-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
219 lines (174 loc) · 7.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
from PIL import Image
import time
import os
import copy
import pandas as pd
import pickle
import csv
from efficientnet_pytorch import EfficientNet
# set feature extraction mode to False to unfreeze all weights and perform finetuning
feature_extract = False
# models list
model_list = ['squeezenet1-0','resnet-152', 'densenet-121', 'efficientnet-b4']
# path to the dataset
data_dir = '../KFD'
# select the model
model_name = model_list[3]
# set hyperparameters of the model
learning_rate = 0.001
epoch_number = 40
batch = 68
learning_rate_scheduler = True
cudnn.benchmark = True
plt.ion() # interactive mode
# LOAD THE DATA
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(380),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(380),
transforms.CenterCrop(380),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
# initiate data loaders
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
# extract class names
class_names = image_datasets['train'].classes
# set the device to train the model
device = torch.device("cuda:2") #if torch.cuda.is_available() else "cpu")
# dictionary to record the training progress
results = {'train_loss':[], 'val_loss':[], 'train_accuracy':[], 'val_accuracy':[]}
# TRAINING THE MODEL
train_loss = []
def train_model(model, criterion, optimizer, scheduler, num_epochs=5):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if phase=='train':
results['train_loss'].append(epoch_loss)
results['train_accuracy'].append(epoch_acc)
if phase=='val':
results['val_loss'].append(epoch_loss)
results['val_accuracy'].append(epoch_acc)
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(best_model_wts)
return model
# finetune the convnet
if model_name == "squeezenet1-0":
model_ft = models.squeezenet1_0(pretrained=True)
model_ft.classifier[1] = nn.Conv2d(512, len(class_names), kernel_size=(1,1), stride=(1,1))
model_ft.num_classes = len(class_names)
elif model_name == "resnet-152":
model_ft = models.resnet101(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
elif model_name == "densenet-121":
model_ft = models.densenet121(pretrained=True)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, len(class_names))
elif model_name == "efficientnet-b4":
model_ft = EfficientNet.from_pretrained('efficientnet-b4')
# To use the custom weights of the previouls trained model
# net_weight = 'pretrained_custom.pt'
# state_dict = torch.load(net_weight)
# model_ft.load_state_dict(state_dict)
num_ftrs = model_ft._fc.in_features
model_ft._fc = nn.Linear(num_ftrs, len(class_names))
else:
print('invalid model, exiting...')
exit()
if feature_extract == True:
for param in model_ft.parameters():
param.requires_grad = False
# transfer model to selected device
model_ft = model_ft.to(device)
# set the training loss type
criterion = nn.CrossEntropyLoss()
# observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=0.9)
# decay LR by a factor of 0.1 every 7 epochs
if learning_rate_scheduler==True:
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=epoch_number)
else:
model_ft = train_model(model_ft, criterion, optimizer_ft, num_epochs=epoch_number)
PATH = "results/kfd_{}.pt".format(model_name)
# save the model
torch.save(model_ft, PATH)
# plotting the train and validation loss curves
plt.style.use("ggplot")
plt.figure()
plt.plot(results['train_loss'], label="train_loss")
plt.plot(results['val_loss'], label="val_loss")
plt.title("Training and validation lossess")
plt.xlabel("Epoch #")
plt.ylabel("Loss")
plt.legend(loc="upper right")
plt.savefig('results/loss-curve_food1k_{}.png'.format(model_name))