diff --git a/NDTensors/src/DiagonalArrays/README.md b/NDTensors/src/DiagonalArrays/README.md index 33996cf52d..1b9355b0a9 100644 --- a/NDTensors/src/DiagonalArrays/README.md +++ b/NDTensors/src/DiagonalArrays/README.md @@ -5,15 +5,11 @@ A Julia `DiagonalArray` type. ````julia using NDTensors.DiagonalArrays: DiagonalArray, - densearray, - diagview, - diaglength, - getdiagindex, - setdiagindex!, - setdiag!, - diagcopyto! - -d = DiagonalArray([1., 2, 3], 3, 4, 5) + DiagIndex, + DiagIndices, + densearray + +d = DiagonalArray([1.0, 2, 3], 3, 4, 5) @show d[1, 1, 1] == 1 @show d[2, 2, 2] == 2 @show d[1, 2, 1] == 0 @@ -21,20 +17,20 @@ d = DiagonalArray([1., 2, 3], 3, 4, 5) d[2, 2, 2] = 22 @show d[2, 2, 2] == 22 -@show diaglength(d) == 3 +@show length(d[DiagIndices()]) == 3 @show densearray(d) == d -@show getdiagindex(d, 2) == d[2, 2, 2] +@show d[DiagIndex(2)] == d[2, 2, 2] -setdiagindex!(d, 222, 2) +d[DiagIndex(2)] = 222 @show d[2, 2, 2] == 222 a = randn(3, 4, 5) new_diag = randn(3) -setdiag!(a, new_diag) -diagcopyto!(d, a) +a[DiagIndices()] = new_diag +d[DiagIndices()] = a[DiagIndices()] -@show diagview(a) == new_diag -@show diagview(d) == new_diag +@show a[DiagIndices()] == new_diag +@show d[DiagIndices()] == new_diag ```` You can generate this README with: diff --git a/NDTensors/src/DiagonalArrays/examples/README.jl b/NDTensors/src/DiagonalArrays/examples/README.jl index ede04d6c2e..f5e621385e 100644 --- a/NDTensors/src/DiagonalArrays/examples/README.jl +++ b/NDTensors/src/DiagonalArrays/examples/README.jl @@ -2,15 +2,7 @@ # # A Julia `DiagonalArray` type. -using NDTensors.DiagonalArrays: - DiagonalArray, - densearray, - diagview, - diaglength, - getdiagindex, - setdiagindex!, - setdiag!, - diagcopyto! +using NDTensors.DiagonalArrays: DiagonalArray, DiagIndex, DiagIndices, densearray d = DiagonalArray([1.0, 2, 3], 3, 4, 5) @show d[1, 1, 1] == 1 @@ -20,20 +12,20 @@ d = DiagonalArray([1.0, 2, 3], 3, 4, 5) d[2, 2, 2] = 22 @show d[2, 2, 2] == 22 -@show diaglength(d) == 3 +@show length(d[DiagIndices()]) == 3 @show densearray(d) == d -@show getdiagindex(d, 2) == d[2, 2, 2] +@show d[DiagIndex(2)] == d[2, 2, 2] -setdiagindex!(d, 222, 2) +d[DiagIndex(2)] = 222 @show d[2, 2, 2] == 222 a = randn(3, 4, 5) new_diag = randn(3) -setdiag!(a, new_diag) -diagcopyto!(d, a) +a[DiagIndices()] = new_diag +d[DiagIndices()] = a[DiagIndices()] -@show diagview(a) == new_diag -@show diagview(d) == new_diag +@show a[DiagIndices()] == new_diag +@show d[DiagIndices()] == new_diag # You can generate this README with: # ```julia diff --git a/NDTensors/src/DiagonalArrays/src/DiagonalArrays.jl b/NDTensors/src/DiagonalArrays/src/DiagonalArrays.jl index 45319ad8ce..c8bb9411d1 100644 --- a/NDTensors/src/DiagonalArrays/src/DiagonalArrays.jl +++ b/NDTensors/src/DiagonalArrays/src/DiagonalArrays.jl @@ -3,7 +3,7 @@ module DiagonalArrays using Compat # allequal using LinearAlgebra -export DiagonalArray +export DiagonalArray, DiagonalMatrix, DiagonalVector, DiagIndex, DiagIndices, densearray include("diagview.jl") @@ -19,6 +19,9 @@ struct DiagonalArray{T,N,Diag<:AbstractVector{T},Zero} <: AbstractArray{T,N} zero::Zero end +const DiagonalVector{T,Diag,Zero} = DiagonalArray{T,1,Diag,Zero} +const DiagonalMatrix{T,Diag,Zero} = DiagonalArray{T,2,Diag,Zero} + function DiagonalArray{T,N}( diag::AbstractVector{T}, d::Tuple{Vararg{Int,N}}, zero=DefaultZero() ) where {T,N} @@ -53,6 +56,25 @@ function DiagonalArray(diag::AbstractVector{T}, d::Vararg{Int,N}) where {T,N} return DiagonalArray{T,N}(diag, d) end +default_size(diag::AbstractVector, n) = ntuple(Returns(length(diag)), n) + +# Infer size from diagonal +function DiagonalArray{T,N}(diag::AbstractVector) where {T,N} + return DiagonalArray{T,N}(diag, default_size(diag, N)) +end + +function DiagonalArray{<:Any,N}(diag::AbstractVector{T}) where {T,N} + return DiagonalArray{T,N}(diag) +end + +function DiagonalMatrix(diag::AbstractVector) + return DiagonalArray{<:Any,2}(diag) +end + +function DiagonalVector(diag::AbstractVector) + return DiagonalArray{<:Any,1}(diag) +end + # undef function DiagonalArray{T,N}(::UndefInitializer, d::Tuple{Vararg{Int,N}}) where {T,N} return DiagonalArray{T,N}(Vector{T}(undef, minimum(d)), d) diff --git a/NDTensors/src/DiagonalArrays/src/diagview.jl b/NDTensors/src/DiagonalArrays/src/diagview.jl index 21f7ac8a06..b3e2547362 100644 --- a/NDTensors/src/DiagonalArrays/src/diagview.jl +++ b/NDTensors/src/DiagonalArrays/src/diagview.jl @@ -18,6 +18,19 @@ function setdiagindex!(a::AbstractArray, v, i::Integer) return a end +struct DiagIndex + I::Int +end + +function Base.getindex(a::AbstractArray, i::DiagIndex) + return getdiagindex(a, i.I) +end + +function Base.setindex!(a::AbstractArray, v, i::DiagIndex) + setdiagindex!(a, v, i.I) + return a +end + function setdiag!(a::AbstractArray, v) copyto!(diagview(a), v) return a @@ -28,27 +41,42 @@ function diaglength(a::AbstractArray) return minimum(size(a)) end -function diagstride(A::AbstractArray) +function diagstride(a::AbstractArray) s = 1 p = 1 - for i in 1:(ndims(A) - 1) - p *= size(A, i) + for i in 1:(ndims(a) - 1) + p *= size(a, i) s += p end return s end -function diagindices(A::AbstractArray) - diaglength = minimum(size(A)) - maxdiag = LinearIndices(A)[CartesianIndex(ntuple(Returns(diaglength), ndims(A)))] - return 1:diagstride(A):maxdiag +function diagindices(a::AbstractArray) + diaglength = minimum(size(a)) + maxdiag = LinearIndices(a)[CartesianIndex(ntuple(Returns(diaglength), ndims(a)))] + return 1:diagstride(a):maxdiag end -function diagview(A::AbstractArray) - return @view A[diagindices(A)] +function diagindices(a::AbstractArray{<:Any,0}) + return Base.OneTo(1) +end + +function diagview(a::AbstractArray) + return @view a[diagindices(a)] end function diagcopyto!(dest::AbstractArray, src::AbstractArray) copyto!(diagview(dest), diagview(src)) return dest end + +struct DiagIndices end + +function Base.getindex(a::AbstractArray, ::DiagIndices) + return diagview(a) +end + +function Base.setindex!(a::AbstractArray, v, ::DiagIndices) + setdiag!(a, v) + return a +end diff --git a/NDTensors/src/NDTensors.jl b/NDTensors/src/NDTensors.jl index 296bfa4f99..44de4f244d 100644 --- a/NDTensors/src/NDTensors.jl +++ b/NDTensors/src/NDTensors.jl @@ -46,6 +46,7 @@ include("exports.jl") ##################################### # General functionality # +include("default_kwargs.jl") include("algorithm.jl") include("aliasstyle.jl") include("abstractarray/set_types.jl") @@ -151,6 +152,8 @@ include("arraystorage/arraystorage/tensor/eigen.jl") include("arraystorage/arraystorage/tensor/svd.jl") # DiagonalArray storage +include("arraystorage/diagonalarray/storage/contract.jl") + include("arraystorage/diagonalarray/tensor/contract.jl") # BlockSparseArray storage diff --git a/NDTensors/src/arraystorage/arraystorage/storage/arraystorage.jl b/NDTensors/src/arraystorage/arraystorage/storage/arraystorage.jl index 996494b68a..52f2beeed5 100644 --- a/NDTensors/src/arraystorage/arraystorage/storage/arraystorage.jl +++ b/NDTensors/src/arraystorage/arraystorage/storage/arraystorage.jl @@ -6,6 +6,7 @@ const ArrayStorage{T,N} = Union{ SubArray{T,N}, PermutedDimsArray{T,N}, StridedView{T,N}, + DiagonalArray{T,N}, BlockSparseArray{T,N}, } @@ -28,3 +29,8 @@ const MatrixOrArrayStorage{T} = Union{MatrixStorage{T},ArrayStorage{T}} function to_arraystorage(x::DenseTensor) return tensor(reshape(data(x), size(x)), inds(x)) end + +# TODO: Delete once `Diag` is removed. +function to_arraystorage(x::DiagTensor) + return tensor(DiagonalArray(data(x), size(x)), inds(x)) +end diff --git a/NDTensors/src/arraystorage/arraystorage/storage/contract.jl b/NDTensors/src/arraystorage/arraystorage/storage/contract.jl index 0770325f9b..39c9696b48 100644 --- a/NDTensors/src/arraystorage/arraystorage/storage/contract.jl +++ b/NDTensors/src/arraystorage/arraystorage/storage/contract.jl @@ -4,10 +4,11 @@ function contract( labels1, array2::MatrixOrArrayStorage, labels2, - labelsR=contract_labels(labels1, labels2), + labelsR=contract_labels(labels1, labels2); + kwargs..., ) output_array = contraction_output(array1, labels1, array2, labels2, labelsR) - contract!