forked from matpalm/bnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_from_frozen.py
executable file
·96 lines (78 loc) · 3.28 KB
/
predict_from_frozen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
# given a directory of images output a list of image -> predictions
from PIL import Image, ImageDraw
from label_db import LabelDB
import argparse
import itertools
import numpy as np
import os
import sys
import tensorflow as tf
import time
import util as u
raise Exception("needs porting since slim -> keras change")
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--image-dir', type=str, required=True)
parser.add_argument('--output-label-db', type=str, default=None, help='if not set dont write label_db')
parser.add_argument('--graph', type=str, default='bnn_graph.predict.frozen.pb', help='graph.pb to use')
parser.add_argument('--export-pngs', default='',
help='how, if at all, to export pngs {"", "predictions", "centroids"}')
opts = parser.parse_args()
# restore frozen graph
graph_def = tf.GraphDef()
with open(opts.graph, "rb") as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name=None)
# DEBUG, for dumping all op names
#for op in tf.get_default_graph().get_operations():
# print(op.name)
# decide input and output
imgs_placeholder = tf.get_default_graph().get_tensor_by_name('import/input_imgs:0')
model_output = tf.get_default_graph().get_tensor_by_name('import/train_test_model/output:0')
if opts.output_label_db:
db = LabelDB(label_db_file=opts.output_label_db)
db.create_if_required()
else:
db = None
prediction_times = []
centroid_calc_times = []
sess = tf.Session()
for idx, filename in enumerate(os.listdir(opts.image_dir)):
# load next image (and add dummy batch dimension)
img = np.array(Image.open(opts.image_dir+"/"+filename)) # unit8 0->255
img = img.astype(np.float32)
img = (img / 127.5) - 1.0 # -1.0 -> 1.0 # see data.py
try:
# run single image through model
s = time.time()
prediction = sess.run(model_output, feed_dict={imgs_placeholder: [img]})[0]
prediction_time = time.time() - s
prediction_times.append(prediction_time)
# calc [(x,y), ...] centroids
s = time.time()
centroids = u.centroids_of_connected_components(prediction, rescale=2.0)
centroid_calc_time = time.time() - s
centroid_calc_times.append(centroid_calc_time)
print("\t".join(map(str, [idx, filename, len(centroids), prediction_time, centroid_calc_time])))
# export some debug image (if requested)
if opts.export_pngs != '':
if opts.export_pngs == 'predictions':
debug_img = u.side_by_side(rgb=img, bitmap=prediction)
elif opts.export_pngs == 'centroids':
debug_img = u.red_dots(rgb=img, centroids=centroids)
else:
raise Exception("unknown --export-pngs option")
debug_img.save("predict_example_%03d.png" % idx)
# set new labels (if requested)
if db:
db.set_labels(filename, centroids, flip=True)
except tf.errors.OutOfRangeError:
# end of iterator
break
print("prediction times (all) mu=%f std=%f" % (np.mean(prediction_times), np.std(prediction_times)),
file=sys.stderr)
if len(prediction_times) > 2:
print("prediction times [2:] mu=%f std=%f" % (np.mean(prediction_times[2:]), np.std(prediction_times[2:])),
file=sys.stderr)
print("centroid calc times mu=%f std=%f" % (np.mean(centroid_calc_times), np.std(centroid_calc_times)),
file=sys.stderr)