forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopaque_closure.jl
392 lines (346 loc) · 12.4 KB
/
opaque_closure.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
using Test
using InteractiveUtils
using Core: OpaqueClosure
using Base.Experimental: @opaque
const_int() = 1
const_int_barrier() = Base.inferencebarrier(1)::typeof(1)
const lno = LineNumberNode(1, :none)
let ci = @code_lowered const_int()
@eval function oc_trivial()
$(Expr(:new_opaque_closure, Tuple{}, Any, Any, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci)))
end
end
@test isa(oc_trivial(), OpaqueClosure{Tuple{}, Any})
@test oc_trivial()() == 1
let ci = @code_lowered const_int()
@eval function oc_simple_inf()
$(Expr(:new_opaque_closure, Tuple{}, Union{}, Any, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci)))
end
end
@test isa(oc_simple_inf(), OpaqueClosure{Tuple{}, Int})
@test oc_simple_inf()() == 1
struct OcClos2Int
a::Int
b::Int
end
(a::OcClos2Int)() = getfield(a, 1) + getfield(a, 2)
let ci = @code_lowered OcClos2Int(1, 2)();
@eval function oc_trivial_clos()
$(Expr(:new_opaque_closure, Tuple{}, Int, Int, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci),
1, 2))
end
end
@test oc_trivial_clos()() == 3
let ci = @code_lowered OcClos2Int(1, 2)();
@eval function oc_self_call_clos()
$(Expr(:new_opaque_closure, Tuple{}, Int, Int, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci),
1, 2))()
end
end
@test @inferred(oc_self_call_clos()) == 3
let opt = @code_typed oc_self_call_clos()
@test length(opt[1].code) == 1
@test isa(opt[1].code[1], Core.ReturnNode)
end
struct OcClos1Any
a
end
(a::OcClos1Any)() = getfield(a, 1)
let ci = @code_lowered OcClos1Any(1)()
@eval function oc_pass_clos(x)
$(Expr(:new_opaque_closure, Tuple{}, Any, Any, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci),
:x))
end
end
@test oc_pass_clos(1)() == 1
@test oc_pass_clos("a")() == "a"
let ci = @code_lowered OcClos1Any(1)()
@eval function oc_infer_pass_clos(x)
$(Expr(:new_opaque_closure, Tuple{}, Union{}, Any, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci),
:x))
end
end
@test isa(oc_infer_pass_clos(1), OpaqueClosure{Tuple{}, typeof(1)})
@test isa(oc_infer_pass_clos("a"), OpaqueClosure{Tuple{}, typeof("a")})
@test oc_infer_pass_clos(1)() == 1
@test oc_infer_pass_clos("a")() == "a"
let ci = @code_lowered identity(1)
@eval function oc_infer_pass_id()
$(Expr(:new_opaque_closure, Tuple{Any}, Any, Any, true,
Expr(:opaque_closure_method, nothing, 1, false, lno, ci)))
end
end
function complicated_identity(x)
oc_infer_pass_id()(x)
end
@test @inferred(complicated_identity(1)) == 1
@test @inferred(complicated_identity("a")) == "a"
let ci = (@code_typed complicated_identity(1))[1]
@test length(ci.code) == 1
@test isa(ci.code[1], Core.ReturnNode)
end
struct OcOpt
A
end
(A::OcOpt)() = ndims(getfield(A, 1))
let ci = @code_lowered OcOpt([1 2])()
@eval function oc_opt_ndims(A)
$(Expr(:new_opaque_closure, Tuple{}, Union{}, Any, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci),
:A))
end
end
oc_opt_ndims([1 2])
let A = [1 2]
let Oc = oc_opt_ndims(A)
@test_broken sizeof(Oc.env) == 0
@test Oc() == 2
end
end
@test @opaque(x->2x)(8) == 16
let f = @opaque (x::Int, y::Float64)->(2x, 3y)
@test_throws TypeError f(1, 1)
@test f(2, 3.0) === (4, 9.0)
end
function uses_frontend_opaque(x)
@opaque y->x+y
end
@test uses_frontend_opaque(10)(8) == 18
# World age mechanism
module test_world_age
using Test
using Core: OpaqueClosure
using Base.Experimental: @opaque
function test_oc_world_age end
mk_oc_world_age() = @opaque ()->test_oc_world_age()
g_world_age = @opaque ()->test_oc_world_age()
h_world_age = mk_oc_world_age()
@test isa(h_world_age, OpaqueClosure{Tuple{}, Union{}})
test_oc_world_age() = 1
@test_throws MethodError g_world_age()
@test_throws MethodError h_world_age()
@test mk_oc_world_age()() == 1
g_world_age = @opaque ()->test_oc_world_age()
@test g_world_age() == 1
@test isa(mk_oc_world_age(), OpaqueClosure{Tuple{}, Int})
end # module test_world_age
function maybe_vararg(isva::Bool)
T = isva ? Vararg{Int} : Int
@opaque Tuple{T}->_ (x...)->x
end
@test maybe_vararg(false)(1) == (1,)
@test_throws MethodError maybe_vararg(false)(1,2,3)
@test maybe_vararg(true)(1) == (1,)
@test maybe_vararg(true)(1,2,3) == (1,2,3)