(output_array, labelsR, array1, labels1, array2, labels2) + contract!(output_array, labelsR, array1, labels1, array2, labels2; kwargs...) return output_array end diff --git a/NDTensors/src/arraystorage/arraystorage/tensor/eigen.jl b/NDTensors/src/arraystorage/arraystorage/tensor/eigen.jl index d3147dcce6..e55038f7d8 100644 --- a/NDTensors/src/arraystorage/arraystorage/tensor/eigen.jl +++ b/NDTensors/src/arraystorage/arraystorage/tensor/eigen.jl @@ -5,10 +5,10 @@ function eigen( T::Hermitian{<:Any,<:ArrayStorageTensor}; maxdim=nothing, - mindim=1, + mindim=nothing, cutoff=nothing, - use_absolute_cutoff=false, - use_relative_cutoff=true, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, # These are getting passed erroneously. # TODO: Make sure they don't get passed down # to here. @@ -20,12 +20,6 @@ function eigen( ortho=nothing, svd_alg=nothing, ) - truncate = !isnothing(maxdim) || !isnothing(cutoff) - # TODO: Define `default_maxdim(T)`. - maxdim = isnothing(maxdim) ? minimum(dims(T)) : maxdim - # TODO: Define `default_cutoff(T)`. - cutoff = isnothing(cutoff) ? zero(eltype(T)) : cutoff - matrixT = matrix(T) ## TODO Here I am calling parent to ensure that the correct `any` function ## is envoked for non-cpu matrices @@ -45,7 +39,7 @@ function eigen( DM = DM[p] VM = VM[:, p] - if truncate + if any(!isnothing, (maxdim, cutoff)) DM, truncerr, _ = truncate!!( DM; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff ) @@ -68,7 +62,6 @@ function eigen( Vinds = indstype((dag(ind(T, 2)), dag(r))) Dinds = indstype((l, dag(r))) V = tensor(VM, Vinds) - # TODO: Replace with `DiagonalArray`. - D = tensor(Diag(DM), Dinds) + D = tensor(DiagonalMatrix(DM), Dinds) return D, V, spec end diff --git a/NDTensors/src/arraystorage/arraystorage/tensor/qr.jl b/NDTensors/src/arraystorage/arraystorage/tensor/qr.jl index 04ae4501fc..7ee216341f 100644 --- a/NDTensors/src/arraystorage/arraystorage/tensor/qr.jl +++ b/NDTensors/src/arraystorage/arraystorage/tensor/qr.jl @@ -1,4 +1,5 @@ -function qr(A::ArrayStorageTensor) +function qr(A::ArrayStorageTensor; positive=false) + positive && error("Not implemented") Q, R = qr(storage(A)) Q = convert(typeof(R), Q) i, j = inds(A) diff --git a/NDTensors/src/arraystorage/arraystorage/tensor/svd.jl b/NDTensors/src/arraystorage/arraystorage/tensor/svd.jl index f00543959e..69f446ac53 100644 --- a/NDTensors/src/arraystorage/arraystorage/tensor/svd.jl +++ b/NDTensors/src/arraystorage/arraystorage/tensor/svd.jl @@ -1,76 +1,72 @@ -# TODO: Rewrite this function to be more modern: -# 1. Output `Spectrum` as a keyword argument that gets overwritten. -# 2. Dispatch on `alg`. -# 3. Make this into two layers, one that handles indices and one that works with `Matrix`. +backup_svd_alg(::Algorithm"divide_and_conquer") = Algorithm"qr_iteration"() +backup_svd_alg(::Algorithm"qr_iteration") = Algorithm"recursive"() + +function svd(alg::Algorithm"divide_and_conquer", a::ArrayStorage) + USV = svd_catch_error(a; alg=LinearAlgebra.DivideAndConquer()) + if isnothing(USV) + return svd(backup_svd_alg(alg), a) + end + return USV +end + +function svd(alg::Algorithm"qr_iteration", a::ArrayStorage) + USV = svd_catch_error(a; alg=LinearAlgebra.QRIteration()) + if isnothing(USV) + return svd(backup_svd_alg(alg), a) + end + return USV +end + +function svd(alg::Algorithm"recursive", a::ArrayStorage) + return svd_recursive(a) +end + +function svd(::Algorithm"QRAlgorithm", a::ArrayStorage) + return error("Not implemented yet") +end + +function svd(::Algorithm"JacobiAlgorithm", a::ArrayStorage) + return error("Not implemented yet") +end + +function svd(alg::Algorithm, a::ArrayStorage) + return error( + "svd algorithm $alg is not currently supported. Please see the documentation for currently supported algorithms.", + ) +end + """ - svd(T::ArrayStorageTensor{<:Number,2}; kwargs...) + tsvd(a::ArrayStorage{<:Number,2}; kwargs...) svd of an order-2 DenseTensor """ -function svd( - T::ArrayStorageTensor; +function tsvd( + a::ArrayStorage; + mindim=nothing, maxdim=nothing, - mindim=1, cutoff=nothing, - alg="divide_and_conquer", # TODO: Define `default_alg(T)` - use_absolute_cutoff=false, - use_relative_cutoff=true, - # These are getting passed erroneously. - # TODO: Make sure they don't get passed down - # to here. - which_decomp=nothing, - tags=nothing, - eigen_perturbation=nothing, - normalize=nothing, + alg=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, + # Only used by BlockSparse svd + min_blockdim=nothing, ) - truncate = !isnothing(maxdim) || !isnothing(cutoff) - # TODO: Define `default_maxdim(T)`. - maxdim = isnothing(maxdim) ? minimum(dims(T)) : maxdim - # TODO: Define `default_cutoff(T)`. - cutoff = isnothing(cutoff) ? zero(eltype(T)) : cutoff - - # TODO: Dispatch on `Algorithm(alg)`. - if alg == "divide_and_conquer" - MUSV = svd_catch_error(matrix(T); alg=LinearAlgebra.DivideAndConquer()) - if isnothing(MUSV) - # If "divide_and_conquer" fails, try "qr_iteration" - alg = "qr_iteration" - MUSV = svd_catch_error(matrix(T); alg=LinearAlgebra.QRIteration()) - if isnothing(MUSV) - # If "qr_iteration" fails, try "recursive" - alg = "recursive" - MUSV = svd_recursive(matrix(T)) - end - end - elseif alg == "qr_iteration" - MUSV = svd_catch_error(matrix(T); alg=LinearAlgebra.QRIteration()) - if isnothing(MUSV) - # If "qr_iteration" fails, try "recursive" - alg = "recursive" - MUSV = svd_recursive(matrix(T)) - end - elseif alg == "recursive" - MUSV = svd_recursive(matrix(T)) - elseif alg == "QRAlgorithm" || alg == "JacobiAlgorithm" - MUSV = svd_catch_error(matrix(T); alg=alg) - else - error( - "svd algorithm $alg is not currently supported. Please see the documentation for currently supported algorithms.", - ) - end - if isnothing(MUSV) - if any(isnan, T) + alg = replace_nothing(alg, default_svd_alg(a)) + USV = svd(Algorithm(alg), a) + if isnothing(USV) + if any(isnan, a) println("SVD failed, the matrix you were trying to SVD contains NaNs.") else println(lapack_svd_error_message(alg)) end return nothing end - MU, MS, MV = MUSV - conj!(MV) - P = MS .^ 2 - if truncate + U, S, V = USV + conj!(V) + + P = S .^ 2 + if any(!isnothing, (maxdim, cutoff)) P, truncerr, _ = truncate!!( P; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff ) @@ -79,25 +75,51 @@ function svd( end spec = Spectrum(P, truncerr) dS = length(P) - if dS < length(MS) - MU = MU[:, 1:dS] + if dS < length(S) + U = U[:, 1:dS] # Fails on some GPU backends like Metal. # resize!