diff --git a/Chapter_9_Gridded_Data.qmd b/Chapter_9_Gridded_Data.qmd
index 546969e..8386fcd 100644
--- a/Chapter_9_Gridded_Data.qmd
+++ b/Chapter_9_Gridded_Data.qmd
@@ -1,729 +1,723 @@
-# Gridded Data
-## Introduction
-
-There are various sources of gridded data for climatic elements. Those
-considered here are from the European Organisation for the Exploitation
-of Meteorological Satellites, Satellite Application Facility on Climate
-Monitoring (EUMETSAT CM SAF), the Copernicus Climate Change Service
-(C3S) Climate Data Store and the International Research Institute for
-Climate and Society (IRI) Data Store.
-
-All data are freely available. You need to register to access data from
-CM SAF, and also for the C3S Climate Data Store. The IRI Data Store does
-not require registration. The CM SAF data considered here are from
-stationary satellites and are available for all of Europe and Africa and
-possibly more, e.g. Middle East and Caribbean. Sunshine and radiation
-data are illustrated here. They are available daily (some hourly) on a
-grid of about 4km and are from 1983. Other elements, e.g. ground
-temperature are available hourly, from the early 1990s. They will later
-become available from the 1980s.
-
-We consider the ERA5 reanalysis data from the C3S Climate Data Store.
-ERA5 is global, from 1979 (soon to be 1950) with a large number of
-elements available hourly on a grid of 0.25 by 0.25 degrees (about
-30km). It is illustrated with precipitation (hourly) and with 2m
-temperature (used to derive daily Tmax and Tmin).
-
-The IRI Data Store is a repository of climate data from a wide variety
-of sources. We illustrate the IRI Data Store by accessing daily
-precipitation estimates from CHIRPS and ENSO and sea-surface
-temperatures, that are commonly used for seasonal forecasting.
-
-There are many possible uses and applications of these data. [To be
-continued -- with examples of what can be done and is being
-done.]{.mark}
-
-## Importing NetCDF files
-
-Show how to use the dialog first without changing options but still look
-at details to check what is being imported.
-
-Then show the options for sub-areas, an individual station, or for
-multiple stations. Can use Rwanda station locations and CHIRPS data from
-IRI section.
-
-## EUMETSAT CM SAF
-
-The CM SAF website is shown in Fig. 9.2a. You are invited to sign-in or
-register, though you are welcome to explore what is available without
-this. You need to register to download any data. You are then able to
-use these data freely. EUMETSAT would very much welcome any feedback on
-how the data have been used, particularly if, for example, you have
-compared your station data with their data. They may sometimes be
-prepared to assist you with using the data. You can contact EUMETSAT
-through their User Help Desk
-[[https://www.cmsaf.eu/EN/Service/UHD/UHD_node.html]{.underline}](https://www.cmsaf.eu/EN/Service/UHD/UHD_node.html).
-
- -----------------------------------------------------------------------
- ***Fig. 9.2a***
- -----------------------------------------------------------------------
- ![](media/image234.png){width="6.268055555555556in"
- height="2.9381944444444446in"}
-
- -----------------------------------------------------------------------
-
-Choose Surface Radiation products from the Climate Data Records menu in
-Fig. 9.2a. Choose daily sunshine duration, SDU, Fig. 9.2b.
-
-From Fig. 9.2c we see the data are available from 1 January 1983 to the
-end of December 2017 (when this guide was written). There are other
-products from EUMETSAT CM SAF if more recent data are required, but they
-have not been through the homogenisation and quality control checks.
-
- -----------------------------------------------------------------------------------------------------------
- ***Fig 9.2b*** ***Fig. 9.2c***
- ----------------------------------------------------- -----------------------------------------------------
- ![](media/image235.png){width="3.133465660542432in" ![](media/image220.png){width="2.911786964129484in"
- height="2.4349464129483813in"} height="2.7217924321959757in"}
-
- -----------------------------------------------------------------------------------------------------------
-
-Also indicated in Fig. 9.2c is that there is documentation on each
-product. Consider downloading these guides if you decide to use the data
-as they are very detailed and informative.
-
-On the same screen as Fig. 9.2c you see an ***Add to Order Cart***
-invitation. Ignore this for now, unless you want a huge file, with data
-from about half the globe.
-
-Instead, scroll further down and click on the button that says ***Change
-Projection / spatial resolution / domain***.
-
- -------------------------------------------------------------------------------------------------------------
- ***Fig. 9.2d*** ***Fig. 9.2e***
- ------------------------------------------------------ ------------------------------------------------------
- ![](media/image242.png){width="2.1938396762904637in" ![](media/image227.png){width="3.9405238407699037in"
- height="2.021411854768154in"} height="1.5502766841644795in"}
-
- -------------------------------------------------------------------------------------------------------------
-
-If you are following this as an exercise, then change the coordinates in
-Fig. 9.2e.
-
-Click, in Fig. 9.2e to proceed to the time range selection.
-
- -------------------------------------------------------------------------------------------------------------
- ***Fig. 9.2f*** ***Fig. 9.2g***
- ------------------------------------------------------ ------------------------------------------------------
- ![](media/image244.png){width="3.1262707786526684in" ![](media/image247.png){width="2.9971336395450567in"
- height="2.611187664041995in"} height="1.376020341207349in"}
-
- -------------------------------------------------------------------------------------------------------------
-
-In the following screen, scroll down to confirm that the sub-domain,
-part of Rwanda, has been included, Fig. 9.2f. Then press Add to Order
-Cart, Fig. 9.2g.
-
-You return to the screen in Fig. 9.2h. It is disconcerting that in Fig.
-9.2h it appears you are about to order a file of over 200 gigabytes, but
-it is the size ignoring the sub-domain[^46]. Keep your nerve and place
-the order, Fig. 9.2h.
-
- -----------------------------------------------------------------------
- ***Fig.9.2h***
- -----------------------------------------------------------------------
- ![](media/image253.png){width="6.152322834645669in"
- height="2.709448818897638in"}
-
- -----------------------------------------------------------------------
-
-You receive a confirmatory e-mail that the order has been placed on the
-EUMETSAT server. Shortly afterwards there is confirmation that the data
-have been extracted and are waiting to be downloaded, Fig. 9.2i
-
- -----------------------------------------------------------------------
- ***Fig. 9.2i***
- -----------------------------------------------------------------------
- ![](media/image249.png){width="6.101929133858268in"
- height="2.9671358267716537in"}
-
- -----------------------------------------------------------------------
-
-Follow the instructions in your equivalent of the message in Fig. 9.2i
-to download the file. It is now, for the first time that you are made
-aware of the file size, 341 Mbytes for this example.
-
-This downloads a single tar file, containing 12 thousand individual
-NetCDF files, with one file for each day.
-
-This is continued, in Section 9.5, through the CM SAF toolbox and in
-Section [xxx]{.mark} using R-Instat.
-
-## C3S Climate Data Store
-
-If you are not online, then the first part of this section is again for
-reading only.
-
-The website is . This takes you to
-the screen partly shown in Fig. 9.3a. You are invited to login or
-register your account. So, do this.
-
-Once logged in you return to the screen in Fig. 9.3a.
-
- -----------------------------------------------------------------------
- ***Fig. 9.3a***
- -----------------------------------------------------------------------
- ![](media/image254.png){width="6.124782370953631in"
- height="2.761784776902887in"}
-
- -----------------------------------------------------------------------
-
-Then click on Datasets in Fig. 9.3a to give the screen starting in Fig.
-9.3b. There are many different datasets available. In the search bar
-type "ERA5 hourly" and from the results select, "ERA5 hourly data on
-single levels".
-
-Click on this dataset to get further information, see Fig. 9.3c.
-
- ------------------------------------------------------------------------------------------------------------
- ***Fig. 9.3b*** ***Fig. 9.3c***
- ----------------------------------------------------- ------------------------------------------------------
- ![](media/image252.png){width="3.026570428696413in" ![](media/image251.png){width="3.0448775153105863in"
- height="1.5810192475940508in"} height="2.0040441819772528in"}
-
- ------------------------------------------------------------------------------------------------------------
-
-The data are currently from 1979 (soon to be from 1950). They are
-available for many elements including precipitation, temperature,
-evaporation, radiation and wind speed and direction.
-
-They are hourly data and at a 0.25 by 0.25-degree (about 25km)
-resolution.
