forked from markjeee/libmad
-
Notifications
You must be signed in to change notification settings - Fork 1
/
synth.c
857 lines (675 loc) · 23.8 KB
/
synth.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
* libmad - MPEG audio decoder library
* Copyright (C) 2000-2004 Underbit Technologies, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: synth.c,v 1.25 2004/01/23 09:41:33 rob Exp $
*/
# ifdef HAVE_CONFIG_H
# include "config.h"
# endif
# include "global.h"
# include "fixed.h"
# include "frame.h"
# include "synth.h"
/*
* NAME: synth->init()
* DESCRIPTION: initialize synth struct
*/
void mad_synth_init(struct mad_synth *synth)
{
mad_synth_mute(synth);
synth->phase = 0;
synth->pcm.samplerate = 0;
synth->pcm.channels = 0;
synth->pcm.length = 0;
}
/*
* NAME: synth->mute()
* DESCRIPTION: zero all polyphase filterbank values, resetting synthesis
*/
void mad_synth_mute(struct mad_synth *synth)
{
unsigned int ch, s, v;
for (ch = 0; ch < 2; ++ch) {
for (s = 0; s < 16; ++s) {
for (v = 0; v < 8; ++v) {
synth->filter[ch][0][0][s][v] = synth->filter[ch][0][1][s][v] =
synth->filter[ch][1][0][s][v] = synth->filter[ch][1][1][s][v] = 0;
}
}
}
}
/*
* An optional optimization called here the Subband Synthesis Optimization
* (SSO) improves the performance of subband synthesis at the expense of
* accuracy.
*
* The idea is to simplify 32x32->64-bit multiplication to 32x32->32 such
* that extra scaling and rounding are not necessary. This often allows the
* compiler to use faster 32-bit multiply-accumulate instructions instead of
* explicit 64-bit multiply, shift, and add instructions.
*
* SSO works like this: a full 32x32->64-bit multiply of two mad_fixed_t
* values requires the result to be right-shifted 28 bits to be properly
* scaled to the same fixed-point format. Right shifts can be applied at any
* time to either operand or to the result, so the optimization involves
* careful placement of these shifts to minimize the loss of accuracy.
*
* First, a 14-bit shift is applied with rounding at compile-time to the D[]
* table of coefficients for the subband synthesis window. This only loses 2
* bits of accuracy because the lower 12 bits are always zero. A second
* 12-bit shift occurs after the DCT calculation. This loses 12 bits of
* accuracy. Finally, a third 2-bit shift occurs just before the sample is
* saved in the PCM buffer. 14 + 12 + 2 == 28 bits.
*/
/* FPM_DEFAULT without OPT_SSO will actually lose accuracy and performance */
# if defined(FPM_DEFAULT) && !defined(OPT_SSO)
# define OPT_SSO
# endif
/* second SSO shift, with rounding */
# if defined(OPT_SSO)
# define SHIFT(x) (((x) + (1L << 11)) >> 12)
# else
# define SHIFT(x) (x)
# endif
/* possible DCT speed optimization */