(MS, dS) - MS = MS[1:dS] - MV = MV[:, 1:dS] + S = S[1:dS] + V = V[:, 1:dS] end + return U, DiagonalMatrix(S), V, spec +end + +# TODO: Rewrite this function to be more modern: +# 1. Output `Spectrum` as a keyword argument that gets overwritten. +# 2. Dispatch on `alg`. +# 3. Make this into two layers, one that handles indices and one that works with `Matrix`. +""" + svd(T::ArrayStorageTensor{<:Number,2}; kwargs...) +svd of an order-2 DenseTensor +""" +function svd( + T::ArrayStorageTensor; + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + alg=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, + # Only used by BlockSparse svd + min_blockdim=nothing, +) + U, S, V, spec = tsvd( + storage(T); mindim, maxdim, cutoff, alg, use_absolute_cutoff, use_relative_cutoff + ) # Make the new indices to go onto U and V # TODO: Put in a separate function, such as # `rewrap_inds` or something like that. + dS = length(S[DiagIndices()]) indstype = typeof(inds(T)) u = eltype(indstype)(dS) v = eltype(indstype)(dS) Uinds = indstype((ind(T, 1), u)) Sinds = indstype((u, v)) Vinds = indstype((ind(T, 2), v)) - U = tensor(MU, Uinds) - S = tensor(Diag(MS), Sinds) - V = tensor(MV, Vinds) - return U, S, V, spec + TU = tensor(U, Uinds) + TS = tensor(S, Sinds) + TV = tensor(V, Vinds) + return TU, TS, TV, spec end diff --git a/NDTensors/src/arraystorage/arraystorage/tensor/zeros.jl b/NDTensors/src/arraystorage/arraystorage/tensor/zeros.jl index 66759892e4..c990e5db30 100644 --- a/NDTensors/src/arraystorage/arraystorage/tensor/zeros.jl +++ b/NDTensors/src/arraystorage/arraystorage/tensor/zeros.jl @@ -11,3 +11,8 @@ end function zeros(tensortype::Type{<:ArrayStorageTensor}, inds::Tuple{Vararg{Integer}}) return _zeros(tensortype, inds) end + +# To resolve ambiguity error with `Base.zeros`. +function zeros(tensortype::Type{<:ArrayStorageTensor}, inds::Tuple{}) + return _zeros(tensortype, inds) +end diff --git a/NDTensors/src/arraystorage/diagonalarray/storage/contract.jl b/NDTensors/src/arraystorage/diagonalarray/storage/contract.jl new file mode 100644 index 0000000000..b86753ac20 --- /dev/null +++ b/NDTensors/src/arraystorage/diagonalarray/storage/contract.jl @@ -0,0 +1,172 @@ +# TODO: Move to a different file. +parenttype(::Type{<:DiagonalArray{<:Any,<:Any,P}}) where {P} = P + +# TODO: Move to a different file. +function promote_rule( + storagetype1::Type{<:ArrayStorage}, storagetype2::Type{<:DiagonalArray} +) + # TODO: Replace with `unwrap_type` once + # https://github.com/ITensor/ITensors.jl/pull/1220 + # is merged. + return promote_type(storagetype1, leaf_parenttype(storagetype2)) +end + +# TODO: Move to a different file. +function promote_rule( + storagetype1::Type{<:DiagonalArray}, storagetype2::Type{<:DiagonalArray} +) + return error("Not implemented yet") +end + +function contraction_output_type( + arraytype1::Type{<:DiagonalArray}, arraytype2::Type{<:DiagonalArray}, inds +) + return error("Not implemented yet") +end + +default_convert_to_dense() = true + +# TODO: Modernize this function, rewrite in terms of `Array` and `DiagonalArray`. +# TODO: Move to `storage`. +function contract!( + C::ArrayStorage, + Clabels, + A::DiagonalArray, + Alabels, + B::ArrayStorage, + Blabels, + α::Number=one(eltype(C)), + β::Number=zero(eltype(C)); + convert_to_dense=default_convert_to_dense(), +) + if convert_to_dense + contract_dense!(C, Clabels, A, Alabels, B, Blabels, α, β) + return C + end + if !isone(α) || !iszero(β) + error( + "`contract!(::ArrayStorageTensor, ::DiagTensor, ::ArrayStorageTensor, α, β; convert_to_dense = false)` with `α ≠ 1` or `β ≠ 0` is not currently supported. You can call it with `convert_to_dense = true` instead.", + ) + end + astarts = zeros(Int, length(Alabels)) + bstart = 0 + cstart = 0 + b_cstride = 0 + nbu = 0 + for ib in 1:length(Blabels) + ia = findfirst(==(Blabels[ib]), Alabels) + if !isnothing(ia) + b_cstride += stride(B, ib) + bstart += astarts[ia] * stride(B, ib) + else + nbu += 1 + end + end + c_cstride = 0 + for ic in 1:length(Clabels) + ia = findfirst(==(Clabels[ic]), Alabels) + if !isnothing(ia) + c_cstride += stride(C, ic) + cstart += astarts[ia] * stride(C, ic) + end + end + # strides of the uncontracted dimensions of + # B + bustride = zeros(Int, nbu) + custride = zeros(Int, nbu) + # size of the uncontracted dimensions of + # B, to be used in CartesianIndices + busize = zeros(Int, nbu) + n = 1 + for ib in 1:length(Blabels) + if Blabels[ib] > 0 + bustride[n] = stride(B, ib) + busize[n] = size(B, ib) + ic = findfirst(==(Blabels[ib]), Clabels) + custride[n] = stride(C, ic) + n += 1 + end + end + boffset_orig = 1 - sum(strides(B)) + coffset_orig = 1 - sum(strides(C)) + cartesian_inds = CartesianIndices(Tuple(busize)) + for inds in cartesian_inds + boffset = boffset_orig + coffset = coffset_orig + for i in 1:nbu + ii = inds[i] + boffset += ii * bustride[i] + coffset += ii * custride[i] + end + c = zero(eltype(C)) + for j in 1:DiagonalArrays.diaglength(A) + # With α == 0 && β == 1 + C[cstart + j * c_cstride + coffset] += + A[DiagIndex(j)] * B[bstart + j * b_cstride + boffset] + # XXX: not sure if this is correct + #C[cstart+j*c_cstride+coffset] += α * A[DiagIndex(j)] * B[bstart+j*b_cstride+boffset] + β * C[cstart+j*c_cstride+coffset] + end + end +end + +function contract!( + C::ArrayStorage{<:Any,0}, + Clabels, + A::DiagonalArray, + Alabels, + B::ArrayStorage, + Blabels, + α::Number=one(eltype(C)), + β::Number=zero(eltype(C)); + convert_to_dense=nothing, +) + # If all of B is contracted + # TODO: can also check NC+NB==NA + min_dim = min(minimum(size(A)), minimum(size(B))) + if length(Clabels) == 0 + # all indices are summed over, just add the product of the diagonal + # elements of A and B + # Assumes C starts set to 0 + c₁ = zero(eltype(C)) + for i in 1:min_dim + c₁ += A[DiagIndex(i)] * B[DiagIndex(i)] + end + C[DiagIndex(1)] = α * c₁ + β * C[DiagIndex(1)] + else + # not all indices are summed over, set the diagonals of the result + # to the product of the diagonals of A and B + # TODO: should we make this return a Diag storage? + for i in 1:min_dim + C[DiagIndex(i)] = α * A[DiagIndex(i)] * B[DiagIndex(i)] + β * C[DiagIndex(i)] + end + end + return C +end + +function contract_dense!( + C::ArrayStorage, + Clabels, + A::DiagonalArray, + Alabels, + B::ArrayStorage, + Blabels, + α::Number=one(eltype(C)), + β::Number=zero(eltype(C)), +) + return contract!(C, Clabels, densearray(A), Alabels, B, Blabels, α, β) +end + +# Overspecifying types to fix ambiguity error. +function contract!( + C::ArrayStorage, + Clabels, + A::ArrayStorage, + Alabels, + B::DiagonalArray, + Blabels, + α::Number=one(eltype(C)), + β::Number=zero(eltype(C)); + convert_to_dense=default_convert_to_dense(), +) + return contract!