-
- ------------------------------------------------------------------------------------------------------------
- ***Fig. 9.3d*** ***Fig. 9.3e***
- ----------------------------------------------------- ------------------------------------------------------
- ![](media/image248.png){width="3.128680008748906in" ![](media/image243.png){width="2.8662554680664916in"
- height="2.0612062554680666in"} height="2.2056594488188974in"}
-
- ------------------------------------------------------------------------------------------------------------
-
-On your first visit to the site, continue, and click on ***Download
-data*** in Fig. 9.3c. You then choose one or more elements, Fig. 9.3d
-and decide on the years, months, days and hours to include. Finally,
-select the sub-region to extract in the Geographical area section, Fig.
-9.3f. Once the items in Fig. 9.3d, Fig. 9.3e and Fig. 9.3f are complete
-you can click ***Submit Form*** to start the request.
-
-The running may take minutes (sometimes many) to complete. It also
-sometimes fails. You can view the current status of your requests by
-clicking ***Your requests*** from the menu bar shown in Fig. 9.3a.
-Occasionally there is a single error 500, in which case just run again.
-The other common error is that you have asked for too much data. If you
-are requesting a complete time series i.e. for all hours, days, and
-months, then the current limit appears to be approximately 5 years. This
-limit seems to be the same, irrespective of the area. Hence, for 30
-years, make 6 separate requests, changing the years for each run. You do
-not need to wait for a request to complete before starting another one.
-Go to ***Your requests*** to see the status of each and download the
-data once complete.
-
- -------------------------------------------------------------------------------------------------------------
- ***Fig. 9.3g Generate a toolbox request*** ***Fig. 9.3h Names for each element***
- ------------------------------------------------------ ------------------------------------------------------
- ![](media/image246.png){width="3.0120089676290465in" ![](media/image241.png){width="3.0938626421697286in"
- height="2.827140201224847in"} height="1.705543525809274in"}
-
- -------------------------------------------------------------------------------------------------------------
-
-An alternative way to request data is through the Toolbox, shown in the
-menu bar of the homepage in Fig. 9.3a. Previously, it was not possible
-to select a sub-region through the interface described above, hence it
-was necessary to construct a Python script to run the Toolbox in order
-to do this. However, now that sub-region extraction is possible in the
-interface, we suggest it is sufficient to use the interface if your main
-interest is to download data for use in another software e.g. R or
-R-Instat.
-
-An example Toolbox script to download hourly 2-metre temperature data
-for sub-region covering in Rwanda for 5 years in shown Fig. 9.3i. The
-Toolbox also includes functionality for processing, analysing and
-displaying data, however this is not covered here as we will demonstrate
-importing ERA5 data into R-Instat.
-
-+-----------------------------------------------------------------------+
-| ***Fig. 9.3i Sample toolbox code*** |
-+=======================================================================+
-| **import cdstoolbox as ct** |
-| |
-| **\@ct.application(title=\'Retrieve Data\')** |
-| |
-| **\@ct.output.dataarray()** |
-| |
-| **def retrieve_sample_data():** |
-| |
-| **\"\"\"** |
-| |
-| **Application main steps:** |
-| |
-| **- retrieve 2m temperature of ERA5 from CDS Catalogue** |
-| |
-| **- specify the grid - year(s) - month(s) - day(s) - hour(s)** |
-| |
-| **- area is optional give N/W/S/E corners** |
-| |
-| **- recommended for local analysis** |
-| |
-| **- ask for netcdf format** |
-| |
-| **\"\"\"** |
-| |
-| **data = ct.catalogue.retrieve(** |
-| |
-| **\'reanalysis-era5-single-levels\',** |
-| |
-| **{** |
-| |
-| **\'variable\': \'2m_temperature\',** |
-| |
-| **\'grid\': \[\'0.25\', \'0.25\'\],** |
-| |
-| **\'product_type\': \'reanalysis\',** |
-| |
-| **\'year\': \[** |
-| |
-| **\'1981\','1982','1983','1984','1985'** |
-| |
-| **\],** |
-| |
-| **\'month\': \[** |
-| |
-| **\'01\', \'02\', \'03\', \'04\', \'05\', \'06\',\'07\', \'08\', |
-| \'09\', \'10\', \'11\', \'12\',** |
-| |
-| **\],** |
-| |
-| **\'day\': \[** |
-| |
-| **\'01\', \'02\', \'03\', \'04\', \'05\', \'06\',\'07\', \'08\', |
-| \'09\', \'10\', \'11\', \'12\',** |
-| |
-| **\'13\', \'14\', \'15\', \'16\', \'17\', \'18\',\'19\', \'20\', |
-| \'21\', \'22\', \'23\', \'24\',** |
-| |
-| **\'25\', \'26\', \'27\', \'28\', \'29\', \'30\',\'31\'** |
-| |
-| **\],** |
-| |
-| **\'time\': \[** |
-| |
-| **\'00:00\',\'01:00\',\'02:00\',\'03:00\',\'04:00\',\'05:00\',** |
-| |
-| **\'06:00\',\'07:00\',\'08:00\',\'09:00\',\'10:00\',\'11:00\',** |
-| |
-| **\'12:00\',\'13:00\',\'14:00\',\'15:00\',\'16:00\',\'17:00\',** |
-| |
-| **\'18:00\',\'19:00\',\'20:00\',\'21:00\',\'22:00\',\'23:00\'** |
-| |
-| **\],** |
-| |
-| **\'area\': \[\'-1.5/30/-2.0/30.54\'\],** |
-| |
-| **\'format\' : \[\'netcdf\'\]** |
-| |
-| **})** |
-| |
-| **return data** |
-+-----------------------------------------------------------------------+
-
-The second stage is to read the resulting data into R-Instat. For those
-who were not online, the six files have also been renamed and copied
-into the R-Instat library.
-
-***Go into R-Instat*** and use ***File \> Open and Tidy NetCDF File***
-Fig. 9.3j.
-
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
- ***Fig. 9.3j Loading the data for 1981-5*** ***Fig. 9.3k Six files in R-Instat***
- ---------------------------------------------------------------------------------------------------------------------- -----------------------------------------------------
- ![C:\\Users\\ROGERS\~1\\AppData\\Local\\Temp\\SNAGHTML145541b7.PNG](media/image191.png){width="3.2002351268591425in" ![](media/image197.png){width="2.920479002624672in"
- height="1.9078324584426947in"} height="2.9872025371828523in"}
-
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-
-In Fig. 9.3j, if you downloaded your own data, then choose ***Browse***,
-otherwise choose ***From Library*** and ***use the file called
-cds.Rwanda_1981_5.nc***.
-
-Then recall the last dialogue and include the other five files, up to
-cds.Rwanda_2005_10. The resulting data are shown in Fig. 9.3k. There are
-about 394,416 rows of data in each file (i.e. roughly 9 \* 24 \* 365 \*
-5)
-
-The next step is to append the files to give the 30-year record. Use
-***Climatic \>Tidy and Examine \> Append***, Fig. 9.3l. In Fig. 9.3l,
-include all 6 data frame, then the ID column isn't needed and the
-resulting data frame is named better than Append1.
-
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
- ***Fig. 9.3l Appending the 6 data frames*** ***Fig. 9.3m Temperatures into centigrade***
- --------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------
- ![C:\\Users\\ROGERS\~1\\AppData\\Local\\Temp\\SNAGHTML14701350.PNG](media/image203.png){width="3.084857830271216in" ![](media/image196.png){width="2.7211132983377078in"
- height="2.3588156167979in"} height="3.437498906386702in"}
-
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-
-The data column in Fig. 9.3k, called tas, is in degrees Kelvin. Use
-***Climatic \> Prepare \> Transform*** to change them into centigrade
-for comparison with the station data, Fig. 9.3m.
-
-ECMWF provides the time variable always in GMT (Greenwich Mean Time).
-Rwanda is 2 hours ahead, so either, or both, the time variables in Fig.
-9.3k need to be moved forward by 2 hours. To make this change the data
-should first be in "station" order. Hence first ***Right-Click*** and
-choose ***Sort*** (or use Prepare \> Data Frame \> Sort) to produce the
-dialogue in Fig. 9.3n.
-
-Now use ***Prepare \> Column: Calculate \> Calculations*** as shown in
-Fig. 9.3o. In the calculator the ***Transform*** keyboard includes the
-***lead*** function. The function, from the dplyr package is:
-
-***dplyr::lead(time_full,2)***, to move to Rwanda time. Pressing the
-***Try*** button in Fig. 9.3o shows the first value is now 2am GMT[^47].