# if defined(OPT_SPEED) && defined(MAD_F_MLX)
# define OPT_DCTO
# define MUL(x, y) \
({ mad_fixed64hi_t hi; \
mad_fixed64lo_t lo; \
MAD_F_MLX(hi, lo, (x), (y)); \
hi << (32 - MAD_F_SCALEBITS - 3); \
})
# else
# undef OPT_DCTO
# define MUL(x, y) mad_f_mul((x), (y))
# endif
/*
* NAME: dct32()
* DESCRIPTION: perform fast in[32]->out[32] DCT
*/
static
void dct32(mad_fixed_t const in[32], unsigned int slot,
mad_fixed_t lo[16][8], mad_fixed_t hi[16][8])
{
mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7;
mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15;
mad_fixed_t t16, t17, t18, t19, t20, t21, t22, t23;
mad_fixed_t t24, t25, t26, t27, t28, t29, t30, t31;
mad_fixed_t t32, t33, t34, t35, t36, t37, t38, t39;
mad_fixed_t t40, t41, t42, t43, t44, t45, t46, t47;
mad_fixed_t t48, t49, t50, t51, t52, t53, t54, t55;
mad_fixed_t t56, t57, t58, t59, t60, t61, t62, t63;
mad_fixed_t t64, t65, t66, t67, t68, t69, t70, t71;
mad_fixed_t t72, t73, t74, t75, t76, t77, t78, t79;
mad_fixed_t t80, t81, t82, t83, t84, t85, t86, t87;
mad_fixed_t t88, t89, t90, t91, t92, t93, t94, t95;
mad_fixed_t t96, t97, t98, t99, t100, t101, t102, t103;
mad_fixed_t t104, t105, t106, t107, t108, t109, t110, t111;
mad_fixed_t t112, t113, t114, t115, t116, t117, t118, t119;
mad_fixed_t t120, t121, t122, t123, t124, t125, t126, t127;
mad_fixed_t t128, t129, t130, t131, t132, t133, t134, t135;
mad_fixed_t t136, t137, t138, t139, t140, t141, t142, t143;
mad_fixed_t t144, t145, t146, t147, t148, t149, t150, t151;
mad_fixed_t t152, t153, t154, t155, t156, t157, t158, t159;
mad_fixed_t t160, t161, t162, t163, t164, t165, t166, t167;
mad_fixed_t t168, t169, t170, t171, t172, t173, t174, t175;
mad_fixed_t t176;
/* costab[i] = cos(PI / (2 * 32) * i) */
# if defined(OPT_DCTO)
# define costab1 MAD_F(0x7fd8878e)
# define costab2 MAD_F(0x7f62368f)
# define costab3 MAD_F(0x7e9d55fc)
# define costab4 MAD_F(0x7d8a5f40)
# define costab5 MAD_F(0x7c29fbee)
# define costab6 MAD_F(0x7a7d055b)
# define costab7 MAD_F(0x78848414)
# define costab8 MAD_F(0x7641af3d)
# define costab9 MAD_F(0x73b5ebd1)
# define costab10 MAD_F(0x70e2cbc6)
# define costab11 MAD_F(0x6dca0d14)
# define costab12 MAD_F(0x6a6d98a4)
# define costab13 MAD_F(0x66cf8120)
# define costab14 MAD_F(0x62f201ac)
# define costab15 MAD_F(0x5ed77c8a)
# define costab16 MAD_F(0x5a82799a)
# define costab17 MAD_F(0x55f5a4d2)
# define costab18 MAD_F(0x5133cc94)
# define costab19 MAD_F(0x4c3fdff4)
# define costab20 MAD_F(0x471cece7)
# define costab21 MAD_F(0x41ce1e65)
# define costab22 MAD_F(0x3c56ba70)
# define costab23 MAD_F(0x36ba2014)
