-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_dyckn_dist.py
96 lines (87 loc) · 2.83 KB
/
plot_dyckn_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import argparse
import h5py
from pathlib import Path
from matplotlib import pyplot as plt
def compute_appearances_sample(sample, N, max_len):
histogram = np.zeros((max_len+2, N+1))
parenthesis = [('(', ')'), ('[', ']'), ('{', '}'), ('|', '!'),
('A', 'a'), ('B', 'b'), ('C', 'c'), ('D', 'd')]
opens = set([p[0] for p in parenthesis])
closings = {p[1]: i+1 for i, p in enumerate(parenthesis)}
l = [0]
i = 0
while i < len(sample):
if sample[i] in opens:
l.append(1)
elif sample[i] == '.':
l[-1] += 1
else:
l[-1] += 1
histogram[l[-1], 0] += 1
histogram[l[-1], closings[sample[i]]] += 1
last = l.pop()
l[-1] += last
i += 1
return histogram
def main(file, output_image, max_len):
p = Path(file)
if not p.exists():
raise ValueError(f'Invalid file {file}')
lens = []
with h5py.File(file, 'r') as f:
t = f['type'][()]
p = f['p'][()]
q = f['q'][()]
if 'odd' in f.keys():
odd = f['odd'][()]
else:
odd = False
data = f['data']
labels = f['labels']
ts = f["timescales"]
print('Parameters:', t, p, q)
histogram = np.zeros((max_len + 2, t + 1))
print('Found', len(data), 'sequences')
for i in data:
if i in {'type', 'q', 'p'}:
continue
histogram += compute_appearances_sample(data[str(i)][()], t, max_len)
lens.append(len(data[(i)][()]))
total_seqs = len(data)
print(np.sum(histogram, 0))
max_len = max(lens)
print('Max. length', max_len)
print('Odd', odd)
print('Total seqs.', total_seqs)
h = histogram[:, 0]
max_cut = 10000
if max_len > max_cut:
max_len = max_cut
if odd:
h = h[2:max_len + 1]
h = h / np.sum(h)
ts = np.arange(2, max_len + 1)
else:
h = h[2:max_len + 1:2]
h = h / np.sum(h) # Normalize
ts = np.arange(2, max_len + 1, 2)
plt.figure()
plt.loglog(ts, h, '-k', label='Dyck2', linewidth=4)
plt.xlabel('Timescale (T)', fontsize=14)
plt.ylabel('P(T)', fontsize=14)
plt.grid()
plt.legend(fontsize=12)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.tight_layout()
plt.savefig(output_image + '_timescales.eps')
plt.savefig(output_image + '_timescales.png')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-i', default='./data/dyckn/train.h5', type=str, help='Input file')
parser.add_argument('-o', default='./dyck', type=str, help='Output image (prefix)')
parser.add_argument('-l', default=200, type=int, help='Maximum timescale')
args = parser.parse_args()
print(args)
main(args.i, args.o, args.l)