forked from mini-pw/2021L-WB-Book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbook.bib
593 lines (538 loc) · 19.9 KB
/
book.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
@Book{xie2015,
title = {Dynamic Documents with {R} and knitr},
author = {Yihui Xie},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2015},
edition = {2nd},
note = {ISBN 978-1498716963},
url = {http://yihui.org/knitr/},
}
@Manual{rlang,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2018},
url = {https://www.R-project.org/},
}
@Book{EMA,
author = {Przemyslaw Biecek and Tomasz Burzykowski},
title = {{Explanatory Model Analysis}},
publisher = {Chapman and Hall/CRC, New York},
year = {2021},
isbn = {9780367135591},
url = {https://pbiecek.github.io/ema/},
}
@article{li_et_al_2020,
title = {Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables},
volume = {8},
DOI = {10.7717/peerj.10337},
journal = {PeerJ},
author = {Li, Xiaoran and Ge, Peilin and Zhu, Jocelyn and Li, Haifang and Graham, James and Singer, Adam and Richman, Paul S. and Duong, Tim Q.},
year = {2020}
}
@article{yan_et_al_2020,
title = {An interpretable mortality prediction model for COVID-19 patients},
volume = {2},
DOI = {10.1038/s42256-020-0180-7},
number = {5},
journal = {Nature Machine Intelligence},
author = {Yan, Li and Zhang, Hai-Tao and Goncalves, Jorge and Xiao, Yang and Wang, Maolin and Guo, Yuqi and Sun, Chuan and Tang, Xiuchuan and Jing, Liang and Zhang, Mingyang and et al.},
year = {2020},
pages = {283–288}
}
@article{scikitlearn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
@article{dalex,
title={{dalex: Responsible Machine Learning with Interactive
Explainability and Fairness in Python}},
author={Hubert Baniecki and Wojciech Kretowicz and Piotr Piatyszek
and Jakub Wisniewski and Przemyslaw Biecek},
year={2020},
journal={arXiv:2012.14406},
url={https://arxiv.org/abs/2012.14406}
}
@article{xai1-breakdown,
author = {Mateusz Staniak and Przemysław Biecek},
title = {Explanations of model predictions with live and breakDown packages},
year = {2018}}
@incollection{xai1-shapleyvalues,
title = {A unified approach to interpreting model predictions},
author = {Lundberg, Scott M and Lee, Su-In},
year = 2017,
booktitle = {Advances in Neural Information Processing Systems 30},
publisher = {Curran Associates},
address = {Montreal},
pages = {4765--4774},
url = {http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett}
}
@inproceedings{xai1-lime,
author = {Marco Tulio Ribeiro and
Sameer Singh and
Carlos Guestrin},
title = {"{Why should I trust you}?": explaining the predictions of any classifier},
booktitle = {Proceedings of the 22nd {ACM} {SIGKDD} International Conference on
Knowledge Discovery and Data Mining, KDD San Francisco, CA},
pages = {1135--1144},
year = {2016},
publisher = {Association for Computing Machinery},
address = {New York, NY}
}
@article{xai1-ice,
title = {Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation},
author = {Alex Goldstein and Adam Kapelner and Justin Bleich and Emil Pitkin},
year = {2014}}
@article{xai1-vip,
author = {Aaron Fisher and Cynthia Rudin and Francesca Dominici},
title = {All models are Wrong, but many are Useful: Learning a variable's importance by studying an entire class of prediction models simultaneously},
journal = {Journal of Machine Learning Research},
year = {2019},
volume = {20},
number = {177},
pages = {1-81},
url = {http://jmlr.org/papers/v20/18-760.html}
}
@article{xai1-pdp,
title = {Greedy Function Approximation: A Gradient Boosting Machine},
author = {Jerome H. Friedman},
year = 2000,
journal = {Annals of Statistics},
volume = 29,
pages = {1189--1232}
}
@article{xai1-ale,
title = {{Visualizing the effects of predictor variables in black box supervised learning models}},
author={Daniel W. Apley and Jingyu Zhu},
journal={Journal of the Royal Statistical Society Series B},
year=2020,
volume={82},
number={4},
pages={1059--1086},
month={September},
keywords={},
