-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReLSTM copy.py
438 lines (385 loc) · 19.7 KB
/
ReLSTM copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
from typing import List
import torch
import torch.nn as nn
import torch.optim as optim
import give_valid_test
import os
import math
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
n_step = 5 # number of cells(= number of Step)
n_hidden = 128 # number of hidden units in one cell
batch_size = 128 # batch size
learn_rate = 0.0005
all_epoch = 2 #the all epoch for training
emb_size = 256 #embeding size
save_checkpoint_epoch = 5 # save a checkpoint per save_checkpoint_epoch epochs !!! Note the save path !!!
data_root = 'penn_small'
train_path = os.path.join(data_root, 'train.txt') # the path of train dataset
tensors:List[List[torch.Tensor]] = list();
cells:List[List[torch.Tensor]] = list();
def make_batch(train_path, word2number_dict, batch_size, n_step):
all_input_batch = []
all_target_batch = []
text = open(train_path, 'r', encoding='utf-8') #open the file
input_batch = []
target_batch = []
for sen in text:
word = sen.strip().split(" ") # space tokenizer
word = ["<sos>"] + word
word = word + ["<eos>"]
if len(word) <= n_step: #pad the sentence
word = ["<pad>"]*(n_step+1-len(word)) + word
for word_index in range(len(word)-n_step):
input = [word2number_dict[n] for n in word[word_index:word_index+n_step]] # create (1~n-1) as input
target = word2number_dict[word[word_index+n_step]] # create (n) as target, We usually call this 'casual language model'
input_batch.append(input)
target_batch.append(target)
if len(input_batch) == batch_size:
all_input_batch.append(input_batch)
all_target_batch.append(target_batch)
input_batch = []
target_batch = []
return all_input_batch, all_target_batch # (batch num, batch size, n_step) (batch num, batch size)
def make_dict(train_path):
text = open(train_path, 'r', encoding='utf-8') #open the train file
word_list = set() # a set for making dict
for line in text:
line = line.strip().split(" ")
word_list = word_list.union(set(line))
word_list = list(sorted(word_list)) #set to list
word2number_dict = {w: i+2 for i, w in enumerate(word_list)}
number2word_dict = {i+2: w for i, w in enumerate(word_list)}
#add the <pad> and <unk_word>
word2number_dict["<pad>"] = 0
number2word_dict[0] = "<pad>"
word2number_dict["<unk_word>"] = 1
number2word_dict[1] = "<unk_word>"
word2number_dict["<sos>"] = 2
number2word_dict[2] = "<sos>"
word2number_dict["<eos>"] = 3
number2word_dict[3] = "<eos>"
return word2number_dict, number2word_dict
class TextLSTM(nn.Module):
def __init__(self,n_class,emb_size,n_hidden):
super(TextLSTM,self).__init__()
self.C=nn.Embedding(n_class,embedding_dim=emb_size);
self.W=nn.Linear(n_hidden,n_class,bias=False)
self.b=nn.Parameter(torch.ones([n_class]))
self.W_ii=nn.Linear(emb_size,n_hidden,bias=False)
self.W_if=nn.Linear(emb_size,n_hidden,bias=False)
self.W_ig=nn.Linear(emb_size,n_hidden,bias=False)
self.W_io=nn.Linear(emb_size,n_hidden,bias=False)
self.b_ii=nn.Parameter(torch.ones([n_hidden]))
self.b_if=nn.Parameter(torch.ones([n_hidden]))
self.b_ig=nn.Parameter(torch.ones([n_hidden]))
self.b_io=nn.Parameter(torch.ones([n_hidden]))
self.W_hi=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hf=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hg=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_ho=nn.Linear(n_hidden,n_hidden,bias=False)