-
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
- ***Fig. 9.3n*** ***Fig. 9.3o***
- ---------------------------------------------------------------------------------------------------------------------- -----------------------------------------------------
- ![C:\\Users\\ROGERS\~1\\AppData\\Local\\Temp\\SNAGHTML14c5504c.PNG](media/image199.png){width="3.1133234908136482in" ![](media/image198.png){width="2.914620516185477in"
- height="3.026656824146982in"} height="3.134375546806649in"}
-
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-
-Now use ***Climatic \> Dates \> Make Date*** to make a new Date column
-from the Rwanda hourly column, Fig. 9.3p.
-
- -------------------------------------------------------------------------------------------------------------
- ***Fig. 9.3p*** ***Fig. 9.3q***
- ------------------------------------------------------ ------------------------------------------------------
- ![](media/image200.png){width="2.9332370953630797in" ![](media/image195.png){width="3.1684503499562555in"
- height="2.824397419072616in"} height="2.5948917322834646in"}
-
- -------------------------------------------------------------------------------------------------------------
-
-Finally generate Tmax and Tmin, on a daily basis, from the hourly
-values, ready to use, or to compare with station data. First
-***right-click*** and make the ***lon and lat columns into factors***.
-The hourly data are now roughly as in Fig. 9.3q
-
-Complete the ***Prepare \> Column: Reshape \> Column Summaries***
-dialogue as shown in Fig. 9.3r. As these are temperatures the daily
-maximum and minimum are calculated. The resulting worksheet, Fig. 9.3s,
-has a more reasonable 100,000 rows of data at the 9 gridpoints.
-
-+------------------------------------+---------------------------------+
-| ***Fig. 9.3r*** | ***Fig. 9.3s Resulting daily |
-| | data*** |
-| ***Prepare \> Column: Reshape \> | |
-| Column Summaries*** | |
-| | |
-| ***(Make max and min the | |
-| summaries)*** | |
-+====================================+=================================+
-| ![](media/image184 | ![](media/image186.pn |
-| .png){width="3.1482884951881016in" | g){width="2.9195363079615047in" |
-| height="3.011654636920385in"} | height="2.777613735783027in"} |
-+------------------------------------+---------------------------------+
-
-## The IRI Data Store
-
-A third source of gridded data considered here is the IRI Data Library.
-IRI is the International Research Institute for Climate and Society
-based in Colombia University, USA. The website for their data library is
-[[http://iridl.ldeo.columbia.edu/]{.underline}](http://iridl.ldeo.columbia.edu/)
-, Fig. 9.4a. The IRI Data Store is a large repository of climate data
-from a wide variety of sources. In many cases, the IRI Data Store is not
-the only, or primary, source of the data, however the IRI Data Store
-provides a simple consistent way of freely downloading from a large set
-of sources, and crucially allows for selecting sub-regions.
-
-As well as downloading from the website, R-Instat includes a dialog to
-directly download and import some of the common data from the IRI Data
-Store. We demonstrate both methods here, using the R-Instat dialog to
-download CHIRPS daily rainfall estimates and the IRI Data Store website
-to download information on ENSO and sea surface temperatures.
-
-### Downloading directly from R-Instat
-
-Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS),
-produced by Climate Hazards Center UC Santa Barbara, USA, is a
-near-global gridded rainfall data set, available from 1981 to
-near-present with a spatial resolution of 0.05°. It is constructed by
-combining satellite imagery and in-situ station data, and is available
-on a daily, dekad and monthly basis. It's website is here
-[[https://www.chc.ucsb.edu/data/chirps]{.underline}](https://www.chc.ucsb.edu/data/chirps)
-but the data is more easily available to download and subset from the
-IRI Data Store. It is an example of one of the datasets available to
-download directly from R-Instat.
-
-In R-Instat go to ***Climatic \> File \> Import from IRI Data
-Library***, fig xxx. First select "UCSB CHIRPS" as the ***Source***. We
-will download the daily data with the highest resolution available,
-hence choose "Daily Precipitation 0.05 degree" as the ***Data***, fig
-xxx. Source shows a limited set of data sources available in the IRI
-Data Store which we think will be most commonly used by R-Instat users.
-If there is a dataset from the IRI Data Store that you commonly use and
-think we should add, please let us know and we can consider adding it to
-the dialog.
-
-The next two sections of the dialog allow for choosing a subset of time
-or location. By default, "Entire Range" is selected for the data range.
-For CHIRPS, this means 1981 to near-present. We will use this option,
-but if you want a shorter time period choose "Custom Range" and select
-the "From" and "To" dates. The Location Range allows you to choose an
-area defined by longitude and latitude limits, or a single point, which
-will extract the nearest grid point to the location you provide. Let's
-first choose a single point for Kigali, Rwanda at longitude 30.1 and
-latitude -1.95, fig xxx.
-
-The dialog will connect to the IRI Data Library and download the
-requested data to your machine as a NetCDF file (.nc), a common format
-for gridded data (CM SAF and C3S Climate Data Store data are also
-provided in this format). Click ***Browse*** to choose where the
-download data will be saved to or accept the default of your Documents
-folder. Choose an appropriate name for the new data frame. Now, click
-***Ok*** to download and import the data into R-Instat. It may take some
-time for the request to be processed (up to 30 minutes), particularly
-for requests that are for a long time period since data are usually
-stored in separate files for each time point. However, this does not
-mean the download will be a large file and the time can vary depending
-on how busy the IRI Data Library servers are. While waiting, you will
-see the R-Instat waiting dialog and the download progress bar. Do not
-worry if the progress bar does not move forward, this just means the
-request is still being processed. Once the request has been processed,
-the download will usually be small and take very little time. For
-example, this request should result in a download file of size \~0.1MB.
-
-After finishing you will see the data imported into R-Instat, fig xxx.
-The NetCDF file has been downloaded to the location chosen on the dialog
-(Documents by default) and the file has been imported into a data frame
-in R-Instat. The data frame has five columns. X and Y are the location
-and this should be constant since we requested a single point. Notice
-that the value in Y is not exactly what we request. It is -1.97 and we
-request -1.95. This is because the closed grid point in the CHIRPS data
-grid to the provided location is selected. .T is time as a number and
-T_date is a more useful column that is created by R-Instat when
-importing as a Date column. prcp is precipitation. We can confirm this
-by looking at the column metadata: ***View \> Column Metadata***. Scroll
-to the end to see the "standard_name" and "units" columns which confirm
-what each column represents and its units, fig xxx. Click ***View \>
-Column Metadata*** again to close the metadata. We can see that each row
-in the data represents a single day, starting on 1981-01-01. Use
-***Describe \> One Variable \> Summaries***, and select all columns to
-see a summary of the data. The output is shown in fig xxx. We see that X
-and Y are constant, as expected. .T is numeric and not that useful, but
-T_date show the data ranges from 1981-01-01 to 2020-08-31 (as of October
-2020, usually 1 or 2 months behind the current date). prcp shows a
-sensible set of summaries for daily rainfall values. This is useful to
-do to confirm that the request is as you expected. For example, if X and
-Y are not constant but you wanted just a single point, then you may not
-have done the request correctly.
-
-Notice that the data file is also stored on your machine in the folder
-you chose. For example, in Documents my file is called
-ucsb_chirps7f14482329.nc. If you need to import this data again, you can
-now use the file directly, without requesting it again from the IRI Data
-Store. See section xxx on how to import NetCDF files.
-
-This data is useful for comparison with a single station in Kigali. We
-often have data from multiple stations and would wish to extract gridded
-data at each of the station locations. One way to do this would be to
-make separate requests for each station location using the Import from
-IRI Data Library multiple times. However, this becomes time consuming
-for many stations, particularly if the processing time is slow. Another
-option is to do a single request and download data for an area that
-covers all the station locations and then afterwards extract the data
-for the required locations.
-
-So let's to this by download the same data for an area that covers
-Rwanda instead of a single point. This will be a larger download file
-\~280MB but should not take much longer to process. If you have an
-internet connection able to download \~300MB of data then try the next
-steps below. If not, then this is just for reading.
-
-Go back to the ***Import from IRI Data Library*** dialog. The
-***Source***, ***Data*** and ***Date Range*** options remain the same.
-Change the ***Location Range*** option from "Point" to "Area" and enter
-the values: longitude: min 28.5, max 30.5, latitude: min -2.5, max -1.4.