# define costab24 MAD_F(0x30fbc54d)
# define costab25 MAD_F(0x2b1f34eb)
# define costab26 MAD_F(0x25280c5e)
# define costab27 MAD_F(0x1f19f97b)
# define costab28 MAD_F(0x18f8b83c)
# define costab29 MAD_F(0x12c8106f)
# define costab30 MAD_F(0x0c8bd35e)
# define costab31 MAD_F(0x0647d97c)
# else
# define costab1 MAD_F(0x0ffb10f2) /* 0.998795456 */
# define costab2 MAD_F(0x0fec46d2) /* 0.995184727 */
# define costab3 MAD_F(0x0fd3aac0) /* 0.989176510 */
# define costab4 MAD_F(0x0fb14be8) /* 0.980785280 */
# define costab5 MAD_F(0x0f853f7e) /* 0.970031253 */
# define costab6 MAD_F(0x0f4fa0ab) /* 0.956940336 */
# define costab7 MAD_F(0x0f109082) /* 0.941544065 */
# define costab8 MAD_F(0x0ec835e8) /* 0.923879533 */
# define costab9 MAD_F(0x0e76bd7a) /* 0.903989293 */
# define costab10 MAD_F(0x0e1c5979) /* 0.881921264 */
# define costab11 MAD_F(0x0db941a3) /* 0.857728610 */
# define costab12 MAD_F(0x0d4db315) /* 0.831469612 */
# define costab13 MAD_F(0x0cd9f024) /* 0.803207531 */
# define costab14 MAD_F(0x0c5e4036) /* 0.773010453 */
# define costab15 MAD_F(0x0bdaef91) /* 0.740951125 */
# define costab16 MAD_F(0x0b504f33) /* 0.707106781 */
# define costab17 MAD_F(0x0abeb49a) /* 0.671558955 */
# define costab18 MAD_F(0x0a267993) /* 0.634393284 */
# define costab19 MAD_F(0x0987fbfe) /* 0.595699304 */
# define costab20 MAD_F(0x08e39d9d) /* 0.555570233 */
# define costab21 MAD_F(0x0839c3cd) /* 0.514102744 */
# define costab22 MAD_F(0x078ad74e) /* 0.471396737 */
# define costab23 MAD_F(0x06d74402) /* 0.427555093 */
# define costab24 MAD_F(0x061f78aa) /* 0.382683432 */
# define costab25 MAD_F(0x0563e69d) /* 0.336889853 */
# define costab26 MAD_F(0x04a5018c) /* 0.290284677 */
# define costab27 MAD_F(0x03e33f2f) /* 0.242980180 */
# define costab28 MAD_F(0x031f1708) /* 0.195090322 */
# define costab29 MAD_F(0x0259020e) /* 0.146730474 */
# define costab30 MAD_F(0x01917a6c) /* 0.098017140 */
# define costab31 MAD_F(0x00c8fb30) /* 0.049067674 */
# endif
t0 = in[0] + in[31]; t16 = MUL(in[0] - in[31], costab1);
t1 = in[15] + in[16]; t17 = MUL(in[15] - in[16], costab31);
t41 = t16 + t17;
t59 = MUL(t16 - t17, costab2);
t33 = t0 + t1;
t50 = MUL(t0 - t1, costab2);
t2 = in[7] + in[24]; t18 = MUL(in[7] - in[24], costab15);
t3 = in[8] + in[23]; t19 = MUL(in[8] - in[23], costab17);
t42 = t18 + t19;
t60 = MUL(t18 - t19, costab30);
t34 = t2 + t3;
t51 = MUL(t2 - t3, costab30);
t4 = in[3] + in[28]; t20 = MUL(in[3] - in[28], costab7);
t5 = in[12] + in[19]; t21 = MUL(in[12] - in[19], costab25);
t43 = t20 + t21;
t61 = MUL(t20 - t21, costab14);
t35 = t4 + t5;
t52 = MUL(t4 - t5, costab14);
t6 = in[4] + in[27]; t22 = MUL(in[4] - in[27], costab9);
