forked from Kaylians/Implementacion_HWFC_C_PlusPlus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolver.cpp
756 lines (668 loc) · 33.8 KB
/
Solver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
#include "Solver.h"
//funcion para inicializar el mapa
void initialize_Map(std::vector<std::vector<int>>& unCollapseMap, const std::vector<Pixel>& posibleTiles, int Y) {
std::vector<int> tmp;
unCollapseMap.clear();
for (int i = 0; i < Y * Y; i++) {
for (int j = 0; j < posibleTiles.size(); j++) {
tmp.push_back(j);
}
unCollapseMap.push_back(tmp);
tmp.clear();
}
}
//funcion para obtener numeros aleatorios con min y max
int getRandom(int min, int max) {
int rnd = 0;
rnd = std::rand() % max;
return rnd;
}
//funcion random para elegir el patron que m�s se repite
int getRandomPatternWeighted(const std::vector<int>& total_Weight) {
std::random_device rd;
std::mt19937 gen(rd());
std::discrete_distribution<int> distribution(total_Weight.begin(), total_Weight.end());
return distribution(gen);
}
// Función que retorna la cantidad de entropia, si todos las posiciones entregadas estan colapsadas retorna 0
int calculate_Entropy_around_window(const std::vector<std::vector<int>>& unCollapseMap, std::vector<int>& tmp_newCoordinates, const int N, const int Y, int pos, int i_min, int i_max, int j_min, int j_max) {
bool contains = false;
int count = 0;
int coo;
tmp_newCoordinates.clear();
for (int i = i_min, x = 0; i <= i_max; i++, x++) {
for (int j = j_min, y = 0; j <= j_max; j++, y++) {
coo = pos + j + i * Y;
if (unCollapseMap[coo].size() > 1)
count += unCollapseMap[coo].size();
tmp_newCoordinates.push_back(coo);
}
}
return count;
}
//función para definir una ventana alrededor del area con menor entropia en los puntos entregados
bool define_windowArea_with_lowest_entropy(const std::vector<std::vector<int>>& Map, const std::vector<int>& Propagation_Pos, std::vector<int>& New_Window_Area, const int N_Pattern_Size, const int Y_Map_size, int& window_origin_pos, bool get_best_window_only) {
if (Propagation_Pos.empty())
return false;
std::vector<int> tmp_new_window, best_window;
std::vector<std::vector<int>> posible_window;
int current_lowest_entropy = -1, tmp_lowest_entropy = 0, pos;
bool up = false, down = false, right = false, left = false;
//verificación de si se encuentra dentro de los boordes del mapa
for (int i = 0; i < Propagation_Pos.size(); i++) {
pos = Propagation_Pos[i];
up = false, down = false, right = false, left = false;
if (pos / Y_Map_size >= N_Pattern_Size - 1)
up = true;
if (pos / Y_Map_size < Y_Map_size - (N_Pattern_Size - 1))
down = true;
if (pos % Y_Map_size >= N_Pattern_Size - 1)
left = true;
if (pos % Y_Map_size < Y_Map_size - (N_Pattern_Size - 1))
right = true;
tmp_lowest_entropy = 0;
if (up) {
if (left) {
tmp_lowest_entropy = calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, -(N_Pattern_Size - 1), 0, -(N_Pattern_Size - 1), 0);
if (tmp_lowest_entropy != 0) {
posible_window.push_back(tmp_new_window);
if ((current_lowest_entropy > tmp_lowest_entropy) || current_lowest_entropy == -1) {
current_lowest_entropy = tmp_lowest_entropy;
best_window = tmp_new_window;
window_origin_pos = pos;
}
}
tmp_lowest_entropy = 0;
}
if (right) {
tmp_lowest_entropy = calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, -(N_Pattern_Size - 1), 0, 0, N_Pattern_Size - 1);