-This area covers the four stations in Rwanda found in the R-Instat
-Library. Choose the location to save the download or use the same
-location. Now, the data request is for approximately a 2 degrees by 1
-degree area, which will give approximately (2 / 0.05) x (1 / 0.05) = 40
-x 20 = 800 grid points, since the resolution is 0.05 degrees. We do not
-want to directly import all 800 grid points into R-Instat as this would
-be equivalent to 800 station records for 40 years. Instead, we want to
-download the data and then extract only a few grid points of interest
-afterwards. So we will check the option for "Don't import data after
-downloading". This removes the new data frame name as it will not import
-into R-Instat but will just download to your machine. Now click ***Ok***
-and it may take a similar amount of time to complete.
-
-After finishing you will not see any change in R-Instat but the file
-will be downloaded to the chosen folder. We can now use the dialog at
-***Climatic \> File \> Import & Tidy NetCDF*** to import a subset of the
-grid points based on station locations. This is shown in section xxx.
-
-### Download from the IRI Data Store
-
-As examples, information on ENSO and sea surface temperatures are
-accessed. The maproom also contains instructional information, so typing
-ENSO into the search, Fig. 9.4a, provides useful information, including
-the areas of the Pacific ocean associated with the NINO situations, Fig.
-9.4b. Fig. 9.4b is accessed directly from
-[[https://iridl.ldeo.columbia.edu/maproom/ENSO/Diagnostics.html]{.underline}](https://iridl.ldeo.columbia.edu/maproom/ENSO/Diagnostics.html)
-
- ------------------------------------------------------------------------------------------------------------
- ***Fig.9.4a IRI Data Library*** ***Fig. 9.4b NINO3.4***
- ------------------------------------------------------ -----------------------------------------------------
- ![](media/image211.png){width="3.8668733595800524in" ![](media/image221.png){width="2.130990813648294in"
- height="2.70544072615923in"} height="2.7068285214348204in"}
-
- ------------------------------------------------------------------------------------------------------------
-
-In Fig. 9.4a click on Data by Category, then on Climate Indices, Fig.
-9.4c and choose Indices nino EXTENDED, Fig. 9.4d.
-
- -------------------------------------------------------------------------------------------------------------
- ***Fig. 9.4c***
- ------------------------------------------------------ ------------------------------------------------------
- ![](media/image229.png){width="2.6998807961504814in" ![](media/image228.png){width="3.4260433070866143in"
- height="2.4705489938757657in"} height="2.2284437882764654in"}
-
- -------------------------------------------------------------------------------------------------------------
-
-Choose ***nino34***, in Fig. 9.4e and then go straight to ***data
-files***. The next screen shows a variety of output formats, including
-NetCDF, which you choose.
-
- -----------------------------------------------------------------------------------------------------------
- ***Fig. 9.4e*** ***Fig. 9.4f***
- ----------------------------------------------------- -----------------------------------------------------
- ![](media/image223.png){width="3.075055774278215in" ![](media/image201.png){width="2.899403980752406in"
- height="3.0795778652668417in"} height="3.59878280839895in"}
-
- -----------------------------------------------------------------------------------------------------------
-
-Now, in R-Instat, use File \> Open and Tidy NetCDF File. If you followed
-the screens above, then browse for the file that was downloaded.
-Otherwise there is a copy in the R-Instat library to March 2019, Fig.
-9.4g.
-
- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------
- ***Fig. 9.4g*** ***Fig. 9.4h***
- --------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------
- ![C:\\Users\\ROGERS\~1\\AppData\\Local\\Temp\\SNAGHTMLda15af6.PNG](media/image216.png){width="3.1782567804024495in" ![](media/image222.png){width="2.99167760279965in"
- height="1.8947287839020122in"} height="2.0226049868766403in"}
-
- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-
-The data are now imported into R-Instat, Fig. 9.4h. The time variable
-has not been recognised as a date. You may wish to click on the I (for
-information -- the metadata) and this will confirm that the column,
-called T, is months since January 1960. If the fact that some values
-appear the same in this column, then change the number of significant
-figures in that column, from 3 to 5.
-
-The first value of T, in Fig. 9.4h is -1248. Dividing by 12 gives 104
-years, so the data start in January 1856!
-
-Use Climatic \> Dates \> Generate Dates, Fig. 9.4i. In Fig. 9.4i, change
-the starting date to January 1856, the end date to March 2019 (if using
-the library dataset), and the step to 1 Month. The resulting date column
-is shown in Fig. 9.4j.
-
- ------------------------------------------------------------------------------------------------------------
- ***Fig. 9.4i*** ***Fig. 9.4j***
- ----------------------------------------------------- ------------------------------------------------------
- ![](media/image217.png){width="2.841988188976378in" ![](media/image210.png){width="2.6477077865266843in"
- height="2.867364391951006in"} height="3.06124343832021in"}
-
- ------------------------------------------------------------------------------------------------------------
-
-Countries have their own definition of when the NINO3.4 implies a year,
-or season is El Niño, or La Niña, see
-[[https://en.wikipedia.org/wiki/El_Ni%C3%B1o]{.underline}](https://en.wikipedia.org/wiki/El_Ni%C3%B1o),
-some use the NINO3.4 value and others use NINo3, or even NINO1 and 2.
-The site
-[[http://www.bom.gov.au/climate/enso/enlist/index.shtml]{.underline}](http://www.bom.gov.au/climate/enso/enlist/index.shtml)
-gives a detailed description of El Niño events since 1900, Fig. 9.4k,
-with a companion page for La Niña.
-
- ------------------------------------------------------------------------------------------------------------
- ***Fig. 9.4k*** ***Fig. 9.4l***
- ----------------------------------------------------- ------------------------------------------------------
- ![](media/image127.png){width="3.470980971128609in" ![](media/image128.png){width="2.5918022747156604in"
- height="2.1808070866141733in"} height="1.7213331146106736in"}
-
- ------------------------------------------------------------------------------------------------------------
-
-The SSTs themselves are often used for seasonal forecasting. This is
-illustrated with the SSTs for the Nino3.4 region.
-
-***Return to the main page***, Fig. 9.4a, then choose ***Data by
-Category*** again, but this time, in Fig. 9.4c, choose ***Air-Sea
-Interface***. In the resulting screen, choose the ***NOAA NCDC ERSST
-version5***, Fig. 9.4l.
-
-In the resulting screen, Fig. 9.4m, choose ***anomalies*** and then
-***Data Selection***.
-
- ------------------------------------------------------------------------------------------------------------
- ***Fig. 9.4m*** ***Fig. 9.4n***
- ----------------------------------------------------- ------------------------------------------------------
- ![](media/image156.png){width="2.991107830271216in" ![](media/image130.png){width="3.0622233158355208in"
- height="2.34369750656168in"} height="2.5905457130358704in"}
-
- ------------------------------------------------------------------------------------------------------------
-
-Set the ***time, attitude and longitude*** as shown in Fig. 9.4n and
-then ***Restrict Ranges***. The part at the top of Fig. 9.4n should
-change accordingly and you now press ***Stop Selecting***.
-
-Fig. 9.4m now has the three ranges added, in blue, Fig. 9.4o. Click on
-Data Files to give the same as Fig. 9.4f, earlier. Choose the NetCDF
-option again to download the file.
-
- -----------------------------------------------------------------------------------------------------------
- ***Fig. 9.4o*** ***Fig. 9.4p***
- ----------------------------------------------------- -----------------------------------------------------
- ![](media/image141.png){width="2.780994094488189in" ![](media/image183.png){width="3.290544619422572in"
- height="1.8450831146106736in"} height="2.7998042432195978in"}
-
- -----------------------------------------------------------------------------------------------------------
-
-Use the File \> Input and Tidy NetCDF File as in Fig. 9.4g. Then use the
-Climatic \> Dates \> Generate Dates dialogue as shown in Fig. 9.4p. In
-Fig. 9.4p, remember to change to the new data frame. Then set the
-starting date to January 1921 and there are now 130 values (26 E-W, by 5
-N-S) at each time point.
-
-In Fig. 9.4p, if all is correct, the generated sequence should match the
-length of the data frame. Once accepted, the resulting data frame is
-shown in Fig. 9.4q. Here each pixel is a 2 degree square, so the first
-row is the temperature anomaly round 120°W and 4°S for January 1921.