(C, Clabels, B, Blabels, A, Alabels, α, β; convert_to_dense) +end diff --git a/NDTensors/src/arraystorage/diagonalarray/tensor/contract.jl b/NDTensors/src/arraystorage/diagonalarray/tensor/contract.jl index e7011896a1..18fe5a1cff 100644 --- a/NDTensors/src/arraystorage/diagonalarray/tensor/contract.jl +++ b/NDTensors/src/arraystorage/diagonalarray/tensor/contract.jl @@ -1,142 +1,25 @@ -function promote_rule(storagetype1::Type{<:ArrayStorage}, storagetype2::Type{<:Diag}) - return promote_type(storagetype1, datatype(storagetype2)) +# The output must be initialized as zero since it is sparse, cannot be undefined +# Overspecifying types to fix ambiguity error. +# TODO: Rewrite in terms of `DiagonalArray` and `Array`, not `Tensor`. +function contraction_output( + T1::Tensor{T,N,<:DiagonalArray{T,N,<:AbstractVector{T}}}, T2::ArrayStorageTensor, indsR +) where {T,N} + return zero_contraction_output(T1, T2, indsR) end -function contraction_output_type( - tensortype1::Type{<:DiagTensor}, tensortype2::Type{<:ArrayStorageTensor}, indsR -) - return similartype(promote_type(tensortype1, tensortype2), indsR) +# TODO: Rewrite in terms of `DiagonalArray` and `Array`, not `Tensor`. +function contraction_output( + T1::ArrayStorageTensor, T2::Tensor{T,N,<:DiagonalArray{T,N,<:AbstractVector{T}}}, indsR +) where {T,N} + return contraction_output(T2, T1, indsR) end -function contraction_output_type( - tensortype1::Type{<:ArrayStorageTensor}, tensortype2::Type{<:DiagTensor}, indsR -) - return contraction_output_type(tensortype2, tensortype1, indsR) -end - -# TODO: Modernize this function, rewrite in terms of `Array` and `DiagonalArray`. -function contract!( - C::ArrayStorageTensor{ElC,NC}, - Clabels, - A::DiagTensor{ElA,NA}, - Alabels, - B::ArrayStorageTensor{ElB,NB}, - Blabels, - α::Number=one(ElC), - β::Number=zero(ElC); - convert_to_dense::Bool=true, -) where {ElA,NA,ElB,NB,ElC,NC} - #@timeit_debug timer "diag-dense contract!" begin - if all(i -> i < 0, Blabels) - # If all of B is contracted - # TODO: can also check NC+NB==NA - min_dim = min(minimum(dims(A)), minimum(dims(B))) - if length(Clabels) == 0 - # all indices are summed over, just add the product of the diagonal - # elements of A and B - # Assumes C starts set to 0 - c₁ = zero(ElC) - for i in 1:min_dim - c₁ += getdiagindex(A, i) * getdiagindex(B, i) - end - setdiagindex!(C, α * c₁ + β * getdiagindex(C, 1), 1) - else - # not all indices are summed over, set the diagonals of the result - # to the product of the diagonals of A and B - # TODO: should we make this return a Diag storage? - for i in 1:min_dim - setdiagindex!( - C, α * getdiagindex(A, i) * getdiagindex(B, i) + β * getdiagindex(C, i), i - ) - end - end - else - # Most general contraction - if convert_to_dense - # TODO: Define a conversion from `DiagonalArray` to `Array`. - contract!(C, Clabels, to_arraystorage(dense(A)), Alabels, B, Blabels, α, β) - else - if !isone(α) || !iszero(β) - error( - "`contract!(::ArrayStorageTensor, ::DiagTensor, ::ArrayStorageTensor, α, β; convert_to_dense = false)` with `α ≠ 1` or `β ≠ 0` is not currently supported. You can call it with `convert_to_dense = true` instead.", - ) - end - astarts = zeros(Int, length(Alabels)) - bstart = 0 - cstart = 0 - b_cstride = 0 - nbu = 0 - for ib in 1:length(Blabels) - ia = findfirst(==(Blabels[ib]), Alabels) - if !isnothing(ia) - b_cstride += stride(B, ib) - bstart += astarts[ia] * stride(B, ib) - else - nbu += 1 - end - end - - c_cstride = 0 - for ic in 1:length(Clabels) - ia = findfirst(==(Clabels[ic]), Alabels) - if !isnothing(ia) - c_cstride += stride(C, ic) - cstart += astarts[ia] * stride(C, ic) - end - end - - # strides of the uncontracted dimensions of - # B - bustride = zeros(Int, nbu) - custride = zeros(Int, nbu) - # size of the uncontracted dimensions of - # B, to be used in CartesianIndices - busize = zeros(Int, nbu) - n = 1 - for ib in 1:length(Blabels) - if Blabels[ib] > 0 - bustride[n] = stride(B, ib) - busize[n] = size(B, ib) - ic = findfirst(==(Blabels[ib]), Clabels) - custride[n] = stride(C, ic) - n += 1 - end - end - - boffset_orig = 1 - sum(strides(B)) - coffset_orig = 1 - sum(strides(C)) - cartesian_inds = CartesianIndices(Tuple(busize)) - for inds in cartesian_inds - boffset = boffset_orig - coffset = coffset_orig - for i in 1:nbu - ii = inds[i] - boffset += ii * bustride[i] - coffset += ii * custride[i] - end - c = zero(ElC) - for j in 1:diaglength(A) - # With α == 0 && β == 1 - C[cstart + j * c_cstride + coffset] += - getdiagindex(A, j) * B[bstart + j * b_cstride + boffset] - # XXX: not sure if this is correct - #C[cstart+j*c_cstride+coffset] += α * getdiagindex(A, j)* B[bstart+j*b_cstride+boffset] + β * C[cstart+j*c_cstride+coffset] - end - end - end - end - #end # @timeit -end - -function contract!( - C::ArrayStorageTensor, - Clabels, - A::ArrayStorageTensor, - Alabels, - B::DiagTensor, - Blabels, - α::Number=one(eltype(C)), - β::Number=zero(eltype(C)), -) - return contract!(C, Clabels, B, Blabels, A, Alabels, α, β) +# Overspecifying types to fix ambiguity error. +# TODO: Rewrite in terms of `DiagonalArray`, not `Tensor`. +function contraction_output( + tensor1::Tensor{T1,N1,<:DiagonalArray{T1,N1,<:AbstractVector{T1}}}, + tensor2::Tensor{T2,N2,<:DiagonalArray{T2,N2,<:AbstractVector{T2}}}, + indsR, +) where {T1,N1,T2,N2} + return zero_contraction_output(tensor1, tensor2, indsR) end diff --git a/NDTensors/src/blocksparse/linearalgebra.jl b/NDTensors/src/blocksparse/linearalgebra.jl index 70bf5c7972..2f6b41f69e 100644 --- a/NDTensors/src/blocksparse/linearalgebra.jl +++ b/NDTensors/src/blocksparse/linearalgebra.jl @@ -4,8 +4,9 @@ const DiagBlockSparseMatrix{ElT,StoreT,IndsT} = DiagBlockSparseTensor{ElT,2,Stor const DiagMatrix{ElT,StoreT,IndsT} = DiagTensor{ElT,2,StoreT,IndsT} function _truncated_blockdim( - S::DiagMatrix, docut::Real; singular_values=false, truncate=true, min_blockdim=0 + S::DiagMatrix, docut::Real; singular_values=false, truncate=true, min_blockdim=nothing ) + min_blockdim = replace_nothing(min_blockdim, 0) # TODO: Replace `cpu` with `leaf_parenttype` dispatch. S = cpu(S) full_dim = diaglength(S) @@ -34,13 +35,16 @@ per row/column, otherwise it fails. This assumption makes it so the result can be computed from the dense svds of seperate blocks. """ -function svd(T::Tensor{ElT,2,<:BlockSparse}; kwargs...) where {ElT} - alg::String = get(kwargs, :alg, "divide_and_conquer") - min_blockdim::Int = get(kwargs, :min_blockdim, 0) - truncate = haskey(kwargs, :maxdim) || haskey(kwargs, :cutoff) - - #@timeit_debug timer "block sparse svd" begin - +function svd( + T::Tensor{ElT,2,<:BlockSparse}; + min_blockdim=nothing, + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + alg=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, +) where {ElT} Us = Vector{DenseTensor{ElT,2}}(undef, nnzblocks(T)) Ss = Vector{DiagTensor{real(ElT),2}}(undef, nnzblocks(T)) Vs = Vector{DenseTensor{ElT,2}}(undef, nnzblocks(T)) @@ -50,7 +54,7 @@ function svd(T::Tensor{ElT,2,<:BlockSparse}; kwargs...) where {ElT} for (n, b) in enumerate(eachnzblock(T)) blockT = blockview(T, b) - USVb = svd(blockT; alg=alg) + USVb = svd(blockT; alg) if isnothing(USVb) return nothing end @@ -77,11 +81,13 @@ function svd(T::Tensor{ElT,2,<:BlockSparse}; kwargs...) where {ElT} nzblocksT = nzblocks(T) dropblocks = Int[] - if truncate - d, truncerr, docut = truncate!!(d; kwargs...) + if any(!isnothing, (maxdim, cutoff)) + d, truncerr, docut = truncate!!