self.b_hi=nn.Parameter(torch.ones([n_hidden]))
self.b_hf=nn.Parameter(torch.ones([n_hidden]))
self.b_hg=nn.Parameter(torch.ones([n_hidden]))
self.b_ho=nn.Parameter(torch.ones([n_hidden]))
self.n_hidden=n_hidden
def forward(self,X):
X=self.C(X);
hidden_state = torch.zeros(1, len(X), self.n_hidden) # [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
cell_state = torch.zeros(1, len(X), self.n_hidden)
X=X.transpose(0,1);
for X_t in X:
input_gate = torch.sigmoid(self.W_ii(X_t)+self.b_ii+self.W_hi(hidden_state)+self.b_hi)
forget_gate = torch.sigmoid(self.W_if(X_t)+self.b_if+self.W_hf(hidden_state)+self.b_hf)
cell_gate = torch.tanh(self.W_ig(X_t)+self.b_ig+self.W_hg(hidden_state)+self.b_hg)
output_gate = torch.sigmoid(self.W_io(X_t)+self.b_io+self.W_ho(hidden_state)+self.b_ho)
cell_state = forget_gate*cell_state+input_gate*cell_gate;
hidden_state = output_gate*torch.tanh(cell_state);
outputs=output_gate[-1]
model=self.W(outputs)+self.b;
return model;
class TextLSTM_1(nn.Module):
def __init__(self,n_class,emb_size,n_hidden):
super(TextLSTM_1,self).__init__()
self.C=nn.Embedding(n_class,embedding_dim=emb_size);
self.W=nn.Linear(n_hidden,n_class,bias=False)
self.b=nn.Parameter(torch.ones([n_class]))
self.W_ii=nn.Linear(emb_size,n_hidden,bias=False)
self.W_if=nn.Linear(emb_size,n_hidden,bias=False)
self.W_ig=nn.Linear(emb_size,n_hidden,bias=False)
self.W_io=nn.Linear(emb_size,n_hidden,bias=False)
self.b_ii=nn.Parameter(torch.ones([n_hidden]))
self.b_if=nn.Parameter(torch.ones([n_hidden]))
self.b_ig=nn.Parameter(torch.ones([n_hidden]))
self.b_io=nn.Parameter(torch.ones([n_hidden]))
self.W_hi=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hf=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hg=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_ho=nn.Linear(n_hidden,n_hidden,bias=False)
self.b_hi=nn.Parameter(torch.ones([n_hidden]))
self.b_hf=nn.Parameter(torch.ones([n_hidden]))
self.b_hg=nn.Parameter(torch.ones([n_hidden]))
self.b_ho=nn.Parameter(torch.ones([n_hidden]))
self.n_hidden=n_hidden
def forward(self,X):
X=self.C(X);
hidden_s= [] if len(tensors)==0 else tensors[0]
cell_s=[] if len(cells)==0 else cells[0]
hidden_state = torch.zeros(1, len(X), self.n_hidden) if len(hidden_s)==0 else hidden_s[0] # [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
cell_state = torch.zeros(1, len(X), self.n_hidden) if len(cell_s)==0 else cell_s[0]
length=len(X)
X=X.transpose(0,1);
i=0
for X_t in X:
if i>0:
hidden_state = torch.zeros(1,length,self.n_hidden) if len(hidden_s)<=i else hidden_s[i]
cell_state = torch.zeros(1, length, self.n_hidden) if len(cell_s)<=i else cell_s[i]
input_gate = torch.sigmoid(self.W_ii(X_t)+self.b_ii+self.W_hi(hidden_state)+self.b_hi)
forget_gate = torch.sigmoid(self.W_if(X_t)+self.b_if+self.W_hf(hidden_state)+self.b_hf)
cell_gate = torch.tanh(self.W_ig(X_t)+self.b_ig+self.W_hg(hidden_state)+self.b_hg)
output_gate = torch.sigmoid(self.W_io(X_t)+self.b_io+self.W_ho(hidden_state)+self.b_ho)
cell_state = forget_gate*cell_state+input_gate*cell_gate;
hidden_state = output_gate*torch.tanh(cell_state);
if len(cell_s)<=i:
hidden_s.append(hidden_state.detach())
cell_s.append(cell_state.detach())
else:
hidden_s[i]=hidden_state.detach()
cell_s[i]=cell_state.detach()
i=i+1
outputs=output_gate[-1]
model=self.W(outputs)+self.b;
if len(tensors)==0:
tensors.append(hidden_s);
cells.append(cell_s)
else:
tensors[0]=hidden_s
cells[0]=cell_s
return torch.cat([hidden_state[0],model],dim=1);