doi={10.1111/rssb.12377}
}
@manual{EUGDPR,
title = {{The EU General Data Protection Regulation (GDPR) is the most important change in data privacy regulation in 20 years}},
author = {{GDPR}},
year = 2018,
url = {https://eugdpr.org/}
}
@article{1-5-hotels-automated-ml-system,
title = {An Automated Machine Learning Based Decision Support System to Predict Hotel Booking Cancellations},
author = {Nuno Antonio and Ana de Almeida and Luis Nunes},
journal = {Data Science Journal},
volume = {18},
publisher = {Ubiquity Press},
number = {1},
year = {2019},
pages = {1--20},
doi = {10.5334/dsj-2019-032}
}
@article{1-5-hotels-predicting-to-decrease-uncertainty-increase-revenue,
title = {Predicting hotel booking cancellations to decrease uncertainty and increase revenue},
author = {Nuno Antonio and Ana de Almeida and Luis Nunes},
journal = {Tourism & Management Studies},
volume = {13},
publisher = {University of the Algarve - ESGHT - CIEO},
number = {2},
year = {2017},
pages = {25--39},
doi = {10.18089/tms.2017.13203}
}
@article{1-5-hotels-cancellation-policies-shift,
title = {A paradigm shift in revenue management? The new landscape of hotel cancellation policies},
author = {Arash Riasi and Zvi Schwartz and Chih-Chien Chen},
journal = {Journal of Revenue and Pricing Management},
volume = {18},
publisher = {Palgrave Macmillan},
number = {6},
year = {2019},
pages = {434--440},
doi = {10.1057/s41272-019-00189-3}
}
@article{1-5-hotels-modelling-cancellation-behaviour,
title = {Modelling the cancellation behaviour of hotel guests},
author = {Martin Falk and Markku Vieru},
journal = {International Journal of Contemporary Hospitality Management},
volume = {30},
publisher = {Emerald Publishing Limited},
number = {10},
year = {2018},
pages = {3100--3116},
doi = {10.1108/ijchm-08-2017-0509}
}
@inproceedings{1-5-hotels-prediction-using-crisp-dm,
title = {Prediction of Hotel Booking Cancellation using CRISP-DM},
author = {Z. A. {Andriawan} and S. R. {Purnama} and A. S. {Darmawan} and {Ricko} and A. {Wibowo} and A. {Sugiharto} and F. {Wijayanto}},
booktitle = {2020 4th International Conference on Informatics and Computational Sciences (ICICoS)},
year = {2020},
pages = {1--6},
doi = {10.1109/ICICoS51170.2020.9299011}
}
@article{1-5-hotels-efficient-forecasting,
title = {Using machine learning and big data for efficient forecasting of hotel booking cancellations},
author = {Agustín J Sánchez-Medina and Eleazar C-Sánchez},
journal = {International Journal of Hospitality Management},
volume = {89},
publisher = {Elsevier Ltd},
year = {2020},
pages = {102546},
doi = {10.1016/j.ijhm.2020.102546}
}
@article{1-5-cancellations-policies-study,
title = {Hotel Cancelation Policies, Distributive and Procedural Fairness, and Consumer Patronage: A Study of the Lodging Industry},
author = {Scott J. Smith and H.G. Parsa and Milos Bujisic and Jean-Pierre van der Rest},
journal = {Journal of Travel & Tourism Marketing},
volume = {32},
publisher= {Taylor & Francis (Routledge)},
year = {2015},
pages = {886--906},
doi = {10.1080/10548408.2015.1063864}
}
@article{5-2-china,
author={Yan, Li
and Zhang, Hai-Tao
and Goncalves, Jorge
and Xiao, Yang
and Wang, Maolin
and Guo, Yuqi
and Sun, Chuan
and Tang, Xiuchuan
and Jing, Liang
and Zhang, Mingyang
and Huang, Xiang
and Xiao, Ying
and Cao, Haosen
and Chen, Yanyan
and Ren, Tongxin
and Wang, Fang
and Xiao, Yaru
and Huang, Sufang
and Tan, Xi
and Huang, Niannian
and Jiao, Bo
and Cheng, Cheng
and Zhang, Yong
and Luo, Ailin
and Mombaerts, Laurent
and Jin, Junyang
and Cao, Zhiguo
and Li, Shusheng
and Xu, Hui
and Yuan, Ye},
title={An interpretable mortality prediction model for COVID-19 patients},
journal={Nature Machine Intelligence},
year={2020},
month={May},
day={01},
volume={2},
number={5},
pages={283-288},
issn={2522-5839},
doi={10.1038/s42256-020-0180-7},
url={https://doi.org/10.1038/s42256-020-0180-7}
}
@article{5-2-newyork,
author={Barish, Matthew
and Bolourani, Siavash
and Lau, Lawrence F.