( + d; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff + ) for n in 1:nnzblocks(T) blockdim = _truncated_blockdim( - Ss[n], docut; min_blockdim, singular_values=true, truncate + Ss[n], docut; min_blockdim, singular_values=true, truncate=true ) if blockdim == 0 push!(dropblocks, n) @@ -199,7 +205,6 @@ function svd(T::Tensor{ElT,2,<:BlockSparse}; kwargs...) where {ElT} copyto!(blockview(V, blockV), Vb) end return U, S, V, Spectrum(d, truncerr) - #end # @timeit_debug end _eigen_eltypes(T::Hermitian{ElT,<:BlockSparseMatrix{ElT}}) where {ElT} = real(ElT), ElT @@ -208,10 +213,13 @@ _eigen_eltypes(T::BlockSparseMatrix{ElT}) where {ElT} = complex(ElT), complex(El function eigen( T::Union{Hermitian{ElT,<:Tensor{ElT,2,<:BlockSparse}},Tensor{ElT,2,<:BlockSparse}}; - kwargs..., + min_blockdim=nothing, + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, ) where {ElT<:Union{Real,Complex}} - truncate = haskey(kwargs, :maxdim) || haskey(kwargs, :cutoff) - ElD, ElV = _eigen_eltypes(T) # Sorted eigenvalues @@ -239,10 +247,14 @@ function eigen( dropblocks = Int[] sort!(d; rev=true, by=abs) - if truncate - d, truncerr, docut = truncate!!(d; kwargs...) + if any(!isnothing, (maxdim, cutoff)) + d, truncerr, docut = truncate!!( + d; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff + ) for n in 1:nnzblocks(T) - blockdim = _truncated_blockdim(Ds[n], docut) + blockdim = _truncated_blockdim( + Ds[n], docut; min_blockdim, singular_values=false, truncate=true + ) if blockdim == 0 push!(dropblocks, n) else @@ -333,7 +345,7 @@ qr(T::BlockSparseTensor{<:Any,2}; kwargs...) = qx(qr, T; kwargs...) # This code thanks to Niklas Tausendpfund # https://github.com/ntausend/variance_iTensor/blob/main/Hubig_variance_test.ipynb # -function qx(qx::Function, T::BlockSparseTensor{<:Any,2}; kwargs...) +function qx(qx::Function, T::BlockSparseTensor{<:Any,2}; positive=nothing) ElT = eltype(T) # getting total number of blocks nnzblocksT = nnzblocks(T) @@ -344,7 +356,7 @@ function qx(qx::Function, T::BlockSparseTensor{<:Any,2}; kwargs...) for (jj, b) in enumerate(eachnzblock(T)) blockT = blockview(T, b) - QXb = qx(blockT; kwargs...) #call dense qr at src/linearalgebra.jl 387 + QXb = qx(blockT; positive) if (isnothing(QXb)) return nothing diff --git a/NDTensors/src/default_kwargs.jl b/NDTensors/src/default_kwargs.jl new file mode 100644 index 0000000000..73d8756d84 --- /dev/null +++ b/NDTensors/src/default_kwargs.jl @@ -0,0 +1,9 @@ +replace_nothing(::Nothing, replacement) = replacement +replace_nothing(value, replacement) = value + +default_maxdim(a) = minimum(size(a)) +default_mindim(a) = true +default_cutoff(a) = zero(eltype(a)) +default_svd_alg(a) = "divide_and_conquer" +default_use_absolute_cutoff(a) = false +default_use_relative_cutoff(a) = true diff --git a/NDTensors/src/linearalgebra/linearalgebra.jl b/NDTensors/src/linearalgebra/linearalgebra.jl index 20dec6b3a9..a99e65eb37 100644 --- a/NDTensors/src/linearalgebra/linearalgebra.jl +++ b/NDTensors/src/linearalgebra/linearalgebra.jl @@ -93,38 +93,18 @@ end svd of an order-2 DenseTensor """ -function svd(T::DenseTensor{ElT,2,IndsT}; kwargs...) where {ElT,IndsT} - truncate = haskey(kwargs, :maxdim) || haskey(kwargs, :cutoff) - - # - # Keyword argument deprecations - # - use_absolute_cutoff = false - if haskey(kwargs, :absoluteCutoff) - @warn "In svd, keyword argument absoluteCutoff is deprecated in favor of use_absolute_cutoff" - use_absolute_cutoff = get(kwargs, :absoluteCutoff, use_absolute_cutoff) - end - - use_relative_cutoff = true - if haskey(kwargs, :doRelCutoff) - @warn "In svd, keyword argument doRelCutoff is deprecated in favor of use_relative_cutoff" - use_relative_cutoff = get(kwargs, :doRelCutoff, use_relative_cutoff) - end - - if haskey(kwargs, :fastsvd) || haskey(kwargs, :fastSVD) - error( - "In svd, fastsvd/fastSVD keyword arguments are removed in favor of alg, see documentation for more details.", - ) - end - - maxdim::Int = get(kwargs, :maxdim, minimum(dims(T))) - mindim::Int = get(kwargs, :mindim, 1) - cutoff = get(kwargs, :cutoff, 0.0) - use_absolute_cutoff::Bool = get(kwargs, :use_absolute_cutoff, use_absolute_cutoff) - use_relative_cutoff::Bool = get(kwargs, :use_relative_cutoff, use_relative_cutoff) - alg::String = get(kwargs, :alg, "divide_and_conquer") - - #@timeit_debug timer "dense svd" begin +function svd( + T::DenseTensor{ElT,2,IndsT}; + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, + alg=nothing, + # Only used by BlockSparse svd + min_blockdim=nothing, +) where {ElT,IndsT} + alg = replace_nothing(alg, default_svd_alg(T)) if alg == "divide_and_conquer" MUSV = svd_catch_error(matrix(T); alg=LinearAlgebra.DivideAndConquer()) if isnothing(MUSV) @@ -147,7 +127,7 @@ function svd(T::DenseTensor{ElT,2,IndsT}; kwargs...) where {ElT,IndsT} elseif alg == "recursive" MUSV = svd_recursive(matrix(T)) elseif alg == "QRAlgorithm" || alg == "JacobiAlgorithm" - MUSV = svd_catch_error(matrix(T); alg=alg) + MUSV = svd_catch_error(matrix(T); alg) else error( "svd algorithm $alg is not currently supported. Please see the documentation for currently supported algorithms.", @@ -166,9 +146,9 @@ function svd(T::DenseTensor{ElT,2,IndsT}; kwargs...) where {ElT,IndsT} #end # @timeit_debug P = MS .^ 2 - if truncate + if any(!isnothing, (maxdim, cutoff)) P, truncerr, _ = truncate!!( - P; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff, kwargs... + P; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff ) else truncerr = 0.0 @@ -196,27 +176,13 @@ function svd(T::DenseTensor{ElT,2,IndsT}; kwargs...) where {ElT,IndsT} end function eigen( - T::Hermitian{ElT,<:DenseTensor{ElT,2,IndsT}}; kwargs... + T::Hermitian{ElT,<:DenseTensor{ElT,2,IndsT}}; + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, ) where {ElT<:Union{Real,Complex},IndsT} - # Keyword argument deprecations - use_absolute_cutoff = false - if haskey(kwargs, :absoluteCutoff) - @warn "In svd, keyword argument absoluteCutoff is deprecated in favor of use_absolute_cutoff" - use_absolute_cutoff = get(kwargs, :absoluteCutoff, use_absolute_cutoff) - end - use_relative_cutoff = true - if haskey(kwargs, :doRelCutoff) - @warn "In svd, keyword argument doRelCutoff is deprecated in favor of use_relative_cutoff" - use_relative_cutoff = get(kwargs, :doRelCutoff, use_relative_cutoff) - end - - truncate = haskey(kwargs, :maxdim) || haskey(kwargs, :cutoff) - maxdim::Int = get(kwargs, :maxdim, minimum(dims(T))) - mindim::Int = get(kwargs, :mindim, 1) - cutoff::Union{Nothing,Float64} = get(kwargs, :cutoff, 0.0) - use_absolute_cutoff::Bool = get(kwargs, :use_absolute_cutoff, use_absolute_cutoff) - use_relative_cutoff::Bool = get(kwargs, :use_relative_cutoff, use_relative_cutoff) - matrixT = matrix(T) ## TODO Here I am calling parent to ensure that the correct `any` function ## is envoked for non-cpu matrices @@ -236,9 +202,9 @@ function eigen( DM = DM[p] VM = VM[:, p] - if truncate + if any(!isnothing, (maxdim, cutoff)) DM, truncerr, _ = truncate!!