Skip to content

Latest commit

 

History

History
153 lines (87 loc) · 7.75 KB

README.md

File metadata and controls

153 lines (87 loc) · 7.75 KB

SiamTrackers

Experiment

  • NanoTrack is a lightweight and high speed tracking network which mainly referring to SiamBAN and LightTrack. It is suitable for deployment on embedded or mobile devices. In fact, V1 and V2 can run at > 200FPS on Apple M1 CPU.
Trackers Backbone Size(*.onnx) Head Size (*.onnx) FLOPs Parameters
NanoTrackV1 752K 384K 75.6M 287.9K
NanoTrackV2 1.0M 712K 84.6M 334.1K
NanoTrackV3 1.4M 1.1M 115.6M 541.4K
  • Experiments show that NanoTrack has good performance on tracking datasets.
Trackers Backbone Model Size(*.pth) VOT2018 EAO VOT2019 EAO GOT-10k-Val AO GOT-10k-Val SR DTB70 Success DTB70 Precision
NanoTrackV1 MobileNetV3 2.4MB 0.311 0.247 0.604 0.724 0.532 0.727
NanoTrackV2 MobileNetV3 2.0MB 0.352 0.270 0.680 0.817 0.584 0.753
NanoTrackV3 MobileNetV3 3.4MB 0.449 0.296 0.719 0.848 0.628 0.815
CVPR2021 LightTrack MobileNetV3 7.7MB 0.418 0.328 0.75 0.877 0.591 0.766
WACV2022 SiamTPN ShuffleNetV2 62.2MB 0.191 0.209 0.728 0.865 0.572 0.728
ICRA2021 SiamAPN AlexNet 118.7MB 0.248 0.235 0.622 0.708 0.585 0.786
IROS2021 SiamAPN++ AlexNet 187MB 0.268 0.234 0.635 0.73 0.594 0.791
  • For NanoTrackV1, we provide Android demo and MacOS demo based on ncnn inference framework.

  • We also provide PyTorch code. It is friendly for training with much lower GPU memory cost than other models. NanoTrackV1 only uses GOT-10k dataset to train, which only takes two hours on RTX3090.

OpenCV API

Dataset

  • All json files BaiduYun parrword: xm5w (The json files are provided by pysot)

Test

Train

  • GOT10k BaiduYun password: uxds

  • LaSOT BaiduYun password: ygtx

  • ILSVRC2015 VID BaiDuYun password: uqzj

  • ILSVRC2015 DET BaiDuYun password: 6fu7

  • YTB-Crop511 BaiduYun password: ebq1

  • COCO BaiduYun password: ggya

  • TrackingNet BaiduYun password: nkb9 (Note that this link is provided by SiamFCpp author)

Mask

Toolkit

Matlab version

Python version

  • pysot-toolkit: OTB, VOT, UAV, NfS, LaSOT are supported.BaiduYun password: 2t2q

  • got10k-toolkit:GOT-10k, OTB, VOT, UAV, TColor, DTB, NfS, LaSOT and TrackingNet are supported.BaiduYun password: vsar

Papers

BaiduYun password: fukj

Reference

[1] SiamFC

Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking.European conference on computer vision. Springer, Cham, 2016: 850-865.
   
[2] SiamRPN

Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal network.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8971-8980.

[3] DaSiamRPN

Zhu Z, Wang Q, Li B, et al. Distractor-aware siamese networks for visual object tracking.Proceedings of the European Conference on Computer Vision (ECCV). 2018: 101-117.

[4] UpdateNet

Zhang L, Gonzalez-Garcia A, Weijer J, et al. Learning the Model Update for Siamese Trackers. Proceedings of the IEEE International Conference on Computer Vision. 2019: 4010-4019.
   
[5] SiamDW

Zhang Z, Peng H. Deeper and wider siamese networks for real-time visual tracking. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4591-4600.

[6] SiamRPNpp

Li B, Wu W, Wang Q, et al. SiamRPNpp: Evolution of siamese visual tracking with very deep networks.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4282-4291.

[7] SiamMask

Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: A unifying approach. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 1328-1338.
   
[8] SiamFCpp

Xu Y, Wang Z, Li Z, et al. SiamFCpp: Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines. AAAI, 2020.

[9] SiamCAR
Guo D ,  Wang J ,  Cui Y , et al. SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2020.

[10] SiamBAN
Chen Z, Zhong B, Li G, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 6668-6677.

[11] TrTr 
Zhao M, Okada K, Inaba M. TrTr: Visual Tracking with Transformer[J]. arXiv preprint arXiv:2105.03817, 2021.

[12] LightTrack 
Yan B, Peng H, Wu K, et al. Lighttrack: Finding lightweight neural networks for object tracking via one-shot architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 15180-15189.