-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_detector_vg.py
281 lines (198 loc) · 8.86 KB
/
test_detector_vg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python
# coding: utf-8
from multiprocessing import Value
import sys
sys.executable
import random
import os
import json
import matplotlib.pyplot as plt
import numpy as np
import utils
import torch
import torchvision
import torch.utils.data as data
from PIL import Image, ImageDraw
from lib.faster_rcnn import FastRCNNPredictorPairedSortedGNNFull
from torchvision.transforms import functional as F
from engine import evaluateGNN
import lib
import gensim
from gensim import downloader
import torch.multiprocessing
from collections import defaultdict
torch.multiprocessing.set_sharing_strategy('file_system')
torch.multiprocessing.set_sharing_strategy('file_system')
glove_vectors = downloader.load('glove-wiki-gigaword-300')
print (torch.cuda.is_available())
print (torch.cuda.device_count())
print (torch.cuda.get_device_name())
device = torch.device("cuda")
import transforms as T
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
return T.Compose(transforms)
class VisualGenomeBansalTrainFullGNNv2(data.Dataset):
def __init__(self, object_file_path,glove_vectors,length, transforms=None):
self.image_dir = "/path/to/vg/images/VG_100K"
self.data = {}
object_data = json.load(open(object_file_path))
self.image_paths = []
self.image_items = {}
self.image_objects = object_data['objects']
self.image_data = object_data['image_data']
self.transforms = transforms
for data_item in self.image_data:
img_id = data_item['image_id']
imdb_id = data_item['imdb_id']
for rels in data_item['connected_scene_graphs']:
graph = defaultdict(list)
edges = 0
for rel in rels:
for obj in rel['objects']:
edges += 1
graph[obj['subject_id']].append({'object_id':obj['object_id'], 'subject_name':rel['subject_name'], 'object_name': rel['object_name'], 'predicate':rel['predicate']})
self.image_paths.append([img_id, graph])
print(len(self.image_paths))
self.w2v = glove_vectors
def load_image(self, index):
image_path = os.path.join(self.image_dir, "%d.jpg"%(index))
if os.path.exists(image_path):
img = Image.open(image_path)
else:
image_path = os.path.join(self.image_dir+"_2", "%d.jpg"%(index))
img = Image.open(image_path)
return img
def __getitem__(self, index):
s = self.image_paths[index]
img = self.load_image(self.image_paths[index][0])
data_object = s[1]
key2id = {}
boxes = []
labels = []
subjects = []
objects = []
predicates = []
i = 0
edges = []
unique_rel = []
unique_rel_name = []
key_happened = []
unique_nodes = []
key2id_pred = {}
node_names = []
name = ''
for key, items in data_object.items():
for item in items:
subj_id = key
obj_id = item['object_id']
if subj_id in key2id.keys():
subj_key = key2id[subj_id]
else:
key2id[subj_id] = len(key2id)
subj_key = key2id[subj_id]
if obj_id in key2id.keys():
obj_key = key2id[obj_id]
else:
key2id[obj_id] = len(key2id)
obj_key = key2id[obj_id]
pred_key = item['predicate']
if pred_key in key2id_pred.keys():
pred_key = key2id_pred[pred_key]
else:
key2id_pred[pred_key] = len(key2id_pred)
pred_key = key2id_pred[pred_key]
edges.append([subj_key, pred_key, obj_key])
subj_box = self.image_objects[str(subj_id)]['bbox_orig']
obj_box = self.image_objects[str(obj_id)]['bbox_orig']
subject_name = item['subject_name'].encode().decode("utf-8","ignore").split(' ')
name = name + item['subject_name']+'_'
subj_name = subject_name
if len(subject_name)>1:
subject_name = torch.as_tensor([self.w2v[str(r)] for r in subject_name], dtype=torch.float32).mean(0)
else:
subject_name = torch.as_tensor(self.w2v[str(subject_name[0])], dtype=torch.float32)
object_name = item['object_name'].encode().decode("utf-8","ignore").split(' ')
name = name + item['object_name']+'_'
obj_name = object_name
if len(object_name)>1:
object_name = torch.as_tensor([self.w2v[str(r)] for r in object_name], dtype=torch.float32).mean(0)
else:
object_name = torch.as_tensor(self.w2v[str(object_name[0])], dtype=torch.float32)
rel_name = item['predicate'].encode().decode("utf-8","ignore").split(' ')
name = name+item['predicate']
if len(rel_name) >1:
rel_emb = torch.as_tensor([self.w2v[str(r)] for r in rel_name], dtype=torch.float32).mean(0)
else:
rel_emb = torch.as_tensor(self.w2v[str(rel_name[0])], dtype=torch.float32)
if item['predicate'] in unique_rel_name:
pass
else:
unique_rel.append(rel_emb.unsqueeze(-1))
unique_rel_name.append(item['predicate'])
if not subj_key in key_happened:
key_happened.append(subj_key)
boxes.append([subj_box['x'], subj_box['y'], subj_box['x']+subj_box['w'], subj_box['y']+subj_box['h']])
i = i+1
labels.append(i)
node_names.append(subj_name)
unique_nodes.append(subject_name.unsqueeze(-1))
if not obj_key in key_happened:
key_happened.append(obj_key)
boxes.append([obj_box['x'], obj_box['y'], obj_box['x']+obj_box['w'], obj_box['y']+obj_box['h']])
i += 1
labels.append(i)
node_names.append(obj_name)
unique_nodes.append(object_name.unsqueeze(-1))
subjects.append(subject_name.unsqueeze(-1))
objects.append(object_name.unsqueeze(-1))
predicates.append(rel_emb.unsqueeze(-1))
target = {}
target['image_id'] = torch.tensor(int(index), dtype=torch.int64)
target['subject_embedding'] = torch.cat(subjects,dim=-1)
target['object_embedding'] = torch.cat(objects, dim=-1)
target['relation_embedding'] = torch.cat(predicates, dim=-1)
target['relation_unique'] = torch.cat(unique_rel, dim=-1)
target['unique_nodes'] = torch.cat(unique_nodes, dim=-1)
target['boxes'] = torch.as_tensor(boxes, dtype=torch.float32)
target['labels'] = torch.tensor(labels, dtype=torch.int64)
target['edges'] = torch.tensor(edges, dtype=torch.int64)
target['node_names'] = node_names
target['name'] = name
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.image_paths)
def get_model(num_classes):
model = lib.fasterrcnn_resnet50_fpn(pretrained=False)
in_features = model.roi_heads.box_predictor_v2.cls_score.in_features
num_classes = 2
model.roi_heads.box_predictor_v2 =FastRCNNPredictorPairedSortedGNNFull(in_features, num_classes)
return model
model = 'VGFO'
if model == 'VGFO':
OBJECTS_FILE = '/path/to/vg/file/localization_vg150vr40_po_test.json'
else:
OBJECTS_FILE = "/path/to/vg/file/localization_vg150vr40_po_test.json"
dataset = VisualGenomeBansalTrainFullGNNv2(OBJECTS_FILE,glove_vectors,4000, get_transform(train=False))
data_loader_test = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=True, num_workers=4,
collate_fn=utils.collate_fn)
print (len(dataset))
num_classes = 2
print (num_classes)
# # get the model using our helper function
model = get_model(num_classes)
# torch.hub.load(model, force_reload=True)
if torch.cuda.device_count() > 1:
print ('Going train with Data Parallel...')
# model = torch.nn.DataParallel(model)
# move model to the right device
model.to(device)
# In[10]:
MODEL_DIR = "saved_models"
num_epochs = 50
model.load_state_dict(torch.load("saved_models/gnn_model_step_1_full_non_margin_vg_v3_02_max_2.pth", map_location=device))
evaluateGNN(model.eval(), data_loader_test, device)