t7 = in[11] + in[20]; t23 = MUL(in[11] - in[20], costab23);
t44 = t22 + t23;
t62 = MUL(t22 - t23, costab18);
t36 = t6 + t7;
t53 = MUL(t6 - t7, costab18);
t8 = in[1] + in[30]; t24 = MUL(in[1] - in[30], costab3);
t9 = in[14] + in[17]; t25 = MUL(in[14] - in[17], costab29);
t45 = t24 + t25;
t63 = MUL(t24 - t25, costab6);
t37 = t8 + t9;
t54 = MUL(t8 - t9, costab6);
t10 = in[6] + in[25]; t26 = MUL(in[6] - in[25], costab13);
t11 = in[9] + in[22]; t27 = MUL(in[9] - in[22], costab19);
t46 = t26 + t27;
t64 = MUL(t26 - t27, costab26);
t38 = t10 + t11;
t55 = MUL(t10 - t11, costab26);
t12 = in[2] + in[29]; t28 = MUL(in[2] - in[29], costab5);
t13 = in[13] + in[18]; t29 = MUL(in[13] - in[18], costab27);
t47 = t28 + t29;
t65 = MUL(t28 - t29, costab10);
t39 = t12 + t13;
t56 = MUL(t12 - t13, costab10);
t14 = in[5] + in[26]; t30 = MUL(in[5] - in[26], costab11);
t15 = in[10] + in[21]; t31 = MUL(in[10] - in[21], costab21);
t48 = t30 + t31;
t66 = MUL(t30 - t31, costab22);
t40 = t14 + t15;
t57 = MUL(t14 - t15, costab22);
t69 = t33 + t34; t89 = MUL(t33 - t34, costab4);
t70 = t35 + t36; t90 = MUL(t35 - t36, costab28);
t71 = t37 + t38; t91 = MUL(t37 - t38, costab12);
t72 = t39 + t40; t92 = MUL(t39 - t40, costab20);
t73 = t41 + t42; t94 = MUL(t41 - t42, costab4);
t74 = t43 + t44; t95 = MUL(t43 - t44, costab28);
t75 = t45 + t46; t96 = MUL(t45 - t46, costab12);
t76 = t47 + t48; t97 = MUL(t47 - t48, costab20);
t78 = t50 + t51; t100 = MUL(t50 - t51, costab4);
t79 = t52 + t53; t101 = MUL(t52 - t53, costab28);
t80 = t54 + t55; t102 = MUL(t54 - t55, costab12);
t81 = t56 + t57; t103 = MUL(t56 - t57, costab20);
t83 = t59 + t60; t106 = MUL(t59 - t60, costab4);
t84 = t61 + t62; t107 = MUL(t61 - t62, costab28);
t85 = t63 + t64; t108 = MUL(t63 - t64, costab12);
t86 = t65 + t66; t109 = MUL(t65 - t66, costab20);
t113 = t69 + t70;
t114 = t71 + t72;
/* 0 */ hi[15][slot] = SHIFT(t113 + t114);
/* 16 */ lo[ 0][slot] = SHIFT(MUL(t113 - t114, costab16));
t115 = t73 + t74;
t116 = t75 + t76;
t32 = t115 + t116;
/* 1 */ hi[14][slot] = SHIFT(t32);
t118 = t78 + t79;
t119 = t80 + t81;
t58 = t118 + t119;
/* 2 */ hi[13][slot] = SHIFT(t58);
t121 = t83 + t84;
t122 = t85 + t86;
t67 = t121 + t122;
t49 = (t67 * 2) - t32;
/* 3 */ hi[12][slot] = SHIFT(t49);
t125 = t89 + t90;
t126 = t91 + t92;
t93 = t125 + t126;
/* 4 */ hi[11][slot] = SHIFT(t93);
t128 = t94 + t95;
t129 = t96 + t97;
t98 = t128 + t129;
t68 = (t98 * 2) - t49;
/* 5 */ hi[10][slot] = SHIFT(t68);
t132 = t100 + t101;
t133 = t102 + t103;
t104 = t132 + t133;
t82 = (t104 * 2) - t58;
/* 6 */ hi[ 9][slot] = SHIFT(t82);
t136 = t106 + t107;
t137 = t108 + t109;
t110 = t136 + t137;
t87 = (t110 * 2) - t67;