( - DM; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff, kwargs... + DM; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff ) dD = length(DM) if dD < size(VM, 2) @@ -316,27 +282,13 @@ random_orthog(::Type{ElT}, n::Int, m::Int) where {ElT<:Real} = random_unitary(El random_orthog(n::Int, m::Int) = random_orthog(Float64, n, m) function eigen( - T::DenseTensor{ElT,2,IndsT}; kwargs... + T::DenseTensor{ElT,2,IndsT}; + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, ) where {ElT<:Union{Real,Complex},IndsT} - # Keyword argument deprecations - use_absolute_cutoff = false - if haskey(kwargs, :absoluteCutoff) - @warn "In svd, keyword argument absoluteCutoff is deprecated in favor of use_absolute_cutoff" - use_absolute_cutoff = get(kwargs, :absoluteCutoff, use_absolute_cutoff) - end - use_relative_cutoff = true - if haskey(kwargs, :doRelCutoff) - @warn "In svd, keyword argument doRelCutoff is deprecated in favor of use_relative_cutoff" - use_relative_cutoff = get(kwargs, :doRelCutoff, use_relative_cutoff) - end - - truncate = haskey(kwargs, :maxdim) || haskey(kwargs, :cutoff) - maxdim::Int = get(kwargs, :maxdim, minimum(dims(T))) - mindim::Int = get(kwargs, :mindim, 1) - cutoff::Float64 = get(kwargs, :cutoff, 0.0) - use_absolute_cutoff::Bool = get(kwargs, :use_absolute_cutoff, use_absolute_cutoff) - use_relative_cutoff::Bool = get(kwargs, :use_relative_cutoff, use_relative_cutoff) - matrixT = matrix(T) if any(!isfinite, matrixT) throw( @@ -353,9 +305,9 @@ function eigen( #DM = DM[p] #VM = VM[:,p] - if truncate + if any(!isnothing, (maxdim, cutoff)) DM, truncerr, _ = truncate!!( - DM; maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff, kwargs... + DM; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff ) dD = length(DM) if dD < size(VM, 2) @@ -380,22 +332,22 @@ function eigen( end # NDTensors.qr -function qr(T::DenseTensor{<:Any,2}; positive=false, kwargs...) +function qr(T::DenseTensor{<:Any,2}; positive=false) qxf = positive ? qr_positive : qr - return qx(qxf, T; kwargs...) + return qx(qxf, T) end # NDTensors.ql -function ql(T::DenseTensor{<:Any,2}; positive=false, kwargs...) +function ql(T::DenseTensor{<:Any,2}; positive=false) qxf = positive ? ql_positive : ql - return qx(qxf, T; kwargs...) + return qx(qxf, T) end # # Generic function for qr and ql decomposition of dense matrix. # The X tensor = R or L. # -function qx(qx::Function, T::DenseTensor{<:Any,2}; kwargs...) +function qx(qx::Function, T::DenseTensor{<:Any,2}) QM, XM = qx(matrix(T)) # Be aware that if positive==false, then typeof(QM)=LinearAlgebra.QRCompactWYQ, not Matrix # It gets converted to matrix below. @@ -483,7 +435,7 @@ end # Lapack replaces A with Q & R carefully packed together. So here we just copy a # before letting lapack overwirte it. # -function ql(A::AbstractMatrix; kwargs...) +function ql(A::AbstractMatrix) Base.require_one_based_indexing(A) T = eltype(A) AA = similar(A, LinearAlgebra._qreltype(T), size(A)) @@ -493,7 +445,7 @@ function ql(A::AbstractMatrix; kwargs...) cutype = leaf_parenttype(AA) AA = NDTensors.cpu(AA) end - Q, L = ql!(AA; kwargs...) + Q, L = ql!(AA) if iscuda Q = adapt(cutype, Q) L = adapt(cutype, L) diff --git a/NDTensors/src/truncate.jl b/NDTensors/src/truncate.jl index 829c351127..9699e43f28 100644 --- a/NDTensors/src/truncate.jl +++ b/NDTensors/src/truncate.jl @@ -17,31 +17,22 @@ function truncate!!(::Type{<:AbstractArray}, P::AbstractArray; kwargs...) end # CPU implementation. -function truncate!(P::AbstractVector{ElT}; cutoff=zero(eltype(P)), kwargs...) where {ElT} - if isnothing(cutoff) - cutoff = typemin(ElT) - end - - # Keyword argument deprecations - use_absolute_cutoff = false - if haskey(kwargs, :absoluteCutoff) - @warn "In truncate!, keyword argument absoluteCutoff is deprecated in favor of use_absolute_cutoff" - use_absolute_cutoff = get(kwargs, :absoluteCutoff, use_absolute_cutoff) - end - use_relative_cutoff = true - if haskey(kwargs, :doRelCutoff) - @warn "In truncate!, keyword argument doRelCutoff is deprecated in favor of use_relative_cutoff" - use_relative_cutoff = get(kwargs, :doRelCutoff, use_relative_cutoff) - end - - maxdim::Int = min(get(kwargs, :maxdim, length(P)), length(P)) - mindim::Int = max(get(kwargs, :mindim, 1), 1) - - use_absolute_cutoff::Bool = get(kwargs, :use_absolute_cutoff, use_absolute_cutoff) - use_relative_cutoff::Bool = get(kwargs, :use_relative_cutoff, use_relative_cutoff) +function truncate!( + P::AbstractVector; + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, +) + mindim = replace_nothing(mindim, default_mindim(P)) + maxdim = replace_nothing(maxdim, length(P)) + cutoff = replace_nothing(cutoff, typemin(eltype(P))) + use_absolute_cutoff = replace_nothing(use_absolute_cutoff, default_use_absolute_cutoff(P)) + use_relative_cutoff = replace_nothing(use_relative_cutoff, default_use_relative_cutoff(P)) origm = length(P) - docut = zero(ElT) + docut = zero(eltype(P)) #if P[1] <= 0.0 # P[1] = 0.0 @@ -51,7 +42,7 @@ function truncate!(P::AbstractVector{ElT}; cutoff=zero(eltype(P)), kwargs...) wh if origm == 1 docut = abs(P[1]) / 2 - return zero(ElT), docut + return zero(eltype(P)), docut end s = sign(P[1]) @@ -59,12 +50,12 @@ function truncate!(P::AbstractVector{ElT}; cutoff=zero(eltype(P)), kwargs...) wh #Zero out any negative weight for n in origm:-1:1 - (P[n] >= zero(ElT)) && break - P[n] = zero(ElT) + (P[n] >= zero(eltype(P))) && break + P[n] = zero(eltype(P)) end n = origm - truncerr = zero(ElT) + truncerr = zero(eltype(P)) while n > maxdim truncerr += P[n] n -= 1 @@ -78,10 +69,10 @@ function truncate!(P::AbstractVector{ElT}; cutoff=zero(eltype(P)), kwargs...) wh n -= 1 end else - scale = one(ElT) + scale = one(eltype(P)) if use_relative_cutoff scale = sum(P) - (scale == zero(ElT)) && (scale = one(ElT)) + (scale == zero(eltype(P))) && (scale = one(eltype(P))) end #Continue truncating until *sum* of discarded probability @@ -100,13 +91,12 @@ function truncate!(P::AbstractVector{ElT}; cutoff=zero(eltype(P)), kwargs...) wh if n < origm docut = (P[n] + P[n + 1]) / 2 - if abs(P[n] - P[n + 1]) < ElT(1e-3) * P[n] - docut += ElT(1e-3) * P[n] + if abs(P[n] - P[n + 1]) < eltype(P)(1e-3) * P[n] + docut += eltype(P)(1e-3) * P[n] end end s < 0 && (P .*= s) resize!(P, n) - return truncerr, docut end diff --git a/NDTensors/test/arraytensor/diagonalarray.jl b/NDTensors/test/arraytensor/diagonalarray.jl new file mode 100644 index 0000000000..70c0029dfc --- /dev/null +++ b/NDTensors/test/arraytensor/diagonalarray.jl @@ -0,0 +1,26 @@ +using NDTensors +using NDTensors.DiagonalArrays +using LinearAlgebra +using Test + +using NDTensors: storage, storagetype + +@testset "Tensor wrapping DiagonalArray" begin + D = DiagonalArray(randn(3), 3, 4, 5) + Dᵈ = densearray(D) + A = randn(3, 4, 5) + + for convert_to_dense in (true, false) + @test contract(D, (-1, -2, -3), A, (-1, -2, -3); convert_to_dense) ≈ + contract(Dᵈ, (-1, -2, -3), A, (-1, -2, -3)) + @test contract(D, (-1, -2, 1), A, (-1, -2, 2); convert_to_dense) ≈ + contract(Dᵈ, (-1, -2, 1), A, (-1, -2, 2)) + end + + # Tensor tests + Dᵗ = tensor(D, size(D)) + Dᵈᵗ = tensor(Dᵈ, size(D)) + Aᵗ = tensor(A, size(A)) + @test contract(Dᵗ, (-1, -2, -3), Aᵗ, (-1, -2, -3)) ≈ + contract(Dᵈᵗ, (-1, -2, -3), Aᵗ, (-1, -2, -3)) +end diff --git a/src/mps/abstractmps.jl b/src/mps/abstractmps.jl index a6309e7d2f..94722e301f 100644 --- a/src/mps/abstractmps.jl +++ b/src/mps/abstractmps.jl @@ -1592,7 +1592,8 @@ bond indices is performed. Afterward, tensors Either modify in-place with `orthogonalize!` or out-of-place with `orthogonalize`. """ -function orthogonalize!(M::AbstractMPS, j::Int; kwargs...) +function orthogonalize!