-
- -----------------------------------------------------------------------
- ***Fig. 9.4q***
- -----------------------------------------------------------------------
- ![](media/image102.png){width="2.993989501312336in"
- height="3.175609142607174in"}
-
- -----------------------------------------------------------------------
-
-## Using the CM SAF toolbox for NetCDF files
-
-The CM SAF toolbox is an R software package designed to process the
-NetCDF files downloaded from EUMETSAT, Section 9.3. It is used on the
-downloaded files from EUMETSAT (or from other organisations who have
-NetCDF files). This may be all you need, if your interest is in some
-products from the EUMETSAT data. Or it may be before using R-Instat if
-your interest is in comparing station and satellite data.
-
-## Defining ENSO
-
-See
-[[https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/]{.underline}](https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/)
-
-[Warm and cold phases are defined as a minimum of five consecutive
-3-month running mean of SST anomalies
-([[ERSST.v5]{.underline}](http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php))
+# Gridded Data
+## Introduction
+
+There are various sources of gridded data for climatic elements. Those
+considered here are from the European Organisation for the Exploitation
+of Meteorological Satellites, Satellite Application Facility on Climate
+Monitoring (EUMETSAT CM SAF), the Copernicus Climate Change Service
+(C3S) Climate Data Store and the International Research Institute for
+Climate and Society (IRI) Data Store.
+
+All data are freely available. You need to register to access data from
+CM SAF, and also for the C3S Climate Data Store. The IRI Data Store does
+not require registration. The CM SAF data considered here are from
+stationary satellites and are available for all of Europe and Africa and
+possibly more, e.g. Middle East and Caribbean. Sunshine and radiation
+data are illustrated here. They are available daily (some hourly) on a
+grid of about 4km and are from 1983. Other elements, e.g. ground
+temperature are available hourly, from the early 1990s. They will later
+become available from the 1980s.
+
+We consider the ERA5 reanalysis data from the C3S Climate Data Store.
+ERA5 is global, from 1979 (soon to be 1950) with a large number of
+elements available hourly on a grid of 0.25 by 0.25 degrees (about
+30km). It is illustrated with precipitation (hourly) and with 2m
+temperature (used to derive daily Tmax and Tmin).
+
+The IRI Data Store is a repository of climate data from a wide variety
+of sources. We illustrate the IRI Data Store by accessing daily
+precipitation estimates from CHIRPS and ENSO and sea-surface
+temperatures, that are commonly used for seasonal forecasting.
+
+There are many possible uses and applications of these data. [To be
+continued -- with examples of what can be done and is being
+done.]{.mark}
+
+## Importing NetCDF files
+
+Show how to use the dialog first without changing options but still look
+at details to check what is being imported.
+
+Then show the options for sub-areas, an individual station, or for
+multiple stations. Can use Rwanda station locations and CHIRPS data from
+IRI section.
+
+## EUMETSAT CM SAF
+
+The CM SAF website is shown in Fig. 9.2a. You are invited to sign-in or
+register, though you are welcome to explore what is available without
+this. You need to register to download any data. You are then able to
+use these data freely. EUMETSAT would very much welcome any feedback on
+how the data have been used, particularly if, for example, you have
+compared your station data with their data. They may sometimes be
+prepared to assist you with using the data. You can contact EUMETSAT
+through their User Help Desk
+[[https://www.cmsaf.eu/EN/Service/UHD/UHD_node.html]{.underline}](https://www.cmsaf.eu/EN/Service/UHD/UHD_node.html).
+
+ -----------------------------------------------------------------------
+ ***Fig. 9.2a***
+ -----------------------------------------------------------------------
+ ![](figures/Fig9.2a.png){width="6.268055555555556in"
+ height="2.9381944444444446in"}
+
+ -----------------------------------------------------------------------
+
+Choose Surface Radiation products from the Climate Data Records menu in
+Fig. 9.2a. Choose daily sunshine duration, SDU, Fig. 9.2b.
+
+From Fig. 9.2c we see the data are available from 1 January 1983 to the
+end of December 2017 (when this guide was written). There are other
+products from EUMETSAT CM SAF if more recent data are required, but they
+have not been through the homogenisation and quality control checks.
+
+ -----------------------------------------------------------------------------------------------------------
+ ***Fig 9.2b*** ***Fig. 9.2c***
+ ----------------------------------------------------- -----------------------------------------------------
+ ![](figures/Fig9.2b.png){width="3.133465660542432in" ![](figures/Fig9.2c.png){width="2.911786964129484in"
+ height="2.4349464129483813in"} height="2.7217924321959757in"}
+
+ -----------------------------------------------------------------------------------------------------------
+
+Also indicated in Fig. 9.2c is that there is documentation on each
+product. Consider downloading these guides if you decide to use the data
+as they are very detailed and informative.
+
+On the same screen as Fig. 9.2c you see an ***Add to Order Cart***
+invitation. Ignore this for now, unless you want a huge file, with data
+from about half the globe.
+
+Instead, scroll further down and click on the button that says ***Change
+Projection / spatial resolution / domain***.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.2d*** ***Fig. 9.2e***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.2d.png){width="2.1938396762904637in" ![](figures/Fig9.2e.png){width="3.9405238407699037in"
+ height="2.021411854768154in"} height="1.5502766841644795in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+If you are following this as an exercise, then change the coordinates in
+Fig. 9.2e.
+
+Click, in Fig. 9.2e to proceed to the time range selection.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.2f*** ***Fig. 9.2g***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.2f.png){width="3.1262707786526684in" ![](figures/Fig9.2g.png){width="2.9971336395450567in"
+ height="2.611187664041995in"} height="1.376020341207349in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+In the following screen, scroll down to confirm that the sub-domain,
+part of Rwanda, has been included, Fig. 9.2f. Then press Add to Order
+Cart, Fig. 9.2g.
+
+You return to the screen in Fig. 9.2h. It is disconcerting that in Fig.
+9.2h it appears you are about to order a file of over 200 gigabytes, but
+it is the size ignoring the sub-domain[^46]. Keep your nerve and place
+the order, Fig. 9.2h.
+
+ -----------------------------------------------------------------------
+ ***Fig.9.2h***
+ -----------------------------------------------------------------------
+ ![](figures/Fig9.2h.png){width="6.152322834645669in"
+ height="2.709448818897638in"}
+
+ -----------------------------------------------------------------------
+
+You receive a confirmatory e-mail that the order has been placed on the
+EUMETSAT server. Shortly afterwards there is confirmation that the data
+have been extracted and are waiting to be downloaded, Fig. 9.2i
+
+ -----------------------------------------------------------------------
+ ***Fig. 9.2i***
+ -----------------------------------------------------------------------
+ ![](figures/Fig9.2i.png){width="6.101929133858268in"
+ height="2.9671358267716537in"}
+
+ -----------------------------------------------------------------------
+
+Follow the instructions in your equivalent of the message in Fig. 9.2i
+to download the file. It is now, for the first time that you are made
+aware of the file size, 341 Mbytes for this example.
+
+This downloads a single tar file, containing 12 thousand individual
+NetCDF files, with one file for each day.
+
+This is continued, in Section 9.5, through the CM SAF toolbox and in
+Section [xxx]{.mark} using R-Instat.
+
+## C3S Climate Data Store
+
+If you are not online, then the first part of this section is again for
+reading only.
+
+The website is . This takes you to
+the screen partly shown in Fig. 9.3a. You are invited to login or
+register your account. So, do this.
+
+Once logged in you return to the screen in Fig. 9.3a.
+
+ -----------------------------------------------------------------------
+ ***Fig. 9.3a***
+ -----------------------------------------------------------------------
+ ![](figures/Fig9.3a.png){width="6.124782370953631in"
+ height="2.761784776902887in"}
+
+ -----------------------------------------------------------------------
+
+Then click on Datasets in Fig. 9.3a to give the screen starting in Fig.
+9.3b. There are many different datasets available. In the search bar
+type "ERA5 hourly" and from the results select, "ERA5 hourly data on
+single levels".
+
+Click on this dataset to get further information, see Fig. 9.3c.
+
+ ------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3b*** ***Fig. 9.3c***
+ ----------------------------------------------------- ------------------------------------------------------
+ ![](figures/Fig9.3b.png){width="3.026570428696413in" ![](figures/Fig9.3c.png){width="3.0448775153105863in"
+ height="1.5810192475940508in"} height="2.0040441819772528in"}
+
+ ------------------------------------------------------------------------------------------------------------
+
+The data are currently from 1979 (soon to be from 1950). They are
+available for many elements including precipitation, temperature,
+evaporation, radiation and wind speed and direction.