t77 = (t87 * 2) - t68;
/* 7 */ hi[ 8][slot] = SHIFT(t77);
t141 = MUL(t69 - t70, costab8);
t142 = MUL(t71 - t72, costab24);
t143 = t141 + t142;
/* 8 */ hi[ 7][slot] = SHIFT(t143);
/* 24 */ lo[ 8][slot] =
SHIFT((MUL(t141 - t142, costab16) * 2) - t143);
t144 = MUL(t73 - t74, costab8);
t145 = MUL(t75 - t76, costab24);
t146 = t144 + t145;
t88 = (t146 * 2) - t77;
/* 9 */ hi[ 6][slot] = SHIFT(t88);
t148 = MUL(t78 - t79, costab8);
t149 = MUL(t80 - t81, costab24);
t150 = t148 + t149;
t105 = (t150 * 2) - t82;
/* 10 */ hi[ 5][slot] = SHIFT(t105);
t152 = MUL(t83 - t84, costab8);
t153 = MUL(t85 - t86, costab24);
t154 = t152 + t153;
t111 = (t154 * 2) - t87;
t99 = (t111 * 2) - t88;
/* 11 */ hi[ 4][slot] = SHIFT(t99);
t157 = MUL(t89 - t90, costab8);
t158 = MUL(t91 - t92, costab24);
t159 = t157 + t158;
t127 = (t159 * 2) - t93;
/* 12 */ hi[ 3][slot] = SHIFT(t127);
t160 = (MUL(t125 - t126, costab16) * 2) - t127;
/* 20 */ lo[ 4][slot] = SHIFT(t160);
/* 28 */ lo[12][slot] =
SHIFT((((MUL(t157 - t158, costab16) * 2) - t159) * 2) - t160);
t161 = MUL(t94 - t95, costab8);
t162 = MUL(t96 - t97, costab24);
t163 = t161 + t162;
t130 = (t163 * 2) - t98;
t112 = (t130 * 2) - t99;
/* 13 */ hi[ 2][slot] = SHIFT(t112);
t164 = (MUL(t128 - t129, costab16) * 2) - t130;
t166 = MUL(t100 - t101, costab8);
t167 = MUL(t102 - t103, costab24);
t168 = t166 + t167;
t134 = (t168 * 2) - t104;
t120 = (t134 * 2) - t105;
/* 14 */ hi[ 1][slot] = SHIFT(t120);
t135 = (MUL(t118 - t119, costab16) * 2) - t120;
/* 18 */ lo[ 2][slot] = SHIFT(t135);
t169 = (MUL(t132 - t133, costab16) * 2) - t134;
t151 = (t169 * 2) - t135;
/* 22 */ lo[ 6][slot] = SHIFT(t151);
t170 = (((MUL(t148 - t149, costab16) * 2) - t150) * 2) - t151;
/* 26 */ lo[10][slot] = SHIFT(t170);
/* 30 */ lo[14][slot] =
SHIFT((((((MUL(t166 - t167, costab16) * 2) -
t168) * 2) - t169) * 2) - t170);
t171 = MUL(t106 - t107, costab8);
t172 = MUL(t108 - t109, costab24);
t173 = t171 + t172;
t138 = (t173 * 2) - t110;
t123 = (t138 * 2) - t111;
t139 = (MUL(t121 - t122, costab16) * 2) - t123;
t117 = (t123 * 2) - t112;
/* 15 */ hi[ 0][slot] = SHIFT(t117);
t124 = (MUL(t115 - t116, costab16) * 2) - t117;
/* 17 */ lo[ 1][slot] = SHIFT(t124);
t131 = (t139 * 2) - t124;
/* 19 */ lo[ 3][slot] = SHIFT(t131);
t140 = (t164 * 2) - t131;
/* 21 */ lo[ 5][slot] = SHIFT(t140);
t174 = (MUL(t136 - t137, costab16) * 2) - t138;
t155 = (t174 * 2) - t139;
t147 = (t155 * 2) - t140;
/* 23 */ lo[ 7][slot] = SHIFT(t147);
t156 = (((MUL(t144 - t145, costab16) * 2) - t146) * 2) - t147;
/* 25 */ lo[ 9][slot] = SHIFT(t156);
t175 = (((MUL(t152 - t153, costab16) * 2) - t154) * 2) - t155;
t165 = (t175 * 2) - t156;
/* 27 */ lo[11][slot] = SHIFT(t165);
