-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_model.py
292 lines (250 loc) · 10.8 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from utils.dataset import TrainDataset
from utils.dataset import ValidDataset
from utils.sampler import SFProtoSampler
from utils.sampler import VoxCelebProtoSampler
from utils.loss import PrototypicalLoss
from utils.train import train_model
from utils.parser import createParser
from utils.transforms import Audio_Transforms
from utils.transforms import Image_Transforms
from utils.models import Model
import torch
from torch.utils.data import DataLoader
import numpy as np
import random
import wandb
import os
import yaml
if __name__== "__main__":
parser = createParser()
namespace = parser.parse_args()
# Input parameters
n_gpu = namespace.n_gpu
seed_number = namespace.seed
print("SEED {}".format(seed_number))
# dataset
annotations_file = namespace.annotation_file
path_to_train_dataset = namespace.path_to_train_dataset
path_to_valid_dataset = namespace.path_to_valid_dataset
path_to_valid_list = namespace.path_to_valid_list
dataset_type = namespace.dataset_type
exp_name = namespace.exp_name
save_dir = namespace.save_dir
config_file = namespace.config_file
with open(config_file) as cf_file:
config = yaml.safe_load( cf_file.read())
# model
library = config['library']
model_name = config['model_name']
fine_tune = config['fine_tune']
transfer = config['transfer']
pool=config['pool']
# transfer_exp_path = config['transfer_exp_path']
data_type=config['data_type']
pretrained_weights = config['pretrained_weights']
embedding_size = config['embedding_size']
# audio transforms
sample_rate = config['sample_rate']
sample_duration=config['sample_duration']
n_fft=config['n_fft']
win_length=config['win_length']
hop_length=config['hop_length']
n_mels=config['n_mels']
# image transform
image_resize = config['image_resize']
# train_dataloader
n_batch = config['n_batch']
n_ways = config['n_ways']
n_support = config['n_support']
n_query = config['n_query']
name_sampler = config['sampler']
#valid_dataloader
batch_size = config['batch_size']
# loss
dist_type = config['dist_type']
loss_type = config['loss_type']
# optimizer
weight_decay = config['weight_decay']
learning_rate = float(config['lr'])
scheduler_type = config['scheduler']
gamma = config['gamma']
t_max = config['t_max']
step_size = config['step_size']
# train
num_epochs = config['num_epochs']
# save_dir = config['save_dir']
wandb_use = config['wandb']
input_parameters = {}
input_parameters["n_gpu"] = n_gpu
input_parameters["seed_number"] = seed_number
input_parameters["annotation_file"] = annotations_file
input_parameters["path_to_train_dataset"] = path_to_train_dataset
input_parameters["path_to_valid_dataset"] = path_to_valid_dataset
input_parameters["path_to_valid_list"] = path_to_valid_list
input_parameters["dataset_type"] = dataset_type
input_parameters["n_batch"] = n_batch
input_parameters["n_ways"] = n_ways
input_parameters["n_support"] = n_support
input_parameters["n_query"] = n_query
input_parameters["valid_batch_size"] = batch_size
input_parameters["dist_type"] = dist_type
input_parameters["loss_type"] = loss_type
input_parameters["library"] = library
input_parameters["sampler"] = name_sampler
input_parameters["model_name"] = model_name
input_parameters["fine_tune"] = fine_tune
input_parameters["transfer"] = transfer
input_parameters["pool"] = pool
input_parameters["exp_name"] = exp_name
input_parameters["pretrained_weights"] = pretrained_weights
input_parameters["embedding_size"] = embedding_size
input_parameters["batch_size"] = batch_size
input_parameters["wandb"] = wandb_use
# audio transform
input_parameters["sample_rate"] = sample_rate
input_parameters["sample_duration"] = sample_duration
input_parameters["n_fft"] = n_fft
input_parameters["win_length"] = win_length
input_parameters["hop_length"] = hop_length
input_parameters["n_mels"] = n_mels
# image transform
input_parameters["image_resize"] = image_resize
input_parameters["num_epochs"] = num_epochs
input_parameters["save_dir"] = save_dir
input_parameters["data_type"] = data_type
input_parameters["weight_decay"] = weight_decay