class TextLSTM_2(nn.Module):
def __init__(self,n_class,emb_size,n_hidden,numero:int):
super(TextLSTM_2,self).__init__()
self.numero=numero
# self.C=nn.Embedding(n_class+n_hidden,embedding_dim=emb_size);
self.W=nn.Linear(n_hidden,n_class,bias=False)
self.b=nn.Parameter(torch.ones([n_class]))
self.W_ii=nn.Linear(n_class+n_hidden,n_hidden,bias=False)
self.W_if=nn.Linear(n_class+n_hidden,n_hidden,bias=False)
self.W_ig=nn.Linear(n_class+n_hidden,n_hidden,bias=False)
self.W_io=nn.Linear(n_class+n_hidden,n_hidden,bias=False)
self.b_ii=nn.Parameter(torch.ones([n_hidden]))
self.b_if=nn.Parameter(torch.ones([n_hidden]))
self.b_ig=nn.Parameter(torch.ones([n_hidden]))
self.b_io=nn.Parameter(torch.ones([n_hidden]))
self.W_hi=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hf=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hg=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_ho=nn.Linear(n_hidden,n_hidden,bias=False)
self.b_hi=nn.Parameter(torch.ones([n_hidden]))
self.b_hf=nn.Parameter(torch.ones([n_hidden]))
self.b_hg=nn.Parameter(torch.ones([n_hidden]))
self.b_ho=nn.Parameter(torch.ones([n_hidden]))
self.n_class=n_class
self.n_hidden=n_hidden
def forward(self,X):
# X=self.C(X);
#print(X.shape)
hidden_s= [] if len(tensors)<=self.numero+1 else tensors[self.numero+1]
cell_s=[] if len(cells)<=self.numero+1 else cells[self.numero+1]
hidden_state = torch.zeros(1, len(X), self.n_hidden) if len(hidden_s)==0 else hidden_s[0] # [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
cell_state = torch.zeros(1, len(X), self.n_hidden) if len(cell_s)==0 else cell_s[0]
#X=X.transpose(0,1);
#print(X.shape)
i=0
for X_t in X:
#print(X_t.shape);print(hidden_state.shape);exit()
if i>0:
hidden_state = torch.zeros(1,len(X),self.n_hidden) if len(hidden_s)<=i else hidden_s[i]
cell_state = torch.zeros(1, len(X), self.n_hidden) if len(cell_s)<=i else cell_s[i]
input_gate = torch.sigmoid(self.W_ii(X_t)+self.b_ii+self.W_hi(hidden_state)+self.b_hi)
forget_gate = torch.sigmoid(self.W_if(X_t)+self.b_if+self.W_hf(hidden_state)+self.b_hf)
cell_gate = torch.tanh(self.W_ig(X_t)+self.b_ig+self.W_hg(hidden_state)+self.b_hg)
output_gate = torch.sigmoid(self.W_io(X_t)+self.b_io+self.W_ho(hidden_state)+self.b_ho)
cell_state = forget_gate*cell_state+input_gate*cell_gate;
hidden_state = output_gate*torch.tanh(cell_state);
if len(cell_s)<=i:
hidden_s.append(hidden_state.detach())
cell_s.append(cell_state.detach())
else:
hidden_s[i]=hidden_state.detach()
cell_s[i]=cell_state.detach()
i=i+1
outputs=output_gate[-1]
model=self.W(outputs)+self.b;
if len(tensors)<=self.numero+1:
tensors.append(hidden_s);
cells.append(cell_s);
else:
tensors[self.numero+1]=hidden_s;
cells[self.numero+1]=cell_s;
return torch.cat([hidden_state[0],model],dim=1);
class TextLSTM_3(nn.Module):
def __init__(self,n_class,emb_size,n_hidden,numero:int):
super(TextLSTM_3,self).__init__()
self.numero=numero
# self.C=nn.Embedding(n_class+n_hidden,embedding_dim=emb_size);
self.W=nn.Linear(n_hidden,n_class,bias=False)
self.b=nn.Parameter(torch.ones([n_class]))
self.W_ii=nn.Linear(n_hidden+n_class,n_hidden,bias=False)
self.W_if=nn.Linear(n_hidden+n_class,n_hidden,bias=False)
self.W_ig=nn.Linear(n_hidden+n_class,n_hidden,bias=False)
self.W_io=nn.Linear(n_hidden+n_class,n_hidden,bias=False)
self.b_ii=nn.Parameter(torch.ones([n_hidden]))
self.b_if=nn.Parameter(torch.ones([n_hidden]))
self.b_ig=nn.Parameter(torch.ones([n_hidden]))
