-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdemo.m
54 lines (41 loc) · 1.48 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
% AL toolbox demo
% Indian Pines image, 13 out of the 16 classes
% IM are the spectra of the labeled pixels
% CL are the classes
load testAVIRIS.mat
num_of_classes = size(unique(CL),1);
CL = CL-1; % classes must start at 0 for SVMtorch
s = rand('twister');
rand('twister',0);
c = randperm(length(CL))';
rand('twister',s);
tr = [IM(c(1:400),:) CL(c(1:400),:)];
cand = [IM(c(401:8000),:) CL(c(401:8000),:)];
ts = [IM(c(8001:end),:) CL(c(8001:end),:)];
iterVect = 10:10:200;
% Random sampling
disp('SVM with random sampling');
options.model = 'SVM';
options.uncertainty = 'Random';
options.diversity = 'None';
options.iterVect = iterVect;
name = sprintf('%s_%s_%s', options.model, options.uncertainty, options.diversity);
[accCurve.(name) predictions.(name), criterion.(name), sampList.(name), modelParameters.(name)] = ...
AL(tr, cand, ts, num_of_classes, options);
% AL
disp('SVM with margin sampling active learning');
options.model = 'SVM';
options.uncertainty = 'MS';
options.diversity = 'None';
options.iterVect = iterVect;
name = sprintf('%s_%s_%s', options.model, options.uncertainty, options.diversity);
[accCurve.(name) predictions.(name), criterion.(name), sampList.(name), modelParameters.(name)] = ...
AL(tr, cand, ts, num_of_classes, options);
figure
plot(length(tr)+iterVect,accCurve.SVM_Random_None(:,1),'r-');
hold on
plot(length(tr)+iterVect,accCurve.SVM_MS_None(:,1),'b-');
grid on
legend('RS','MS')
xlabel('Samples in training set')
ylabel('Accuracy [pct]')