp+bwl5gbYY8fURlD/umviqDquyGKh6+VV3bDWqhgDQzTH+2gcCWz/QqwLdggUL8Mgjj6Bhw4aW927evBl5eXkYPXq06X2MMVtpz5s3D/PmzbN1b6AiErbsCGDaQeoogGchmvjtDCqyCdiai3AdJ/q+o8uMDmoH/jhgWe8q6ikoKDCdWCvb9AyUli7CLbfconq6sm0DMJ30amYB49vFiPeO3quHf++aeLcOqyJI+q78CqBXDXHluRjA/QDeg6/7gF2qPp/5Bq8KdPv370fbtm0xbtw4jBkzBn369HHrs129ehX79+9HRkYG/vnPf+LkyZP46KOPvJm9gEYkbK1d+18MHTrc/RvfqUhKSrLhFNI48VsNKmYTsH1qpqPb220QrywJz2NnoKxsb3wSEGHVXiJRuVDgi5XKtm026Xn6SNgf8Mejd2uqtwjh9WDV3uze5wQrFRLnVF9Fw3s7r6J6i63B9JxjVueemc+8i1cFuo8++gi7du3CwoULcffdd6OoqAjBwcEIDQ1FcbGr0JKTkzF16lTcd999aNCggTezF9CIhK0jR46ofstDaeks3HLLLR5YcYsHFXsTsPexv9tQANHK0urdntrBqd07g5U4Hyg9MQlYTYTGSW/Dhg1VPl4TCYOfffap9F5v6a9aCWrGCc4fd3TtY7eteX7ytlYhqe7uT1XGC3/YefUXrOrcX+czM7yuQ9ejRw8sWbIE77zzDnbv3o3jx4+jpKQE0dHR6Nmzp9+sZAMX0cTVFUAWZBaSnse/VmE1pT/mOSV3uTuS2oi/D5TGgb6r4bozNQaXMFhQUGC4T68LyPVX+W56bGysUMjjeeDXzPIixtjGqyrU+FrXzgyxOknV7nMmgJmrkFiVtV7I13qCqPp44V87r77Fbtvwt/nMDJ8ZRQQFBaFnz57o2bOnr7JQRzHuRASKjkD18+rZ3QbZETS/Zj+vBfCesC2mJo6brPHPgdJM4NQLYM7UGIxodQH5pKLX+9MaKQFqBXPXNcB6QWH/iNtqgqvEmzs+1Tu+tHtU6Vyfk18X9x/npxkyIb+SAlR/vPCfnVffn0wEhj6fHQLeypWoOk5W5J4W/JwKEFUfUL1B5YCwYcMGzJ6d7jbLd4ZvBlmzslVPoiJ8PxjXJEaBUyuA1ZQag0jvz0zB3OpIWHv85ywvWvS7cdXd8bGnsuDUAt7zOBPAnGDVxnj9i3azfSuUWY0N1njnZMKfd5A9DQl0AYYnG6fdoy9PC1NOBUn+7poZUJ0hH8Rcg9PMmTOv/W1/l8PzeanETt2Id2aMk6hWB8y5AYlvhW5PY1Rj2LBhA7p27Sqtj6NHj1YhDY6ZgrnVDoP6+K9qbTIrKwunTp0yuH0xz5859lUWxMeXgNOdcE9gVwAzkpWV5T4it5dndb3Kd7M9b3hhhdXYYJcC1PTJhGwHOZBOppxAAl0AUXPHG+ZHX55endo92hG/u+oDavWwGsQK4BqcvGGWb29AdV436jwbJ1GtDlgBnBiQ2BXiA3PHLxx2hF+rGNKewLz8qtImRbt71nUuE97531wvTK+ysGHDBrRv314i9HhqJ7ymkJVv5eLHeHxaHXy1c2k1Njil5nYaRTvIgN4nXu2BBLoAwvcKrUZhaseOHbaFKeMgXxX9IjNqUoiyO4h5Qy/MXl7slJ/1StWZdagMayE+MFzGiHfZ7Aq/NWkEUr3yk7cD0e6eeZ2LhXe9YKgWbLrCvtDj/Z3w6lMAbf17Ks8177vT8wsEX+Fqs7yN+7NRVnXwuUB36NAhHD58GIMHD0ZYWBgYY45iudZN/EGhVb/rYN65q3csWvWBw/Pb6pV5cX6E5mlqVtG7ZpDluQBOXcZUF2dtw84um1V91KSwXwD98a9d7LUD47eJyk87YaoFF5FgqJ5Qef6thB79fYEkVNg9IndK5fuqusNtFOj9b4FVvd170U6zfxplVQefCXTnzp3D+PHjsXbtWiiKgl9++QXt27fH/fffjyZNmuDvf/+7r7JG2KIATnYdvHMsqsapIrgTvHeEVpP4p/sQbyxWqtI2ClDzu2yeQHv8awfn7UBUfqLfZC6UOKIJ1a7QU/sm4+pRdQFMLNAXwNsLLDmeMJ6ovh5pIBDkq4Qfe+wx1KtXD9nZ2ZpQYOPHj8eqVat8lS3CMU4H1q4AEmoiIzrUHfgvHn53ASond/+geruF9urQ9zuSlYjykpWVhU2bNmH79u0Wu2/VaRu+FSSysrI8+m3a99n9NlEaNdnfCGsKUCmAFWPDhg22dqCzsrJUDrRF45k/nAYVQP1tVsJlVlYWsrOzJVe9Nf/4Bp/t0P3nP//Bd999hzZt2mh+79SpE44fP+6jXNUuPDEB+9ISyDMChLkLBrPvs/52f9gl8MZuoT/tSIryUlWl80A6rvOc65Gqvc9uGr4vU6fuNGqXxaPdHVr/O4K0rre2Fvf53zGxt/GZQHfp0iXNzhwnPz/f7fmcqCqemIBr8sjSCmf5dyr46V0wGPHltxstAc0pQM0fBVYtjer7qbKbF/1vvj9Wsdsm7bddTx8Z1cYjKG2/DQ1tgJdeWmD6RCDG6zRHXq9aodVZ/deswGvXDYpdTwPVPyYOVAHfZwLdjTfeiI8++gh/+Ytre15RFFRUVODll1/GkCFDfJWtgEI+YRag+pO8Zwd8Z0JXAezl36ngKhLURGn4arIzswS0whura7tpeMpPldO81JTSuRPstsmqLrpqTqE+8FH3W5fT50prWCP+avHo+ZMJswWqN3ZyrbDrQcDufdqdPGf4djFfXXwm0L388ssYNmwYtm3bhrKyMjz55JPYt28f8vPz8eOPP/oqWwGC3QnTG0HNrajObqFV/gvgTHAVCWpmaXh7srOyBPQcNbsC9bSfqkCiAPbapN37COeonT6LytfZcaNVX/GcbmlNqTZUZ4HqzcWtXQ8CNSmEBvbOtc8Eum7duuHnn3/GwoUL0bhxY1y8eBF33HEH0tLSEBvrD7pJ/kwgTZgFqPmJqyqGGd7H/hGkPQ/xVogHxZpZgYonPX9yN+Nt7NYbjXU1i6h87U7aVn3F0wJYAWp2rKzOuOetMdMT6jaeEMoCc+faZwJddnY24uLi8PTTTwuvBZaneF8RSBNmXZ64vHEEqcZsUPT0CtSegGh/F8M/9BeJukB1Q6YVoGYEsLo8VhbAc+o2NSeU+WtEG5+5LUlISMDZs2cNv587dw4JCc7MitevX48xY8agVatWUBQFK1eu1Fz/05/+hMTERDRq1AhNmjTB8OHDsXnz5upkP4CpnDADVU8g8FBPDP/E5cvFNbyjWgBrtyqeMt+3clfhdBfDV+4vqF8QMqz6Sl0WwFx43qWRE3Ubb1JpSdulS1cT9yi+wWcCnSwixMWLF9GgQQNH77p06RJ69OiBRYsWCa937twZCxcuxJ49e5CRkYF27dphxIgRQoGy9kP+onxHV/BVo3d8unlzopFNegWo2sDrbX9R1C8Iwjm+dmnkbWG6AE584nkbrx+5zpo1C4DLqvXZZ5/VuC4pLy/H5s2b0bNnT0fvTE1NRWpqqvT63Xffrfn7lVdewXvvvYfdu3dj2LBhjtKqPQSmjkDg4+sB0FcEyi4G9QuCsE8B6qZxjz84XDbidYFux44dAFw7dHv27EFISIj7WkhICHr06IEnnniixtIvKyvD4sWLERkZiR49egjvKS0tRWlpqfvvoqKiGssPUdcoQN0cAAmCqL0EyoKtduN1gW7dunUAgClTpuD1119HRESEV9L96quvcNddd6G4uBixsbFYvXq11Npw/vz5eOGFF7ySL6KuQgMgQRAE4Tl8pkP3wQcfeE2YA4AhQ4Zg586d2LhxI0aNGoU777wTZ86cEd6bnp6OwsJC97+cnByv5VNEdna2jfiUBEEQBOFfWMcfJjyFz9yWAMC2bdvw6aefIjs7G2VlZZpry5cv92hajRo1QseOHdGxY0f0798fnTp1wnvvvYf09HTDvaGhoX4Tfqz2haYhCIIgaj+BHXUhEPHZDt2yZcswYMAAZGVlYcWKFbhy5Qr27duHtWvXIjIyssbTr6io0OjJ+St5eXnXhDmyviMIgiACBbIc9zY+26GbN28eXn31VaSlpaFx48Z4/fXXkZCQgD/84Q+OI0VcvHgRhw4dcv999OhR7Ny5E02bNkWzZs3w4osv4tZbb0VsbCzy8vKwaNEinDhxAuPGjfP0Z9UgZH1HEARBBBo0d3kLn+3QHT58GKNHjwbgsm69dOkSFEXBY489hsWLFzt617Zt25CcnIzk5GQALtcoycnJeO655xAcHIwDBw5g7Nix6Ny5M8aMGYNz585hw4YNuP766z3+Xb7CO37NCIIgCILwR3y2Q9ekSRNcuHABANC6dWvs3bsXSUlJKCgoQHGxM32xm266CYwx6XVP6+P5F3XVrxlBEARBEByf7dANHjwYq1evBgCMGzcOjz76KKZNm4YJEybUYWe/VaEAvgmBQhAEQRCEv+CzHbqFCxfi8uXLAICnn34a9evXx8aNGzF27Fg888wzvspWAEN+zQiCIAiiruIzga5p06bu/w4KCsKcOXPcf5eUlPgiSwRBEARBEAGJz45cRZSWluKVV15BQoI3g3ITBEEQBEEENl4X6EpLS5Geno4+ffpgwIABWLlyJQBX5IiEhAS8+uqreOyxx7ydLYIgCIIgiIDF60euzz33HN555x0MHz4cGzduxLhx4zBlyhT89NNPeOWVVzBu3DgEBwd7O1sEQRAEQRABi9cFun//+9/46KOPcOutt2Lv3r3o3r07rl69il27dkFRFG9nhyAIgiAIIuDx+pHrr7/+it69ewMAunXrhtDQUDz22GMkzBEEQRAEQVQRr+/QlZeXIyQkpDID9eohPDzc29kgCIIgCIKoMllZWQCA6OhoxMfH+zg3PhDoGGO47777EBoaCgC4fPkyHnzwQTRq1EhzX+2O7mCP7Oxsd4MhCIIgCMIfOAcgCPfccw8AoEGDhjh4MMvnQp3XBbrJkydr/uYFQmjJzs5Gly5dcfmyszBoBEEQBEHUJBfhitD0TwDA5cv3IC8vr+4JdB988IG3kwxI8vLyrglz9wN4z9fZIQiCIAhCQ1dfZ0CDzyJFEFqys7ORl5cnOIunkF4EQRAEQZhDAp0foD5eDQ1tgM8//wwFBQW+zhZBEARBEAECCXR+QOXx6gyUli7CLbfc4ussEQRBEAQRQPhVLNeaZtGiRWjXrh0aNGiAfv36YcuWLb7Oko5IVCpa/sXHeSEIgiAIIlCoMwLdJ598glmzZuH555/H9u3b0aNHD4wcORJnzpzxddYEdAWQ4OtMEARBEAQRINQZge6VV17BtGnTMGXKFFx33XV4++230bBhQ7z//vu+zhpBEARBEES1qBM6dGVlZcjMzER6err7t6CgIAwfPhybNm0y3F9aWorS0lL334WFhQCAoqKiGsnfxYsXr/3X8Wv/n6n679r8mz/kgX6j3+i3mvnNH/JAv9FvNf2bi4sXL9aIjMDfyRizvpnVAU6cOMEAsI0bN2p+/+Mf/8huuOEGw/3PP/88A0D/6B/9o3/0j/7RP/rn8385OTmWsk6d2KFzSnp6OmbNmuX+u6KiAvn5+WjWrBkURanWu4uKihAXF4ecnBxERERUN6tENaH68C+oPvwLqg//gurD/6jpOmGM4cKFC2jVqpXlvXVCoIuOjkZwcDBOnz6t+f306dOIiYkx3B8aGuqONcuJioryaJ4iIiKoQ/oRVB/+BdWHf0H14V9QffgfNVknkZGRtu6rE0YRISEh6N27N9asWeP+raKiAmvWrEFKSooPc0YQBEEQBFF96sQOHQDMmjULkydPRp8+fXDDDTfgtddew6VLlzBlyhRfZ40gCIIgCKJa1BmBbvz48Th79iyee+455ObmomfPnli1ahVatmzp1XyEhobi+eefNxzpEr6B6sO/oPrwL6g+/AuqD//Dn+pEYcyOLSxBEARBEAThr9QJHTqCIAiCIIjaDAl0BEEQBEEQAQ4JdARBEARBEAEOCXQEQRAEQRABDgl0XmTRokVo164dGjRogH79+mHLli2+zlKtZP78+ejbty8aN26MFi1a4LbbbsPBgwc191y+fBlpaWlo1qwZwsPDMXbsWIPj6ezsbIwePRoNGzZEixYt8Mc//hFXr1715qfUShYsWABFUTBz5kz3b1Qf3uXEiRO455570KxZM4SFhSEpKQnbtm1zX2eM4bnnnkNsbCzCwsIwfPhw/PLLL5p35OfnY+LEiYiIiEBUVBTuv/9+VVxqwi7l5eV49tlnkZCQgLCwMHTo0AF/+ctfNLE7qT5qlvXr12PMmDFo1aoVFEXBypUrNdc9Vf67d+/GjTfeiAYNGiAuLg4vv/yyZz+k+pFSCTssW7aMhYSEsPfff5/t27ePTZs2jUVFRbHTp0/7Omu1jpEjR7IPPviA7d27l+3cuZPdfPPNLD4+nl28eNF9z4MPPsji4uLYmjVr2LZt21j//v3ZgAED3NevXr3KunXrxoYPH8527NjBvvnmGxYdHc3S09N98Um1hi1btrB27dqx7t27s0cffdT9O9WH98jPz2dt27Zl9913H9u8eTM7cuQI++6779ihQ4fc9yxYsIBFRkaylStXsl27drFbb72VJSQksJKSEvc9o0aNYj169GA//fQT27BhA+vYsSObMGGCLz4poHnxxRdZs2bN2FdffcWOHj3K/v3vf7Pw8HD2+uuvu++h+qhZvvnmG/b000+z5cuXMwBsxYoVmuueKP/CwkLWsmVLNnHiRLZ37162dOlSFhYWxt555x2PfQcJdF7ihhtuYGlpae6/y8vLWatWrdj8+fN9mKu6wZkzZxgA9sMPPzDGGCsoKGD169dn//73v933ZGVlMQBs06ZNjDFXBw8KCmK5ubnue9566y0WERHBSktLvfsBtYQLFy6wTp06sdWrV7Pf/OY3boGO6sO7zJ49mw0aNEh6vaKigsXExLC//vWv7t8KCgpYaGgoW7p0KWOMsf379zMAbOvWre57vv32W6YoCjtx4kTNZb4WMnr0aPY///M/mt/uuOMONnHiRMYY1Ye30Qt0nir/N998kzVp0kQzXs2ePZt16dLFY3mnI1cvUFZWhszMTAwfPtz9W1BQEIYPH45Nmzb5MGd1g8LCQgBA06ZNAQCZmZm4cuWKpj4SExMRHx/vro9NmzYhKSlJ43h65MiRKCoqwr59+7yY+9pDWloaRo8erSl3gOrD23z55Zfo06cPxo0bhxYtWiA5ORlLlixxXz969Chyc3M19REZGYl+/fpp6iMqKgp9+vRx3zN8+HAEBQVh8+bN3vuYWsCAAQOwZs0a/PzzzwCAXbt2ISMjA6mpqQCoPnyNp8p/06ZNGDx4MEJCQtz3jBw5EgcPHsT58+c9ktc6EynCl+Tl5aG8vNwQlaJly5Y4cOCAj3JVN6ioqMDMmTMxcOBAdOvWDQCQm5uLkJAQREVFae5t2bIlcnNz3feI6otfI5yxbNkybN++HVu3bjVco/rwLkeOHMFbb72FWbNm4amnnsLWrVvxyCOPICQkBJMnT3aXp6i81fXRokULzfV69eqhadOmVB8OmTNnDoqKipCYmIjg4GCUl5fjxRdfxMSJEwGA6sPHeKr8c3NzkZCQYHgHv9akSZNq55UEOqJWk5aWhr179yIjI8PXWamz5OTk4NFHH8Xq1avRoEEDX2enzlNRUYE+ffpg3rx5AIDk5GTs3bsXb7/9NiZPnuzj3NU9Pv30U/zrX//Cxx9/jOuvvx47d+7EzJkz0apVK6oPwhF05OoFoqOjERwcbLDaO336NGJiYnyUq9rPww8/jK+++grr1q1DmzZt3L/HxMSgrKwMBQUFmvvV9RETEyOsL36NsE9mZibOnDmDXr16oV69eqhXrx5++OEH/OMf/0C9evXQsmVLqg8vEhsbi+uuu07zW9euXZGdnQ2gsjzNxquYmBicOXNGc/3q1avIz8+n+nDIH//4R8yZMwd33XUXkpKSMGnSJDz22GOYP38+AKoPX+Op8vfGGEYCnRcICQlB7969sWbNGvdvFRUVWLNmDVJSUnyYs9oJYwwPP/wwVqxYgbVr1xq2uXv37o369etr6uPgwYPIzs5210dKSgr27Nmj6aSrV69GRESEYTIkzBk2bBj27NmDnTt3uv/16dMHEydOdP831Yf3GDhwoMGNz88//4y2bdsCABISEhATE6Opj6KiImzevFlTHwUFBcjMzHTfs3btWlRUVKBfv35e+IraQ3FxMYKCtFNxcHAwKioqAFB9+BpPlX9KSgrWr1+PK1euuO9ZvXo1unTp4pHjVgDktsRbLFu2jIWGhrIPP/yQ7d+/nz3wwAMsKipKY7VHeIbp06ezyMhI9v3337NTp065/xUXF7vvefDBB1l8fDxbu3Yt27ZtG0tJSWEpKSnu69xNxogRI9jOnTvZqlWrWPPmzclNhodQW7kyRvXhTbZs2cLq1avHXnzxRfbLL7+wf/3rX6xhw4bsn//8p/ueBQsWsKioKPbFF1+w3bt3s9/97ndCNw3Jycls8+bNLCMjg3Xq1IncZFSByZMns9atW7vdlixfvpxFR0ezJ5980n0P1UfNcuHCBbZjxw62Y8cOBoC98sorbMeOHez48eOMMc+Uf0FBAWvZsiWbNGkS27t3L1u2bBlr2LAhuS0JVN544w0WHx/PQkJC2A033MB++uknX2epVgJA+O+DDz5w31NSUsIeeugh1qRJE9awYUN2++23s1OnTmnec+zYMZaamsrCwsJYdHQ0e/zxx9mVK1e8/DW1E71AR/XhXf7v//6PdevWjYWGhrLExES2ePFizfWKigr27LPPspYtW7LQ0FA2bNgwdvDgQc09586dYxMmTGDh4eEsIiKCTZkyhV24cMGbn1ErKCoqYo8++iiLj49nDRo0YO3bt2dPP/20xr0F1UfNsm7dOuGcMXnyZMaY58p/165dbNCgQSw0NJS1bt2aLViwwKPfoTCmckdNEARBEARBBBykQ0cQBEEQBBHgkEBHEARBEAQR4JBARxAEQRAEEeCQQEcQBEEQBBHgkEBHEARBEAQR4JBARxAEQRAEEeCQQEcQBEEQBBHgkEBHEARBEAQR4JBARxBEneW+++7Dbbfd5rP0J02ahHnz5tXY+/fv3482bdrg0qVLNZYGQRD+AUWKIAiiVqIoiun1559/Ho899hgYY4iKivJOplTs2rULQ4cOxfHjxxEeHl5j6fz+979Hjx498Oyzz9ZYGgRB+B4S6AiCqJXk5ua6//uTTz7Bc889h4MHD7p/Cw8Pr1FByoqpU6eiXr16ePvtt2s0na+//hrTpk1DdnY26tWrV6NpEQThO+jIlSCIWklMTIz7X2RkJBRF0fwWHh5uOHK96aabMGPGDMycORNNmjRBy5YtsWTJEly6dAlTpkxB48aN0bFjR3z77beatPbu3YvU1FSEh4ejZcuWmDRpEvLy8qR5Ky8vx2effYYxY8Zofm/Xrh3mzp2Le++9F+Hh4Wjbti2+/PJLnD17Fr/73e8QHh6O7t27Y9u2be5njh8/jjFjxqBJkyZo1KgRrr/+enzzzTfu67/97W+Rn5+PH374oZolShCEP0MCHUEQhIr//d//RXR0NLZs2YIZM2Zg+vTpGDduHAYMGIDt27djxIgRmDRpEoqLiwEABQUFGDp0KJKTk7Ft2zasWrUKp0+fxp133ilNY/fu3SgsLESfPn0M11599VUMHDgQO3bswOjRozFp0iTce++9uOeee7B9+3Z06NAB9957L/jhSlpaGkpLS7F+/Xrs2bMHL730kmbnMSQkBD179sSGDRs8XFIEQfgTJNARBEGo6NGjB5555hl06tQJ6enpaNCgAaKjozFt2jR06tQJzz33HM6dO4fdu3cDABYuXIjk5GTMmzcPiYmJSE5Oxvvvv49169bh559/FqZx/PhxBAcHo0WLFoZrN998M/7whz+40yoqKkLfvn0xbtw4dO7cGbNnz0ZWVhZOnz4NAMjOzsbAgQORlJSE9u3b45ZbbsHgwYM172zVqhWOHz/u4ZIiCMKfIIGOIAhCRffu3d3/HRwcjGbNmiEpKcn9W8uWLQEAZ86cAeAybli3bp1bJy88PByJiYkAgMOHDwvTKCkpQWhoqNBwQ50+T8ss/UceeQRz587FwIED8fzzz7sFTTVhYWHuHUWCIGonJNARBEGoqF+/vuZvRVE0v3EhrKKiAgBw8eJFjBkzBjt37tT8++WXXww7ZZzo6GgUFxejrKzMNH2elln6U6dOxZEjRzBp0iTs2bMHffr0wRtvvKF5Z35+Ppo3b26vAAiCCEhIoCMIgqgGvXr1wr59+9CuXTt07NhR869Ro0bCZ3r27AnA5SfOE8TFxeHBBx/E8uXL8fjjj2PJkiWa63v37kVycrJH0iIIwj8hgY4gCKIapKWlIT8/HxMmTMDWrVtx+PBhfPfdd5gyZQrKy8uFzzRv3hy9evVCRkZGtdOfOXMmvvvuOxw9ehTbt2/HunXr0LVrV/f1Y8eO4cSJExg+fHi10yIIwn8hgY4gCKIatGrVCj/++CPKy8sxYsQIJCUlYebMmYiKikJQkHyInTp1Kv71r39VO/3y8nKkpaWha9euGDVqFDp37ow333zTfX3p0qUYMWIE2rZtW+20CILwX8ixMEEQhA8oKSlBly5d8MknnyAlJaVG0igrK0OnTp3w8ccfY+DAgTWSBkEQ/gHt0BEEQfiAsLAwfPTRR6YOiKtLdnY2nnrqKRLmCKIOQDt0BEEQBEEQAQ7t0BEEQRAEQQQ4JNARBEEQBEEEOCTQEQRBEARBBDgk0BEEQRAEQQQ4JNARBEEQBEEEOCTQEQRBEARBBDgk0BEEQRAEQQQ4JNARBEEQBEEEOCTQEQRBEARBBDj/H8KHiHZT6sRuAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHVCAYAAACuZLx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqBklEQVR4nO3deXhN1/4/8PdJIoOQGCKREEkMbakYaqqhLa1bVVWqxqqiRVvU1EmqtFoV3A46U/3VcFuqg6kDqihVc1GUqiHEt0KlSEgiyFm/P9ycmyNn2MPaQ+L9ep48bfZew2cNe2fZ55x1HEIIASIiIiKypQCrAyAiIiIi77hYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIlMkJiZiwIABptS1bds2tGrVCuHh4XA4HNi1a5cp9cr08ssvw+FwGFpH27Zt0bZtW0PrICL9uFgjkmzOnDlwOByun6CgIFSrVg0DBgzAX3/9ZVi9+/btw8svv4yjR48aVocVTpw4gZdfflnxguvy5cvo0aMHzpw5g7feegv/+c9/kJCQYGyQpNjLL7+MxMREt2M//PADHnvsMdSvXx+BgYHFzhfldDoxbdo0JCUlITQ0FA0aNMCCBQuKpdu6dSuGDh2KJk2aoEyZMl4Xvnl5ea66IyMjUa5cOTRs2BBvv/02Ll++7Dd2IjMEWR0AUWn1yiuvICkpCRcvXsTmzZsxZ84cbNiwAXv37kVoaKj0+vbt24eJEyeibdu2peoPyokTJzBx4kQkJiaiUaNGftMfPnwYx44dw6xZszBo0CDjAyzBfvjhB6tDAADMnz8fCxcuxC233IK4uDifaceNG4cpU6Zg8ODBaNasGZYuXYqHHnoIDocDvXv3dqX7/vvv8fHHH6NBgwaoWbMm/vzzT4/l5eXl4ffff8e9996LxMREBAQEYOPGjRg9ejS2bNmC+fPnS20rkRZcrBEZpGPHjmjatCkAYNCgQYiKisLUqVOxbNky9OzZ0+LolMvJyUF4eLjVYSj2999/AwAqVKjgN21Ja5tswcHBVocAAJg8eTJmzZqFMmXK4L777sPevXs9pvvrr7/wxhtvYNiwYXjvvfcAXL227rjjDjz77LPo0aMHAgMDAQBPPvkknn/+eYSFhWH48OFeF2uVKlXC5s2b3Y498cQTiIyMxHvvvYc333wTVatWldhaIvX4MiiRSW677TYAV5/8FLp06RImTJiAJk2aIDIyEuHh4bjtttuwdu3aYvk///xzNGnSBOXLl0dERASSk5Px9ttvA7j60muPHj0AAO3atXO9BPvTTz+58i9fvhy33XYbwsPDUb58eXTq1Am///67Wx0DBgxAuXLlcPjwYdx7770oX748+vbt67VNhe+r+uOPP9CzZ09ERESgcuXKGDlyJC5evOi3T44cOYIePXqgUqVKKFu2LG699VZ89913rvM//fQTmjVrBgAYOHCgq11z5szxWN6AAQNwxx13AAB69OgBh8Phek+Wr7bl5OTg6aefRnx8PEJCQnDjjTfi9ddfhxDCrXyHw4Hhw4fjyy+/RL169RAWFoaWLVtiz549AICZM2eidu3aCA0NRdu2bRW/JL1hwwY0a9YMoaGhqFWrFmbOnOk17aeffoomTZogLCwMlSpVQu/evXH8+HHX+eHDh6NcuXLIzc0tlrdPnz6oWrUqCgoKAHh+z9rFixfx8ssv44YbbkBoaChiY2PRrVs3t3nrdDoxffp03HzzzQgNDUVMTAwef/xxnD17VlF7rxUXF4cyZcr4Tbd06VJcvnwZQ4cOdR1zOBx48skn8X//93/YtGmT63hMTAzCwsI0xQPA9XT63LlzmssgkoVP1ohMUviHu2LFiq5j2dnZ+Pjjj9GnTx8MHjwY58+fx//7f/8PHTp0wNatW10v+61atQp9+vTBXXfdhalTpwIA9u/fj19++QUjR47E7bffjhEjRuCdd97BCy+8gLp16wKA67//+c9/0L9/f3To0AFTp05Fbm4uPvzwQ7Rp0wY7d+50e9n0ypUr6NChA9q0aYPXX38dZcuW9du2nj17IjExEampqdi8eTPeeecdnD17FvPmzfOa59SpU2jVqhVyc3MxYsQIVK5cGXPnzsX999+Pr776Cg888ADq1q2LV155BRMmTMCQIUNcC95WrVp5LPPxxx9HtWrVMHnyZIwYMQLNmjVDTEyMz7YJIXD//fdj7dq1eOyxx9CoUSOsXLkSzz77LP766y+89dZbbnX8/PPPWLZsGYYNGwYASE1NxX333YfnnnsOH3zwAYYOHYqzZ89i2rRpePTRR7FmzRqffbdnzx7cfffdqFKlCl5++WVcuXIFL730klvchV577TWMHz8ePXv2xKBBg3D69Gm8++67uP3227Fz505UqFABvXr1wvvvv4/vvvvOtYAHgNzcXHzzzTcYMGCA6+nTtQoKCnDfffdh9erV6N27N0aOHInz589j1apV2Lt3L2rVquXq5zlz5mDgwIEYMWIE0tLS8N5772Hnzp345ZdfFC28tNi5cyfCw8Nd87pQ8+bNXefbtGmjqexLly4hOzsbeXl52L59O15//XUkJCSgdu3auuMm0k0QkVSzZ88WAMSPP/4oTp8+LY4fPy6++uorUaVKFRESEiKOHz/uSnvlyhWRn5/vlv/s2bMiJiZGPProo65jI0eOFBEREeLKlSte6/3yyy8FALF27Vq34+fPnxcVKlQQgwcPdjt+8uRJERkZ6Xa8f//+AoAYO3asora+9NJLAoC4//773Y4PHTpUABC//fab61hCQoLo37+/6/dRo0YJAOLnn392izUpKUkkJiaKgoICIYQQ27ZtEwDE7NmzFcW0du1aAUB8+eWXbse9tW3JkiUCgJg0aZLb8e7duwuHwyEOHTrkOgZAhISEiLS0NNexmTNnCgCiatWqIjs723U8JSVFAHBL60nXrl1FaGioOHbsmOvYvn37RGBgoCh6iz569KgIDAwUr732mlv+PXv2iKCgINdxp9MpqlWrJh588EG3dF988YUAINavX+86dscdd4g77rjD9fsnn3wiAIg333yzWJxOp1MIIcTPP/8sAIjPPvvM7fyKFSs8HlerU6dOIiEhweu5mjVrFjuek5Pjc94OGzZM+Ptzt2DBAgHA9dO0aVOxe/du1fETGYEvgxIZpH379qhSpQri4+PRvXt3hIeHY9myZahevborTWBgoOt9Q06nE2fOnMGVK1fQtGlT7Nixw5WuQoUKyMnJwapVq1THsWrVKpw7dw59+vRBZmam6ycwMBAtWrTw+JLrk08+qaqOwqdMhZ566ikAV9/k7c3333+P5s2buz0JKVeuHIYMGYKjR49i3759qmJQ6tq2ff/99wgMDMSIESPcjj/99NMQQmD58uVux++66y63J5EtWrQAADz44IMoX758seNHjhzxGktBQQFWrlyJrl27okaNGq7jdevWRYcOHdzSLlq0CE6nEz179nQbx6pVq6JOnTqucXQ4HOjRowe+//57XLhwwZV/4cKFqFatms8nT19//TWioqJc41dU4acpv/zyS0RGRuJf//qXWxxNmjRBuXLlPM4nWfLy8hASElLseOEHdvLy8jSX3a5dO6xatQpffvklnnjiCZQpUwY5OTmayyOSiS+DEhnk/fffxw033ICsrCx88sknWL9+vcc/NHPnzsUbb7yBP/74w22rgKSkJNf/Dx06FF988QU6duyIatWq4e6770bPnj1xzz33+I3j4MGDAIA777zT4/mIiAi334OCgtwWlErUqVPH7fdatWohICDA53u2jh075lrQFFX4EtexY8dQv359VXH446ltx44dQ1xcnNtC69o4iiq6qAKAyMhIAEB8fLzH477ex3X69Gnk5eUV6z8AuPHGG90WuwcPHoQQwmNaAG4vPfbq1QvTp0/HsmXL8NBDD+HChQv4/vvv8fjjj/vcu+3w4cO48cYbERTk/U/DwYMHkZWVhejoaI/nCz/gYYSwsDDk5+cXO174/kg971GLiYlxvfTcvXt3TJ48Gf/6179w8OBBfsCALMfFGpFBmjdv7vo0aNeuXdGmTRs89NBDOHDgAMqVKwfg6pvFBwwYgK5du+LZZ59FdHQ0AgMDkZqa6vaG7ujoaOzatQsrV67E8uXLsXz5csyePRuPPPII5s6d6zMOp9MJ4Or71jz90bn2D3NISAgCAvQ9dDd6M1etZLTN2/u9vB0X13xIQSun0wmHw4Hly5d7rKtwTgHArbfeisTERHzxxRd46KGH8M033yAvLw+9evWSEkd0dDQ+++wzj+erVKmiuw5vYmNjsXbtWggh3OZYRkYGAPjd9kON7t27Y9y4cVi6dCkef/xxaeUSacHFGpEJChdg7dq1w3vvvYexY8cCAL766ivUrFkTixYtcvvj89JLLxUrIzg4GJ07d0bnzp3hdDoxdOhQzJw5E+PHj0ft2rW9LpAK3xQeHR2N9u3bG9C6q09bij4JPHToEJxOp8/93hISEnDgwIFix//44w/XecD4hV9CQgJ+/PFHnD9/3u3p2rVxGKFKlSoICwtzPf0s6tq+qVWrFoQQSEpKwg033OC37J49e+Ltt99GdnY2Fi5ciMTERNx6660+89SqVQtbtmzB5cuXvX5IoFatWvjxxx/RunVrXU+ytGjUqBE+/vhj7N+/H/Xq1XMd37Jli+u8LIUvqWZlZUkrk0grvmeNyCRt27ZF8+bNMX36dNfLNoVPSIo+fdmyZYvbFgQA8M8//7j9HhAQgAYNGgCA62Whwv3Crt1qoEOHDoiIiMDkyZOL7cgOXH0pTq/333/f7fd3330XwNW95ry59957sXXrVre25uTk4KOPPkJiYqLrj7G3dsly7733oqCgwLVvV6G33noLDofDZxv0CgwMRIcOHbBkyRKkp6e7ju/fvx8rV650S9utWzcEBgZi4sSJxZ7WCSGKzZFevXohPz8fc+fOxYoVKxTt7ffggw8iMzOzWF8U1gFcXQQWFBTg1VdfLZbmypUrhm510aVLF5QpUwYffPCBW1wzZsxAtWrVvH5K2JfMzEyPTz8//vhjAHA9HSeyEp+sEZmocOPOOXPm4IknnsB9992HRYsW4YEHHkCnTp2QlpaGGTNmoF69em5vDh80aBDOnDmDO++8E9WrV8exY8fw7rvvolGjRq73VjVq1AiBgYGYOnUqsrKyEBISgjvvvBPR0dH48MMP0a9fP9xyyy3o3bs3qlSpgvT0dHz33Xdo3bq1xz/OaqSlpeH+++/HPffcg02bNuHTTz/FQw89hIYNG3rNM3bsWCxYsAAdO3bEiBEjUKlSJcydOxdpaWn4+uuvXS9X1qpVCxUqVMCMGTNQvnx5hIeHo0WLFm5P8vTo3Lkz2rVrh3HjxuHo0aNo2LAhfvjhByxduhSjRo1yPZk0ysSJE7FixQrcdtttGDp0KK5cuYJ3330XN998M3bv3u1KV6tWLUyaNAkpKSk4evQounbtivLlyyMtLQ2LFy/GkCFD8Mwzz7jS33LLLahduzbGjRuH/Px8RS+BPvLII5g3bx7GjBmDrVu34rbbbkNOTg5+/PFHDB06FF26dMEdd9yBxx9/HKmpqdi1axfuvvtulClTBgcPHsSXX36Jt99+G927d1fVB7t378ayZcsAXH0qm5WVhUmTJgEAGjZsiM6dOwMAqlevjlGjRuHf//43Ll++jGbNmmHJkiX4+eef8dlnn7m9PHzs2DH85z//AQBs374dAFxlJiQkoF+/fgCuvhVhxowZ6Nq1K2rWrInz589j5cqVWLVqFTp37uz1vZ5EprLoU6hEpVbh1h3btm0rdq6goEDUqlVL1KpVS1y5ckU4nU4xefJkkZCQIEJCQkTjxo3Ft99+K/r37++2fcFXX30l7r77bhEdHS2Cg4NFjRo1xOOPPy4yMjLcyp81a5aoWbOma9uHott4rF27VnTo0EFERkaK0NBQUatWLTFgwACxfft2V5r+/fuL8PBwxW0t3Lpj3759onv37qJ8+fKiYsWKYvjw4SIvL88t7bVbdwghxOHDh0X37t1FhQoVRGhoqGjevLn49ttvi9WzdOlSUa9ePREUFOR3Gw9fW3d4a9v58+fF6NGjRVxcnChTpoyoU6eO+Pe//+3arqIQADFs2DC3Y2lpaQKA+Pe//60oDk/WrVsnmjRpIoKDg0XNmjXFjBkzXH17ra+//lq0adNGhIeHi/DwcHHTTTeJYcOGiQMHDhRLO27cOAFA1K5d22O9127dIYQQubm5Yty4cSIpKUmUKVNGVK1aVXTv3l0cPnzYLd1HH30kmjRpIsLCwkT58uVFcnKyeO6558SJEyf8tvdahdeMp59r50xBQYHrmgkODhY333yz+PTTT4uVWdj/nn6Ktnnbtm2iR48eokaNGiIkJESEh4eLW265Rbz55pvi8uXLqttCZASHEJLe/UpE152XX34ZEydOxOnTpxEVFWV1OEREpRLfs0ZERERkY1ysEREREdkYF2tERERENsb3rBERERHZGJ+sEREREdkYF2tERERENsZNcXH1u+5OnDiB8uXL2/Y7DYmIiKh0EULg/PnziIuL8/m9xVysAThx4gTi4+OtDoOIiIiuQ8ePH0f16tW9nudiDXB9efPx48cRERFhcTRERER0PcjOzkZ8fLxrHeINF2uA66XPiIgILtaIiIjIVP7egsUPGBARERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2ZvvF2vr169G5c2fExcXB4XBgyZIlbueFEJgwYQJiY2MRFhaG9u3b4+DBg9YES0RERCSZ7RdrOTk5aNiwId5//32P56dNm4Z33nkHM2bMwJYtWxAeHo4OHTrg4sWLJkeqT0ZWHjYezkRGVp7mtGrKUFO/knJlpFEav5b2y6hbbxq9fSyzLf7Sy+5jLeeMnA8yzquJUU99euIwc7xk5NXbJjPaoLYdemPRG4+a61tNTHraZeQcMnLeWMn2m+J27NgRHTt29HhOCIHp06fjxRdfRJcuXQAA8+bNQ0xMDJYsWYLevXubGapmC7elI2XRHjgFEOAAUrslo1ezGqrSqilDTf1KypWRRmn8Wtovo269afT2sex+9JUegNQ+1nLOyPlg5pzQW5+eOMwcLyXtNPM+Z+T9QMY1JvP+qrZ8wPP1rbZ9dpxDRs4bqzmEEMLqIJRyOBxYvHgxunbtCgA4cuQIatWqhZ07d6JRo0audHfccQcaNWqEt99+22M5+fn5yM/Pd/1e+HUPWVlZpn+DQUZWHlpPWQNnkVEIdDiwYWw7xEaGKUq7aGhLPPDBRkVlqKkfgN/YlMTvL43SPtDSfn9tkBG/nn5U0sf+2q+2H32VFwAADkjrYy3nlM5nrdeDjH6Ucd36q09JP8i+JrSe89dv/vIq6S+980LG/UDGNSbz/qq2fG/Xt6x7sZVzyMh54+/vqB7Z2dmIjIz0u/6w/cugvpw8eRIAEBMT43Y8JibGdc6T1NRUREZGun6s/BL3tMwct8kBAAVC4GhmruK0246eVVyGmvqVxCYjjdI+0NJ+GXXrTaO3j5XGoaYsb+mdgNQ+1nJO6XzWmt+sOaE0rZ5+kH1N6JmrRs9zvfNCxv1AxjUm8/6qtnxv17ese7GVc8jIeWMHtn8Z1AgpKSkYM2aM6/fCJ2tWSIoKR4CHf+kkRpVVnLZZYkXFZait31+5SuL3l0ZpH2htv966ZaTR08dK61Azl7yl9/Yvbz19rPac0vmsdT7I6EcZ162/+pT0gxHXhFHXkln3OT1xmHGNyby/qi3f2/Ut615s5Rwyet5YrUQ/WatatSoA4NSpU27HT5065TrnSUhIiOtL263+8vbYyDCkdktG4H+/xDXQ4cDkbvU9Pnb1lrZhfEXFZaipX0lsMtIo7QMt7ZdRt940evtYdj/6Ki/1wWSpfazlnNL5rDW/WXNC77gp6QfZ14SeuWr0PNc7L2TcD2RcYzLvr2rL93Z9y7oXWzmHjJw3dlCi37MmhEBcXByeeeYZPP300wCuPiWLjo7GnDlzFH/AQOlrxkbKyMrD0cxcJEaV9Ts5vKVVU4aa+pWUKyON0vi1tF9G3XrT6O1jmW3xl152H2s5Z+R8kHFeTYx66tMTh5njJSOvrP4wsg1q26E3Fr3xqLm+1bbPjnPIyHljBKXrD9sv1i5cuIBDhw4BABo3bow333wT7dq1Q6VKlVCjRg1MnToVU6ZMwdy5c5GUlITx48dj9+7d2LdvH0JDQxXVYYfFGhEREV1flK4/bP+ete3bt6Ndu3au3wvfa9a/f3/MmTMHzz33HHJycjBkyBCcO3cObdq0wYoVKxQv1IiIiIjszPZP1szAJ2tERERktuti6w4iIiKi0o6LNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjEu1oiIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFizgYysPGw8nImMrDxNabyd81eunnr1lK31nN64rIjZiDq1lqnmuJHjJ7M+PXXKbJOvtHaaA3rLl3nd6W2DEXNGy/gZ2Ratfac3JrPnrN2uETXXvFmCrA7gerdwWzpSFu2BUwABDiC1WzJ6NauhOI23c/7K1VOvnrK1ntMblxUxG1Gn1jLVHAdg2PjJrE/vPNY79krmpa+2mT0HlMSrdq5ove70tsGI607L+MmYozL728r+0zredrpPqrl+zOYQQgirg7BadnY2IiMjkZWVhYiICNPqzcjKQ+spa+AsMgKBDgc2jG2H2Mgwv2kAeDy3aGhLPPDBRq/l6qlXT9ne4vV3rjAmrXH5K9uImI2oU2vfe8vn6XgAADhgyPh5ik9rfXrnsd6xLzontbTN7Dmg9zpSe9zINugZMzXt9jd+vvpRb1u09LcZc172nDW7PpnXvCxK1x98GdRCaZk5bpMCAAqEwNHMXEVpvJ3bdvSsz3L11KunbK3nitISl7+yjYjZiDq19r23fJ6OOwHDxs9TGq31+Wqv0uvH33mlc1JL27TWLePa9pVOzVzRet3pbYMR153aa6GQ3jkqaxzMmvOy56yd7pNqr3mz8WVQCyVFhSPAw7/cEqPKKk7j6VyzxIo+8+ipV2/ZWs/pjcuKmGXXqbXvveXzdNzb0wQZ4+cpPj31ybh+9Ix9UVraZtW17Sudmrmi9brT2wY9Y6am3f7GT0asssbBrDlvxJy1y31S7TVvNj5Zs1BsZBhSuyUj0OEAcHVSTO5W3+1xq6803s41jK/os1w99eopW+s5JX3mKy5/ZRsRsxF1au17b/k8HU99MNmw8fOURmt9euex3rG/ltq2mT0H9F5Hao8b2QYjrju114KM+SVzHMya87LnrJ3uk2qvebPxPWuw7j1rhTKy8nA0MxeJUWW9Tgpfabyd81eunnr1lK31nN64rIjZiDq1lqnmuJHjJ7M+PXXKbJPWtmmtW0afaClf5nWntw1GzBkt42dkW7T2nd6YzJ6zdrtG1Fzzeildf3CxBusXa0RERHT94QcMiIiIiEoBLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjEu1oiIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGSvxiraCgAOPHj0dSUhLCwsJQq1YtvPrqqxBCWB0aERERkW4lfrE2depUfPjhh3jvvfewf/9+TJ06FdOmTcO7775rdWjSZGTlYePhTGRk5UnPp7Vsrfn11GdWXi312KF82TEoLc/IOWDmfLGij/XmNWqM9OQ1+vrRWofWMsxoj978stOb2b968prdz1YKsjoAvTZu3IguXbqgU6dOAIDExEQsWLAAW7dutTgyORZuS0fKoj1wCiDAAaR2S0avZjWk5NNattb8euozK6+WeuxQvuwYlJZn5Bwwc75Y0cd6YzdqjPTkNfr60dsetWWY0R69+WWnN7N/9eQ1u5+tVuKfrLVq1QqrV6/Gn3/+CQD47bffsGHDBnTs2NFrnvz8fGRnZ7v92FFGVp5rMgGAUwAvLNqr6F8b/vJpLVtrfj31mZVXSz12KF92DErLM3IOmDlfrOhjvbEbNUZ68hp9/ehtj9oyzGiP3vyy05vZv3rymt3PdlDiF2tjx45F7969cdNNN6FMmTJo3LgxRo0ahb59+3rNk5qaisjISNdPfHy8iRErl5aZ45pMhQqEwNHMXN35tJatNb+e+szKq6UeO5QvOwal5Rk5B8ycL1b0sd7YjRojPXmNvn601qG1DDPaoze/7PRm9q+evGb3sx2U+MXaF198gc8++wzz58/Hjh07MHfuXLz++uuYO3eu1zwpKSnIyspy/Rw/ftzEiJVLigpHgMP9WKDDgcSosrrzaS1ba3499ZmVV0s9dihfdgxKyzNyDpg5X6zoY72xGzVGevIaff1orUNrGWa0R29+2enN7F89ec3uZzso8Yu1Z5991vV0LTk5Gf369cPo0aORmprqNU9ISAgiIiLcfuwoNjIMqd2SEei4OqsCHQ5M7lYfsZFhuvNpLVtrfj31mZVXSz12KF92DErLM3IOmDlfrOhjvbEbNUZ68hp9/ehtj9oyzGiP3vyy05vZv3rymt3PduAQJXyPi8qVK2PSpEl48sknXcdSU1Mxe/Zs1/vY/MnOzkZkZCSysrJsuXDLyMrD0cxcJEaVVTWZlOTTWrbW/HrqMyuvlnrsUL7sGJSWZ+QcMHO+WNHHevMaNUZ68hp9/WitQ2sZZrRHb37Z6c3sXz15ze5nIyhdf5T4xdqAAQPw448/YubMmbj55puxc+dODBkyBI8++iimTp2qqAy7L9aIiIio9LluFmvnz5/H+PHjsXjxYvz999+Ii4tDnz59MGHCBAQHBysqg4s1IiIiMtt1s1iTgYs1IiIiMpvS9UeJ/4ABERERUWnGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysWSgjKw8bD2ciIytP6nnZ+bTWoyadrzRG1a+3/42O3+p+V5JGTYxq+lNt2WrbpDaPnrEwIq/S/GrTyuhbPWXIPmdEXXrOy47T6PNGzW+j55mW+4+W+4aZgqwO4Hq1cFs6UhbtgVMAAQ4gtVsyejWrofu87Hxa61HaDn9pjKpfb/8bHb/V/S67bQAU96dZ46Y0j56xMCKv2nbKmjMy5pTWNsm+xvT0rVn3WCNjkTXHrGiTlrgB3/cfLfcNszmEEMLqIKyWnZ2NyMhIZGVlISIiwvD6MrLy0HrKGjiL9Hygw4ENY9shNjJM8/lFQ1vigQ82Ssun9nhhPUrb6S8NAE3t9Fe/1n66tnyj4tcat5KYlPS77LEJAAAHFPWnr3pljpvSvtIzFkbk9dX3auenmjkjY05pbZOWc776WGtdRtybtcapJxa946Fnfuttk696vZXv7/6j5b4hk9L1B18GtUBaZo7bxACAAiFwNDNX1/ltR89Kzaf2eGE9StvpL43WdvorW2s/XVu+UfEb1W6l/S67bU5AcX/6qlfmuPmrS8ZYGJHXV9+rnZ9q0smYU1rbJPsa09O3sueL1jj1xKJ3PArJ7nslMWuJ29/9R8t9wwp8GdQCSVHhCPCw0k+MKqvrfLPEilLzqT1eWI/SdipJY0T9Wvvp2vKNil9r3EpjkpVGaYze/mXrqT/1tF/NuClto56xMCKvr77XMj/19oOamPW0SfY1pvWc7PmiJ06j/o4onWNa57fR80zt/UfLfcMKfLJmgdjIMKR2S0agwwHg6sSY3K2+65Gr1vMN4ytKzaf2+LWPjP21w18are30V7bWfvL0SNyI+I1qt9J+l9221AeTFfenWeOmtB/0jIUReX31vdr5KaMf1MwprW2SfY3p6VvZ80VrnDLGTO8ck933MuaZp3P+7j9a7htW4HvWYP571gplZOXhaGYuEqPKen3vjpbzsvNprUdNOl9pjKpfb/8bHb/V/S67bWr6U0/71dajp0w9/WdU32tpn95+kFWG7HNG1KXnvOw4jT5v1Pw2ep5puf9ouW/IoHT9wcUarFusERER0fWLHzAgIiIiKgW4WCMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjFDvsHg4MGDWLp0KY4ePQqHw4GkpCR07doVNWvWNKI6IiIiolJL+mItNTUVEyZMgNPpRHR0NIQQOH36NMaOHYvJkyfjmWeekV0lERERUakl9WXQtWvX4sUXX8S4ceOQmZmJjIwMnDx50rVYGzt2LNavXy+zSiIiIqJSTeo3GPTq1QsVKlTAzJkzPZ4fMmQIzp8/jwULFsiqUgp+gwERERGZzZJvMNi6dSv69evn9Xy/fv2wefNmmVUSERERlWpSF2unTp1CYmKi1/NJSUk4efKkzCqJiIiISjWpi7WLFy8iODjY6/kyZcrg0qVLMqskIiIiKtWkfxr0448/Rrly5TyeO3/+vOzqiIiIiEo1qYu1GjVqYNasWX7TEBEREZEyUhdrR48elVkcERER0XWPXzdFREREZGNSn6y98847itKNGDFCZrVEREREpZbUTXGTkpL8V+hw4MiRI7KqlIKb4hIREZHZlK4/pD5ZS0tLk1kcERER0XWvVLxn7a+//sLDDz+MypUrIywsDMnJydi+fbvVYRERERHpVuIXa2fPnkXr1q1RpkwZLF++HPv27cMbb7yBihUrWh2aZhlZedh4OBMZWXmG5ZeVxshy1dTvL63ePlVSjhXxyqxTZr1Wzx0Z+Y1qg9byZc4Jo+o2ug4z4pYdkx1i0JPH6D43Y24pzSfr74QRpG+Ka7apU6ciPj4es2fPdh1T8t45u1q4LR0pi/bAKYAAB5DaLRm9minfm05JfllpjKpbbf3+0urtUyXlWBGvzDpl1mv13NFTh9Ft0Fq+zDlhVN1G12FG3LJjskMMWsvVUrYd55bSfLL+ThilxD9ZW7ZsGZo2bYoePXogOjoajRs39rsxb35+PrKzs91+7CAjK881WQDAKYAXFu1V9S8Uf/llpTGqbrX1+0urt0+V1GNFvDLrlFmv1XNHTx166jKyfJlzwqi6jW6fGXHLjskOMWgtV0vZdpxbSvPJ+jthpBK/WDty5Ag+/PBD1KlTBytXrsSTTz6JESNGYO7cuV7zpKamIjIy0vUTHx9vYsTepWXmuCZLoQIhcDQzV1p+WWmMqltt/f7S6u1TJfVYEa/MOmXWa/Xc0VOHnrqMLF/mnDCqbj157BK37JjsEIPWcrWUbce5pTSfrL8TRjLsZVCn04lDhw7h77//htPpdDt3++23S62nadOmmDx5MgCgcePG2Lt3L2bMmIH+/ft7zJOSkoIxY8a4fs/OzrbFgi0pKhwBDrhNmkCHA4lRZaXll5XGqLrV1u8vrd4+VVqP2fHK7COZ9Vo9d/TUoacuI8uXOSeMqtvo9pkRt+yY7BCD1nK1lG3HuaU0n6y/E0Yy5Mna5s2bUbt2bdStWxe333472rZt6/pp166d1LpiY2NRr149t2N169ZFenq61zwhISGIiIhw+7GD2MgwpHZLRqDDAeDqZJncrT5iI8Ok5ZeVxqi61dbvL63ePlVSjxXxyqxTZr1Wzx09deipy8jyZc4Jo+o2un1mxC07JjvEoKdvjO5zM+aW0nyy/k4YSeqmuIUaNWqEG264ARMnTkRsbCwc/+2AQpGRkdLqeuihh3D8+HH8/PPPrmOjR4/Gli1bsHHjRkVl2G1T3IysPBzNzEViVFlNk0VJfllpjCxXTf3+0urtUyXlWBGvzDpl1mv13NFTh9Ft0Fq+zDlhVN1G12FG3LJjskMMevIY3edmzC2l+WT9nVBD6frDkMVaeHg4fvvtN9SuXVt20cVs27YNrVq1wsSJE9GzZ09s3boVgwcPxkcffYS+ffsqKsNuizUiIiIq/ZSuPwx5GbRFixY4dOiQEUUX06xZMyxevBgLFixA/fr18eqrr2L69OmKF2pEREREdmbIBwyeeuopPP300zh58iSSk5NRpkwZt/MNGjSQWt99992H++67T2qZRERERHZgyMugAQHFH9g5HA4IIeBwOFBQUCC7Sl34MigRERGZzZIvci/EL3QnIiIiksOQxVpCQoIRxRIRERFddwzbFPfw4cOYPn069u/fDwCoV68eRo4ciVq1ahlVJREREVGpY8inQVeuXIl69eph69ataNCgARo0aIAtW7bg5ptvxqpVq4yokoiIiKhUMuQDBo0bN0aHDh0wZcoUt+Njx47FDz/8gB07dsiuUhd+wICIiIjMZuk+a/v378djjz1W7Pijjz6Kffv2GVElERERUalkyGKtSpUq2LVrV7Hju3btQnR0tBFVEhEREZVKhnzAYPDgwRgyZAiOHDmCVq1aAQB++eUXTJ06FWPGjDGiSiIiIqJSyZD3rAkhMH36dLzxxhs4ceIEACAuLg7PPvssRowYUeyL3a3G96wRERGR2SzbFPfKlSuYP38+HnroIYwePRrnz58HAJQvX152VURERESlnvT3rAUFBeGJJ57AxYsXAVxdpHGhRkRERKSNIR8waN68OXbu3GlE0URERETXFUM+YDB06FA8/fTT+L//+z80adIE4eHhbucbNGhgRLVEREREpY4hHzAICCj+wM7hcEAIAYfDgYKCAtlV6sIPGBAREZHZLPuAAQCkpaUZUSwRERHRdceQxVpCQoIRxRIRERFddwxZrM2bN8/n+UceecSIaomIiIhKHUPes1axYkW33y9fvozc3FwEBwejbNmyOHPmjOwqdeF71oiIiMhsln6R+9mzZ91+Lly4gAMHDqBNmzZYsGCBEVWWehlZedh4OBMZWXlS08rMq6cMvfXKiFtrOUrzmDWGesswa/7IGjO7xKK2DNntN+MasnJeas1v9Dww+35r1Twz835SWu5BMhnyMqgnderUwZQpU/Dwww/jjz/+MKvaUmHhtnSkLNoDpwACHEBqt2T0alZDd1qZefWUobdeGXEbHbtZY6i3DLPmj6wxs0ssasuQ3X4zriEr56XW/EbPA7Pvt1bNMzPvJ6XlHiSbIU/WvAkKCnJ9Vygpk5GV55pQAOAUwAuL9nr8l4CatDLz6ilDb70y4jY6drPGUG8ZZs0fWWNml1jUliG7/WZcQ1bOS635jZ4HZt9vrZpnZt5PSss9yAiGLNaWLVvm9rN06VLMmDEDDz/8MFq3bm1ElaVWWmaOa0IVKhACRzNzdaWVmVdPGXrrlRG31nKU5jFrDPWWYdb8kTVmdolFbRmy22/GNWTlvNSa3+h5YPb91qp5Zub9pLTcg4xgyMugXbt2dfvd4XCgSpUquPPOO/HGG28YUWWplRQVjgAH3CZWoMOBxKiyutLKzKunDL31yojb6NjNGkO9ZZg1f2SNmV1iUVuG7PabcQ1ZOS+15jd6Hph9v7Vqnpl5Pykt9yAjGPJkzel0uv0UFBTg5MmTmD9/PmJjY42ostSKjQxDardkBDocAK5OqMnd6iM2MkxXWpl59ZSht14ZcRsdu1ljqLcMs+aPrDGzSyxqy5DdfjOuISvnpdb8Rs8Ds++3Vs0zM+8npeUeZARDtu4odOnSJaSlpaFWrVoICjLtswyqlYStOzKy8nA0MxeJUWX9Tig1aWXm1VOG3nplxK21HKV5zBpDvWWYNX9kjZldYlFbhuz2m3ENWTkvteY3eh6Yfb+1ap6ZeT8pLfcgJZSuPwxZrOXm5mL48OGuzXH//PNP1KxZE0899RSqVauGsWPHyq5Sl5KwWCMiIqLSxdJ91lJSUrB792789NNPCA0NdR1v3749Fi5caESVRERERKWSIa9NLlmyBAsXLsStt94Kx39fEwaAm2++GYcPHzaiSiIiIqJSyZAna6dPn0Z0dHSx4zk5OW6LNyIiIiLyzZDFWtOmTfHdd9+5fi9coH388cdo2bKlEVUSERERlUqGvAw6efJkdOzYEfv27cOVK1fw9ttvY9++fdi4cSPWrVtnRJVEREREpZIhT9batGmDXbt24cqVK0hOTsYPP/yA6OhobNq0CU2aNDGiSiIiIqJSydB91koKbt1BREREZrN06w4iIiIikkPqe9YCAgL8ftrT4XDgypUrMqslIiIiKrWkLtYWL17s9dymTZvwzjvvwOl0yqySiIiIqFSTuljr0qVLsWMHDhzA2LFj8c0336Bv37545ZVXZFZJREREVKoZ9p61EydOYPDgwUhOTsaVK1ewa9cuzJ07FwkJCUZVSURERFTqSF+sZWVl4fnnn0ft2rXx+++/Y/Xq1fjmm29Qv3592VURERERlXpSXwadNm0apk6diqpVq2LBggUeXxYlIiIiIuWk7rMWEBCAsLAwtG/fHoGBgV7TLVq0SFaVUnCfNSIiIjKb0vWH1CdrjzzyCL+onYiIiEgiqYu1OXPmyCyOiIiI6LrHbzAgIiIisjEu1oiIiIhsjIs1IiIiIhsrdYu1KVOmwOFwYNSoUVaHQkRERKRbqVqsbdu2DTNnzkSDBg2sDkWzjKw8bDyciYysPE3n9ZZhxDk1afTUpbXdemOX0S4tscmIyeoyjOx72X0qq116+8Sq61dGGbKuIxn1mVGG7HuV3nr1xqZ2jLTkM/N61xqjFaR+GtRKFy5cQN++fTFr1ixMmjTJ6nA0WbgtHSmL9sApgAAHkNotGb2a1VB8Xm8ZRpxTE7ueGLW2W2/sMtqlJTYZMVldhpF9L7tPlcZkdJ9Ydf3KKEPWdSSjPjPKkH2vMmMsZI6RmvbobZee+7uetplJ6qa4Vurfvz8qVaqEt956C23btkWjRo0wffp0j2nz8/ORn5/v+j07Oxvx8fGWboqbkZWH1lPWwFlkNAIdDmwY2w6xkWF+z+stA4D0c0rjUtoP3upaNLQlHvhgo+p2+8unNR417fIWg6/YfNWrNCYZ7dJTht75rKUPtPap0jbrucaU9IlV16+/dispQ9Z15K8sGfdCI++nWu9VMvtSy/1QSbmeGH3v19PXWmI0giWb4lrl888/x44dO7Bt2zZF6VNTUzFx4kSDo1InLTPHbbIAQIEQOJqZi9jIML/n9ZYhIKSfUxqX0n7wVte2o2c1tdtfPq3xqGmXtxh8xaZ3PGS1S08Zeuezlj7Q2qdK26znGlPSJ1Zdv/7arfceoOY68leWjHuhkfdTrfcqmX2p5X6odowKGX3v19PXWmK0UolfrB0/fhwjR47EqlWrEBoaqihPSkoKxowZ4/q98MmalZKiwhHgQLHVfWJUWUXnZZRhxDmlsStN6+lcs8SKmtrtL5/ePlPSLm8x+ItNb0wy2qWnDBnzWfY8kdFmI/vEqutXb90y8quJRUkaq+6nWu9VMvtS6/1QzRgpjVVNWtl9rSVGK5X4Dxj8+uuv+Pvvv3HLLbcgKCgIQUFBWLduHd555x0EBQWhoKCgWJ6QkBBERES4/VgtNjIMqd2SEfjfr+sKdDgwuVt918re33m9ZRhxTmlcSvvB27mG8RU1tdtfPj19prRd3mLwFZuMmKwuQ++8kT1PZLTZ6D6x6vqVMV9kXUcy5o4ZZci+V8nsSyOvDy1jpbddeu7vamO0Uol/z9r58+dx7Ngxt2MDBw7ETTfdhOeffx7169f3W4advsg9IysPRzNzkRhV1uNk8XdebxlGnFOTRk9dWtutN3YZ7dISm4yYrC7DyL6X3aey2qW3T6y6fmWUIes6klGfGWXIvlfprVdvbGrHSEs+M693GW3TS+n6o8Qv1jxp29b3BwyuZafFGhEREV0flK4/SvzLoERERESlWYn/gIEnP/30k9UhEBEREUnBJ2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKyZJCMrDxsPZyIjK8/r/ytJ7+m8t3y+jmutV0uZauP1Va6/mGTVqeeY2t/VxK+lfk/plMQgY94pOa+nHj3Xgdp5pmVctaTxRm1eLWOitTyl5/TMX3916e1rI+5nMq4zWXNRSfxK21b4/78dP6urXpn3Li33Jj3Xo9mCrA7gerBwWzpSFu2BUwCO/x4TcP//AAeQ2i0ZvZrV8Jq+MA0A13lv+Xwdf6BxNSze+ZfPdN5i89QmX2V6Susr3mvbVrRcfzF563O1deo5dm0/+PvdWxu0xiljbNXU72ve+RsLvfUoaavSPvA3z9SOs9Kx8dZWrfPB3zVnRHlKz2npV6VzScncUNM+GfczJde6v3GQNRf1XI++rp1CWupVGreSe5ea+72We48dOIQQwn+y0i07OxuRkZHIyspCRESE1LIzsvLQesoaOBX0cqDDgUVDW+KBDzZ6TR8AAA64nfeWT0l5StMFOhzYMLYdYiPDFLWpMD2AYmm91eepbb4UjakoT/GpqVPPMbU8tcFT/FrrVzu2aur3Ne98zRVfc0NNPUrbqjS/N1rGWUkeb23VOh/8XXO+xkRreWrP+Wv/tZTMJSVjq7Z93uLwlFbN/NRynflrhz96rkc9147avxme8iu5d6m55rXcezz9jZFJ6fqDT9YMlpaZo3iCFgiBbUfP+kzvBNz/SeMjn5LylKYrEAJHM3MRGxmmqE2F6QWE4rg8tU1JHddeSJ7iU1OnnmNqeWqDp/i11q92bNXU72ve+ZorvuaGmno8tUPPdeCNlnFWksdbW7XOB3/XnK8x0Vqe2nP+6ryWkrmkZGzVts9bHGruZ77aAigfVzXn/dWr9nrUc+2o/ZvhKb+Se5eaa17LvcfT3xgrcLFmsKSocAQo/JdQoMOBZokVfab3tvr3lE9JeUrTBTocSIwqq7hNRdMrjUvLk7XCOoryFJ+aOs1+snZtGzzFr+fJmpqxVVO/r3nna674mhtq6lHaVqX5vTH7yZrW+eDvmvM1JnrKU3POX/uvpWQuKRlbte3zFYee+6yW68xfO/zRcz3quXbU/s3wlF/JvUvNNa/l3uPpb4wV+AEDg8VGhiG1WzICHVdfbXcA+O//uv1/oMOByd3qo2F8Ra/pAx0OpD6Y7HbeWz5fxx+8pZrfdJ5iK/zXxbVt8lZmbGSYx7Te4vLUtqLl+orJV5+rrVPPsWv7wd/vntrgKX6t9asdWzX1+5p3vuaKr7mhph4lbVXaB77mmZZxVpLHW1u1zgd/15yvMdFanppzWvpVyVxSMjfUtk/G/czfta5kHGTMRT3Xo79rp5CWepXEreTepeZvn5Z7jx2eqgF8zxoAY9+zVigjKw9HM3Ndq3RP/3/t+1R8pSl63ls+X8eVpPMWm9oy1cbrq1x/McmqU88xtb+riV9L/VrGVk39vo4rOa+nHj3XwbV9oPaaUxKLljTeqM2rZUy0lqf0nJZ+VRK3jL424n6mZGz9xamlz2Rfj95iKhscgNxLTs31yrx3abk36bkeZVG6/uBiDeYs1oiIiIiKUrr+4MugRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENlbiF2upqalo1qwZypcvj+joaHTt2hUHDhywOiwiIiIiKUr8Ym3dunUYNmwYNm/ejFWrVuHy5cu4++67kZOTY3VoimVk5WHj4UxkZOWpOufrvL98RpetNb8VfaG3r2SUr6ceGWMtM52nc0b2sey2+Uorq6+Nurb0xmDE/NNz3i7n9M4/I/qoJPWr2nYYec+Web80k0MIIawOQqbTp08jOjoa69atw+23364oT3Z2NiIjI5GVlYWIiAiDI3S3cFs6UhbtgVMAAQ4gtVsyejWr4fecr/P+8hldttb8VvSF3r6SUb6eemSMtcx0ns4BMKyPZbfNjL426trSG4OvcTLq+jJi3GWf0zv/jOgjX2Nlp77TMuf0tM1fGpn3S1mUrj9K3WLt0KFDqFOnDvbs2YP69et7TJOfn4/8/HzX79nZ2YiPjzd9sZaRlYfWU9bAWWQEAh0ObBjbDgC8nouNDPOad9HQlnjgg41e8/mrV2/Zvsr3ld9Xe43qC3/94K+vtMZ1bX9prUfGWCupX2k6T3EGAIADhvSxr3Na2uYrray+Nura0junfY2Tt37We30ZMe6yz2m9Z+m91/o67++aslO/qp1zetom4xpTc6+QRelircS/DFqU0+nEqFGj0Lp1a68LNeDq+9wiIyNdP/Hx8SZG+T9pmTlukwIACoTA0cxcn+d85d129KzPfP7q1Vu21vxW9IW/cv2l0RrXtf2ltR4ZYy0znadzTsCwPpbdNl9pZfW1UdeW3jnta5yMur6MGHfZ57TeswrpHS8t15Rd+k7LnNPTNl91yb5fWiHI6gBkGjZsGPbu3YsNGzb4TJeSkoIxY8a4fi98sma2pKhwBHj4V0RiVFkA8HnOW95miRV95lNSr56y9eQ3uy/89YOSNHrL11OPjLGWne7ac97+pSyrj2W2zVdaWX1t1LWld077Gycjri+jxl3mOT33LBl9oGWs7Navatqht22+0si8X1qh1DxZGz58OL799lusXbsW1atX95k2JCQEERERbj9WiI0MQ2q3ZAQ6HACuTorJ3eojNjLM5zlfeRvGV/SZz1+9esvWmt+KvvBXrlFj5OlxupZ6ZIy1zHSezqU+mGxYH8tum6+0svraqGtL75z2NU5GXV9GjLvsc1rvWbLGS8s1ZZe+0zLn9LTNX5/LvF9aocS/Z00IgaeeegqLFy/GTz/9hDp16qguw8oPGABXXyc/mpmLxKiyHt9D4+2cr/P+8hldttb8VvSF3r6SUb6eemSMtcx0ns4Z2cey2+Yrray+Nura0huDEfNPz3m7nNM7/4zoo5LUr2rbYeQ9W+b9Uobr5gMGQ4cOxfz587F06VLceOONruORkZEIC1PWyVYv1oiIiOj6c90s1hz/fVx5rdmzZ2PAgAGKyuBijYiIiMymdP1R4j9gUMLXmkREREQ+lZoPGBARERGVRlysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxZqFMrLysPFwJjKy8nQdN6ssf+eUnDcyBqV1l4S+susc0Nomo8ZGaz4jxlRLjFaPmVHjJbPNetphRnu01OMvrR3nhRH9r6a/9JRjVnxGCrI6gOvVwm3pSFm0B04BBDiA1G7J6NWshurjZpXl75yS80rar/Wc0rpLQl/ZdQ5obZNRY2OnMdUSIwBLx8yo8ZLZZj3Xi9I49bTHzPuflfPC27jp6Rc1/aWnHLPiM5pDCCEsq90msrOzERkZiaysLERERBheX0ZWHlpPWQNnkZ4PdDiwaGhLPPDBRsXHN4xtBwCGl+XvXGxkmNc2FZ5X0n6tMfhqU9G6zeh3vX2lpY1q88gsy1+bjBobrfUaMaa+znmLMQAAHLBszLTkUTJeMtus53pRe1/S0h4z739Wzgtv46an/5XOM399pmfuyIxPD6XrDz5Zs0BaZo7bJACAAiGw7ehZVcePZuZCQBhelr9zsZFhXttUeF5J+7XG4KtNRes2o9/19pWWNpoxB/z1sdq+1Ts2Wus1Yky1jLcTACwcM6OuJZlt1nO9qL0vaWmPmfc/K+eFt3HT0/9K51kh2fcH2fGZgYs1CyRFhSPAw79UmiVWVHU8MaosABhelpJz3tpUeF5J+7XG4K9N/uq1W1/ZcQ74y6O2b/WOjdZ6jRpTtTF6e1ph5pgZMV4y26znelF7X9LSHjPvf1bOC2/jpqf/lc4zf32md+7Iis8M/ICBBWIjw5DaLRmBDgeAq5Ngcrf6aBhfUdXx2MgwU8ryd85Xmzz9K0RrPWrbem3dJaGvtLTRyvnkr01GjY3Weo0YUy3jnfpgsqVjZtR4yWyznutF7X1JbzlG3/+snBfexk1P/yudZ/76TM/ckRmfGfieNZj/nrVCGVl5OJqZi8SossXeP6HmuFll+Tun5LyMerS0SU9+K/rKrnNAa5uMGhsz267nnLfzVo+ZUeMls8162mFGe7TUo7U9Vs4LI/pfTX/pKces+LRQuv7gYg3WLdaIiIjo+qV0/cGXQYmIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrIxLtaIiIiIbIyLNSIiIiIb42KNiIiIyMb4dVMACreay87OtjgSIiIiul4Urjv8bXnLxRqA8+fPAwDi4+MtjoSIiIiuN+fPn0dkZKTX8/wGAwBOpxMnTpxA+fLl4fjvd4ERERERGUkIgfPnzyMuLg4BAd7fmcbFGhEREZGN8QMGRERERDbGxRoRERGRjXGxRkRERGRjXKwRERER2RgXa0REREQ2xsUaERERkY1xsUZERERkY5Yu1tavX4/OnTsjLi4ODocDS5YscTt/4cIFDB8+HNWrV0dYWBjq1auHGTNmuKX56KOP0LZtW0RERMDhcODcuXPmNYCIiIjIYJYu1nJyctCwYUO8//77Hs+PGTMGK1aswKeffor9+/dj1KhRGD58OJYtW+ZKk5ubi3vuuQcvvPCCWWETERERmcY232DgcDiwePFidO3a1XWsfv366NWrF8aPH+861qRJE3Ts2BGTJk1yy//TTz+hXbt2OHv2LCpUqGBS1ERERETGsvUXubdq1QrLli3Do48+iri4OPz000/4888/8dZbb+kqNz8/H/n5+a7fnU4nzpw5g8qVK/O7QYmIiMgUSr8b1NaLtXfffRdDhgxB9erVERQUhICAAMyaNQu33367rnJTU1MxceJESVESERERaXf8+HFUr17d63nbL9Y2b96MZcuWISEhAevXr8ewYcMQFxeH9u3bay43JSUFY8aMcf2elZWFGjVq4Pjx44iIiJAROhEREZFP2dnZiI+PR/ny5X2ms+1iLS8vDy+88AIWL16MTp06AQAaNGiAXbt24fXXX9e1WAsJCUFISEix4xEREVysERERkan8vQXLtvusXb58GZcvXy72Gm5gYCCcTqdFURERERGZy9InaxcuXMChQ4dcv6elpWHXrl2oVKkSatSogTvuuAPPPvsswsLCkJCQgHXr1mHevHl48803XXlOnjyJkydPusrZs2cPypcvjxo1aqBSpUqmt4mIiIhIJku37ijcbuNa/fv3x5w5c3Dy5EmkpKTghx9+wJkzZ5CQkIAhQ4Zg9OjRrkeGL7/8sscPC8yePRsDBgxQFEd2djYiIyORlZXFl0GJiIjIFErXH7bZZ81KXKwRERGR2ZSuP2z7njUiIiIi4mKNiIiIyNZsu3UHkd2lp6cjMzMTABAVFYUaNWpYHBEREZVGXKwRaZCeno4bb6yLixdzAQChoWVx4MB+LtiIiEg61Yu1c+fOYfHixfj5559x7Ngx5ObmokqVKmjcuDE6dOiAVq1aGREnka1kZmb+d6H2KQDg4sWHkZmZycUaERFJp/g9aydOnMCgQYMQGxuLSZMmIS8vD40aNcJdd92F6tWrY+3atfjXv/6FevXqYeHChUbGTGQjdf/7Q0REZAzFT9YaN26M/v3749dff0W9evU8psnLy8OSJUswffp0HD9+HM8884y0QImIiIiuR4oXa/v27UPlypV9pgkLC0OfPn3Qp08f/PPPP7qDIyIiIrreKX4Z1N9CTW96IiIiIipO0z5rgYGBaNeuHc6cOeN2/NSpUwgMDJQSGBERERFpXKwJIZCfn4+mTZvi999/L3aOiIiIiOTQtFhzOBz4+uuv0blzZ7Rs2RJLly51O0f2lZ6ejh07dmDHjh1IT0+3OhwiIiLyQ9OmuEIIBAYG4u2338bNN9+MXr164cUXX8SgQYNkx0cScSNXIiKikkf3NxgMGTIEderUQY8ePbB+/XoZMZFBuJErERFRyaPpZdCEhAS3DxK0a9cOmzdvxvHjx6UFRkbiRq5EREQlhaYna2lpacWO1a5dGzt37sSpU6d0B0VEREREV2l6suZNaGgoEhISZBZJREREdF1TtVirWLEiKlWq5PdHqfXr16Nz586Ii4uDw+HAkiVLXOcuX76M559/HsnJyQgPD0dcXBweeeQRnDhxwq2MM2fOoG/fvoiIiECFChXw2GOP4cKFC2qaRURERGRbql4GnT59uuv/hRB48skn8corryA6OlpT5Tk5OWjYsCEeffRRdOvWze1cbm4uduzYgfHjx6Nhw4Y4e/YsRo4cifvvvx/bt293pevbty8yMjKwatUqXL58GQMHDsSQIUMwf/58TTERERER2YmqxVr//v3dfn/qqafw4IMPombNmpoq79ixIzp27OjxXGRkJFatWuV27L333kPz5s2Rnp6OGjVqYP/+/VixYgW2bduGpk2bAgDeffdd3HvvvXj99dcRFxenKS4iIiIiu9C9dYeZsrKy4HA4UKFCBQDApk2bUKFCBddCDQDat2+PgIAAbNmyBQ888IDHcvLz85Gfn+/6PTs729C4S6r09HRkZmYiKirK1tt7FMYJwGOsvtrhL69VPMWsdDz0jFtJGXMiX0rLPJZ9f9JzrzSD3eOzUolZrF28eBHPP/88+vTpg4iICADAyZMni70EGxQUhEqVKuHkyZNey0pNTcXEiRMNjbekK7qBrp03z/W30a+vdth1k2BPMQNQNB56xq2kjDmRL6VlHsu+P+m5V5rB7vFZTeqnQY1y+fJl9OzZE0IIfPjhh7rLS0lJQVZWluuH+8MV978NdF/ExYu5rn/t2I37Rr+fFovVVzv85bWKp5iVjoeecSspY07kS2mZx7LvT3rulWawe3xWU/VkbcyYMW6/X7p0Ca+99hoiIyPdjr/55pv6I/uvwoXasWPHsGbNGtdTNQCoWrUq/v77b7f0V65cwZkzZ1C1alWvZYaEhCAkJERajKVbSdmKxd8mv77aYdcNgj3FrHQ89IxbSRlzIl9KyzyWfX/Sc680g93js4aqxdrOnTvdfm/VqhWOHDnidkzmF7kXLtQOHjyItWvXonLlym7nW7ZsiXPnzuHXX39FkyZNAABr1qyB0+lEixYtpMVBREREZBVVi7W1a9dKrfzChQs4dOiQ6/e0tDTs2rULlSpVQmxsLLp3744dO3bg22+/RUFBget9aJUqVUJwcDDq1q2Le+65B4MHD8aMGTNw+fJlDB8+HL179+YnQYmIiKhUsPQDBtu3b0e7du1cvxe+zNq/f3+8/PLLWLZsGQCgUaNGbvnWrl2Ltm3bAgA+++wzDB8+HHfddRcCAgLw4IMP4p133jElfiIiIiKjKV6sTZkyBSNGjEDZsmX9pt2yZQsyMzPRqVMnn+natm0LIYTX877OFapUqRI3wCUiIqJSS/GnQfft24eEhAQMHToUy5cvx+nTp13nrly5gt27d+ODDz5Aq1at0KtXL5QvX96QgImIiIiuJ4qfrM2bNw+//fYb3nvvPTz00EPIzs5GYGAgQkJCkJt7dV+Uxo0bY9CgQRgwYABCQ0MNC/p6omVTxNK8ceC1/WFndh8H2fHZqb16NhPlNeeZXTeQVstTO5Qes4OiceXn5yMkJETRht8y67VTf1wvVL1nrWHDhpg1axZmzpyJ3bt349ixY8jLy0NUVBQaNWpk+z+eJY2WTRFL88aBnvrjq6++sDgqz+w+Dt423pVZnlXt1bOZKK85z+y6gbRantqxZs2PuPPO9n6P2aG9GRkZaN36NldcQCCAAkUbfuu5V5aW8S/JNG2KGxAQgEaNGqFLly7o3bs32rdvz4WaAbRsiliaNw701B/nzp2zOCrP7D4OsuOzU3v1bCbKa84zu24grZandhw5ckTRMTu099y5c0XiehVAAZRu+K3nXllaxr8kKzFfN3V907IpYmneONCum9h6YvdxkB2fndqrZ57wmvOsJF17vnhqh9JjdlA0LjM3/LZrf5R+JeLrpoiIiIiuV1ysEREREdkYF2tERERENqZrsXbo0CGsXLkSeXl5AJRtYktEREREymlarP3zzz9o3749brjhBtx7773IyMgAADz22GN4+umnpQZIREREdD3T9GnQ0aNHIygoCOnp6ahb93+fDunVqxfGjBmDN954Q1qApZXsDQYLy9u/X/1+WWZtdlgSNw4tLRvHyqjXyM1ifaUzcsNSpRuHGnW9eivPU3/I6CN/x3xtsqq0TUrjU5pXSzozqB0jX2UApWejWaVtMnuDc6XjZac5VpSmxdoPP/yAlStXonr16m7H69Spg2PHjkkJrDSTvcHgteWpce0mizI2SPWkJG4cKjtmq/pAxga4Rm4W6yud0k1MtfSl0o1DvV0jsq5XX20uOl56+0jJMW+brKppk5L4/LVX7Twxm9ox8lcGUDo2mlXaJrM3OFc6Xp6O2WU8NL0MmpOT4/EL3c+cOYOQkBDdQZV2sjcYdC/vVVV53TdZNG6zw5K4cWhp2ThWRr1GbhbrK53STUxltcnTxqGyrxF/fempP2T0kf9j3jdZVd4mZfH5a6/aOsymdox8l1F6NppV2iazNzhXOl52mmPX0vRk7bbbbsO8efPw6qtXFwYOhwNOpxPTpk1Du3btpAZYutlpw0KzNjssiRuHlpaNY2XUa+RmsWo395Q1Z5WWY/b16qk/ZPSRv2N65omeDVplzBOzqR0jT0rjRrNWXVP+KB0vO82xqzQt1qZNm4a77roL27dvx6VLl/Dcc8/h999/x5kzZ/DLL7/IjpGIiIjouqXpZdD69evjzz//RJs2bdClSxfk5OSgW7du2LlzJ2rVqiU7RiIiIqLrlqbFWnp6OiIiIjBu3Dh88cUX+P777zFp0iTExsYiPT1ddoz466+/8PDDD6Ny5coICwtDcnIytm/f7jovhMCECRMQGxuLsLAwtG/fHgcPHpQeBxEREZHZNC3WkpKScPr06WLH//nnHyQlJekOqqizZ8+idevWKFOmDJYvX459+/bhjTfeQMWKFV1ppk2bhnfeeQczZszAli1bEB4ejg4dOuDixYtSYyEiIiIym6b3rAkh4HA4ih2/cOECQkNDdQdV1NSpUxEfH4/Zs2e7jhVdEAohMH36dLz44ovo0qULAGDevHmIiYnBkiVL0Lt3b6nxEBEREZlJ1WJtzJgxAK5++nP8+PFu23cUFBRgy5YtaNSokdQAly1bhg4dOqBHjx5Yt24dqlWrhqFDh2Lw4MEAgLS0NJw8eRLt27d35YmMjESLFi2wadMmj4u1/Px85Ofnu37Pzs6WGrMW+/fvd21ICajboNNMhXUXjbXw/6+Nv+iGm94261VTntUK2yArlqLl2WUvn6KUtNfb+Hoa72vb6y9vfn4+jhw5oqsNnmI1ouyivLXTV7379+9XNQ/89VFaWprW8ItJT0/3e/36Ou9tLhRe397GX8080bqRrzfe+k/N5uO+4vPVp3qpKVvtvPNUl5K5bcS9/Nr+1fL3x1N5dqVqsbZz504AV59m7dmzB8HBwa5zwcHBaNiwIZ555hmpAR45cgQffvghxowZgxdeeAHbtm3DiBEjEBwcjP79++PkyZMAgJiYGLd8MTExrnPXSk1NxcSJE6XGqV0GgAA8/PDDKNyQElC3QaeRmwkW5b6R4f9i/d//u8dffMNNfeWZ1c7i/sH/xkhGLMXLs9Pmi0rbe+1c9JTXW3me58a1eYvOCX2Kxyqv7P9R0s5r6/3f9a9sw2J/fXS1vPHjx+ttDADfG257Hn9/eT3f767SN0/kbOjtvf/8tVdNfFo3MfdH+QbpauedhxL8XlPq/rYp5+0aUPf3x3t59qTqPWtr167F2rVr0b9/fyxfvtz1+9q1a7Fy5UrMnDkTderUkRqg0+nELbfcgsmTJ6Nx48YYMmQIBg8ejBkzZmguMyUlBVlZWa6f48ePS4xYrXMAnAAew9WJpn6DTiM3EyzqfxsGFo21cCPN4vEX33BTX3lmtbO4C7g6RrJiKV6enTZfVNpe97n4qoe8no75mhvX5i2cB/oVj1Ve2f+jpJ3X1nvuv3mUbsLpr48Ky5PTNvdr1J3n8feXt2h8BZA3T2RtYlo0vmvO+Gnv//iOz1ef6qW87HNQN+88lOD3miqsQ/a93Ns1oO7vj/fy7EnTe9aKvn/MaLGxsahXr57bsbp16+Lrr78GAFStWhUAcOrUKcTGxrrSnDp1yutLsiEhITb8poXC2O26mWBRnmL1Fb+/WNWWZxU7bWJsBj1zUdaxWA/n9TCybE91KK1Xz0aqnsqT3TZf5Sm9vj0ds8NGvp7oaa+ndJ7iM2r+qSlb9kbZasdadr16Ns+29/1Y02INALZv344vvvgC6enpuHTpktu5RYsW6Q6sUOvWrXHgwAG3Y3/++ScSEq5OsqSkJFStWhWrV692Lc6ys7OxZcsWPPnkk9LiICIiIrKCpq07Pv/8c7Rq1Qr79+/H4sWLcfnyZfz+++9Ys2YNIiMjpQY4evRobN68GZMnT8ahQ4cwf/58fPTRRxg2bBiAqx92GDVqFCZNmoRly5Zhz549eOSRRxAXF4euXbtKjYWIiIjIbJqerE2ePBlvvfUWhg0bhvLly+Ptt99GUlISHn/8cbeXImVo1qwZFi9ejJSUFLzyyitISkrC9OnT0bdvX1ea5557Djk5ORgyZAjOnTuHNm3aYMWKFdK3ESEiIiIym6bF2uHDh9GpUycAVz8FmpOTA4fDgdGjR+POO++U/knL++67D/fdd5/X8w6HA6+88gpeeeUVqfUSERERWU3Ty6AVK1bE+fPnAQDVqlXD3r17AVz9dEhurvyPIxMRERFdrzQ9Wbv99tuxatUqJCcno0ePHhg5ciTWrFmDVatW4a677pId43XL08aMSo8V0rKRq6zNAZXEJau8a/nbSNNbf/jarNMfXxtM+itLbb3eNoQ0c/NHmRuv6uWv/5TGqvT6UjpeavvI7I05jRpDO20watQmy3pi8XVe6/1HNiM3Xlbzd0zNxrZKyiupNC3W3nvvPdf3bo4bNw5lypTBxo0b8eCDD+LFF1+UGuD1ydPGjEqPFdKykWvRTQz1UB6X/vI8pFawWWvx/vC1Waey+DxvMOmvvWrr9b8hpPK8WsndeFUff/2nNFZ115z/8VLbR2ZvzGnUGNppg1HjNlnWH8u19Nx/ZDNy42V1f8eUb0Tsr46ST9PLoJUqVUJcXNzVAgICMHbsWCxbtgxvvPEG39QvxTkU35hR6bFCWjZyLSxP7+aASuNSWoev8jyk9rtZq6f+KFrHtZt1Ko3P0waT/tqrtl5/G0Kasflj0Zitdg6++6/oeaXlKD3mq8+V1lvI7I05z8GYMbTTBqPGbbKsP5ZrnYP2+49sRm687Cmv9/KUb0Tsr46ST/M+a9fKz8/H+++/j2nTpnn9midSS+lmlzI2cNSbxxPZcan9pLGsDXqV8rXBpOx69WwgbMb4ms1fHyiNVe01p2VDWF/M3pjTzI2BrWLGRshKGXn/kc3IjZfN+Dtm9VjLperJWn5+PlJSUtC0aVO0atUKS5YsAXD1Gw2SkpLw1ltvYfTo0UbESURERHRdUvVkbcKECZg5cybat2+PjRs3okePHhg4cCA2b96MN998Ez169EBgYKBRsRIRERFdd1Qt1r788kvMmzcP999/P/bu3YsGDRrgypUr+O233+BwOIyKkYiIiOi6pepl0P/7v/9DkyZNAAD169dHSEgIRo8ezYUaERERkUFULdYKCgoQHBzs+j0oKAjlypWTHhQRERERXaXqZVAhBAYMGICQkBAAwMWLF/HEE08gPDzcLd2iRYvkRVgKFG7qB9hjY8ailG4caPUGjd6o3SRYSzq1ZPeVnvKU5vWXTnZfyd5QszSzahNjs+eEjDqMvE/J3uS7pMZQGqi9L3rb7NxMqhZr/fv3d/vdHhsf2lt6ejpuvLFukU39rN7wsJDSjQPttMllUWo3CfaXVwbZfaWnPKV5lW3WKa+vZG+oWZpZtYmx2XNCRh1G3qdkb/JdUmMoDbTdFws3O7dywaZqsTZ79myj4ii1MjMzi2zqlwZgPK5u1vf/LI3LfeNAX7EU3SCxMH47OIfi8Xs6pjSvDLL7Sk95SvP6S3cOcvtKT3myY7E7WfPpHNT1m9lzwhO1dRh5n/IVi1n3RzvEUBpouS8CFy8+jMzMzJKzWCM97LQxY1FKY7HDJo2e6NmssaRsCKqnPFkb5cruK9kbapZmVm1ibPackFGHkfcp2Zu2ltQYSgOzNxDXT9PXTRERERGRObhYIyIiIrKxUrNYe//995GYmIjQ0FC0aNECW7dutTokIiIiIt1KxWJt4cKFGDNmDF566SXs2LEDDRs2RIcOHfD3339bHRoRERGRLqVisfbmm29i8ODBGDhwIOrVq4cZM2agbNmy+OSTT6wOjYiIiEiXEv9p0EuXLuHXX39FSkqK61hAQADat2+PTZs2ecyTn5+P/Px81+9ZWVkAgOzsbOnxXbhw4b//9yuAY//9/2MmH7vqfxsB+strZax2P3aV8r7kMeuO2SEGHrPvsavsfy0b2c4/rx759X/p7NF2XzFbE8uFCxcMWSMUlimE8J1QlHB//fWXACA2btzodvzZZ58VzZs395jnpZdeEgD4wx/+8Ic//OEPfyz/OX78uM+1Tol/sqZFSkoKxowZ4/rd6XTizJkzqFy5sq4vpc/OzkZ8fDyOHz+OiIgIGaGSThwTe+F42AvHw144HvZj9JgIIXD+/HnExcX5TFfiF2tRUVEIDAzEqVOn3I6fOnUKVatW9ZgnJCTE9f2mhSpUqCAtpoiICF5oNsMxsReOh71wPOyF42E/Ro5JZGSk3zQl/gMGwcHBaNKkCVavXu065nQ6sXr1arRs2dLCyIiIiIj0K/FP1gBgzJgx6N+/P5o2bYrmzZtj+vTpyMnJwcCBA60OjYiIiEiXUrFY69WrF06fPo0JEybg5MmTaNSoEVasWIGYmBhT4wgJCcFLL71U7CVWsg7HxF44HvbC8bAXjof92GVMHEL4+7woEREREVmlxL9njYiIiKg042KNiIiIyMa4WCMiIiKyMS7WiIiIiGyMizWJ3n//fSQmJiI0NBQtWrTA1q1brQ6pVEpNTUWzZs1Qvnx5REdHo2vXrjhw4IBbmosXL2LYsGGoXLkyypUrhwcffLDYxsnp6eno1KkTypYti+joaDz77LO4cuWKmU0pdaZMmQKHw4FRo0a5jnEszPfXX3/h4YcfRuXKlREWFobk5GRs377ddV4IgQkTJiA2NhZhYWFo3749Dh486FbGmTNn0LdvX0RERKBChQp47LHHinzXMSlVUFCA8ePHIykpCWFhYahVqxZeffVVt++C5HgYa/369ejcuTPi4uLgcDiwZMkSt/Oy+n/37t247bbbEBoaivj4eEybNk1eI/R/OycJIcTnn38ugoODxSeffCJ+//13MXjwYFGhQgVx6tQpq0MrdTp06CBmz54t9u7dK3bt2iXuvfdeUaNGDXHhwgVXmieeeELEx8eL1atXi+3bt4tbb71VtGrVynX+ypUron79+qJ9+/Zi586d4vvvvxdRUVEiJSXFiiaVClu3bhWJiYmiQYMGYuTIka7jHAtznTlzRiQkJIgBAwaILVu2iCNHjoiVK1eKQ4cOudJMmTJFREZGiiVLlojffvtN3H///SIpKUnk5eW50txzzz2iYcOGYvPmzeLnn38WtWvXFn369LGiSSXaa6+9JipXriy+/fZbkZaWJr788ktRrlw58fbbb7vScDyM9f3334tx48aJRYsWCQBi8eLFbudl9H9WVpaIiYkRffv2FXv37hULFiwQYWFhYubMmVLawMWaJM2bNxfDhg1z/V5QUCDi4uJEamqqhVFdH/7++28BQKxbt04IIcS5c+dEmTJlxJdffulKs3//fgFAbNq0SQhx9eINCAgQJ0+edKX58MMPRUREhMjPzze3AaXA+fPnRZ06dcSqVavEHXfc4VqscSzM9/zzz4s2bdp4Pe90OkXVqlXFv//9b9exc+fOiZCQELFgwQIhhBD79u0TAMS2bdtcaZYvXy4cDof466+/jAu+FOrUqZN49NFH3Y5169ZN9O3bVwjB8TDbtYs1Wf3/wQcfiIoVK7rds55//nlx4403SombL4NKcOnSJfz6669o376961hAQADat2+PTZs2WRjZ9SErKwsAUKlSJQDAr7/+isuXL7uNx0033YQaNWq4xmPTpk1ITk522zi5Q4cOyM7Oxu+//25i9KXDsGHD0KlTJ7c+BzgWVli2bBmaNm2KHj16IDo6Go0bN8asWbNc59PS0nDy5Em3MYmMjESLFi3cxqRChQpo2rSpK0379u0REBCALVu2mNeYUqBVq1ZYvXo1/vzzTwDAb7/9hg0bNqBjx44AOB5Wk9X/mzZtwu23347g4GBXmg4dOuDAgQM4e/as7jhLxTcYWC0zMxMFBQXFvjEhJiYGf/zxh0VRXR+cTidGjRqF1q1bo379+gCAkydPIjg4GBUqVHBLGxMTg5MnT7rSeBqvwnOk3Oeff44dO3Zg27Ztxc5xLMx35MgRfPjhhxgzZgxeeOEFbNu2DSNGjEBwcDD69+/v6lNPfV50TKKjo93OBwUFoVKlShwTlcaOHYvs7GzcdNNNCAwMREFBAV577TX07dsXADgeFpPV/ydPnkRSUlKxMgrPVaxYUVecXKxRiTZs2DDs3bsXGzZssDqU69Lx48cxcuRIrFq1CqGhoVaHQ7j6D5imTZti8uTJAIDGjRtj7969mDFjBvr3729xdNefL774Ap999hnmz5+Pm2++Gbt27cKoUaMQFxfH8SDF+DKoBFFRUQgMDCz2CbdTp06hatWqFkVV+g0fPhzffvst1q5di+rVq7uOV61aFZcuXcK5c+fc0hcdj6pVq3ocr8JzpMyvv/6Kv//+G7fccguCgoIQFBSEdevW4Z133kFQUBBiYmI4FiaLjY1FvXr13I7VrVsX6enpAP7Xp77uV1WrVsXff//tdv7KlSs4c+YMx0SlZ599FmPHjkXv3r2RnJyMfv36YfTo0UhNTQXA8bCarP43+j7GxZoEwcHBaNKkCVavXu065nQ6sXr1arRs2dLCyEonIQSGDx+OxYsXY82aNcUePTdp0gRlypRxG48DBw4gPT3dNR4tW7bEnj173C7AVatWISIiotgfOvLurrvuwp49e7Br1y7XT9OmTdG3b1/X/3MszNW6detiW9n8+eefSEhIAAAkJSWhatWqbmOSnZ2NLVu2uI3JuXPn8Ouvv7rSrFmzBk6nEy1atDChFaVHbm4uAgLc/9QGBgbC6XQC4HhYTVb/t2zZEuvXr8fly5ddaVatWoUbb7xR90ugALh1hyyff/65CAkJEXPmzBH79u0TQ4YMERUqVHD7hBvJ8eSTT4rIyEjx008/iYyMDNdPbm6uK80TTzwhatSoIdasWSO2b98uWrZsKVq2bOk6X7hdxN133y127dolVqxYIapUqcLtIiQo+mlQITgWZtu6dasICgoSr732mjh48KD47LPPRNmyZcWnn37qSjNlyhRRoUIFsXTpUrF7927RpUsXj1sVNG7cWGzZskVs2LBB1KlTh1tFaNC/f39RrVo119YdixYtElFRUeK5555zpeF4GOv8+fNi586dYufOnQKAePPNN8XOnTvFsWPHhBBy+v/cuXMiJiZG9OvXT+zdu1d8/vnnomzZsty6w47effddUaNGDREcHCyaN28uNm/ebHVIpRIAjz+zZ892pcnLyxNDhw4VFStWFGXLlhUPPPCAyMjIcCvn6NGjomPHjiIsLExERUWJp59+Wly+fNnk1pQ+1y7WOBbm++abb0T9+vVFSEiIuOmmm8RHH33kdt7pdIrx48eLmJgYERISIu666y5x4MABtzT//POP6NOnjyhXrpyIiIgQAwcOFOfPnzezGaVCdna2GDlypKhRo4YIDQ0VNWvWFOPGjXPb4oHjYay1a9d6/JvRv39/IYS8/v/tt99EmzZtREhIiKhWrZqYMmWKtDY4hCiyjTIRERER2Qrfs0ZERERkY1ysEREREdkYF2tERERENsbFGhEREZGNcbFGREREZGNcrBERERHZGBdrRERERDbGxRoRERGRjXGxRkSl1oABA9C1a1fL6u/Xrx8mT55sWPn79u1D9erVkZOTY1gdRGQ9foMBEZVIDofD5/mXXnoJo0ePhhACFSpUMCeoIn777TfceeedOHbsGMqVK2dYPd27d0fDhg0xfvx4w+ogImtxsUZEJdLJkydd/79w4UJMmDABBw4ccB0rV66coYskfwYNGoSgoCDMmDHD0Hq+++47DB48GOnp6QgKCjK0LiKyBl8GJaISqWrVqq6fyMhIOBwOt2PlypUr9jJo27Zt8dRTT2HUqFGoWLEiYmJiMGvWLOTk5GDgwIEoX748ateujeXLl7vVtXfvXnTs2BHlypVDTEwM+vXrh8zMTK+xFRQU4KuvvkLnzp3djicmJmLSpEl45JFHUK5cOSQkJGDZsmU4ffo0unTpgnLlyqFBgwbYvn27K8+xY8fQuXNnVKxYEeHh4bj55pvx/fffu87/61//wpkzZ7Bu3TqdPUpEdsXFGhFdV+bOnYuoqChs3boVTz31FJ588kn06NEDrVq1wo4dO3D33XejX79+yM3NBQCcO3cOd955Jxo3bozt27djxYoVOHXqFHr27Om1jt27dyMrKwtNmzYtdu6tt95C69atsXPnTnTq1An9+vXDI488gocffhg7duxArVq18Mgjj6DwRY9hw4YhPz8f69evx549ezB16lS3J4bBwcFo1KgRfv75Z8k9RUR2wcUaEV1XGjZsiBdffBF16tRBSkoKQkNDERUVhcGDB6NOnTqYMGEC/vnnH+zevRsA8N5776Fx48aYPHkybrrpJjRu3BiffPIJ1q5diz///NNjHceOHUNgYCCio6OLnbv33nvx+OOPu+rKzs5Gs2bN0KNHD9xwww14/vnnsX//fpw6dQoAkJ6ejtatWyM5ORk1a9bEfffdh9tvv92tzLi4OBw7dkxyTxGRXXCxRkTXlQYNGrj+PzAwEJUrV0ZycrLrWExMDADg77//BnD1gwJr1651vQeuXLlyuOmmmwAAhw8f9lhHXl4eQkJCPH4Iomj9hXX5qn/EiBGYNGkSWrdujZdeesm1iCwqLCzM9SSQiEofLtaI6LpSpkwZt98dDofbscIFltPpBABcuHABnTt3xq5du9x+Dh48WOwJV6GoqCjk5ubi0qVLPusvrMtX/YMGDcKRI0fQr18/7NmzB02bNsW7777rVuaZM2dQpUoVZR1ARCUOF2tERD7ccsst+P3335GYmIjatWu7/YSHh3vM06hRIwBX90GTIT4+Hk888QQWLVqEp59+GrNmzXI7v3fvXjRu3FhKXURkP1ysERH5MGzYMJw5cwZ9+vTBtm3bcPjwYaxcuRIDBw5EQUGBxzxVqlTBLbfcgg0bNuiuf9SoUVi5ciXS0tKwY8cOrF27FnXr1nWdP3r0KP766y+0b99ed11EZE9crBER+RAXF4dffvkFBQUFuPvuu5GcnIxRo0ahQoUKCAjwfgsdNGgQPvvsM931FxQUYNiwYahbty7uuece3HDDDfjggw9c5xcsWIC7774bCQkJuusiInviprhERAbIy8vDjTfeiIULF6Jly5aG1HHp0iXUqVMH8+fPR+vWrQ2pg4isxydrREQGCAsLw7x583xunqtXeno6XnjhBS7UiEo5PlkjIiIisjE+WSMiIiKyMS7WiIiIiGyMizUiIiIiG+NijYiIiMjGuFgjIiIisjEu1oiIiIhsjIs1IiIiIhvjYo2IiIjIxrhYIyIiIrKx/w//ulZTyXuaygAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "nest.raster_plot.from_device(s_rec_dspn)\n", diff --git a/snudda/utils/conv_hurt.py b/snudda/utils/conv_hurt.py index 39248c493..0b49cbe12 100644 --- a/snudda/utils/conv_hurt.py +++ b/snudda/utils/conv_hurt.py @@ -13,7 +13,7 @@ class ConvHurt(object): - def __init__(self, simulation_structures, base_dir="TEST/", target_simulator="NEST"): + def __init__(self, simulation_structures, base_dir="TEST/", target_simulator="NEST", has_input=False): self.base_dir = base_dir self.network_dir = os.path.join(base_dir, 'networks') @@ -25,7 +25,7 @@ def __init__(self, simulation_structures, base_dir="TEST/", target_simulator="NE self.setup_directories(base_dir=base_dir) self.write_main_config(simulation_structures=simulation_structures, - base_dir=base_dir, target_simulator=target_simulator) + base_dir=base_dir, target_simulator=target_simulator, has_input=has_input) ############################################################################ @@ -66,7 +66,8 @@ def write_main_config(self, base_dir="TEST/", out_file="circuit_config.json", simulation_structures=[], - target_simulator="NEURON"): + target_simulator="NEURON", + has_input=False): config = OrderedDict([]) @@ -102,6 +103,15 @@ def write_main_config(self, "edge_types_file": os.path.join("$NETWORK_DIR", f"{ss}_edge_types.csv") } edges.append(edge_info) + if has_input: + node_info = {"nodes_file": os.path.join("$NETWORK_DIR", f"{ss}_input_nodes.hdf5"), + "node_types_file": os.path.join("$NETWORK_DIR", f"{ss}_input_node_types.csv")} + nodes.append(node_info) + + edge_info = {"edges_file": os.path.join("$NETWORK_DIR", f"{ss}_input_edges.hdf5"), + "edge_types_file": os.path.join("$NETWORK_DIR", f"{ss}_input_edge_types.csv")} + edges.append(edge_info) + config["networks"] = OrderedDict([("nodes", nodes), ("edges", edges)]) with open(os.path.join(base_dir, out_file), 'wt') as f: diff --git a/snudda/utils/export_sonata.py b/snudda/utils/export_sonata.py index 803da6c0d..4b473b799 100644 --- a/snudda/utils/export_sonata.py +++ b/snudda/utils/export_sonata.py @@ -2,6 +2,7 @@ # # TODO: +# - Add support for gap junctions # - Check what axon and dendrite propagation speeds should be # @@ -61,8 +62,10 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di if self.input_file: print(f"Using input file: {self.input_file}") + has_input = True else: print("No input file specified, and default file not found.") + has_input = False # This contains data for converting to Neurodamus secID and secX self.morph_cache = dict([]) @@ -74,7 +77,7 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di # TODO: We need to read structure names from the network-config.json structure_names = [x for x in self.network_config["Volume"]] ch = ConvHurt(simulation_structures=structure_names, - base_dir=self.out_dir) + base_dir=self.out_dir, has_input=has_input) self.copy_morphologies() self.copy_mechanisms() @@ -124,6 +127,7 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di edge_type_lookup[pre_type, post_type, con_type] = (edge_type_id, edge_model, f"{pre_type}_{post_type}", dynamic_params) node_id_remap = np.full(shape=(self.snudda_load.data["nNeurons"],), fill_value=-1, dtype=int) + input_list = [] for volume_name in volume_list: @@ -204,83 +208,115 @@ def __init__(self, network_path=None, network_file=None, input_file=None, out_di edge_type_id = [x[0] for x in edge_type_lookup.values()] - edge_data = {"model_template": [x[1] for x in edge_type_lookup.values()], - "population": [x[2] for x in edge_type_lookup.values()], - "dynamic_params": [x[3] for x in edge_type_lookup.values()]} + edge_data_csv = {"model_template": [x[1] for x in edge_type_lookup.values()], + "population": [x[2] for x in edge_type_lookup.values()], + "dynamic_params": [x[3] for x in edge_type_lookup.values()]} ch.write_edges_csv(edge_csv_file=f"{volume_name}_edge_types.csv", edge_type_id=edge_type_id, - data=edge_data) - - input_list = [] + data=edge_data_csv) if self.input_file: - # We also need to add external input to the neurons - for nt in self.snudda_load.get_neuron_types(return_set=True): - n_spikes = self.write_input(neuron_type=nt, node_id_remap=node_id_remap, - input_hdf5=self.input_file, - sonata_input_hdf5=f"inputs/input_{nt}_{volume_name}.hdf5", - conv_hurt=ch, volume_name=volume_name) - if n_spikes > 0: - # This currently assumes each neuron type only occur in one volume - input_list.append((nt, f"input_{nt}_{volume_name}.hdf5")) + (sonata_input_hdf5, + sonata_virtual_node_hdf5, sonata_virtual_node_csv, + sonata_virtual_edges_hdf5, sonata_virtual_edges_csv) = \ + self.write_input(node_id_remap=node_id_remap, + input_hdf5=self.input_file, + conv_hurt=ch, volume_name=volume_name) + + input_list.append((volume_name, sonata_input_hdf5, + sonata_virtual_node_hdf5, sonata_virtual_node_csv, + sonata_virtual_edges_hdf5, sonata_virtual_edges_csv)) + # !!! TODO: We need to pass the new input files, node and edge files to the config self.write_simulation_config(input_list=input_list) print(f"SONATA files exported to {self.out_dir}") ############################################################################ - def write_input(self, neuron_type, node_id_remap, - input_hdf5, sonata_input_hdf5, + def get_all_input_types(self, input_hdf5, neuron_type=None, volume_name=None): + + input_types = set() + + if type(input_hdf5) != h5py._hl.files.File: + input_hdf5 = h5py.File(input_hdf5, "r") + + neuron_id_list = self.snudda_load.get_neuron_id_of_type(neuron_type=neuron_type, volume=volume_name) + + for neuron_id in neuron_id_list: + neuron_input_types = set(input_hdf5[f"input/{neuron_id}"].keys()) + + input_types += neuron_input_types + + return input_types + + def write_input(self, + input_hdf5, conv_hurt, - volume_name=None, - input_type=None): + node_id_remap, + volume_name=None): """ Args: - neuron_type (str) : Neuron type to create SONATA input file for - volume_name (str) : Name of volume (default: None, assumes neuron type only in one volume) - input_type (str) : Input type to inlcude (default: None, all inputs to neuron) - node_id_remap : Numpy array mapping neuron_id to gid (which is population specific) input_hdf5 : File to read data from sonata_input_hdf5 : File to write data to - + conv_hurt : + node_id_remap : Numpy array mapping neuron_id to gid (which is population specific) + volume_name (str) : Name of volume (default: None, assumes neuron type only in one volume) """ + # If there are N neurons in the volume, and they receive cortical and thalamic input + # + # Then... + # Virtual neuron 0-(N-1) provide cortical input to neurons 0-(N-1) + # Virtual neuron N-(2*N-1) provide thalamic input to neurons 0-(N-1) + # + if type(input_hdf5) != h5py._hl.files.File: input_hdf5 = h5py.File(input_hdf5, "r") - neuron_id_list = self.snudda_load.get_neuron_id_of_type(neuron_type=neuron_type, volume=volume_name) + sonata_input_hdf5 = f"inputs/input_{volume_name}.hdf5" - spike_list = [] - gid_list = [] + neuron_id_list = self.snudda_load.get_neuron_id_of_type(volume=volume_name, neuron_type=None) + input_data = [] # [(neuron_type, neuron_node_id, input_type, spikes, weight, virtual_node_id), (np, nid, it, s, w, vid), ...] + + virtual_node_ctr = 0 for neuron_id in neuron_id_list: - neuron_spikes = [] - if input_type is not None: - input_types = [input_type] - else: - input_types = input_hdf5[f"input/{neuron_id}"].keys() - for it in input_types: - spike_group = input_hdf5[f"input/{neuron_id}/{it}/spikes"] + for input_type in input_hdf5[f"input/{neuron_id}"].keys(): + neuron_spikes = [] + + spike_group = input_hdf5[f"input/{neuron_id}/{input_type}/spikes"] n_spikes = spike_group.attrs["nSpikes"] for idx, ns in enumerate(n_spikes): neuron_spikes.append(spike_group[idx, :ns]) - nrn_spikes = np.concatenate(neuron_spikes) - gid = np.full(shape=nrn_spikes.shape, fill_value=node_id_remap[neuron_id], dtype=int) + input_spikes = np.array(sorted(np.concatenate(neuron_spikes))) - spike_list.append(nrn_spikes) - gid_list.append(gid) + neuron_type = self.snudda_load.data["neurons"][0]["type"] - input_hdf5.close() + weight = input_hdf5[f"input/{neuron_id}/{input_type}"].attrs["conductance"] * 1e6 # microsiemens for NEST + if "GABA" in input_hdf5[f"input/{neuron_id}/{input_type}"].attrs["modFile"].upper(): + weight *= -1 + + # [(neuron_type, neuron_node_id, input_type, spikes, weight, virtual_node_id), (np, nid, it, s, w, vid), ...] + input_data.append((neuron_type, node_id_remap[neuron_id], input_type, input_spikes, weight, virtual_node_ctr)) + virtual_node_ctr += 1 + + # Next we need to write the input spikes to file + all_spikes = [] + all_gid = [] + + for _, _, _, spikes, _, gid in input_data: + all_spikes.append(spikes) + all_gid.append(np.full(shape=spikes.shape, fill_value=gid, dtype=int)) - spikes = np.concatenate(spike_list) - gids = np.concatenate(gid_list) + spikes = np.concatenate(all_spikes) + gids = np.concatenate(all_gid) if len(spikes) == 0: return None @@ -292,7 +328,22 @@ def write_input(self, neuron_type, node_id_remap, spike_times=spikes[idx], gids=gids[idx]) - return len(spikes) + input_hdf5.close() + + # We also need to create the virtual nodes, and edges to connect them + + virtual_node_id = np.array([x[5] for x in input_data], dtype=int) + neuron_type = [x[0] for x in input_data] + node_id = np.array([x[1] for x in input_data], dtype=int) + weight = np.array([x[4] for x in input_data]) + + sonata_virtual_node_hdf5, sonata_virtual_node_csv, sonata_virtual_edges_hdf5, sonata_virtual_edges_csv = \ + self.add_virtual_input(volume_name=volume_name, virtual_node_id=virtual_node_id, + neuron_type=neuron_type, node_id=node_id, weight=weight, conv_hurt=conv_hurt) + + return (sonata_input_hdf5, + sonata_virtual_node_hdf5, sonata_virtual_node_csv, + sonata_virtual_edges_hdf5, sonata_virtual_edges_csv) ############################################################################ @@ -985,14 +1036,17 @@ def write_simulation_config(self, input_list): if input_list: sim_conf["inputs"] = dict() - for neuron_type, input_file in input_list: + for volume_name, sonata_input_hdf5, \ + sonata_virtual_node_hdf5, sonata_virtual_node_csv, \ + sonata_virtual_edges_hdf5, sonata_virtual_edges_csv in input_list: + input_info = dict() input_info["input_type"] = "spikes" input_info["module"] = "h5" - input_info["input_file"] = f"$INPUT_DIR/{input_file}" - input_info["node_set"] = neuron_type + input_info["input_file"] = f"$INPUT_DIR/{sonata_input_hdf5}" + input_info["node_set"] = f"{volume_name}-input" - sim_conf["inputs"][f"{neuron_type}_spikes"] = input_info + sim_conf["inputs"][f"{volume_name}_spikes"] = input_info out_conf_file = os.path.join(self.out_dir, "simulation_config.json") print(f"Writing {out_conf_file}") @@ -1140,6 +1194,79 @@ def sort_input(self, nl, node_type_id_lookup, input_name=None): ############################################################################ + def add_virtual_input(self, volume_name, virtual_node_id, neuron_type, node_id, weight, conv_hurt): + + """ Creates one virtual neurons, to provide external input to that the neuron population + + To know the target neuron, we need to know both neuron population, and node id within that population + + Args: + volume_name (str): Name of volume + virtual_node_id (np.array): ID of all virtual nodes + neuron_type (list of str): Which population does each input target + node_id (np.array): ID of nodes that are connected + conv_hurt : ConvHurt object + """ + + virtual_neuron_population = f"{volume_name}-input" + virtual_node_file = f"{virtual_neuron_population}_nodes.h5" + + n_virtual_nodes = len(virtual_node_id) + node_data = dict() # Let's see if we get away without specifying coordinates + virtual_node_type_id = np.zeros(shape=(n_virtual_nodes, )) + virtual_node_group_id = np.zeros(shape=(n_virtual_nodes, )) + virtual_node_group_index = np.arange(0, n_virtual_nodes) + + conv_hurt.write_nodes(node_file=virtual_node_file, + population_name=virtual_neuron_population, + data=node_data, + node_id=virtual_node_id, + node_type_id=virtual_node_type_id, + node_group_id=virtual_node_group_id, + node_group_index=virtual_node_group_index, + close_file=True) + + csv_virtual_node_types_file = f"{virtual_neuron_population}_node_types.csv" + + virtual_node_data_csv = OrderedDict([("model_type", ["virtual"])]) + conv_hurt.write_node_csv(node_csv_file=csv_virtual_node_types_file, + node_type_id=[0], + data=virtual_node_data_csv) + + edge_file = f"{virtual_neuron_population}_edges.h5" + + population_rows = dict() + + # We need to write separate sets of edges for each targeted population + for nrn_type in set(neuron_type): + population_rows[f"{volume_name}-input_{nrn_type}"] = \ + np.array([i for (i, val) in enumerate(neuron_type) if val == nrn_type], dtype=int) + # population_rows[nrn_type] = np.where(np.array(neuron_type) == nrn_type)[0] + + edge_data = {"syn_weight": weight} + + conv_hurt.write_edges(edge_file=edge_file, + population_rows=population_rows, + edge_type_id=np.zeros(len(virtual_node_id), dtype=int), + source_id=virtual_node_id, + target_id=node_id, + data=edge_data) + + edge_types_file_csv = f"{virtual_neuron_population}_edge_types.csv" + edge_type_id = np.array([0]) + edge_data_csv = {"model_template": ["static_synapse"]} + + conv_hurt.write_edges_csv(edge_csv_file=edge_types_file_csv, + edge_type_id=edge_type_id, + data=edge_data_csv) + + return virtual_node_file, csv_virtual_node_types_file, edge_file, edge_types_file_csv + + def add_edges_for_virtual_neurons_input(self): + + pass + + ############################################################################ diff --git a/snudda/utils/load.py b/snudda/utils/load.py index 169c10b1c..bc90ec6b5 100755 --- a/snudda/utils/load.py +++ b/snudda/utils/load.py @@ -752,7 +752,7 @@ def get_neuron_id_of_type(self, neuron_type, num_neurons=None, random_permute=Fa """ neuron_id = np.array([x["neuronID"] for x in self.data["neurons"] - if x["type"] == neuron_type and (volume is None or x["volumeID"] == volume)]) + if (neuron_type is None or x["type"] == neuron_type) and (volume is None or x["volumeID"] == volume)]) assert not random_permute or num_neurons is not None, "random_permute is only valid when num_neurons is given" @@ -775,8 +775,9 @@ def get_neuron_id_of_type(self, neuron_type, num_neurons=None, random_permute=Fa print(f"get_neuron_id_of_type: wanted {num_neurons} only got {len(neuron_id)} " f"neurons of type {neuron_type}") - # Double check that all of the same type - assert np.array([self.data["neurons"][x]["type"] == neuron_type for x in neuron_id]).all() + # Double check that all of the same type (or neuron_type is None) + assert neuron_type is None or np.array([self.data["neurons"][x]["type"] == neuron_type for x in neuron_id]).all() + assert volume is None or np.array([self.data["neurons"][x]["volumeID"] == volume for x in neuron_id]).all() return neuron_id From cb1ada9a8baca300e58df638f828201d48e26f3f Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Fri, 9 Jun 2023 15:02:41 +0200 Subject: [PATCH 11/14] Fixed blender transparency --- .../visualisation/visualise_network.py | 24 +++++++++++++++---- 1 file changed, 19 insertions(+), 5 deletions(-) diff --git a/snudda/plotting/Blender/visualisation/visualise_network.py b/snudda/plotting/Blender/visualisation/visualise_network.py index a2f766715..da79b01fa 100644 --- a/snudda/plotting/Blender/visualisation/visualise_network.py +++ b/snudda/plotting/Blender/visualisation/visualise_network.py @@ -16,12 +16,13 @@ class VisualiseNetwork(object): # You need to provide neuron def __init__(self, network_path, blender_save_file=None, blender_output_image=None, - network_json=None, simulation_output_file_name=None): + network_json=None, simulation_output_file_name=None, use_neuron_cache=True): self.network_path = network_path self.snudda_data = get_snudda_data(network_path=network_path) self.scale_f = 1000 # factor to downscale the data self.neuron_colour_lookup = dict() # Allow the user to override the neuron colours + self.use_neuron_cache = use_neuron_cache if network_json: self.network_json = network_json @@ -153,6 +154,14 @@ def visualise(self, bg.inputs[0].default_value[:3] = (0.0, 0.0, 0.0) bg.inputs[1].default_value = 0.0 + #Scott's magic + ''' + mat_dspn = bpy.data.materials.new("DSPN") + mat_dspn.use_nodes = True + mat_dspn.node_tree.nodes["Principled BSDF"].inputs[0].default_value = (0, 1, 0, 1) + mat_dspn.node_tree.nodes["Principled BSDF"].inputs['Alpha'].default_value = 1 + ''' + # Define materials mat_dspn = bpy.data.materials.new("PKHG") mat_dspn.diffuse_color = (77. / 255, 151. / 255, 1.0, 0.5) @@ -199,9 +208,14 @@ def visualise(self, # Add the user requested custom colours for nid in self.neuron_colour_lookup.keys(): - material_lookup[nid] = bpy.data.materials.new("PKHG") - material_lookup[nid].diffuse_color = self.neuron_colour_lookup[nid] - + material_lookup[nid] = bpy.data.materials.new(str(nid)) + material_lookup[nid].use_nodes = True + material_lookup[nid].node_tree.nodes["Principled BSDF"].inputs[0].default_value = self.neuron_colour_lookup[nid] + material_lookup[nid].node_tree.nodes["Principled BSDF"].inputs['Alpha'].default_value = self.neuron_colour_lookup[nid][-1] + + #material_lookup[nid] = bpy.data.materials.new("PKHG") + #material_lookup[nid].diffuse_color = self.neuron_colour_lookup[nid] + if synapse_colour is not None: mat_synapse.diffuse_color = synapse_colour elif white_background: @@ -232,7 +246,7 @@ def visualise(self, e_rot = mathutils.Matrix(neuron["rotation"].reshape(3, 3)).to_euler() - if neuron["name"] in self.neuron_cache: + if self.use_neuron_cache and neuron["name"] in self.neuron_cache: # If we already have the object in memory, copy it. obj = self.neuron_cache[neuron["name"]].copy() From ada5807feb84cadf09e1a85255c822cb41122fc2 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Fri, 9 Jun 2023 15:32:08 +0200 Subject: [PATCH 12/14] Added detailed detail option for blender render --- .../Blender/visualisation/visualise_network.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/snudda/plotting/Blender/visualisation/visualise_network.py b/snudda/plotting/Blender/visualisation/visualise_network.py index da79b01fa..81783a951 100644 --- a/snudda/plotting/Blender/visualisation/visualise_network.py +++ b/snudda/plotting/Blender/visualisation/visualise_network.py @@ -242,7 +242,7 @@ def visualise(self, mat_synapse.node_tree.links.new(material_output.inputs[0], emission.outputs[0]) """ - for neuron in neurons: + for idx, neuron in enumerate(neurons): e_rot = mathutils.Matrix(neuron["rotation"].reshape(3, 3)).to_euler() @@ -260,7 +260,15 @@ def visualise(self, obj.name = f"{neuron['name']}-{neuron['neuronID']}" VisualiseNetwork.link_object(obj) else: - self.read_swc_data(filepath=snudda_parse_path(neuron["morphology"], self.snudda_data), detail_level=detail_level) + if type(detail_level) == np.ndarray: + if len(detail_level) != len(neurons): + raise ValueError(f"detail_level is either 1,2 or 3, " + f"if given as a array must be same length as number of neurons (ie {len(idx)}).") + dl = detail_level[idx] + else: + dl = detail_level + + self.read_swc_data(filepath=snudda_parse_path(neuron["morphology"], self.snudda_data), detail_level=dl) obj = bpy.context.selected_objects[0] obj.name = f"{neuron['name']}-{neuron['neuronID']}" From e62af9dc29561fd9274ee65e9c7d4c9b40d19681 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Mon, 12 Jun 2023 16:02:56 +0200 Subject: [PATCH 13/14] Updated SONATA export --- snudda/utils/conv_hurt.py | 8 ++++---- snudda/utils/export_sonata.py | 15 +++++++-------- 2 files changed, 11 insertions(+), 12 deletions(-) diff --git a/snudda/utils/conv_hurt.py b/snudda/utils/conv_hurt.py index 0b49cbe12..aaddcee45 100644 --- a/snudda/utils/conv_hurt.py +++ b/snudda/utils/conv_hurt.py @@ -104,12 +104,12 @@ def write_main_config(self, edges.append(edge_info) if has_input: - node_info = {"nodes_file": os.path.join("$NETWORK_DIR", f"{ss}_input_nodes.hdf5"), - "node_types_file": os.path.join("$NETWORK_DIR", f"{ss}_input_node_types.csv")} + node_info = {"nodes_file": os.path.join("$NETWORK_DIR", f"{ss}-input_nodes.hdf5"), + "node_types_file": os.path.join("$NETWORK_DIR", f"{ss}-input_node_types.csv")} nodes.append(node_info) - edge_info = {"edges_file": os.path.join("$NETWORK_DIR", f"{ss}_input_edges.hdf5"), - "edge_types_file": os.path.join("$NETWORK_DIR", f"{ss}_input_edge_types.csv")} + edge_info = {"edges_file": os.path.join("$NETWORK_DIR", f"{ss}-input_edges.hdf5"), + "edge_types_file": os.path.join("$NETWORK_DIR", f"{ss}-input_edge_types.csv")} edges.append(edge_info) config["networks"] = OrderedDict([("nodes", nodes), ("edges", edges)]) diff --git a/snudda/utils/export_sonata.py b/snudda/utils/export_sonata.py index 4b473b799..a50866569 100644 --- a/snudda/utils/export_sonata.py +++ b/snudda/utils/export_sonata.py @@ -297,7 +297,7 @@ def write_input(self, input_spikes = np.array(sorted(np.concatenate(neuron_spikes))) - neuron_type = self.snudda_load.data["neurons"][0]["type"] + neuron_type = self.snudda_load.data["neurons"][neuron_id]["type"] weight = input_hdf5[f"input/{neuron_id}/{input_type}"].attrs["conductance"] * 1e6 # microsiemens for NEST if "GABA" in input_hdf5[f"input/{neuron_id}/{input_type}"].attrs["modFile"].upper(): @@ -1043,7 +1043,7 @@ def write_simulation_config(self, input_list): input_info = dict() input_info["input_type"] = "spikes" input_info["module"] = "h5" - input_info["input_file"] = f"$INPUT_DIR/{sonata_input_hdf5}" + input_info["input_file"] = f"$INPUT_DIR/{os.path.basename(sonata_input_hdf5)}" input_info["node_set"] = f"{volume_name}-input" sim_conf["inputs"][f"{volume_name}_spikes"] = input_info @@ -1209,13 +1209,13 @@ def add_virtual_input(self, volume_name, virtual_node_id, neuron_type, node_id, """ virtual_neuron_population = f"{volume_name}-input" - virtual_node_file = f"{virtual_neuron_population}_nodes.h5" + virtual_node_file = f"{virtual_neuron_population}_nodes.hdf5" n_virtual_nodes = len(virtual_node_id) node_data = dict() # Let's see if we get away without specifying coordinates - virtual_node_type_id = np.zeros(shape=(n_virtual_nodes, )) - virtual_node_group_id = np.zeros(shape=(n_virtual_nodes, )) - virtual_node_group_index = np.arange(0, n_virtual_nodes) + virtual_node_type_id = np.zeros(shape=(n_virtual_nodes, ), dtype=int) + virtual_node_group_id = np.zeros(shape=(n_virtual_nodes, ), dtype=int) + virtual_node_group_index = np.arange(0, n_virtual_nodes, dtype=int) conv_hurt.write_nodes(node_file=virtual_node_file, population_name=virtual_neuron_population, @@ -1233,7 +1233,7 @@ def add_virtual_input(self, volume_name, virtual_node_id, neuron_type, node_id, node_type_id=[0], data=virtual_node_data_csv) - edge_file = f"{virtual_neuron_population}_edges.h5" + edge_file = f"{virtual_neuron_population}_edges.hdf5" population_rows = dict() @@ -1266,7 +1266,6 @@ def add_edges_for_virtual_neurons_input(self): pass - ############################################################################ From 6b492db890ce109cb4aca8c5877191f3ca7080a4 Mon Sep 17 00:00:00 2001 From: Johannes Hjorth Date: Mon, 12 Jun 2023 17:10:27 +0200 Subject: [PATCH 14/14] Update README.md with EBRAINS --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 6c0c325e2..8636333c4 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,7 @@ Human Brain Project hjorth@kth.se ## Funding -Horizon 2020 Framework Programme (785907, HBP SGA2); Horizon 2020 Framework Programme (945539, HBP SGA3); Vetenskapsrådet (VR-M-2017-02806, VR-M-2020-01652); Swedish e-science Research Center (SeRC); KTH Digital Futures. The computations are enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC KTH partially funded by the Swedish Research Council through grant agreement no. 2018-05973. We acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European Union's Horizon 2020 research and innovation programme through the ICEI project under the grant agreement No. 800858. +Horizon 2020 Framework Programme (785907, HBP SGA2); Horizon 2020 Framework Programme (945539, HBP SGA3); Vetenskapsrådet (VR-M-2017-02806, VR-M-2020-01652); Swedish e-science Research Center (SeRC); KTH Digital Futures. The computations are enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC KTH partially funded by the Swedish Research Council through grant agreement no. 2018-05973. We acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European Union's Horizon 2020 research and innovation programme through the ICEI project under the grant agreement No. 800858. Snudda is supported and featured on EBRAINS. ## Citation Please cite the first paper for the general Snudda network creation and simulation methods, and the second paper for the Striatal microcircutiry model.