(M::AbstractMPS, j::Int; maxdim=nothing, normalize=nothing) + # TODO: Delete `maxdim` and `normalize` keyword arguments. @debug_check begin if !(1 <= j <= length(M)) error("Input j=$j to `orthogonalize!` out of range (valid range = 1:$(length(M)))") @@ -1608,7 +1609,7 @@ function orthogonalize!(M::AbstractMPS, j::Int; kwargs...) else ltags = TagSet("Link,l=$b") end - L, R = factorize(M[b], linds; tags=ltags, kwargs...) + L, R = factorize(M[b], linds; tags=ltags, maxdim) M[b] = L M[b + 1] *= R setleftlim!(M, b) @@ -1629,7 +1630,7 @@ function orthogonalize!(M::AbstractMPS, j::Int; kwargs...) else ltags = TagSet("Link,l=$b") end - L, R = factorize(M[b + 1], rinds; tags=ltags, kwargs...) + L, R = factorize(M[b + 1], rinds; tags=ltags, maxdim) M[b + 1] = L M[b] *= R diff --git a/src/mps/dmrg.jl b/src/mps/dmrg.jl index 1a0a933791..3a731b3c66 100644 --- a/src/mps/dmrg.jl +++ b/src/mps/dmrg.jl @@ -269,7 +269,7 @@ function dmrg(PH, psi0::MPS, sweeps::Sweeps; kwargs...) phi, 1, eigsolve_which_eigenvalue; - ishermitian=ishermitian, + ishermitian, tol=eigsolve_tol, krylovdim=eigsolve_krylovdim, maxiter=eigsolve_maxiter, @@ -311,10 +311,10 @@ function dmrg(PH, psi0::MPS, sweeps::Sweeps; kwargs...) mindim=mindim(sweeps, sw), cutoff=cutoff(sweeps, sw), eigen_perturbation=drho, - ortho=ortho, + ortho, normalize=true, - which_decomp=which_decomp, - svd_alg=svd_alg, + which_decomp, + svd_alg, ) end maxtruncerr = max(maxtruncerr, spec.truncerr) diff --git a/src/mps/mpo.jl b/src/mps/mpo.jl index 84550e5558..c3b47fb5c0 100644 --- a/src/mps/mpo.jl +++ b/src/mps/mpo.jl @@ -597,13 +597,12 @@ end Apply(A::MPO, ψ::MPS; kwargs...) = Applied(apply, (A, ψ), NamedTuple(kwargs)) -function contract(A::MPO, ψ::MPS; alg="densitymatrix", kwargs...) - if haskey(kwargs, :method) - # Backwards compatibility, use `method`. - alg = get(kwargs, :method, "densitymatrix") - end +function contract(A::MPO, ψ::MPS; alg=nothing, method=alg, kwargs...) + # TODO: Delete `method` since it is deprecated. + alg = NDTensors.replace_nothing(method, "densitymatrix") # Keyword argument deprecations + # TODO: Delete these. if alg == "DensityMatrix" @warn "In contract, method DensityMatrix is deprecated in favor of densitymatrix" alg = "densitymatrix" diff --git a/src/mps/mps.jl b/src/mps/mps.jl index 2a19b6c1e0..8d3f721687 100644 --- a/src/mps/mps.jl +++ b/src/mps/mps.jl @@ -527,19 +527,24 @@ Factorize the ITensor `phi` and replace the ITensors `b` and `b+1` of MPS `M` with the factors. Choose the orthogonality with `ortho="left"/"right"`. """ -function replacebond!(M::MPS, b::Int, phi::ITensor; kwargs...) - ortho::String = get(kwargs, :ortho, "left") - swapsites::Bool = get(kwargs, :swapsites, false) - which_decomp::Union{String,Nothing} = get(kwargs, :which_decomp, nothing) - normalize::Bool = get(kwargs, :normalize, false) - - # Deprecated keywords - if haskey(kwargs, :dir) - error( - """dir keyword in replacebond! has been replaced by ortho. - Note that the options are now the same as factorize, so use `left` instead of `fromleft` and `right` instead of `fromright`.""", - ) - end +function replacebond!( + M::MPS, + b::Int, + phi::ITensor; + normalize=nothing, + swapsites=nothing, + ortho=nothing, + # Decomposition kwargs + which_decomp=nothing, + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + eigen_perturbation=nothing, + svd_alg=nothing, +) + normalize = NDTensors.replace_nothing(normalize, false) + swapsites = NDTensors.replace_nothing(swapsites, false) + ortho = NDTensors.replace_nothing(ortho, "left") indsMb = inds(M[b]) if swapsites @@ -548,7 +553,16 @@ function replacebond!(M::MPS, b::Int, phi::ITensor; kwargs...) indsMb = replaceind(indsMb, sb, sbp1) end L, R, spec = factorize( - phi, indsMb; which_decomp=which_decomp, tags=tags(linkind(M, b)), kwargs... + phi, + indsMb; + mindim, + maxdim, + cutoff, + ortho, + which_decomp, + eigen_perturbation, + svd_alg, + tags=tags(linkind(M, b)), ) M[b] = L M[b + 1] = R diff --git a/src/tensor_operations/matrix_decomposition.jl b/src/tensor_operations/matrix_decomposition.jl index 9da68a2c00..378bdfa826 100644 --- a/src/tensor_operations/matrix_decomposition.jl +++ b/src/tensor_operations/matrix_decomposition.jl @@ -106,14 +106,30 @@ Utrunc2, Strunc2, Vtrunc2 = svd(A, i, k; cutoff=1e-10); See also: [`factorize`](@ref), [`eigen`](@ref) """ -function svd(A::ITensor, Linds...; leftdir=nothing, rightdir=nothing, kwargs...) - utags::TagSet = get(kwargs, :lefttags, get(kwargs, :utags, "Link,u")) - vtags::TagSet = get(kwargs, :righttags, get(kwargs, :vtags, "Link,v")) +function svd( + A::ITensor, + Linds...; + leftdir=nothing, + rightdir=nothing, + lefttags=nothing, + righttags=nothing, + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + alg=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, + min_blockdim=nothing, + # Deprecated + utags=lefttags, + vtags=righttags, +) + lefttags = NDTensors.replace_nothing(lefttags, ts"Link,u") + righttags = NDTensors.replace_nothing(righttags, ts"Link,v") - # Keyword argument deprecations - #if haskey(kwargs, :utags) || haskey(kwargs, :vtags) - # @warn "Keyword arguments `utags` and `vtags` are deprecated in favor of `leftags` and `righttags`." - #end + # Deprecated + utags = NDTensors.replace_nothing(utags, ts"Link,u") + vtags = NDTensors.replace_nothing(vtags, ts"Link,v") Lis = commoninds(A, indices(Linds...)) Ris = uniqueinds(A, Lis) @@ -142,7 +158,16 @@ function svd(A::ITensor, Linds...; leftdir=nothing, rightdir=nothing, kwargs...) AC = permute(AC, cL, cR) end - USVT = svd(tensor(AC); kwargs...) + USVT = svd( + tensor(AC); + mindim, + maxdim, + cutoff, + alg, + use_absolute_cutoff, + use_relative_cutoff, + min_blockdim, + ) if isnothing(USVT) return nothing end @@ -155,10 +180,10 @@ function svd(A::ITensor, Linds...; leftdir=nothing, rightdir=nothing, kwargs...) U = UC * dag(CL) V = VC * dag(CR) - settags!(U, utags, u) - settags!(S, utags, u) - settags!(S, vtags, v) - settags!(V, vtags, v) + U = settags(U, utags, u) + S = settags(S, utags, u) + S = settags(S, vtags, v) + V = settags(V, vtags, v) u = settags(u, utags) v = settags(v, vtags) @@ -262,7 +287,31 @@ A * U ≈ Ul * D # true See also: [`svd`](@ref), [`factorize`](@ref) """ -function eigen(A::ITensor, Linds, Rinds; kwargs...) +function eigen( + A::ITensor, + Linds, + Rinds; + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, + ishermitian=nothing, + tags=nothing, + lefttags=nothing, + righttags=nothing, + plev=nothing, + leftplev=nothing, + rightplev=nothing, +) + ishermitian = NDTensors.replace_nothing(ishermitian, false) + tags = NDTensors.replace_nothing(tags, ts"Link,eigen") + lefttags = NDTensors.replace_nothing(lefttags, tags) + righttags = NDTensors.replace_nothing(righttags, tags) + plev = NDTensors.replace_nothing(plev, 0) + leftplev = NDTensors.replace_nothing(leftplev, plev) + rightplev = NDTensors.replace_nothing(rightplev, plev) + @debug_check begin if hasqns(A) @assert flux(A) == QN() @@ -276,16 +325,6 @@ function eigen(A::ITensor, Linds, Rinds; kwargs...) N != NL + NR && error("Number of left and right indices must add up to total number of indices") - ishermitian::Bool = get(kwargs, :ishermitian, false) - - tags::TagSet = get(kwargs, :tags, "Link,eigen") - lefttags::TagSet = get(kwargs, :lefttags, tags) - righttags::TagSet = get(kwargs, :righttags, tags) - - plev::Int = get(kwargs, :plev, 0) - leftplev::Int = get(kwargs, :leftplev, plev) - rightplev::Int = get(kwargs, :rightplev, plev) - if lefttags == righttags && leftplev == rightplev leftplev = rightplev + 1 end @@ -335,7 +374,7 @@ function eigen(A::ITensor, Linds, Rinds; kwargs...) AT = ishermitian ? Hermitian(tensor(AC)) : tensor(AC) - DT, VT, spec = eigen(AT; kwargs...) + DT, VT, spec = eigen(AT; mindim, maxdim, cutoff, use_absolute_cutoff, use_relative_cutoff) D, VC = itensor(DT), itensor(VT) V = VC * dag(CR) @@ -445,7 +484,9 @@ end # # Generic function implementing both qr and ql decomposition. The X tensor = R or L. # -function qx(qx::Function, A::ITensor, Linds::Indices, Rinds::Indices; tags, kwargs...) +function qx( + qx::Function, A::ITensor, Linds::Indices, Rinds::Indices; tags=ts"Link,qx", positive=false +) # Strip out any extra indices that are not in A. # Unit test test/base/test_itensor.jl line 1469 will fail without this. Linds = commoninds(A, Linds) @@ -468,7 +509,7 @@ function qx(qx::Function, A::ITensor, Linds::Indices, Rinds::Indices; tags, kwar # AC = permute(AC, cL, cR; allow_alias=true) - QT, XT = qx(tensor(AC); kwargs...) #pass order(AC)==2 matrix down to the NDTensors level where qr/ql are implemented. + QT, XT = qx(tensor(AC); positive) #pass order(AC)==2 matrix down to the NDTensors level where qr/ql are implemented. # # Undo the combine oepration, to recover all tensor indices. # @@ -491,8 +532,10 @@ end # Generic function implementing both rq and lq decomposition. Implemented using qr/ql # with swapping the left and right indices. The X tensor = R or L. # -function xq(qx::Function, A::ITensor, Linds::Indices, Rinds::Indices; tags, kwargs...) - Q, X, q = qx(A, Rinds, Linds; kwargs...) +function xq( + qx::Function, A::ITensor, Linds::Indices, Rinds::Indices; tags=ts"Link,xq", positive=false +) + Q, X, q = qx(A, Rinds, Linds; positive) # # fix up the tag name for the index between Q and L. # @@ -507,8 +550,8 @@ polar(A::ITensor; kwargs...) = error(noinds_error_message("polar")) # TODO: allow custom tags in internal indices? # TODO: return the new common indices? -function polar(A::ITensor, Linds...; kwargs...) - U, S, V = svd(A, Linds...; kwargs...) +function polar(A::ITensor, Linds...) + U, S, V = svd(A, Linds...) u = commoninds(S, U) v = commoninds(S, V) δᵤᵥ′ = δ(u..., v'...) @@ -517,13 +560,12 @@ function polar(A::ITensor, Linds...; kwargs...) return Q, P, commoninds(Q, P) end -function factorize_qr(A::ITensor, Linds...; kwargs...) - ortho::String = get(kwargs, :ortho, "left") +function factorize_qr(A::ITensor, Linds...; ortho="left", tags=nothing, positive=false) if ortho == "left" - L, R, q = qr(A, Linds...; kwargs...) + L, R, q = qr(A, Linds...; tags, positive) elseif ortho == "right" Lis = uniqueinds(A, indices(Linds...)) - R, L, q = qr(A, Lis...; kwargs...) + R, L, q = qr(A, Lis...; tags, positive) else error("In factorize using qr decomposition, ortho keyword $ortho not supported. Supported options are left or right.") @@ -551,12 +593,27 @@ function factorize_svd( Linds...; (singular_values!)=nothing, ortho="left", - svd_alg="divide_and_conquer", - dir=ITensors.In, - kwargs..., + alg=nothing, + dir=nothing, + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + tags=nothing, ) + dir = NDTensors.replace_nothing(dir, ITensors.In) leftdir, rightdir = -dir, -dir - USV = svd(A, Linds...; leftdir, rightdir, alg=svd_alg, kwargs...) + USV = svd( + A, + Linds...; + leftdir, + rightdir, + alg, + mindim, + maxdim, + cutoff, + lefttags=tags, + righttags=tags, + ) if isnothing(USV) return nothing end @@ -579,9 +636,17 @@ function factorize_svd( return L, R, spec end -function factorize_eigen(A::ITensor, Linds...; kwargs...) - ortho::String = get(kwargs, :ortho, "left") - delta_A2 = get(kwargs, :eigen_perturbation, nothing) +function factorize_eigen( + A::ITensor, + Linds...; + ortho="left", + eigen_perturbation=nothing, + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + tags=nothing, +) + delta_A2 = eigen_perturbation if ortho == "left" Lis = commoninds(A, indices(Linds...)) elseif ortho == "right" @@ -599,7 +664,7 @@ function factorize_eigen(A::ITensor, Linds...; kwargs...) noprime!(delta_A2) A2 += delta_A2 end - F = eigen(A2, Lis, simLis; ishermitian=true, kwargs...) + F = eigen(A2, Lis, simLis; ishermitian=true, mindim, maxdim, cutoff, tags) D, _, spec = F L = F.Vt R = dag(L) * A @@ -654,13 +719,26 @@ Perform a factorization of `A` into ITensors `L` and `R` such that `A ≈ L * R` For truncation arguments, see: [`svd`](@ref) """ -function factorize(A::ITensor, Linds...; maxdim=nothing, kwargs...) - ortho::String = get(kwargs, :ortho, "left") - tags::TagSet = get(kwargs, :tags, "Link,fact") - plev::Int = get(kwargs, :plev, 0) - which_decomp::Union{String,Nothing} = get(kwargs, :which_decomp, nothing) - cutoff = get(kwargs, :cutoff, nothing) - eigen_perturbation = get(kwargs, :eigen_perturbation, nothing) +function factorize( + A::ITensor, + Linds...; + mindim=nothing, + maxdim=nothing, + cutoff=nothing, + ortho=nothing, + tags=nothing, + plev=nothing, + which_decomp=nothing, + # eigen + eigen_perturbation=nothing, + # svd + svd_alg=nothing, + use_absolute_cutoff=nothing, + use_relative_cutoff=nothing, + min_blockdim=nothing, + (singular_values!)=nothing, + dir=nothing, +) if !isnothing(eigen_perturbation) if !(isnothing(which_decomp) || which_decomp == "eigen") error("""when passing a non-trivial eigen_perturbation to `factorize`, @@ -669,11 +747,9 @@ function factorize(A::ITensor, Linds...; maxdim=nothing, kwargs...) end which_decomp = "eigen" end - - if haskey(kwargs, :which_factorization) - error("""which_factorization keyword in factorize has - been replace by which_decomp.""") - end + ortho = NDTensors.replace_nothing(ortho, "left") + tags = NDTensors.replace_nothing(tags, ts"Link,fact") + plev = NDTensors.replace_nothing(plev, 0) # Determines when to use eigen vs. svd (eigen is less precise, # so eigen should only be used if a larger cutoff is requested) @@ -697,17 +773,18 @@ function factorize(A::ITensor, Linds...; maxdim=nothing, kwargs...) which_decomp = "eigen" end end - if which_decomp == "svd" - LR = factorize_svd(A, Linds...; kwargs..., maxdim=maxdim) + LR = factorize_svd( + A, Linds...; mindim, maxdim, cutoff, tags, ortho, alg=svd_alg, dir, singular_values! + ) if isnothing(LR) return nothing end L, R, spec = LR elseif which_decomp == "eigen" - L, R, spec = factorize_eigen(A, Linds...; kwargs..., maxdim=maxdim) + L, R, spec = factorize_eigen(A, Linds...; mindim, maxdim, cutoff, tags, ortho) elseif which_decomp == "qr" - L, R = factorize_qr(A, Linds...; kwargs...) + L, R = factorize_qr(A, Linds...; ortho, tags) spec = Spectrum(nothing, 0.0) else throw(ArgumentError("""In factorize, factorization $which_decomp is not @@ -717,8 +794,8 @@ function factorize(A::ITensor, Linds...; maxdim=nothing, kwargs...) # Set the tags and prime level l = commonind(L, R) l̃ = setprime(settags(l, tags), plev) - replaceind!(L, l, l̃) - replaceind!(R, l, l̃) + L = replaceind(L, l, l̃) + R = replaceind(R, l, l̃) l = l̃ return L, R, spec, l