t176 = (((((MUL(t161 - t162, costab16) * 2) -
t163) * 2) - t164) * 2) - t165;
/* 29 */ lo[13][slot] = SHIFT(t176);
/* 31 */ lo[15][slot] =
SHIFT((((((((MUL(t171 - t172, costab16) * 2) -
t173) * 2) - t174) * 2) - t175) * 2) - t176);
/*
* Totals:
* 80 multiplies
* 80 additions
* 119 subtractions
* 49 shifts (not counting SSO)
*/
}
# undef MUL
# undef SHIFT
/* third SSO shift and/or D[] optimization preshift */
# if defined(OPT_SSO)
# if MAD_F_FRACBITS != 28
# error "MAD_F_FRACBITS must be 28 to use OPT_SSO"
# endif
# define ML0(hi, lo, x, y) ((lo) = (x) * (y))
# define MLA(hi, lo, x, y) ((lo) += (x) * (y))
# define MLN(hi, lo) ((lo) = -(lo))
# define MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo))
# define SHIFT(x) ((x) >> 2)
# define PRESHIFT(x) ((MAD_F(x) + (1L << 13)) >> 14)
# else
# define ML0(hi, lo, x, y) MAD_F_ML0((hi), (lo), (x), (y))
# define MLA(hi, lo, x, y) MAD_F_MLA((hi), (lo), (x), (y))
# define MLN(hi, lo) MAD_F_MLN((hi), (lo))
# define MLZ(hi, lo) MAD_F_MLZ((hi), (lo))
# define SHIFT(x) (x)
# if defined(MAD_F_SCALEBITS)
# undef MAD_F_SCALEBITS
# define MAD_F_SCALEBITS (MAD_F_FRACBITS - 12)
# define PRESHIFT(x) (MAD_F(x) >> 12)
# else
# define PRESHIFT(x) MAD_F(x)
# endif
# endif
static
mad_fixed_t const D[17][32] = {
# include "D.dat"
};
# if defined(ASO_SYNTH)
void synth_full(struct mad_synth *, struct mad_frame const *,
unsigned int, unsigned int);
# else
/*
* NAME: synth->full()
* DESCRIPTION: perform full frequency PCM synthesis
*/
static
void synth_full(struct mad_synth *synth, struct mad_frame const *frame,
unsigned int nch, unsigned int ns)
{
unsigned int phase, ch, s, sb, pe, po;
mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
mad_fixed_t const (*sbsample)[36][32];
register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
register mad_fixed_t const (*Dptr)[32], *ptr;
register mad_fixed64hi_t hi;
register mad_fixed64lo_t lo;
for (ch = 0; ch < nch; ++ch) {
sbsample = &frame->sbsample[ch];
filter = &synth->filter[ch];
phase = synth->phase;
pcm1 = synth->pcm.samples[ch];
for (s = 0; s < ns; ++s) {
dct32((*sbsample)[s], phase >> 1,
(*filter)[0][phase & 1], (*filter)[1][phase & 1]);
pe = phase & ~1;
po = ((phase - 1) & 0xf) | 1;
/* calculate 32 samples */
fe = &(*filter)[0][ phase & 1][0];
fx = &(*filter)[0][~phase & 1][0];
fo = &(*filter)[1][~phase & 1][0];
Dptr = &D[0];
ptr = *Dptr + po;
ML0(hi, lo, (*fx)[0], ptr[ 0]);
MLA(hi, lo, (*fx)[1], ptr[14]);
MLA(hi, lo, (*fx)[2], ptr[12]);
MLA(hi, lo, (*fx)[3], ptr[10]);
MLA(hi, lo, (*fx)[4], ptr[ 8]);
MLA(hi, lo, (*fx)[5], ptr[ 6]);
MLA(hi, lo, (*fx)[6], ptr[ 4]);
MLA(hi, lo, (*fx)[7], ptr[ 2]);
MLN(hi, lo);
ptr = *Dptr + pe;