self.b_io=nn.Parameter(torch.ones([n_hidden]))
self.W_hi=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hf=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_hg=nn.Linear(n_hidden,n_hidden,bias=False)
self.W_ho=nn.Linear(n_hidden,n_hidden,bias=False)
self.b_hi=nn.Parameter(torch.ones([n_hidden]))
self.b_hf=nn.Parameter(torch.ones([n_hidden]))
self.b_hg=nn.Parameter(torch.ones([n_hidden]))
self.b_ho=nn.Parameter(torch.ones([n_hidden]))
self.n_hidden=n_hidden
def forward(self,X):
# X=self.C(X);
hidden_s= [] if len(tensors)<=self.numero+1 else tensors[self.numero+1]
cell_s=[] if len(cells)<=self.numero+1 else cells[self.numero+1]
hidden_state = torch.zeros(1, len(X), self.n_hidden) if len(hidden_s)==0 else hidden_s[0] # [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
cell_state = torch.zeros(1, len(X), self.n_hidden) if len(cell_s)==0 else cell_s[0]
#X=X.transpose(0,1);
i=0;
for X_t in X:
if i>0:
hidden_state = torch.zeros(1,len(X),self.n_hidden) if len(hidden_s)<=i else hidden_s[i]
cell_state = torch.zeros(1, len(X), self.n_hidden) if len(cell_s)<=i else cell_s[i]
input_gate = torch.sigmoid(self.W_ii(X_t)+self.b_ii+self.W_hi(hidden_state)+self.b_hi)
forget_gate = torch.sigmoid(self.W_if(X_t)+self.b_if+self.W_hf(hidden_state)+self.b_hf)
cell_gate = torch.tanh(self.W_ig(X_t)+self.b_ig+self.W_hg(hidden_state)+self.b_hg)
output_gate = torch.sigmoid(self.W_io(X_t)+self.b_io+self.W_ho(hidden_state)+self.b_ho)
cell_state = forget_gate*cell_state+input_gate*cell_gate;
hidden_state = output_gate*torch.tanh(cell_state);
if len(cell_s)<=i:
hidden_s.append(hidden_state.detach())
cell_s.append(cell_state.detach())
else:
hidden_s[i]=hidden_state.detach()
cell_s[i]=cell_state.detach()
i=i+1
outputs=output_gate[-1]
model=self.W(outputs)+self.b;
if len(tensors)<=self.numero+1:
tensors.append(hidden_s);
cells.append(cell_s)
else:
tensors[-1]=hidden_s;
cells[-1]=cell_s;
return model;
def train_LSTMlm(n_class,emb_size,mid_layers=5):
# model = TextLSTM(n_class,emb_size,n_hidden)
model = nn.Sequential()
model.add_module("first layer",TextLSTM_1(n_class,emb_size,n_hidden));
for _ in range(mid_layers):
model.add_module(str(_+1)+" middle layer",TextLSTM_2(n_class,emb_size,n_hidden,_))
model.add_module("last layer",TextLSTM_3(n_class,emb_size,n_hidden,mid_layers))
model.to(device)
print(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learn_rate)
# Training
batch_number = len(all_input_batch)
tensors.clear()
cells.clear()
for epoch in range(all_epoch):
count_batch = 0
for input_batch, target_batch in zip(all_input_batch, all_target_batch):
optimizer.zero_grad()
# input_batch : [batch_size, n_step, n_class]
output = model(input_batch)
# output : [batch_size, n_class], target_batch : [batch_size] (LongTensor, not one-hot)
loss = criterion(output, target_batch)
ppl = math.exp(loss.item())
if (count_batch + 1) % 25 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'Batch:', '%02d' % (count_batch + 1), f'/{batch_number}',
'loss =', '{:.6f}'.format(loss), 'ppl =', '{:.6}'.format(ppl))
loss.backward()
optimizer.step()
count_batch += 1
print('Epoch:', '%04d' % (epoch + 1), 'Batch:', '%02d' % (count_batch + 1), f'/{batch_number}',
'loss =', '{:.6f}'.format(loss), 'ppl =', '{:.6}'.format(ppl))
# valid after training one epoch
all_valid_batch, all_valid_target = give_valid_test.give_valid(data_root, word2number_dict, n_step)