if (tmp_lowest_entropy != 0){
posible_window.push_back(tmp_new_window);
if ((current_lowest_entropy > tmp_lowest_entropy) || current_lowest_entropy == -1) {
current_lowest_entropy = tmp_lowest_entropy;
best_window = tmp_new_window;
window_origin_pos = pos;
}
}
tmp_lowest_entropy = 0;
}
}
if (down) {
if (left) {
tmp_lowest_entropy = calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, 0, N_Pattern_Size - 1, -(N_Pattern_Size - 1), 0);
if (tmp_lowest_entropy != 0) {
posible_window.push_back(tmp_new_window);
if ((current_lowest_entropy > tmp_lowest_entropy) || current_lowest_entropy == -1) {
current_lowest_entropy = tmp_lowest_entropy;
best_window = tmp_new_window;
window_origin_pos = pos;
}
}
tmp_lowest_entropy = 0;
}
if (right) {
tmp_lowest_entropy = calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, 0, N_Pattern_Size - 1, 0, N_Pattern_Size - 1);
if (tmp_lowest_entropy != 0) {
posible_window.push_back(tmp_new_window);
if ((current_lowest_entropy > tmp_lowest_entropy) || current_lowest_entropy == -1) {
current_lowest_entropy = tmp_lowest_entropy;
best_window = tmp_new_window;
window_origin_pos = pos;
}
}
tmp_lowest_entropy = 0;
}
}
}
if (posible_window.size() > 0) {
if (get_best_window_only) {
New_Window_Area = best_window;
}
else {
New_Window_Area = posible_window[getRandom(0,posible_window.size())];
}
return true;
}
else {
New_Window_Area.clear();
return false;
}
}
bool is_point_Banned(const int value, const std::vector<int>& Banned_Propagation_Pos) {
auto it = std::find(Banned_Propagation_Pos.begin(), Banned_Propagation_Pos.end(), value);
if (it != Banned_Propagation_Pos.end())
return true;
else
return false;
}
bool Remove_Point_from_Propagation(const int value, std::vector<int>& Propagation_Pos) {
auto it = std::find(Propagation_Pos.begin(), Propagation_Pos.end(), value);
// Si el valor fue encontrado, eliminarlo
if (it != Propagation_Pos.end()) {
Propagation_Pos.erase(it);
return true;
}
else {
return false;
}
}
//función que actualiza las posiciones de propagación revisando cuales están colapsadas y si en una ventana de patron N tiene entropia mayor a 0
bool update_all_valid_propagation_pos(const std::vector<std::vector<int>>& Map, std::vector<int>& Propagation_Pos, const std::vector<int>& Banned_Propagation_Pos, const int N_Pattern_Size, const int Y_Map_size) {
std::vector<int> CollapsePosArray, tmp_new_window;
int N, pos;
bool up = false, down = false, right = false, left = false, valid = false;
for (int i = 0; i < Map.size(); i++) {
//si la posición esta colapsada
if (Map[i].size() == 1 && !is_point_Banned(i,Banned_Propagation_Pos)) {
pos = i;
up = false, down = false, right = false, left = false, valid = false;
if (pos / Y_Map_size >= N_Pattern_Size - 1)
up = true;
if (pos / Y_Map_size < Y_Map_size - (N_Pattern_Size - 1))
down = true;
if (pos % Y_Map_size >= N_Pattern_Size - 1)
left = true;
if (pos % Y_Map_size < Y_Map_size - (N_Pattern_Size - 1))
right = true;
if (up) {
if (left) {
if (0 < calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, -(N_Pattern_Size - 1), 0, -(N_Pattern_Size - 1), 0)) {
valid = true;
}
}
if (right && !valid) {
if (0 < calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, -(N_Pattern_Size - 1), 0, 0, N_Pattern_Size - 1)) {
valid = true;
}
}
}
