forked from matpalm/bnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
83 lines (65 loc) · 3.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import *
import util as u
import json
def restore_model(run):
# load opts used during training
opts = json.loads(open("ckpts/%s/opts.json" % run).read())
# NOTE: we construct this model with full width / height, not the (potential)
# patch size we used for training
model = construct_model(width=opts['width'],
height=opts['height'],
use_skip_connections=not opts['no_use_skip_connections'],
base_filter_size=opts['base_filter_size'],
use_batch_norm=not opts['no_use_batch_norm'])
# restore weights from latest checkpoint
latest_ckpt = u.latest_checkpoint_in_dir("ckpts/%s" % run)
model.load_weights("ckpts/%s/%s" % (run, latest_ckpt))
return opts, model
def construct_model(width, height, base_filter_size,
use_batch_norm=True, use_skip_connections=True):
def conv_bn_relu_block(i, name, filters, strides):
# TODO: try this as more theoretically correct approach
# o = Conv2D(filters=filters, kernel_size=3,
# strides=strides, padding='same',
# use_bias=(not use_batch_norm))(i)
# if use_batch_norm:
# o = BatchNormalization(scale=False)(o)
o = Conv2D(filters=filters, kernel_size=3,
strides=strides, padding='same')(i)
if use_batch_norm:
o = BatchNormalization()(o)
# TODO: try BN after relu
return ReLU()(o)
inputs = Input(shape=(height, width, 3), name='inputs')
e1 = conv_bn_relu_block(inputs, 'e1', filters=base_filter_size, strides=2)
e2 = conv_bn_relu_block(e1, 'e2', filters=2*base_filter_size, strides=2)
e3 = conv_bn_relu_block(e2, 'e3', filters=4*base_filter_size, strides=2)
e4 = conv_bn_relu_block(e3, 'e4', filters=8*base_filter_size, strides=2)
# note: using version of keras locally that doesn't support interpolation='nearest' so
# unsure what resize is happening here...
d1 = UpSampling2D(name='e4nn')(e4)
if use_skip_connections:
d1 = Concatenate(name='d1_e3')([d1, e3])
d1 = conv_bn_relu_block(d1, 'd1', filters=4*base_filter_size, strides=1)
d2 = UpSampling2D(name='d1nn')(d1)
if use_skip_connections:
d2 = Concatenate(name='d2_e2')([d2, e2])
d2 = conv_bn_relu_block(d2, 'd2', filters=2*base_filter_size, strides=1)
d3 = UpSampling2D(name='d2nn')(d2)
if use_skip_connections:
d3 = Concatenate(name='d3_e1')([d3, e1])
d3 = conv_bn_relu_block(d3, 'd3', filters=base_filter_size, strides=1)
logits = Conv2D(filters=1, kernel_size=1, strides=1,
activation=None, name='logits')(d3)
return Model(inputs=inputs, outputs=logits)
def compile_model(model, learning_rate, pos_weight=1.0):
def weighted_xent(y_true, y_predicted):
return tf.reduce_mean(
tf.nn.weighted_cross_entropy_with_logits(targets=y_true,
logits=y_predicted,
pos_weight=pos_weight))
model.compile(optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate),
loss=weighted_xent)
return model