and Shah, Sareen
and Zanos, Theodoros P.},
title={External validation demonstrates limited clinical utility of the interpretable mortality prediction model for patients with COVID-19},
journal={Nature Machine Intelligence},
year={2021},
month={Jan},
day={01},
volume={3},
number={1},
pages={25-27},
issn={2522-5839},
doi={10.1038/s42256-020-00254-2},
url={https://doi.org/10.1038/s42256-020-00254-2}
}
@article{5-2-netherlands,
author={Quanjel, Marian J. R.
and van Holten, Thijs C.
and Gunst-van der Vliet, Pieternel C.
and Wielaard, Jette
and Karakaya, Bekir
and S{\"o}hne, Maaike
and Moeniralam, Hazra S.
and Grutters, Jan C.},
title={Replication of a mortality prediction model in Dutch patients with COVID-19},
journal={Nature Machine Intelligence},
year={2021},
month={Jan},
day={01},
volume={3},
number={1},
pages={23-24},
issn={2522-5839},
doi={10.1038/s42256-020-00253-3},
url={https://doi.org/10.1038/s42256-020-00253-3}
}
@article{5-2-france,
author={Dupuis, C.
and De Montmollin, E.
and Neuville, M.
and Mourvillier, B.
and Ruckly, S.
and Timsit, J. F.},
title={Limited applicability of a COVID-19 specific mortality prediction rule to the intensive care setting},
journal={Nature Machine Intelligence},
year={2021},
month={Jan},
day={01},
volume={3},
number={1},
pages={20-22},
issn={2522-5839},
doi={10.1038/s42256-020-00252-4},
url={https://doi.org/10.1038/s42256-020-00252-4}
}
@article{5-2-dalex,
title={dalex: Responsible Machine Learning with Interactive
Explainability and Fairness in Python},
author={Hubert Baniecki and Wojciech Kretowicz and Piotr Piatyszek
and Jakub Wisniewski and Przemyslaw Biecek},
year={2020},
eprint={2012.14406},
archivePrefix={arXiv},
url={https://arxiv.org/abs/2012.14406}
}
@techreport{5-2-bird2020fairlearn,
author = {Bird, Sarah and Dud{\'i}k, Miro and Edgar, Richard and Horn, Brandon and Lutz, Roman and Milan, Vanessa and Sameki, Mehrnoosh and Wallach, Hanna and Walker, Kathleen},
title = {Fairlearn: A toolkit for assessing and improving fairness in {AI}},
institution = {Microsoft},
year = {2020},
month = {May},
url = "https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/",
number = {MSR-TR-2020-32},
}
@article{6-0-breiman2001statistical,
title={Statistical modeling: The two cultures (with comments and a rejoinder by the author)},
author={Breiman, Leo and others},
journal={Statistical science},
volume={16},
number={3},
pages={199--231},
year={2001},
publisher={Institute of Mathematical Statistics}
}
@article{6-0-rashomon-intro,
title={A study in Rashomon curves and volumes: A new perspective on generalization and model simplicity in machine learning},
author={Semenova, Lesia and Rudin, Cynthia and Parr, Ronald},
journal={arXiv preprint arXiv:1908.01755},
year={2019}
}
@article{6-0-rashomon-variable-importance,
title={All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously.},
author={Fisher, Aaron and Rudin, Cynthia and Dominici, Francesca},
journal={Journal of Machine Learning Research},
volume={20},
number={177},
pages={1--81},
year={2019}
}
@article{6-0-rudin-challenges,
title={Interpretable machine learning: Fundamental principles and 10 grand challenges},
author={Rudin, Cynthia and Chen, Chaofan and Chen, Zhi and Huang, Haiyang and Semenova, Lesia and Zhong, Chudi},
journal={arXiv preprint arXiv:2103.11251},
year={2021}
}
@article{6-0-rashomon-variable-importance-cloud,