+
+They are hourly data and at a 0.25 by 0.25-degree (about 25km)
+resolution.
+
+ ------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3d*** ***Fig. 9.3e***
+ ----------------------------------------------------- ------------------------------------------------------
+ ![](figures/Fig9.3d.png){width="3.128680008748906in" ![](figures/Fig9.3e.png){width="2.8662554680664916in"
+ height="2.0612062554680666in"} height="2.2056594488188974in"}
+
+ ------------------------------------------------------------------------------------------------------------
+
+On your first visit to the site, continue, and click on ***Download
+data*** in Fig. 9.3c. You then choose one or more elements, Fig. 9.3d
+and decide on the years, months, days and hours to include. Finally,
+select the sub-region to extract in the Geographical area section, Fig.
+9.3f. Once the items in Fig. 9.3d, Fig. 9.3e and Fig. 9.3f are complete
+you can click ***Submit Form*** to start the request.
+
+The running may take minutes (sometimes many) to complete. It also
+sometimes fails. You can view the current status of your requests by
+clicking ***Your requests*** from the menu bar shown in Fig. 9.3a.
+Occasionally there is a single error 500, in which case just run again.
+The other common error is that you have asked for too much data. If you
+are requesting a complete time series i.e. for all hours, days, and
+months, then the current limit appears to be approximately 5 years. This
+limit seems to be the same, irrespective of the area. Hence, for 30
+years, make 6 separate requests, changing the years for each run. You do
+not need to wait for a request to complete before starting another one.
+Go to ***Your requests*** to see the status of each and download the
+data once complete.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3f Generate a toolbox request*** ***Fig. 9.3g Names for each element***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.3f.png){width="3.0120089676290465in" ![](figures/Fig9.3g.png){width="3.0938626421697286in"
+ height="2.827140201224847in"} height="1.705543525809274in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+An alternative way to request data is through the Toolbox, shown in the
+menu bar of the homepage in Fig. 9.3a. Previously, it was not possible
+to select a sub-region through the interface described above, hence it
+was necessary to construct a Python script to run the Toolbox in order
+to do this. However, now that sub-region extraction is possible in the
+interface, we suggest it is sufficient to use the interface if your main
+interest is to download data for use in another software e.g. R or
+R-Instat.
+
+An example Toolbox script to download hourly 2-metre temperature data
+for sub-region covering in Rwanda for 5 years in shown Fig. 9.3i. The
+Toolbox also includes functionality for processing, analysing and
+displaying data, however this is not covered here as we will demonstrate
+importing ERA5 data into R-Instat.
+
++-----------------------------------------------------------------------+
+| ***Fig. 9.3h Sample toolbox code*** |
++=======================================================================+
+| **import cdstoolbox as ct** |
+| |
+| **\@ct.application(title=\'Retrieve Data\')** |
+| |
+| **\@ct.output.dataarray()** |
+| |
+| **def retrieve_sample_data():** |
+| |
+| **\"\"\"** |
+| |
+| **Application main steps:** |
+| |
+| **- retrieve 2m temperature of ERA5 from CDS Catalogue** |
+| |
+| **- specify the grid - year(s) - month(s) - day(s) - hour(s)** |
+| |
+| **- area is optional give N/W/S/E corners** |
+| |
+| **- recommended for local analysis** |
+| |
+| **- ask for netcdf format** |
+| |
+| **\"\"\"** |
+| |
+| **data = ct.catalogue.retrieve(** |
+| |
+| **\'reanalysis-era5-single-levels\',** |
+| |
+| **{** |
+| |
+| **\'variable\': \'2m_temperature\',** |
+| |
+| **\'grid\': \[\'0.25\', \'0.25\'\],** |
+| |
+| **\'product_type\': \'reanalysis\',** |
+| |
+| **\'year\': \[** |
+| |
+| **\'1981\','1982','1983','1984','1985'** |
+| |
+| **\],** |
+| |
+| **\'month\': \[** |
+| |
+| **\'01\', \'02\', \'03\', \'04\', \'05\', \'06\',\'07\', \'08\', |
+| \'09\', \'10\', \'11\', \'12\',** |
+| |
+| **\],** |
+| |
+| **\'day\': \[** |
+| |
+| **\'01\', \'02\', \'03\', \'04\', \'05\', \'06\',\'07\', \'08\', |
+| \'09\', \'10\', \'11\', \'12\',** |
+| |
+| **\'13\', \'14\', \'15\', \'16\', \'17\', \'18\',\'19\', \'20\', |
+| \'21\', \'22\', \'23\', \'24\',** |
+| |
+| **\'25\', \'26\', \'27\', \'28\', \'29\', \'30\',\'31\'** |
+| |
+| **\],** |
+| |
+| **\'time\': \[** |
+| |
+| **\'00:00\',\'01:00\',\'02:00\',\'03:00\',\'04:00\',\'05:00\',** |
+| |
+| **\'06:00\',\'07:00\',\'08:00\',\'09:00\',\'10:00\',\'11:00\',** |
+| |
+| **\'12:00\',\'13:00\',\'14:00\',\'15:00\',\'16:00\',\'17:00\',** |
+| |
+| **\'18:00\',\'19:00\',\'20:00\',\'21:00\',\'22:00\',\'23:00\'** |
+| |
+| **\],** |
+| |
+| **\'area\': \[\'-1.5/30/-2.0/30.54\'\],** |
+| |
+| **\'format\' : \[\'netcdf\'\]** |
+| |
+| **})** |
+| |
+| **return data** |
++-----------------------------------------------------------------------+
+
+The second stage is to read the resulting data into R-Instat. For those
+who were not online, the six files have also been renamed and copied
+into the R-Instat library.
+
+***Go into R-Instat*** and use ***File \> Open and Tidy NetCDF File***
+Fig. 9.3i.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3i Loading the data for 1981-5*** ***Fig. 9.3j Six files in R-Instat***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.3i.png){width="2.9332370953630797in" ![](figures/Fig9.3j.png){width="3.1684503499562555in"
+ height="2.824397419072616in"} height="2.5948917322834646in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+In Fig. 9.3j, if you downloaded your own data, then choose ***Browse***,
+otherwise choose ***From Library*** and ***use the file called
+cds.Rwanda_1981_5.nc***.
+
+Then recall the last dialogue and include the other five files, up to
+cds.Rwanda_2005_10. The resulting data are shown in Fig. 9.3k. There are
+about 394,416 rows of data in each file (i.e. roughly 9 \* 24 \* 365 \*
+5)
+
+The next step is to append the files to give the 30-year record. Use
+***Climatic \>Tidy and Examine \> Append***, Fig. 9.3l. In Fig. 9.3k,
+include all 6 data frame, then the ID column isn't needed and the
+resulting data frame is named better than Append1.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3k Appending the 6 data frames*** ***Fig. 9.3l Temperatures into centigrade***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.3k.png){width="3.1482884951881016in" ![](figures/Fig9.3l.png){width="2.9195363079615047in"
+ height="3.011654636920385in"} height="2.777613735783027in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+The data column in Fig. 9.3k, called tas, is in degrees Kelvin. Use
+***Climatic \> Prepare \> Transform*** to change them into centigrade
+for comparison with the station data, Fig. 9.3m.
+
+ECMWF provides the time variable always in GMT (Greenwich Mean Time).
+Rwanda is 2 hours ahead, so either, or both, the time variables in Fig.
+9.3k need to be moved forward by 2 hours. To make this change the data
+should first be in "station" order. Hence first ***Right-Click*** and
+choose ***Sort*** (or use Prepare \> Data Frame \> Sort) to produce the
+dialogue in Fig. 9.3m.
+
+Now use ***Prepare \> Column: Calculate \> Calculations*** as shown in
+Fig. 9.3n. In the calculator the ***Transform*** keyboard includes the
+***lead*** function. The function, from the dplyr package is:
+
+***dplyr::lead(time_full,2)***, to move to Rwanda time. Pressing the
+***Try*** button in Fig. 9.3n shows the first value is now 2am GMT[^47].