if (down && !valid) {
if (left) {
if (0 < calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, 0, N_Pattern_Size - 1, -(N_Pattern_Size - 1), 0)) {
valid = true;
}
}
if (right && !valid) {
if (0 < calculate_Entropy_around_window(Map, tmp_new_window, N_Pattern_Size, Y_Map_size, pos, 0, N_Pattern_Size - 1, 0, N_Pattern_Size - 1)) {
valid = true;
}
}
}
if(valid)
CollapsePosArray.push_back(i);
}
}
if (CollapsePosArray.size() > 0) {
Propagation_Pos = CollapsePosArray;
return true;
}
else
return false;
}
void Find_Valid_Patterns(std::vector<std::vector<int>>& unCollapseMap, std::vector<int>& Window_Area, const std::vector<Pattern>& All_Patterns, std::vector<Pattern>& Valid_Patterns) {
bool contains;
for (int z = 0; z < All_Patterns.size(); z++) {
contains = true;
for (int i = 0; i < Window_Area.size(); i++) {
if (All_Patterns[z].pixelesCoo[i] == -1) {
}
else {
auto it = std::find(unCollapseMap[Window_Area[i]].begin(), unCollapseMap[Window_Area[i]].end(), All_Patterns[z].pixelesCoo[i]);
if (it == unCollapseMap[Window_Area[i]].end()) {
contains = false;
break;
}
}
}
if (contains) {
//puede tener patrones repetidos
Valid_Patterns.push_back(All_Patterns[z]);
}
}
}
void update_Propagation_Around_Window(std::vector<std::vector<int>>& Map, std::vector<int>& Window_Area, std::vector<int>& Propagation_Pos, std::vector<Pattern>& Valid_Patterns) {
if (Valid_Patterns.size() > 0) {
for (int i = 0; i < Window_Area.size(); i++) {
for (int j = 0; j < Valid_Patterns.size(); j++) {
if(Valid_Patterns[j].pixelesCoo[i] != -1 )
Map[Window_Area[i]].push_back(Valid_Patterns[j].pixelesCoo[i]);
}
}
}
}
void Append_Pattern_Array(std::vector<Pattern>& Valid_Patterns, std::vector<Pattern>& tmp_Valid_Patterns) {
for (int i = 0; i < tmp_Valid_Patterns.size(); i++) {
Valid_Patterns.push_back(tmp_Valid_Patterns[i]);
}
}
void propagation(std::vector<std::vector<int>>& unCollapseMap, std::vector<int>& Pos_Array, std::vector<Pattern>& All_Patterns, std::vector<Pattern>& Valid_Patterns, const int Y, const int uncollapse_Size) {
int N = All_Patterns.front().N, pos, entropy_value;
std::vector<int> new_Window, tmp_Window;
std::vector<std::vector<int>> tmp_unCollapseMap;
std::vector<Pattern> tmp_Valid_Patterns;
tmp_unCollapseMap.resize(unCollapseMap.size());
bool up = false, down = false, right = false, left = false;
for (int i = 0; i < Pos_Array.size(); i++) {
pos = Pos_Array[i];
up = false, down = false, right = false, left = false;
if (pos / Y >= N - 1)
up = true;
if (pos / Y < Y - (N - 1))
down = true;
if (pos % Y >= N - 1)
left = true;
if (pos % Y < Y - (N - 1))
right = true;
if (up) {
if (right) {
entropy_value = calculate_Entropy_around_window(unCollapseMap, tmp_Window, N, Y, pos, -(N - 1), 0, 0, N - 1);
if (entropy_value > 0) {
Find_Valid_Patterns(unCollapseMap, tmp_Window, All_Patterns, tmp_Valid_Patterns);
update_Propagation_Around_Window(tmp_unCollapseMap,tmp_Window, Pos_Array, tmp_Valid_Patterns);
Append_Pattern_Array(Valid_Patterns,tmp_Valid_Patterns);
tmp_Valid_Patterns.clear();
}
}
if (left) {
entropy_value = calculate_Entropy_around_window(unCollapseMap, tmp_Window, N, Y, pos, -(N - 1), 0, -(N - 1), 0);
if (entropy_value > 0) {
Find_Valid_Patterns(unCollapseMap, tmp_Window, All_Patterns, tmp_Valid_Patterns);
update_Propagation_Around_Window(tmp_unCollapseMap, tmp_Window, Pos_Array, tmp_Valid_Patterns);