MLA(hi, lo, (*fe)[0], ptr[ 0]);
MLA(hi, lo, (*fe)[1], ptr[14]);
MLA(hi, lo, (*fe)[2], ptr[12]);
MLA(hi, lo, (*fe)[3], ptr[10]);
MLA(hi, lo, (*fe)[4], ptr[ 8]);
MLA(hi, lo, (*fe)[5], ptr[ 6]);
MLA(hi, lo, (*fe)[6], ptr[ 4]);
MLA(hi, lo, (*fe)[7], ptr[ 2]);
*pcm1++ = SHIFT(MLZ(hi, lo));
pcm2 = pcm1 + 30;
for (sb = 1; sb < 16; ++sb) {
++fe;
++Dptr;
/* D[32 - sb][i] == -D[sb][31 - i] */
ptr = *Dptr + po;
ML0(hi, lo, (*fo)[0], ptr[ 0]);
MLA(hi, lo, (*fo)[1], ptr[14]);
MLA(hi, lo, (*fo)[2], ptr[12]);
MLA(hi, lo, (*fo)[3], ptr[10]);
MLA(hi, lo, (*fo)[4], ptr[ 8]);
MLA(hi, lo, (*fo)[5], ptr[ 6]);
MLA(hi, lo, (*fo)[6], ptr[ 4]);
MLA(hi, lo, (*fo)[7], ptr[ 2]);
MLN(hi, lo);
ptr = *Dptr + pe;
MLA(hi, lo, (*fe)[7], ptr[ 2]);
MLA(hi, lo, (*fe)[6], ptr[ 4]);
MLA(hi, lo, (*fe)[5], ptr[ 6]);
MLA(hi, lo, (*fe)[4], ptr[ 8]);
MLA(hi, lo, (*fe)[3], ptr[10]);
MLA(hi, lo, (*fe)[2], ptr[12]);
MLA(hi, lo, (*fe)[1], ptr[14]);
MLA(hi, lo, (*fe)[0], ptr[ 0]);
*pcm1++ = SHIFT(MLZ(hi, lo));
ptr = *Dptr - pe;
ML0(hi, lo, (*fe)[0], ptr[31 - 16]);
MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
MLA(hi, lo, (*fe)[7], ptr[31 - 2]);
ptr = *Dptr - po;
MLA(hi, lo, (*fo)[7], ptr[31 - 2]);
MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
MLA(hi, lo, (*fo)[0], ptr[31 - 16]);
*pcm2-- = SHIFT(MLZ(hi, lo));
++fo;
}
++Dptr;
ptr = *Dptr + po;
ML0(hi, lo, (*fo)[0], ptr[ 0]);
MLA(hi, lo, (*fo)[1], ptr[14]);
MLA(hi, lo, (*fo)[2], ptr[12]);
MLA(hi, lo, (*fo)[3], ptr[10]);
MLA(hi, lo, (*fo)[4], ptr[ 8]);
MLA(hi, lo, (*fo)[5], ptr[ 6]);
MLA(hi, lo, (*fo)[6], ptr[ 4]);
MLA(hi, lo, (*fo)[7], ptr[ 2]);
*pcm1 = SHIFT(-MLZ(hi, lo));
pcm1 += 16;
phase = (phase + 1) % 16;
}
}
}
# endif
/*
* NAME: synth->half()
* DESCRIPTION: perform half frequency PCM synthesis
*/
static
void synth_half(struct mad_synth *synth, struct mad_frame const *frame,
unsigned int nch, unsigned int ns)
{
unsigned int phase, ch, s, sb, pe, po;
mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
mad_fixed_t const (*sbsample)[36][32];
register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
register mad_fixed_t const (*Dptr)[32], *ptr;
register mad_fixed64hi_t hi;
register mad_fixed64lo_t lo;
for (ch = 0; ch < nch; ++ch) {
sbsample = &frame->sbsample[ch];
filter = &synth->filter[ch];
phase = synth->phase;
pcm1 = synth->pcm.samples[ch];
for (s = 0; s < ns; ++s) {
dct32((*sbsample)[s], phase >> 1,
(*filter)[0][phase & 1], (*filter)[1][phase & 1]);
pe = phase & ~1;
po = ((phase - 1) & 0xf) | 1;
/* calculate 16 samples */
fe = &(*filter)[0][ phase & 1][0];
fx = &(*filter)[0][~phase & 1][0];
fo = &(*filter)[1][~phase & 1][0];
Dptr = &D[0];
ptr = *Dptr + po;
ML0(hi, lo, (*fx)[0], ptr[ 0]);
