-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcalibration_opencv.py
83 lines (69 loc) · 2.73 KB
/
calibration_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
# @Time : 2019/10/8 0008 18:26
# @Author : Erichym
# @Email : [email protected]
# @File : calibration_opencv.py
# @Software: PyCharm
import numpy as np
import cv2
import glob
import os
# termination criteria
# setting the parameters of searching sub-pixel corners, applying the maximum looping iteration 30 for stopping rule and max error tolerance 0.001
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
board_size=30
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
# images = glob.glob('meilan_note6_resized/*.jpg')
img_root='meilan_note6_resized'
img_names=os.listdir(img_root)
img_paths=[os.path.join(img_root,f) for f in img_names]
print(len(img_paths))
for fname in img_paths:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (9,6),None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp*board_size)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
imgpoints.append(corners2)
# Draw and display the corners
# img = cv2.drawChessboardCorners(img, (9,6), corners2,ret)
# cv2.imshow('img',img)
# cv2.waitKey()
cv2.destroyAllWindows()
# print(objpoints)
# print(imgpoints)
print("objpoints len:{}:".format(len(objpoints)))
print("imgpoints len:{}".format(len(imgpoints)))
# ret the min value of max likelihood function
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
print("intrinsic parameters: {}".format(mtx))
print("extrinsic parameters: \nR:{},\nT:{}".format(rvecs,tvecs))
print("distortion parameters: {}".format(dist))
# img = cv2.imread('chessboards_imgs/left12.jpg')
# h, w = img.shape[:2]
# newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
#
# # Using cv2.undistort()
# # undistort
# dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
# # crop the image
# x,y,w,h = roi
# dst = dst[y:y+h, x:x+w]
# cv2.imwrite('calibresult_undistort.png',dst)
#
# # Using remapping it will crop image little
# # undistort
# mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
# dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
# # crop the image
# x,y,w,h = roi
# dst = dst[y:y+h, x:x+w]
# cv2.imwrite('calibresult_remap.png',dst)