Append_Pattern_Array(Valid_Patterns, tmp_Valid_Patterns);
tmp_Valid_Patterns.clear();
}
}
}
if (down) {
if (right) {
entropy_value = calculate_Entropy_around_window(unCollapseMap, tmp_Window, N, Y, pos, 0, N - 1, 0, N - 1);
if (entropy_value > 0) {
Find_Valid_Patterns(unCollapseMap, tmp_Window, All_Patterns, tmp_Valid_Patterns);
update_Propagation_Around_Window(tmp_unCollapseMap, tmp_Window, Pos_Array, tmp_Valid_Patterns);
Append_Pattern_Array(Valid_Patterns, tmp_Valid_Patterns);
tmp_Valid_Patterns.clear();
}
}
if (left) {
entropy_value = calculate_Entropy_around_window(unCollapseMap, tmp_Window, N, Y, pos, 0, N - 1, -(N - 1), 0);
if (entropy_value > 0) {
Find_Valid_Patterns(unCollapseMap, tmp_Window, All_Patterns, tmp_Valid_Patterns);
update_Propagation_Around_Window(tmp_unCollapseMap, tmp_Window, Pos_Array, tmp_Valid_Patterns);
Append_Pattern_Array(Valid_Patterns, tmp_Valid_Patterns);
tmp_Valid_Patterns.clear();
}
}
}
}
for (int i = 0; i < tmp_unCollapseMap.size(); i++) {
if (tmp_unCollapseMap[i].size() > 0 && unCollapseMap[i].size() > 1) {
std::sort(tmp_unCollapseMap[i].begin(), tmp_unCollapseMap[i].end());
auto last = std::unique(tmp_unCollapseMap[i].begin(), tmp_unCollapseMap[i].end());
tmp_unCollapseMap[i].erase(last, tmp_unCollapseMap[i].end());
unCollapseMap[i] = tmp_unCollapseMap[i];
}
}
}
bool Tile_and_Pattern_are_Compatible(const std::vector<int>& Tile_Map, const int Tile_Pattern) {
for (int i = 0; i < Tile_Map.size(); i++)
if (Tile_Pattern == Tile_Map[i])
return true;
return false;
}
bool Collapse(std::vector<std::vector<int>>& unCollapseMap, std::vector<int>& Window_Area, std::vector<Pattern>& Valid_Patterns, const int posibleTilesN, std::vector<Pattern>& usedPatternArray, bool useRandom) {
if (Valid_Patterns.empty()) {
return false;
}
//definicion de casilla sin colapsar para patrones de alta jerarquia
std::vector<int> unCollapseNode;
for (int h = 0; h < posibleTilesN; h++)
unCollapseNode.push_back(h);
std::vector<int> New_Window_Area;
auto newPattern = Valid_Patterns.front();
bool valid_Pattern;
int num = 0;
std::vector<int> Weight;
for (int i = 0; i < Valid_Patterns.size(); i++) {
Weight.push_back(Valid_Patterns[i].weight);
}
do {
if(useRandom)
num = getRandom(0, Valid_Patterns.size());
else
num = getRandomPatternWeighted(Weight);
newPattern = Valid_Patterns[num];
valid_Pattern = true;
for (int i = 0; i < Window_Area.size(); i++) {
if (sqrt(Window_Area.size()) != newPattern.N) {
valid_Pattern = false;
}
if (newPattern.pixelesCoo[i] != -1) {
if (!Tile_and_Pattern_are_Compatible(unCollapseMap[Window_Area[i]], newPattern.pixelesCoo[i])) {
valid_Pattern = false;
break;
}
}
else {
unCollapseMap[Window_Area[i]] = unCollapseNode;
}
}
if (valid_Pattern) {
for (int i = 0; i < Window_Area.size(); i++) {
if (unCollapseMap[Window_Area[i]].size() > 1) {
unCollapseMap[Window_Area[i]].clear();
if (newPattern.pixelesCoo[i] == -1) {
unCollapseMap[Window_Area[i]] = unCollapseNode;
}
else {
New_Window_Area.push_back(Window_Area[i]);
unCollapseMap[Window_Area[i]].push_back(newPattern.pixelesCoo[i]);
}
}
}
Window_Area = New_Window_Area;
newPattern.pattern = true;
newPattern.weight = 1;
usedPatternArray.push_back(newPattern);
return true;
}
else {
Valid_Patterns.erase(Valid_Patterns.begin() + num);