all_valid_batch = torch.LongTensor(all_valid_batch).to(device) # list to tensor
all_valid_target = torch.LongTensor(all_valid_target).to(device)
total_valid = len(all_valid_target)*128 # valid and test batch size is 128
with torch.no_grad():
total_loss = 0
count_loss = 0
for valid_batch, valid_target in zip(all_valid_batch, all_valid_target):
valid_output = model(valid_batch)
valid_loss = criterion(valid_output, valid_target)
total_loss += valid_loss.item()
count_loss += 1
print(f'Valid {total_valid} samples after epoch:', '%04d' % (epoch + 1), 'loss =',
'{:.6f}'.format(total_loss / count_loss),
'ppl =', '{:.6}'.format(math.exp(total_loss / count_loss)))
if (epoch+1) % save_checkpoint_epoch == 0:
torch.save(model, f'models/LSTMlm_model_epoch_{epoch+1}.ckpt')
def test_LSTMlm(select_model_path):
model = torch.load(select_model_path, map_location="cpu") #load the selected model
model.to(device)
#load the test data
all_test_batch, all_test_target = give_valid_test.give_test(data_root, word2number_dict, n_step)
all_test_batch = torch.LongTensor(all_test_batch).to(device) # list to tensor
all_test_target = torch.LongTensor(all_test_target).to(device)
total_test = len(all_test_target)*128 # valid and test batch size is 128
model.eval()
criterion = nn.CrossEntropyLoss()
total_loss = 0
count_loss = 0
for test_batch, test_target in zip(all_test_batch, all_test_target):
test_output = model(test_batch)
test_loss = criterion(test_output, test_target)
total_loss += test_loss.item()
count_loss += 1
print(f"Test {total_test} samples with {select_model_path}……………………")
print('loss =','{:.6f}'.format(total_loss / count_loss),
'ppl =', '{:.6}'.format(math.exp(total_loss / count_loss)))
if __name__ == '__main__':
n_step = 5 # number of cells(= number of Step)
n_hidden = 128 # number of hidden units in one cell
batch_size = 128 # batch size
learn_rate = 0.0005
all_epoch = 5 #the all epoch for training
emb_size = 256 #embeding size
save_checkpoint_epoch = 5 # save a checkpoint per save_checkpoint_epoch epochs !!! Note the save path !!!
data_root = 'penn_small'
train_path = os.path.join(data_root, 'train.txt') # the path of train dataset
print("print parameter ......")
print("n_step:", n_step)
print("n_hidden:", n_hidden)
print("batch_size:", batch_size)
print("learn_rate:", learn_rate)
print("all_epoch:", all_epoch)
print("emb_size:", emb_size)
print("save_checkpoint_epoch:", save_checkpoint_epoch)
print("train_data:", data_root)
word2number_dict, number2word_dict = make_dict(train_path)
#print(word2number_dict)
print("The size of the dictionary is:", len(word2number_dict))
n_class = len(word2number_dict) #n_class (= dict size)
print("generating train_batch ......")
all_input_batch, all_target_batch = make_batch(train_path, word2number_dict, batch_size, n_step) # make the batch
train_batch_list = [all_input_batch, all_target_batch]
print("The number of the train batch is:", len(all_input_batch))
all_input_batch = torch.LongTensor(all_input_batch).to(device) #list to tensor
all_target_batch = torch.LongTensor(all_target_batch).to(device)
# print(all_input_batch.shape)
# print(all_target_batch.shape)
all_input_batch = all_input_batch.reshape(-1, batch_size, n_step)
all_target_batch = all_target_batch.reshape(-1, batch_size)
print("\nTrain the LSTMLM……………………")
train_LSTMlm(n_class,emb_size,1)
print("\nTest the LSTMLM……………………")
select_model_path = "models/LSTMlm_model_epoch_5.ckpt"
test_LSTMlm(select_model_path)