-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
executable file
·50 lines (46 loc) · 2.11 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""
Train and eval functions used in main.py
"""
import numpy
numpy.set_printoptions(threshold=1e-6)
import torch
import utils
from quantization.lsq_layer import QuantAct, QuantConv2d, QuantLinear, QuantMultiHeadAct, QuantMuitiHeadLinear, QuantMuitiHeadLinear_in
@torch.no_grad()
def initialize_quantization(data_loader, model, device, output_dir, sample_iters=5):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Initialization:'
if utils.is_main_process():
with (output_dir / "scales.txt").open("w") as f:
f.write("weight scales:\n")
for name, m in model.named_modules():
if (isinstance(m, QuantLinear) or isinstance(m, QuantConv2d) or isinstance(m, QuantMuitiHeadLinear) or isinstance(m, QuantMuitiHeadLinear_in)) and m.alpha is not None:
print(f"initialize the weight scale for module {name}")
m.initialize_scale(device)
f.write(name + ': ' + str(m.alpha.data) + '\n')
# switch to evaluation mode
model.eval()
f.write("activation scales:\n")
n = 0
for images, target in metric_logger.log_every(data_loader, 1, header):
n += 1
if n > sample_iters:
break
images = images.to(device, non_blocking=True)
# compute output
# with torch.cuda.amp.autocast():
output = model(images)
'''
for name, m in model.named_modules():
if (isinstance(m, QuantAct) or isinstance(m, QuantMultiHeadAct)) and m.alpha is not None:
print(f"initialize the activation scale for module {name}")
m.initialize_scale_offset(device)
f.write(name + ': ' + str(m.alpha.data) + '\n')
if m.offset:
f.write("offset" + ': ' + str(m.beta.data) + '\n')
'''
# gather the stats from all processes
metric_logger.synchronize_between_processes()
return