Weight.erase(Weight.begin() + num);
}
} while (!valid_Pattern);
return false;
}
void loadPositionOnArray(std::vector<int>& Base_Vector, std::vector<int>& New_Vector) {
for (int i = 0; i < New_Vector.size(); i++) {
Base_Vector.push_back(New_Vector[i]);
}
std::sort(Base_Vector.begin(), Base_Vector.end());
auto last = std::unique(Base_Vector.begin(), Base_Vector.end());
Base_Vector.erase(last, Base_Vector.end());
}
bool Request_Backtracking(
std::vector<std::vector<int>>& UnCollapseMap, std::vector<std::vector<std::vector<int>>>& BT_UnCollapseMap,
std::vector<int>& Propagation_Pos, std::vector<std::vector<int>>& BT_Propagation_Pos, std::vector<int>& Banned_Propagation_Pos,
const std::vector<Pixel>& Posible_Tiles, std::vector<int>& count_iteration_per_hierarchy,
const int Map_Size, int& BT_step, int& backtrackUses, int& current_hierarchy_iteration,
bool& randomStart, const bool backtrackingActive,
std::vector<Pattern>& usedPatternArray,
std::vector<std::vector<Pattern>>& BT_usedPatternArray,
int& fail_generation,
std::vector<int>& Window_area,
std::vector<Pattern>& ValidPatterns
) {
if (backtrackingActive) {
if(backtrackUses < 200)
if (BT_step - backtrackUses > 0) {
BT_step = BT_step - backtrackUses;
UnCollapseMap = BT_UnCollapseMap[BT_step - 1];
Propagation_Pos = BT_Propagation_Pos[BT_step - 1];
usedPatternArray = BT_usedPatternArray[BT_step - 1];
BT_usedPatternArray.resize(BT_step - 1);
BT_UnCollapseMap.resize(BT_step - 1);
BT_Propagation_Pos.resize(BT_step - 1);
backtrackUses++;
Banned_Propagation_Pos.clear();
return true;
}
}
initialize_Map(UnCollapseMap, Posible_Tiles, Map_Size);
randomStart = true;
fail_generation++;
BT_step = 0;
backtrackUses = 0;
current_hierarchy_iteration = 0;
Propagation_Pos.clear();
Window_area.clear();
ValidPatterns.clear();
Banned_Propagation_Pos.clear();
usedPatternArray.clear();
BT_Propagation_Pos.clear();
BT_UnCollapseMap.clear();
BT_usedPatternArray.clear();
for (int i = 0; i < count_iteration_per_hierarchy.size(); i++) {
count_iteration_per_hierarchy[i] = 0;
}
return true;
}
bool mapCompleted(const std::vector<std::vector<int>>& unCollapseMap) {
for (int i = 0; i < unCollapseMap.size(); i++) {
if (unCollapseMap[i].size() != 1) {
return false;
}
}
return true;
}
bool generate_Map(std::string mode,
std::vector<int>& Desire_Top_Size,
std::vector<int>& Desire_Size,
std::vector<Pixel>& Posible_Tiles,
int Map_Size,
int Top_Size_i,
bool printMapBool,
bool backtrackingActive,
std::vector<std::vector<Pattern>>& All_Pattern_Array,
std::string& Base_Folder,
std::string& Example_Map,
long pattern_time
) {
std::vector<Pixel> Pixel_Vector_Out;
std::vector<Pattern> usedPatternArray, ValidPatterns;
Pattern lastSelectedPattern(0, 0);
Pattern selected_pattern_to_collapse(0, 0);
std::vector<std::vector<int>> UnCollapseMap;
std::vector<int> Propagation_Pos, Window_Area, Banned_Propagation_Pos, posible_Size;
Propagation_Pos.resize(0); Banned_Propagation_Pos.resize(0);
initialize_Map(UnCollapseMap, Posible_Tiles, Map_Size);
//Variables para backtracking
std::vector<std::vector<std::vector<int>>> BT_UnCollapseMap; std::vector<std::vector<int>> BT_Propagation_Pos; std::vector<std::vector<Pattern>> BT_usedPatternArray;
int BT_step = 0, backStep = 0, backtrackUses = 0, totalBacktracking = 0;
//variables para el conteo de iteraciones realizadas