title={Exploring the cloud of variable importance for the set of all good models},
author={Dong, Jiayun and Rudin, Cynthia},
journal={Nature Machine Intelligence},
volume={2},
number={12},
pages={810--824},
year={2020},
publisher={Nature Publishing Group}
}
@article{6-0-mimic,
title={MIMIC-III, a freely accessible critical care database},
author={Johnson, Alistair EW and Pollard, Tom J and Shen, Lu and Li-Wei, H Lehman and Feng, Mengling and Ghassemi, Mohammad and Moody, Benjamin and Szolovits, Peter and Celi, Leo Anthony and Mark, Roger G},
journal={Scientific data},
volume={3},
number={1},
pages={1--9},
year={2016},
publisher={Nature Publishing Group}
}
@article{6-0-purushotham2018benchmarking,
title={Benchmarking deep learning models on large healthcare datasets},
author={Purushotham, Sanjay and Meng, Chuizheng and Che, Zhengping and Liu, Yan},
journal={Journal of biomedical informatics},
volume={83},
pages={112--134},
year={2018},
publisher={Elsevier}
}
@article{6-0-tang2018predictive,
title={Predictive modeling in urgent care: a comparative study of machine learning approaches},
author={Tang, Fengyi and Xiao, Cao and Wang, Fei and Zhou, Jiayu},
journal={Jamia Open},
volume={1},
number={1},
pages={87--98},
year={2018},
publisher={Oxford University Press}
}
@InProceedings{6-0-johnson17reproducibility,
title = {Reproducibility in critical care: a mortality prediction case study},
author = {Alistair E. W. Johnson and Tom J. Pollard and Roger G. Mark},
booktitle = {Proceedings of the 2nd Machine Learning for Healthcare Conference},
pages = {361--376},
year = {2017},
editor = {Finale Doshi-Velez and Jim Fackler and David Kale and Rajesh Ranganath and Byron Wallace and Jenna Wiens},
volume = {68},
series = {Proceedings of Machine Learning Research},
address = {Boston, Massachusetts},
month = {18--19 Aug},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v68/johnson17a/johnson17a.pdf},
url = {http://proceedings.mlr.press/v68/johnson17a.html}
}
@article{6-1-beams-system,
author={Das, Subhajit and Cashman, Dylan and Chang, Remco and Endert, Alex},
journal={IEEE Computer Graphics and Applications},
title={BEAMES: Interactive Multimodel Steering, Selection, and Inspection for Regression Tasks},
year={2019},
volume={39},
number={5},
pages={20-32},
doi={10.1109/MCG.2019.2922592}
}
@inproceedings{4-1-RMDL,
title={Rmdl: Random multimodel deep learning for classification},
author={Kowsari, Kamran and Heidarysafa, Mojtaba and Brown, Donald E and Meimandi, Kiana Jafari and Barnes, Laura E},
booktitle={Proceedings of the 2nd International Conference on Information System and Data Mining},
pages={19--28},
year={2018}
}
@inproceedings{4-1-facial-expression-recognition,
author = {Barsoum, Emad and Zhang, Cha and Ferrer, Cristian Canton and Zhang, Zhengyou},
title = {Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution},
year = {2016},
isbn = {9781450345569},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2993148.2993165},
doi = {10.1145/2993148.2993165},
booktitle = {Proceedings of the 18th ACM International Conference on Multimodal Interaction},
pages = {279–283},
numpages = {5},
keywords = {Crowd sourcing, Annotation, Emotion recognition, Facial Expression Recognition, Convolutional Neural Network},
location = {Tokyo, Japan},
series = {ICMI '16}
}
@Article{4-1-axon-deep-seg,
author={Zaimi Aldo, Wabartha Maxime and Herman, Victor and Antonsanti, Pierre-Louis and Perone, Christian S. and Cohen-Adad, Julien},
