forked from DingLei14/SAM-CD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_SAM_CD.py
202 lines (167 loc) · 8.1 KB
/
train_SAM_CD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import time
import os
import torch.autograd
from skimage import io
from torch import optim
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
import torch.nn.functional as F
working_path = os.path.abspath('.')
from utils.loss import LatentSimilarity
from utils.utils import binary_accuracy as accuracy
from utils.utils import AverageMeter
###################### Data and Model ########################
from models.SAM_CD import SAM_CD as Net
NET_NAME = 'SAM_CD'
from datasets import Levir_CD as RS
DATA_NAME = 'Levir_CD'
#from datasets import WHU_CD_list as RS
#DATA_NAME = 'WHU_CD_0.05'
###################### Data and Model ########################
########################## Parameters ########################
args = {
'train_batch_size': 4,
'val_batch_size': 4,
'lr': 0.1,
'epochs': 50,
'gpu': True,
'dev_id': 0,
'multi_gpu': None, #"0,1,2,3",
'weight_decay': 5e-4,
'momentum': 0.9,
'print_freq': 50,
'predict_step': 5,
'crop_size': 512,
'pred_dir': os.path.join(working_path, 'results', DATA_NAME),
'chkpt_dir': os.path.join(working_path, 'checkpoints', DATA_NAME),
'log_dir': os.path.join(working_path, 'logs', DATA_NAME, NET_NAME),
'load_path': os.path.join(working_path, 'checkpoints', DATA_NAME, 'xxx.pth')}
########################## Parameters ########################
if not os.path.exists(args['log_dir']): os.makedirs(args['log_dir'])
if not os.path.exists(args['chkpt_dir']): os.makedirs(args['chkpt_dir'])
if not os.path.exists(args['pred_dir']): os.makedirs(args['pred_dir'])
writer = SummaryWriter(args['log_dir'])
def main():
net = Net()
#net.load_state_dict(torch.load(args['load_path']), strict=False)
if args['multi_gpu']:
net = torch.nn.DataParallel(net, [int(id) for id in args['multi_gpu'].split(',')])
net.to(device=torch.device('cuda', int(args['dev_id'])))
train_set = RS.RS('train', random_crop=True, crop_nums=10, crop_size=args['crop_size'], random_flip=True) #'5_train_supervised',
train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=4, shuffle=True)
val_set = RS.RS('val', sliding_crop=False, crop_size=args['crop_size'], random_flip=False)
val_loader = DataLoader(val_set, batch_size=args['val_batch_size'], num_workers=4, shuffle=False)
optimizer = optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), args['lr'],
weight_decay=args['weight_decay'], momentum=args['momentum'], nesterov=True)
train(train_loader, net, optimizer, val_loader)
writer.close()
print('Training finished.')
def train(train_loader, net, optimizer, val_loader):
bestF = 0.0
bestacc = 0.0
bestIoU = 0.0
bestloss = 1.0
bestaccT = 0.0
curr_epoch = 0
begin_time = time.time()
all_iters = float(len(train_loader) * args['epochs'])
criterion_sem = LatentSimilarity(T=3.0).to(torch.device('cuda', int(args['dev_id'])))
while True:
torch.cuda.empty_cache()
net.train()
start = time.time()
acc_meter = AverageMeter()
train_loss = AverageMeter()
curr_iter = curr_epoch * len(train_loader)
for i, data in enumerate(train_loader):
running_iter = curr_iter + i + 1
adjust_lr(optimizer, running_iter, all_iters, args)
imgs_A, imgs_B, labels = data
if args['gpu']:
imgs_A = imgs_A.to(torch.device('cuda', int(args['dev_id']))).float()
imgs_B = imgs_B.to(torch.device('cuda', int(args['dev_id']))).float()
labels = labels.to(torch.device('cuda', int(args['dev_id']))).float().unsqueeze(1)
optimizer.zero_grad()
outputs, outA, outB = net(imgs_A, imgs_B)
assert outputs.shape[1] == 1
loss_bn = F.binary_cross_entropy_with_logits(outputs, labels)
loss_t = criterion_sem(outA, outB, labels)
loss = loss_bn + loss_t
loss.backward()
optimizer.step()
labels = labels.cpu().detach().numpy()
outputs = outputs.cpu().detach()
preds = F.sigmoid(outputs).numpy()
acc_curr_meter = AverageMeter()
for (pred, label) in zip(preds, labels):
acc, precision, recall, F1, IoU = accuracy(pred, label)
acc_curr_meter.update(acc)
acc_meter.update(acc_curr_meter.avg)
train_loss.update(loss.cpu().detach().numpy())
curr_time = time.time() - start
if (i + 1) % args['print_freq'] == 0:
print('[epoch %d] [iter %d / %d %.1fs] [lr %f] [train loss %.4f acc %.2f]' % (
curr_epoch, i + 1, len(train_loader), curr_time, optimizer.param_groups[0]['lr'],
train_loss.val, acc_meter.val * 100))
writer.add_scalar('train loss', train_loss.val, running_iter)
loss_rec = train_loss.val
writer.add_scalar('train accuracy', acc_meter.val, running_iter)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], running_iter)
val_F, val_acc, val_IoU, val_loss = validate(val_loader, net, curr_epoch)
if val_F > bestF:
bestF = val_F
bestacc = val_acc
bestIoU = val_IoU
torch.save(net.state_dict(), os.path.join(args['chkpt_dir'], NET_NAME + '_e%d_OA%.2f_F%.2f_IoU%.2f.pth' % (
curr_epoch, val_acc * 100, val_F * 100, val_IoU * 100)))
if acc_meter.avg > bestaccT: bestaccT = acc_meter.avg
print('[epoch %d/%d %.1fs] Best rec: Train %.2f, Val %.2f, F1 score: %.2f IoU %.2f' \
% (curr_epoch, args['epochs'], time.time() - begin_time, bestaccT * 100, bestacc * 100, bestF * 100,
bestIoU * 100))
curr_epoch += 1
if curr_epoch >= args['epochs']:
return
def validate(val_loader, net, curr_epoch):
# the following code is written assuming that batch size is 1
net.eval()
torch.cuda.empty_cache()
start = time.time()
val_loss = AverageMeter()
F1_meter = AverageMeter()
IoU_meter = AverageMeter()
Acc_meter = AverageMeter()
for vi, data in enumerate(val_loader):
imgs_A, imgs_B, labels = data
if args['gpu']:
imgs_A = imgs_A.to(torch.device('cuda', int(args['dev_id']))).float()
imgs_B = imgs_B.to(torch.device('cuda', int(args['dev_id']))).float()
labels = labels.to(torch.device('cuda', int(args['dev_id']))).float().unsqueeze(1)
with torch.no_grad():
outputs, outA, outB = net(imgs_A, imgs_B)
loss = F.binary_cross_entropy_with_logits(outputs, labels)
val_loss.update(loss.cpu().detach().numpy())
outputs = outputs.cpu().detach()
labels = labels.cpu().detach().numpy()
preds = F.sigmoid(outputs).numpy()
for (pred, label) in zip(preds, labels):
acc, precision, recall, F1, IoU = accuracy(pred, label)
F1_meter.update(F1)
Acc_meter.update(acc)
IoU_meter.update(IoU)
if curr_epoch % args['predict_step'] == 0 and vi == 0:
pred_color = RS.Index2Color(preds[0].squeeze())
io.imsave(os.path.join(args['pred_dir'], NET_NAME + '.png'), pred_color)
print('Prediction saved!')
curr_time = time.time() - start
print('%.1fs Val loss %.2f Acc %.2f F %.2f' % (
curr_time, val_loss.average(), Acc_meter.average() * 100, F1_meter.average() * 100))
writer.add_scalar('val_loss', val_loss.average(), curr_epoch)
writer.add_scalar('val_Accuracy', Acc_meter.average(), curr_epoch)
return F1_meter.avg, Acc_meter.avg, IoU_meter.avg, val_loss.avg
def adjust_lr(optimizer, curr_iter, all_iter, args):
scale_running_lr = ((1. - float(curr_iter) / all_iter) ** 3.0)
running_lr = args['lr'] * scale_running_lr
for param_group in optimizer.param_groups:
param_group['lr'] = running_lr
if __name__ == '__main__':
main()