std::vector<int> max_iteration_per_hierarchy, count_iteration_per_hierarchy, Pattern_size_per_hierarchy;
int current_hierarchy_iteration = 0, current_iteration_count = 0, default_max_iteration_count = 10000;
int window_origin_pos;
//impresión de los tamaños disponibles
for (int i = 0; i < All_Pattern_Array.size(); i++) {
std::cout << "Patrones de jerarquia: " << i << " tienen tamaño: " << All_Pattern_Array[i].front().N <<" con: "<< All_Pattern_Array[i].size() << " Patrones disponibles" << std::endl;
//ingreso de un valor maximo de cuantas veces se puede iterar por patron
max_iteration_per_hierarchy.push_back(default_max_iteration_count);
count_iteration_per_hierarchy.push_back(0);
//guardado de una variable con información de que tamaño de patron corresponde a cada jerarquia.
Pattern_size_per_hierarchy.push_back(All_Pattern_Array[i].front().N);
}
if (mode == "HWFC") {
max_iteration_per_hierarchy[1] = 1;
}
//Inicio del Cronometro
auto start = std::chrono::high_resolution_clock::now();
std::cout << "Iniciando creacion de nuevo mapa." << std::endl;
bool randomStart = true, colapse_try = false, window_defined = false, engage_BT = false, get_best_entropy = false, useRandom = false, usePropagation = true;
int general_testing_stop_time = 100;
int initial_Pattern_size_Helper = -1;
int fail_generation = 0;
// Ruta: cd /mnt/d/Memoria\ HWFC/Code/test2/src
//Ciclo iterativo del algoritmo
while (!mapCompleted(UnCollapseMap)) {
//std::cout << "//////////////////////////////////" << std::endl;
//std::cout <<"El tamaño de patron actual es: "<< current_hierarchy_iteration << std::endl;
//std::cout << "//////////////////////////////////" << std::endl;
//cambio de jerarquia para MWFC y HWFC si es que ya se pusieron X cantidad de patrones en un nivel, si se llega al maximo del minimo, se activa el backtracking
if (mode == "HWFC" || mode == "MWFC") {
if (max_iteration_per_hierarchy[current_hierarchy_iteration] <= count_iteration_per_hierarchy[current_hierarchy_iteration]) {
Banned_Propagation_Pos.clear();
if (current_hierarchy_iteration < All_Pattern_Array.size() - 1) {
current_hierarchy_iteration++;
}
else
Request_Backtracking(UnCollapseMap, BT_UnCollapseMap, Propagation_Pos, BT_Propagation_Pos, Banned_Propagation_Pos, Posible_Tiles, count_iteration_per_hierarchy, Map_Size, BT_step, backtrackUses, current_hierarchy_iteration, randomStart, backtrackingActive, usedPatternArray, BT_usedPatternArray, fail_generation, Window_Area, ValidPatterns);
}
}
else if (max_iteration_per_hierarchy[current_hierarchy_iteration] <= count_iteration_per_hierarchy[current_hierarchy_iteration]) {
Request_Backtracking(UnCollapseMap, BT_UnCollapseMap, Propagation_Pos, BT_Propagation_Pos, Banned_Propagation_Pos, Posible_Tiles, count_iteration_per_hierarchy, Map_Size, BT_step, backtrackUses, current_hierarchy_iteration, randomStart, backtrackingActive, usedPatternArray, BT_usedPatternArray, fail_generation, Window_Area, ValidPatterns);
}
ValidPatterns.clear();
//SELECCION
if (randomStart) {
//si es que el patron de mayor tamaño al mapa, aborta la ejecución
if (All_Pattern_Array[current_hierarchy_iteration].front().N > Map_Size) {
ControlString("ERROR, el patron es superior al tamaño maximo del mapa, abortando generación");
std::exit(0);
}
randomStart = false;