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3m*** ***Fig. 9.3n***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.3m.png){width="3.1482884951881016in" ![](figures/Fig9.3n.png){width="2.9195363079615047in"
+ height="3.011654636920385in"} height="2.777613735783027in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+Now use ***Climatic \> Dates \> Make Date*** to make a new Date column
+from the Rwanda hourly column, Fig. 9.3o.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3o*** ***Fig. 9.3p***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.3o.png){width="2.9332370953630797in" ![](figures/Fig9.3p.png){width="3.1684503499562555in"
+ height="2.824397419072616in"} height="2.5948917322834646in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+Finally generate Tmax and Tmin, on a daily basis, from the hourly
+values, ready to use, or to compare with station data. First
+***right-click*** and make the ***lon and lat columns into factors***.
+The hourly data are now roughly as in Fig. 9.3p
+
+Complete the ***Prepare \> Column: Reshape \> Column Summaries***
+dialogue as shown in Fig. 9.3q. As these are temperatures the daily
+maximum and minimum are calculated. The resulting worksheet, Fig. 9.3r,
+has a more reasonable 100,000 rows of data at the 9 gridpoints.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.3q*** ***Fig. 9.3r Resulting daily data***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.3q.png){width="3.1482884951881016in" ![](figures/Fig9.3r.png){width="2.9195363079615047in"
+ height="3.011654636920385in"} height="2.777613735783027in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+## The IRI Data Store
+
+A third source of gridded data considered here is the IRI Data Library.
+IRI is the International Research Institute for Climate and Society
+based in Colombia University, USA. The website for their data library is
+[[http://iridl.ldeo.columbia.edu/]{.underline}](http://iridl.ldeo.columbia.edu/)
+, Fig. 9.4a. The IRI Data Store is a large repository of climate data
+from a wide variety of sources. In many cases, the IRI Data Store is not
+the only, or primary, source of the data, however the IRI Data Store
+provides a simple consistent way of freely downloading from a large set
+of sources, and crucially allows for selecting sub-regions.
+
+As well as downloading from the website, R-Instat includes a dialog to
+directly download and import some of the common data from the IRI Data
+Store. We demonstrate both methods here, using the R-Instat dialog to
+download CHIRPS daily rainfall estimates and the IRI Data Store website
+to download information on ENSO and sea surface temperatures.
+
+### Downloading directly from R-Instat
+
+Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS),
+produced by Climate Hazards Center UC Santa Barbara, USA, is a
+near-global gridded rainfall data set, available from 1981 to
+near-present with a spatial resolution of 0.05°. It is constructed by
+combining satellite imagery and in-situ station data, and is available
+on a daily, dekad and monthly basis. It's website is here
+[[https://www.chc.ucsb.edu/data/chirps]{.underline}](https://www.chc.ucsb.edu/data/chirps)
+but the data is more easily available to download and subset from the
+IRI Data Store. It is an example of one of the datasets available to
+download directly from R-Instat.
+
+In R-Instat go to ***Climatic \> File \> Import from IRI Data
+Library***, fig xxx. First select "UCSB CHIRPS" as the ***Source***. We
+will download the daily data with the highest resolution available,
+hence choose "Daily Precipitation 0.05 degree" as the ***Data***, fig
+xxx. Source shows a limited set of data sources available in the IRI
+Data Store which we think will be most commonly used by R-Instat users.
+If there is a dataset from the IRI Data Store that you commonly use and
+think we should add, please let us know and we can consider adding it to
+the dialog.
+
+The next two sections of the dialog allow for choosing a subset of time
+or location. By default, "Entire Range" is selected for the data range.
+For CHIRPS, this means 1981 to near-present. We will use this option,
+but if you want a shorter time period choose "Custom Range" and select
+the "From" and "To" dates. The Location Range allows you to choose an
+area defined by longitude and latitude limits, or a single point, which
+will extract the nearest grid point to the location you provide. Let's
+first choose a single point for Kigali, Rwanda at longitude 30.1 and
+latitude -1.95, fig xxx.
+
+The dialog will connect to the IRI Data Library and download the
+requested data to your machine as a NetCDF file (.nc), a common format
+for gridded data (CM SAF and C3S Climate Data Store data are also
+provided in this format). Click ***Browse*** to choose where the
+download data will be saved to or accept the default of your Documents
+folder. Choose an appropriate name for the new data frame. Now, click
+***Ok*** to download and import the data into R-Instat. It may take some
+time for the request to be processed (up to 30 minutes), particularly
+for requests that are for a long time period since data are usually
+stored in separate files for each time point. However, this does not
+mean the download will be a large file and the time can vary depending
+on how busy the IRI Data Library servers are. While waiting, you will
+see the R-Instat waiting dialog and the download progress bar. Do not
+worry if the progress bar does not move forward, this just means the
+request is still being processed. Once the request has been processed,
+the download will usually be small and take very little time. For
+example, this request should result in a download file of size \~0.1MB.
+
+After finishing you will see the data imported into R-Instat, fig xxx.
+The NetCDF file has been downloaded to the location chosen on the dialog
+(Documents by default) and the file has been imported into a data frame
+in R-Instat. The data frame has five columns. X and Y are the location
+and this should be constant since we requested a single point. Notice
+that the value in Y is not exactly what we request. It is -1.97 and we
+request -1.95. This is because the closed grid point in the CHIRPS data
+grid to the provided location is selected. .T is time as a number and
+T_date is a more useful column that is created by R-Instat when
+importing as a Date column. prcp is precipitation. We can confirm this
+by looking at the column metadata: ***View \> Column Metadata***. Scroll
+to the end to see the "standard_name" and "units" columns which confirm
+what each column represents and its units, fig xxx. Click ***View \>
+Column Metadata*** again to close the metadata. We can see that each row
+in the data represents a single day, starting on 1981-01-01. Use
+***Describe \> One Variable \> Summaries***, and select all columns to
+see a summary of the data. The output is shown in fig xxx. We see that X
+and Y are constant, as expected. .T is numeric and not that useful, but
+T_date show the data ranges from 1981-01-01 to 2020-08-31 (as of October
+2020, usually 1 or 2 months behind the current date). prcp shows a
+sensible set of summaries for daily rainfall values. This is useful to
+do to confirm that the request is as you expected. For example, if X and
+Y are not constant but you wanted just a single point, then you may not
+have done the request correctly.
+
+Notice that the data file is also stored on your machine in the folder
+you chose. For example, in Documents my file is called
+ucsb_chirps7f14482329.nc. If you need to import this data again, you can
+now use the file directly, without requesting it again from the IRI Data
+Store. See section xxx on how to import NetCDF files.
+
+This data is useful for comparison with a single station in Kigali. We
+often have data from multiple stations and would wish to extract gridded
+data at each of the station locations. One way to do this would be to
+make separate requests for each station location using the Import from
+IRI Data Library multiple times. However, this becomes time consuming
+for many stations, particularly if the processing time is slow. Another
+option is to do a single request and download data for an area that
+covers all the station locations and then afterwards extract the data
+for the required locations.
+
+So let's to this by download the same data for an area that covers
+Rwanda instead of a single point. This will be a larger download file
+\~280MB but should not take much longer to process. If you have an
+internet connection able to download \~300MB of data then try the next
+steps below. If not, then this is just for reading.
+
+Go back to the ***Import from IRI Data Library*** dialog. The
+***Source***, ***Data*** and ***Date Range*** options remain the same.
+Change the ***Location Range*** option from "Point" to "Area" and enter
+the values: longitude: min 28.5, max 30.5, latitude: min -2.5, max -1.4.
+This area covers the four stations in Rwanda found in the R-Instat
+Library. Choose the location to save the download or use the same
+location. Now, the data request is for approximately a 2 degrees by 1
+degree area, which will give approximately (2 / 0.05) x (1 / 0.05) = 40
+x 20 = 800 grid points, since the resolution is 0.05 degrees. We do not
+want to directly import all 800 grid points into R-Instat as this would
+be equivalent to 800 station records for 40 years. Instead, we want to
+download the data and then extract only a few grid points of interest
+afterwards. So we will check the option for "Don't import data after
+downloading". This removes the new data frame name as it will not import
+into R-Instat but will just download to your machine. Now click ***Ok***
+and it may take a similar amount of time to complete.
+
+After finishing you will not see any change in R-Instat but the file
+will be downloaded to the chosen folder. We can now use the dialog at
+***Climatic \> File \> Import & Tidy NetCDF*** to import a subset of the
+grid points based on station locations. This is shown in section xxx.