input_parameters["lr"] = learning_rate
# print("SAVE DIR", save_dir)
torch.save(input_parameters,f'{save_dir}/{data_type[0]}_{exp_name}_input_parameters')
#------------------------------------------------------------------
torch.manual_seed(seed_number)
torch.cuda.manual_seed(seed_number)
np.random.seed(seed_number)
random.seed(seed_number)
torch.backends.cudnn.enabled=False
torch.backends.cudnn.deterministic=True
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
torch.set_num_threads(1)
device = torch.device(f"cuda:{str(n_gpu)}" if torch.cuda.is_available() else "cpu")
audio_Train = None
audio_Test = None
rgb_T = None
thr_T = None
# Transforms for each modality
if 'wav' in data_type:
audio_Train = Audio_Transforms(sample_rate=sample_rate,
sample_duration=sample_duration,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
window_fn=torch.hamming_window,
n_mels=n_mels,
model_name=model_name,
library=library,
mode="train",
dataset_type=dataset_type)
audio_Train = audio_Train.transform
audio_Test = Audio_Transforms(sample_rate=sample_rate,
sample_duration=sample_duration,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
window_fn=torch.hamming_window,
n_mels=n_mels,
model_name=model_name,
library=library,
mode="test",
dataset_type=dataset_type)
audio_Test = audio_Test.transform
if 'rgb' in data_type:
rgb_T = Image_Transforms(model_name=model_name,
library=library, modality="rgb", dataset_type=dataset_type)
rgb_T = rgb_T.transform
if 'thr' in data_type:
thr_T = Image_Transforms(model_name=model_name,
library=library, modality="thr", dataset_type=dataset_type)
thr_T = thr_T.transform
# Dataset
train_dataset = TrainDataset(annotations_file=annotations_file,
path_to_train_dataset=path_to_train_dataset,
data_type=data_type,
dataset_type=dataset_type,
train_type = 'train',
rgb_transform=rgb_T,
thr_transform=thr_T,
audio_transform=audio_Train)
valid_dataset= ValidDataset(path_to_valid_dataset=path_to_valid_dataset,
path_to_valid_list=path_to_valid_list,
data_type=data_type,
dataset_type=dataset_type,
rgb_transform=rgb_T,
thr_transform=thr_T,
audio_transform=audio_Test)
if loss_type == 'classification':
train_dataloader = DataLoader(dataset=train_dataset,
shuffle=True,
batch_size=batch_size,
num_workers=4)
train_sampler = None
elif loss_type == 'metric_learning':
if name_sampler =="SFProtoSampler":
train_sampler = SFProtoSampler(train_dataset.labels,
n_batch,
n_ways,
n_support,
n_query)
elif name_sampler =="VoxCelebProtoSampler":
train_sampler = VoxCelebProtoSampler(train_dataset.labels,
n_ways,
n_support,
n_query)
train_dataloader = DataLoader(dataset=train_dataset,
batch_sampler=train_sampler)
valid_dataloader = DataLoader(dataset=valid_dataset,
batch_size=batch_size)
pretrained_model = Model(library=library,
pretrained_weights=pretrained_weights,
fine_tune=fine_tune,
embedding_size=embedding_size,
model_name = model_name,
pool=pool,
data_type=data_type)
if loss_type == 'classification':
n_classes = len(np.unique(train_dataset.labels))
classification_layer = torch.nn.Linear(embedding_size, n_classes)
model = torch.nn.Sequential()
model.add_module('pretrained_model', pretrained_model)
model.add_module('classification_layer', classification_layer)
elif loss_type == 'metric_learning':
model = pretrained_model
if transfer:
PATH=f'{transfer_exp_path}_best_eer.pth'
print("Loading model saved as {}".format(PATH))
model.load_state_dict(torch.load(PATH))
model = model.to(device)
# loss
criterion = PrototypicalLoss(dist_type = dist_type)
criterion = criterion.to(device)
# optimizer + scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr = learning_rate, weight_decay = weight_decay)
if scheduler_type == "StepLR":
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = step_size, gamma = gamma)
else:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = t_max)
# train
model = train_model(model=model,
train_dataloader=train_dataloader,
valid_dataloader=valid_dataloader,
train_sampler=train_sampler,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
device=device,
num_epochs=num_epochs,
save_dir=save_dir,
exp_name=exp_name,
data_type=data_type,
loss_type=loss_type,
# wandb=wandb
)