do {
//posiciónn inicial aleatoria
Propagation_Pos.clear();
Propagation_Pos.push_back(getRandom(0, UnCollapseMap.size()));
Find_Valid_Patterns(UnCollapseMap, Window_Area, All_Pattern_Array[current_hierarchy_iteration], ValidPatterns);
selected_pattern_to_collapse = ValidPatterns[getRandom(0, ValidPatterns.size())];
initial_Pattern_size_Helper = selected_pattern_to_collapse.N;
//guardado de un unico patron incial
ValidPatterns.clear();
ValidPatterns.push_back(selected_pattern_to_collapse);
//Definición de una ventana alrededor del punto inicial
} while (!define_windowArea_with_lowest_entropy(UnCollapseMap, Propagation_Pos, Window_Area, initial_Pattern_size_Helper, Map_Size, window_origin_pos, false));
}
//seleccion guiada por la entropia
else {
window_defined = false;
//update_all_valid_propagation_pos(UnCollapseMap, Propagation_Pos, Banned_Propagation_Pos, Pattern_size_per_hierarchy[current_hierarchy_iteration], Map_Size);
do {
//definir una area con la entropia más baja
if (mode == "MWFC" && All_Pattern_Array[current_hierarchy_iteration].front().highPattern) {
get_best_entropy = false;
}
else {
get_best_entropy = true;
}
if (define_windowArea_with_lowest_entropy(UnCollapseMap, Propagation_Pos, Window_Area, Pattern_size_per_hierarchy[current_hierarchy_iteration], Map_Size, window_origin_pos, get_best_entropy)) {
window_defined = true;
}
else {
Propagation_Pos.clear();
}
if (Propagation_Pos.empty()) {
Banned_Propagation_Pos.clear();
if (current_hierarchy_iteration < All_Pattern_Array.size() - 1) {
stopExecute(1000, "no quedan posiciones de propagacion validas, saltando jerarquia");
current_hierarchy_iteration++;
update_all_valid_propagation_pos(UnCollapseMap, Propagation_Pos, Banned_Propagation_Pos, Pattern_size_per_hierarchy[current_hierarchy_iteration], Map_Size);
if (printMapBool) {
printMap(UnCollapseMap, Map_Size, Posible_Tiles.size(), Propagation_Pos, true);
stopExecute(general_testing_stop_time, "Collapse complete");
}
}
else {
Request_Backtracking(UnCollapseMap, BT_UnCollapseMap, Propagation_Pos, BT_Propagation_Pos, Banned_Propagation_Pos, Posible_Tiles, count_iteration_per_hierarchy, Map_Size, BT_step, backtrackUses, current_hierarchy_iteration, randomStart, backtrackingActive, usedPatternArray, BT_usedPatternArray, fail_generation, Window_Area, ValidPatterns);
}
}
//Definición de una ventana alrededor del punto inicial
if (window_defined) {
Find_Valid_Patterns(UnCollapseMap, Window_Area, All_Pattern_Array[current_hierarchy_iteration], ValidPatterns);
//ControlPoint(ValidPatterns.size());
}
} while (!window_defined);
}
// COLAPSO
if (!Window_Area.empty()) {
colapse_try = true;
int tmp_current_hierarchy_iteration = current_hierarchy_iteration;
do {
if (!ValidPatterns.empty()) {
if (mode == "MWFC" && All_Pattern_Array[current_hierarchy_iteration].front().highPattern) {
usePropagation = false;
}
else {
usePropagation = true;
}
if (mode == "MWFC" && All_Pattern_Array[current_hierarchy_iteration].front().highPattern) {
useRandom = true;
}
else useRandom = false;
if (Collapse(UnCollapseMap, Window_Area, ValidPatterns, Posible_Tiles.size(), usedPatternArray, useRandom)) {
count_iteration_per_hierarchy[current_hierarchy_iteration]++;
colapse_try = false;
//guardado del estado actual del mapa para uso en backtracking