@test (@opaque Tuple{Int, Int}->_ (a, b, x...)->x)(1,2) === ()
@test (@opaque Tuple{Int, Int}->Tuple{} (a, b, x...)->x)(1,2) === ()
@test (@opaque _->Tuple{Vararg{Int}} (a, b, x...)->x)(1,2) === ()
@test (@opaque Tuple{Int, Int}->_ (a, x...)->x)(1,2) === (2,)
@test (@opaque Tuple{Int, Int}->Tuple{Int} (a, x...)->x)(1,2) === (2,)
@test (@opaque _->Tuple{Vararg{Int}} (a, x...)->x)(1,2) === (2,)
@test (@opaque Tuple{Int, Vararg{Int}}->_ (a, x...)->x)(1,2,3,4) === (2,3,4)
@test (@opaque Tuple{Int, Vararg{Int}}->Tuple{Vararg{Int}} (a, x...)->x)(1,2,3,4) === (2,3,4)
@test (@opaque (a::Int, x::Int...)->x)(1,2,3) === (2,3)
@test (@opaque _->Tuple{Vararg{Int}} (a::Int, x::Int...)->x)(1,2,3) === (2,3)
@test (@opaque _->_ (a::Int, x::Int...)->x)(1,2,3) === (2,3)
@test_throws ErrorException (@opaque Tuple{Vararg{Int}}->_ x->x)
@test_throws ErrorException (@opaque Tuple{Int, Vararg{Int}}->_ x->x)
@test_throws ErrorException (@opaque Tuple{Int, Int}->_ x->x)
@test_throws ErrorException (@opaque Tuple{Any}->_ (x,y)->x)
@test_throws ErrorException (@opaque Tuple{Vararg{Int}}->_ (x,y...)->x)
@test_throws ErrorException (@opaque Tuple{Int}->_ (x,y,z...)->x)
# cannot specify types both on arguments and separately
@test_throws ErrorException @eval @opaque Tuple{Any}->_ (x::Int)->x
# Vargarg in complied mode
mk_va_opaque() = @opaque (x...)->x
@test mk_va_opaque()(1) == (1,)
@test mk_va_opaque()(1,2) == (1,2)
# OpaqueClosure show method
@test repr(@opaque x->Base.inferencebarrier(1)) == "(::Any)->◌::Any"
# Opaque closure in CodeInfo returned from generated functions
let ci = @code_lowered const_int()
global function mk_ocg(world::UInt, source, args...)
@nospecialize
cig = Meta.lower(@__MODULE__, Expr(:new_opaque_closure, Tuple{}, Any, Any, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci))).args[1]
cig.slotnames = Symbol[Symbol("#self#")]
cig.slottypes = Any[Any]
cig.slotflags = UInt8[0x00]
cig.nargs = 1
cig.isva = false
return cig
end
end
@eval function oc_trivial_generated()
$(Expr(:meta, :generated_only))
$(Expr(:meta, :generated, mk_ocg))
end
@test isa(oc_trivial_generated(), OpaqueClosure{Tuple{}, Any})
@test oc_trivial_generated()() == 1
# Constprop through varargs OpaqueClosure
function oc_varargs_constprop()
oc = @opaque (args...)->args[1]+args[2]+args[3]
return Val{oc(1,2,3)}()
end
@test Base.return_types(oc_varargs_constprop, Tuple{}) == Any[Val{6}]
# OpaqueClosure ABI
f_oc_noinline(x) = @opaque function (y)
@noinline
x + y
end
let oc = Base.inferencebarrier(f_oc_noinline(1))
@test oc(2) == 3
end
function f_oc_noinline_call(x, y)
return f_oc_noinline(x)(y)
end
@test f_oc_noinline_call(1, 2) == 3
@test_throws MethodError (@opaque x->x+1)(1, 2)
# https://github.com/JuliaLang/julia/issues/40409
const GLOBAL_OPAQUE_CLOSURE = @opaque () -> 123
call_global_opaque_closure() = GLOBAL_OPAQUE_CLOSURE()
@test call_global_opaque_closure() == 123
let foo::Int = 42
Base.Experimental.@force_compile
oc = Base.Experimental.@opaque a::Int->sin(a) + cos(foo)
@test only(Base.return_types(oc, (Int,))) === Float64
code, rt = first(code_typed(oc, (Int,)))
@test rt === Float64
end
let oc = @opaque a->sin(a)
let opt = code_typed(oc, (Int,))
@test length(opt) == 1
@test opt[1][2] === Float64
end
let unopt = code_typed(oc, (Int,); optimize=false)
@test length(unopt) == 1
end
end
# constructing an opaque closure from IRCode
let src = first(only(code_typed(+, (Int, Int))))
ir = Core.Compiler.inflate_ir(src, Core.Compiler.VarState[], src.slottypes)
ir.argtypes[1] = Tuple{}
@test ir.debuginfo.def === nothing
ir.debuginfo.def = Symbol(@__FILE__)
@test OpaqueClosure(src; sig=Tuple{Int, Int}, rettype=Int, nargs=2)(40, 2) == 42
oc = OpaqueClosure(ir)
@test oc(40, 2) == 42
@test isa(oc, OpaqueClosure{Tuple{Int,Int}, Int})
@test_throws TypeError oc("40", 2)
@test OpaqueClosure(ir)(40, 2) == 42 # the `OpaqueClosure(::IRCode)` constructor should be non-destructive
end
let ir = first(only(Base.code_ircode(sin, (Int,))))
ir.argtypes[1] = Tuple{}
@test OpaqueClosure(ir)(42) == sin(42)
@test OpaqueClosure(ir)(42) == sin(42) # the `OpaqueClosure(::IRCode)` constructor should be non-destructive
@test length(code_typed(OpaqueClosure(ir))) == 1
ir = first(only(Base.code_ircode(sin, (Float64,))))
ir.argtypes[1] = Tuple{}
@test OpaqueClosure(ir)(42.) == sin(42.)
