-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
72 lines (50 loc) · 1.68 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import os
import glob
import pydicom
from lib.dicom_numpy import *
import cv2
import time
## 이미지 해상도 확인 후 데이터 3D 배열로 결합
def extract_voxel_data(path):
datasets = [pydicom.dcmread(f) for f in glob.glob(os.path.join(path, '*.dcm'))]
try:
voxel_ndarray, _ = combine_slices(datasets, rescale=True)
except DicomImportException as e:
# invalid DICOM data
raise
return voxel_ndarray.T
def Otsu(normArr):
normal = []
norm_arr= normArr
print(normArr.shape)
re_arr = normArr.reshape(norm_arr.shape[1]*norm_arr.shape[2],norm_arr.shape[0])
cutoff , _ = cv2.threshold(re_arr, -1, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU )
for arr in norm_arr:
_ , t_otsu = cv2.threshold(arr,cutoff, 255, cv2.THRESH_BINARY_INV)
tempDiff = cv2.subtract(arr, t_otsu)
normal.append(tempDiff)
normal = np.array(normal)
return cutoff, normal[normal !=0]
def voxelNorm(whole_arr):
min_v = np.min(whole_arr)
max_v = np.max(whole_arr)
for n, arr in enumerate(whole_arr):
whole_arr[n] = 255 * (arr - min_v) * (1 / (max_v - min_v))
whole_arr = whole_arr.astype(np.uint16)
return whole_arr, min_v, max_v
def deNorm(norm, min_v, max_v):
return (norm / 255) * (max_v - min_v) + min_v
def newtonRaphson(weight,sd):
x = 3
while True:
d = ftn(x,sd,weight)/ftn_drv(x)
if abs(d) <= 1e-7: break
x = x-d
return x
def ftn(x,sd,weight):
return (x**2)/2-x-np.exp(-x)+np.log(1/sd)-np.log(weight/np.sqrt(2*np.pi*sd))
def ftn_drv(x):
return x-1+np.exp(-x)
def meanStd(arr):
return np.mean(arr), np.std(arr)