MLA(hi, lo, (*fx)[1], ptr[14]);
MLA(hi, lo, (*fx)[2], ptr[12]);
MLA(hi, lo, (*fx)[3], ptr[10]);
MLA(hi, lo, (*fx)[4], ptr[ 8]);
MLA(hi, lo, (*fx)[5], ptr[ 6]);
MLA(hi, lo, (*fx)[6], ptr[ 4]);
MLA(hi, lo, (*fx)[7], ptr[ 2]);
MLN(hi, lo);
ptr = *Dptr + pe;
MLA(hi, lo, (*fe)[0], ptr[ 0]);
MLA(hi, lo, (*fe)[1], ptr[14]);
MLA(hi, lo, (*fe)[2], ptr[12]);
MLA(hi, lo, (*fe)[3], ptr[10]);
MLA(hi, lo, (*fe)[4], ptr[ 8]);
MLA(hi, lo, (*fe)[5], ptr[ 6]);
MLA(hi, lo, (*fe)[6], ptr[ 4]);
MLA(hi, lo, (*fe)[7], ptr[ 2]);
*pcm1++ = SHIFT(MLZ(hi, lo));
pcm2 = pcm1 + 14;
for (sb = 1; sb < 16; ++sb) {
++fe;
++Dptr;
/* D[32 - sb][i] == -D[sb][31 - i] */
if (!(sb & 1)) {
ptr = *Dptr + po;
ML0(hi, lo, (*fo)[0], ptr[ 0]);
MLA(hi, lo, (*fo)[1], ptr[14]);
MLA(hi, lo, (*fo)[2], ptr[12]);
MLA(hi, lo, (*fo)[3], ptr[10]);
MLA(hi, lo, (*fo)[4], ptr[ 8]);
MLA(hi, lo, (*fo)[5], ptr[ 6]);
MLA(hi, lo, (*fo)[6], ptr[ 4]);
MLA(hi, lo, (*fo)[7], ptr[ 2]);
MLN(hi, lo);
ptr = *Dptr + pe;
MLA(hi, lo, (*fe)[7], ptr[ 2]);
MLA(hi, lo, (*fe)[6], ptr[ 4]);
MLA(hi, lo, (*fe)[5], ptr[ 6]);
MLA(hi, lo, (*fe)[4], ptr[ 8]);
MLA(hi, lo, (*fe)[3], ptr[10]);
MLA(hi, lo, (*fe)[2], ptr[12]);
MLA(hi, lo, (*fe)[1], ptr[14]);
MLA(hi, lo, (*fe)[0], ptr[ 0]);
*pcm1++ = SHIFT(MLZ(hi, lo));
ptr = *Dptr - po;
ML0(hi, lo, (*fo)[7], ptr[31 - 2]);
MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
MLA(hi, lo, (*fo)[0], ptr[31 - 16]);
ptr = *Dptr - pe;
MLA(hi, lo, (*fe)[0], ptr[31 - 16]);
MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
MLA(hi, lo, (*fe)[7], ptr[31 - 2]);
*pcm2-- = SHIFT(MLZ(hi, lo));
}
++fo;
}
++Dptr;
ptr = *Dptr + po;
ML0(hi, lo, (*fo)[0], ptr[ 0]);
MLA(hi, lo, (*fo)[1], ptr[14]);
MLA(hi, lo, (*fo)[2], ptr[12]);
MLA(hi, lo, (*fo)[3], ptr[10]);
MLA(hi, lo, (*fo)[4], ptr[ 8]);
MLA(hi, lo, (*fo)[5], ptr[ 6]);
MLA(hi, lo, (*fo)[6], ptr[ 4]);
MLA(hi, lo, (*fo)[7], ptr[ 2]);
*pcm1 = SHIFT(-MLZ(hi, lo));
pcm1 += 8;
phase = (phase + 1) % 16;
}
}
}
/*
* NAME: synth->frame()
* DESCRIPTION: perform PCM synthesis of frame subband samples
*/
void mad_synth_frame(struct mad_synth *synth, struct mad_frame const *frame)
{
unsigned int nch, ns;
void (*synth_frame)(struct mad_synth *, struct mad_frame const *,
unsigned int, unsigned int);
nch = MAD_NCHANNELS(&frame->header);
ns = MAD_NSBSAMPLES(&frame->header);
synth->pcm.samplerate = frame->header.samplerate;
synth->pcm.channels = nch;
synth->pcm.length = 32 * ns;
synth_frame = synth_full;
if (frame->options & MAD_OPTION_HALFSAMPLERATE) {
synth->pcm.samplerate /= 2;
synth->pcm.length /= 2;
synth_frame = synth_half;
}
synth_frame(synth, frame, nch, ns);
synth->phase = (synth->phase + ns) % 16;
}