title={AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks},
journal={Scientific Reports},
year={2018},
month={Feb},
day={28},
volume={8},
number={1},
pages={3816},
issn={2045-2322},
doi={10.1038/s41598-018-22181-4},
url={https://doi.org/10.1038/s41598-018-22181-4}
}
@article{4-2-ara,
title = {ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning},
author = {Łukasz Rączkowski, Marcin Możejko, Joanna Zambonelli, Ewa Szczurek},
journal = {Springer Nature},
volume = {14},
publisher = {bioRxiv},
year = {2019},
pages = {1-11},
doi = {10.1038/s41598-019-50587-1}
}
@article{4-4-UNet,
title={UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation},
author={Zhou, Zongwei and Siddiquee, Md Mahfuzur Rahman and Tajbakhsh, Nima and Liang, Jianming},
journal={IEEE Transactions on Medical Imaging},
year={2019},
publisher={IEEE}
}
@article{4-5-AdversarialAttacks,
title={Adversarial attacks against medical deep learning systems},
author={Finlayson, Samuel G and Chung, Hyung Won and Kohane, Isaac S and Beam, Andrew L},
journal={arXiv preprint arXiv:1804.05296},
year={2018}
}
@article{4-5-ReproducibilityInML,
author = {Joelle Pineau and Philippe Vincent{-}Lamarre and Koustuv Sinha and Vincent Larivi{\`{e}}re and
Alina Beygelzimer and Florence d'Alch{\'{e}}{-}Buc and Emily B. Fox and Hugo Larochelle},
title = {Improving Reproducibility in Machine Learning Research {(A} Report from the NeurIPS 2019 Reproducibility Program)},
journal = {CoRR},
volume = {abs/2003.12206},
year = {2020},
url = {https://arxiv.org/abs/2003.12206},
archivePrefix = {arXiv},
eprint = {2003.12206},
timestamp = {Wed, 01 Apr 2020 17:39:12 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2003-12206.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@book{4-5-LogicOfScientificDisc,
title={The logic of scientific discovery},
author={Popper, Karl},
pages={66},
year={1959},
publisher={Routledge}
}
@book{4-5-DesignExperiments,
title={The Design of Experiments},
author={Fisher, Ronald},
pages={14},
year={1935},
publisher={Oliver and Boyd}
}
@article {4-5-ReproducibleScience,
author = {Casadevall, Arturo and Fang, Ferric C.},
title = {Reproducible Science},
volume = {78},
number = {12},
pages = {4972--4975},
year = {2010},
doi = {10.1128/IAI.00908-10},
publisher = {American Society for Microbiology Journals},
issn = {0019-9567},
URL = {https://iai.asm.org/content/78/12/4972},
eprint = {https://iai.asm.org/content/78/12/4972.full.pdf},
journal = {Infection and Immunity}
}
@article{5-3-chinese_et_al,
title = {An interpretable mortality prediction model for COVID-19 patients},
volume = {2},
DOI = {10.1038/s42256-020-0180-7},
number = {5},
journal = {Nature Machine Intelligence},
author = {Yan, Li and Zhang, Hai-Tao and Goncalves, Jorge and Xiao, Yang and Wang, Maolin and Guo, Yuqi and Sun, Chuan and Tang, Xiuchuan and Jing, Liang and Zhang, Mingyang and et al.},
year = {2020},
pages = {283–288}
}
@article{5-3-mexican_et_al,
title = {Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico},
volume = {105},
journal = {The Journal of Clinical Endocrinology & Metabolism},
author = {Omar Yaxmehen Bello-Chavolla, Jessica Paola Bahena-López, Neftali Eduardo Antonio-Villa, Arsenio Vargas-Vázquez, Armando González-Díaz, Alejandro Márquez-Salinas, Carlos A Fermín-Martínez, J Jesús Naveja, Carlos A Aguilar-Salinas and et al.},
year = {2020},
pages = {2752–2761}
}