+
+### Download from the IRI Data Store
+
+As examples, information on ENSO and sea surface temperatures are
+accessed. The maproom also contains instructional information, so typing
+ENSO into the search, Fig. 9.4a, provides useful information, including
+the areas of the Pacific ocean associated with the NINO situations, Fig.
+9.4b. Fig. 9.4b is accessed directly from
+[[https://iridl.ldeo.columbia.edu/maproom/ENSO/Diagnostics.html]{.underline}](https://iridl.ldeo.columbia.edu/maproom/ENSO/Diagnostics.html)
+
+ ------------------------------------------------------------------------------------------------------------
+ ***Fig.9.4a IRI Data Library*** ***Fig. 9.4b NINO3.4***
+ ------------------------------------------------------ -----------------------------------------------------
+ ![](figures/Fig9.4a.png){width="3.8668733595800524in" ![](figures/Fig9.4b.png){width="2.130990813648294in"
+ height="2.70544072615923in"} height="2.7068285214348204in"}
+
+ ------------------------------------------------------------------------------------------------------------
+
+In Fig. 9.4a click on Data by Category, then on Climate Indices, Fig.
+9.4c and choose Indices nino EXTENDED, Fig. 9.4d.
+
+ -------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.4c*** ***Fig. 9.4d***
+ ------------------------------------------------------ ------------------------------------------------------
+ ![](figures/Fig9.4c.png){width="2.6998807961504814in" ![](figures/Fig9.4d.png){width="3.4260433070866143in"
+ height="2.4705489938757657in"} height="2.2284437882764654in"}
+
+ -------------------------------------------------------------------------------------------------------------
+
+Choose ***nino34***, in Fig. 9.4e and then go straight to ***data
+files***. The next screen shows a variety of output formats, including
+NetCDF, which you choose.
+
+ -----------------------------------------------------------------------------------------------------------
+ ***Fig. 9.4e*** ***Fig. 9.4f***
+ ----------------------------------------------------- -----------------------------------------------------
+ ![](figures/Fig9.4e.png){width="3.075055774278215in" ![](figures/Fig9.4f.png){width="2.899403980752406in"
+ height="3.0795778652668417in"} height="3.59878280839895in"}
+
+ -----------------------------------------------------------------------------------------------------------
+
+Now, in R-Instat, use File \> Open and Tidy NetCDF File. If you followed
+the screens above, then browse for the file that was downloaded.
+Otherwise there is a copy in the R-Instat library to March 2019, Fig.
+9.4g.
+
+ ------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.4g*** ***Fig. 9.4h***
+ ----------------------------------------------------- ------------------------------------------------------
+ ![](figures/Fig9.4g.png){width="2.841988188976378in" ![](figures/Fig9.4h.png){width="2.6477077865266843in"
+ height="2.867364391951006in"} height="3.06124343832021in"}
+
+ ------------------------------------------------------------------------------------------------------------
+
+The data are now imported into R-Instat, Fig. 9.4h. The time variable
+has not been recognised as a date. You may wish to click on the I (for
+information -- the metadata) and this will confirm that the column,
+called T, is months since January 1960. If the fact that some values
+appear the same in this column, then change the number of significant
+figures in that column, from 3 to 5.
+
+The first value of T, in Fig. 9.4h is -1248. Dividing by 12 gives 104
+years, so the data start in January 1856!
+
+Use Climatic \> Dates \> Generate Dates, Fig. 9.4i. In Fig. 9.4i, change
+the starting date to January 1856, the end date to March 2019 (if using
+the library dataset), and the step to 1 Month. The resulting date column
+is shown in Fig. 9.4j.
+
+ ------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.4i*** ***Fig. 9.4j***
+ ----------------------------------------------------- ------------------------------------------------------
+ ![](figures/Fig9.4i.png){width="2.841988188976378in" ![](figures/Fig9.4j.png){width="2.6477077865266843in"
+ height="2.867364391951006in"} height="3.06124343832021in"}
+
+ ------------------------------------------------------------------------------------------------------------
+
+Countries have their own definition of when the NINO3.4 implies a year,
+or season is El Niño, or La Niña, see
+[[https://en.wikipedia.org/wiki/El_Ni%C3%B1o]{.underline}](https://en.wikipedia.org/wiki/El_Ni%C3%B1o),
+some use the NINO3.4 value and others use NINo3, or even NINO1 and 2.
+The site
+[[http://www.bom.gov.au/climate/enso/enlist/index.shtml]{.underline}](http://www.bom.gov.au/climate/enso/enlist/index.shtml)
+gives a detailed description of El Niño events since 1900, Fig. 9.4k,
+with a companion page for La Niña.
+
+ ------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.4k*** ***Fig. 9.4l***
+ ----------------------------------------------------- ------------------------------------------------------
+ ![](figures/Fig9.4k.png){width="3.470980971128609in" ![](figures/Fig9.4l.png){width="2.5918022747156604in"
+ height="2.1808070866141733in"} height="1.7213331146106736in"}
+
+ ------------------------------------------------------------------------------------------------------------
+
+The SSTs themselves are often used for seasonal forecasting. This is
+illustrated with the SSTs for the Nino3.4 region.
+
+***Return to the main page***, Fig. 9.4a, then choose ***Data by
+Category*** again, but this time, in Fig. 9.4c, choose ***Air-Sea
+Interface***. In the resulting screen, choose the ***NOAA NCDC ERSST
+version5***, Fig. 9.4l.
+
+In the resulting screen, Fig. 9.4m, choose ***anomalies*** and then
+***Data Selection***.
+
+ ------------------------------------------------------------------------------------------------------------
+ ***Fig. 9.4m*** ***Fig. 9.4n***
+ ----------------------------------------------------- ------------------------------------------------------
+ ![](figures/Fig9.4m.png){width="2.991107830271216in" ![](figures/Fig9.4n.png){width="3.0622233158355208in"
+ height="2.34369750656168in"} height="2.5905457130358704in"}
+
+ ------------------------------------------------------------------------------------------------------------
+
+Set the ***time, attitude and longitude*** as shown in Fig. 9.4n and
+then ***Restrict Ranges***. The part at the top of Fig. 9.4n should
+change accordingly and you now press ***Stop Selecting***.
+
+Fig. 9.4m now has the three ranges added, in blue, Fig. 9.4o. Click on
+Data Files to give the same as Fig. 9.4f, earlier. Choose the NetCDF
+option again to download the file.
+
+ -----------------------------------------------------------------------------------------------------------
+ ***Fig. 9.4o*** ***Fig. 9.4p***
+ ----------------------------------------------------- -----------------------------------------------------
+ ![](figures/Fig9.4o.png){width="2.780994094488189in" ![](figures/Fig9.4p.png){width="3.290544619422572in"
+ height="1.8450831146106736in"} height="2.7998042432195978in"}
+
+ -----------------------------------------------------------------------------------------------------------
+
+Use the File \> Input and Tidy NetCDF File as in Fig. 9.4g. Then use the
+Climatic \> Dates \> Generate Dates dialogue as shown in Fig. 9.4p. In
+Fig. 9.4p, remember to change to the new data frame. Then set the
+starting date to January 1921 and there are now 130 values (26 E-W, by 5
+N-S) at each time point.
+
+In Fig. 9.4p, if all is correct, the generated sequence should match the
+length of the data frame. Once accepted, the resulting data frame is
+shown in Fig. 9.4q. Here each pixel is a 2 degree square, so the first
+row is the temperature anomaly round 120°W and 4°S for January 1921.
+
+ -----------------------------------------------------------------------
+ ***Fig. 9.4q***
+ -----------------------------------------------------------------------
+ ![](figures/Fig9.4q.png){width="2.993989501312336in"
+ height="3.175609142607174in"}
+
+ -----------------------------------------------------------------------
+
+## Using the CM SAF toolbox for NetCDF files
+
+The CM SAF toolbox is an R software package designed to process the
+NetCDF files downloaded from EUMETSAT, Section 9.3. It is used on the
+downloaded files from EUMETSAT (or from other organisations who have
+NetCDF files). This may be all you need, if your interest is in some
+products from the EUMETSAT data. Or it may be before using R-Instat if
+your interest is in comparing station and satellite data.
+
+## Defining ENSO
+
+See
+[[https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/]{.underline}](https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/)
+
+[Warm and cold phases are defined as a minimum of five consecutive
+3-month running mean of SST anomalies
+([[ERSST.v5]{.underline}](http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php))
in the Niño 3.4 region surpassing a threshold of +/- 0.5°C]{.mark}
\ No newline at end of file