if (backtrackingActive) {
BT_UnCollapseMap.push_back(UnCollapseMap);
BT_Propagation_Pos.push_back(Propagation_Pos);
BT_usedPatternArray.push_back(usedPatternArray);
BT_step++;
}
if (printMapBool) {
printMap(UnCollapseMap, Map_Size, Posible_Tiles.size(), Propagation_Pos, true);
stopExecute(general_testing_stop_time, "Collapse complete");
}
if (mode == "HWFC" && ValidPatterns.front().highPattern && current_hierarchy_iteration == 0) {
stopExecute(1000, "salto de jerarquia por patron alto");
current_hierarchy_iteration++;
//propagation(UnCollapseMap, Window_Area, All_Pattern_Array[current_hierarchy_iteration + 1], ValidPatterns, Map_Size, Posible_Tiles.size());
initial_Pattern_size_Helper = -1;
Banned_Propagation_Pos.clear();
}
}
else {
Remove_Point_from_Propagation(window_origin_pos, Propagation_Pos);
Banned_Propagation_Pos.push_back(window_origin_pos);
colapse_try = false;
Window_Area.clear();
}
}
else {
colapse_try = false;
Remove_Point_from_Propagation(window_origin_pos, Propagation_Pos);
Banned_Propagation_Pos.push_back(window_origin_pos);
Window_Area.clear();
}
} while (colapse_try);
}
///////// PROPAGACION //verificación de puntos con entropia mayor a 0 para iterar en la propagacion
if (Window_Area.size() > 0) {
if(usePropagation)
propagation(UnCollapseMap, Window_Area, All_Pattern_Array[current_hierarchy_iteration], ValidPatterns, Map_Size, Posible_Tiles.size());
loadPositionOnArray(Propagation_Pos, Window_Area);
if (printMapBool) {
printMap(UnCollapseMap, Map_Size, Posible_Tiles.size(), Propagation_Pos, true);
stopExecute(general_testing_stop_time, "Propagación completada");
}
}
}
if (mapCompleted(UnCollapseMap)) {
//fin del cronometro del tiempo de ejecucion
auto end = std::chrono::high_resolution_clock::now();
long duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
duration += pattern_time;
totalBacktracking += backtrackUses;
printMap(UnCollapseMap, Map_Size, Posible_Tiles.size(), Propagation_Pos, false);
std::cout << "Tiempo de ejecucion: " << duration << " ms" << std::endl;
std::cout << "usos del backtracking: " << totalBacktracking << std::endl;
//definicion de metricas
//KL Divergence
//construccion de una nueva imagen
reconstructMap(Pixel_Vector_Out, UnCollapseMap, Posible_Tiles);
std::cout << "Mapa reconstruido exitosamente." << std::endl;
//guardado de la imagen en un nuevo archivo
findUniquePatternCSV(usedPatternArray);
size_t dotPos = Example_Map.find('.');
std::string nameWithoutExt = "";
if (dotPos != std::string::npos) {
// Extraer la parte del nombre de archivo antes del punto
nameWithoutExt = Example_Map.substr(0, dotPos);
}
std::cout << "Guardando y procesando la informacion en archivos..." << std::endl;
SaveMapAndTime(Base_Folder, Pixel_Vector_Out, usedPatternArray, mode + "_" + nameWithoutExt, Map_Size, Posible_Tiles, duration, backtrackUses, fail_generation);
std::cout << "Intentos de generación fallidos: " << fail_generation << std::endl;
std::cout << "Guardando completado." << std::endl;
//dibujar los patrones en una imagen aparte
//initialize_Map(Map_Uncollapse, Posible_Tiles, Map_Size);
Pixel_Vector_Out.clear();
usedPatternArray.clear();
Propagation_Pos.clear();
BT_UnCollapseMap.clear();
BT_Propagation_Pos.clear();
count_iteration_per_hierarchy.clear();
ValidPatterns.clear();
return true;
}
return false;
}