@test OpaqueClosure(ir)(42.) == sin(42.) # the `OpaqueClosure(::IRCode)` constructor should be non-destructive
end
# variadic arguments
let src = code_typed((Int,Int)) do x, y...
return (x, y)
end |> only |> first
src.slottypes[1] = Tuple{}
let oc = OpaqueClosure(src; rettype=Tuple{Int, Tuple{Int}}, sig=Tuple{Int, Int}, nargs=2, isva=true)
@test oc(1,2) === (1,(2,))
@test_throws MethodError oc(1,2,3)
end
ir = Core.Compiler.inflate_ir(src, Core.Compiler.VarState[], src.slottypes)
@test ir.debuginfo.def === nothing
ir.debuginfo.def = Symbol(@__FILE__)
let oc = OpaqueClosure(ir; isva=true)
@test oc(1,2) === (1,(2,))
@test_throws MethodError oc(1,2,3)
end
end
# Check for correct handling in case of broken return type.
eval_oc_dyn(oc) = Base.inferencebarrier(oc)()
eval_oc_spec(oc) = oc()
for f in (const_int, const_int_barrier)
ci = code_lowered(f, Tuple{})[1]
for compiled in (true, false)
oc_expr = Expr(:new_opaque_closure, Tuple{}, Union{}, Float64, true,
Expr(:opaque_closure_method, nothing, 0, false, lno, ci))
oc_mismatch = let ci = code_lowered(f, Tuple{})[1]
if compiled
eval(:((()->$oc_expr)()))
else
eval(oc_expr)
end
end
@test isa(oc_mismatch, OpaqueClosure{Tuple{}, Union{}})
@test_throws TypeError eval_oc_dyn(oc_mismatch)
@test_throws TypeError eval_oc_spec(oc_mismatch)
end
end
# Attempting to construct an opaque closure backtrace after the oc is GC'ed
f_oc_throws() = error("oops")
@noinline function make_oc_and_collect_bt()
did_gc = Ref{Bool}(false)
bt = let ir = first(only(Base.code_ircode(f_oc_throws, ())))
ir.argtypes[1] = Tuple
sentinel = Ref{Any}(nothing)
oc = OpaqueClosure(ir, sentinel)
finalizer(sentinel) do x
did_gc[] = true
end
try
oc()
@test false
catch e
bt = catch_backtrace()
@test isa(e, ErrorException)
bt
end
end
return bt, did_gc
end
let (bt, did_gc) = make_oc_and_collect_bt()
GC.gc(true); GC.gc(true); GC.gc(true);
@test did_gc[]
@test any(stacktrace(bt)) do frame
li = frame.linfo
isa(li, Core.CodeInstance) && (li = li.def)
isa(li, Core.ABIOverride) && (li = li.def)
isa(li, Core.MethodInstance) || return false
isa(li.def, Method) || return false
return li.def.is_for_opaque_closure
end
end
# Opaque closure with mismatch struct argtype
const op_arg_restrict2 = @opaque (x::Tuple{Int64}, y::Base.RefValue{Int64})->x+y
ccall_op_arg_restrict2_bad_args() = op_arg_restrict2((1.,), 2)
@test_throws TypeError ccall_op_arg_restrict2_bad_args()
# code_llvm for opaque closures
let ir = Base.code_ircode((Int,Int)) do x, y
@noinline x * y
end |> only |> first
ir.argtypes[1] = Tuple{}
oc = Core.OpaqueClosure(ir)
io = IOBuffer()
code_llvm(io, oc, Tuple{Int,Int})
@test occursin("j_*_", String(take!(io)))
code_llvm(io, oc, (Int,Int))
@test occursin("j_*_", String(take!(io)))
end
foopaque() = Base.Experimental.@opaque(@noinline x::Int->println(x))(1)
code_llvm(devnull,foopaque,()) #shouldn't crash
let ir = first(only(Base.code_ircode(sin, (Int,))))
ir.argtypes[1] = Tuple{}
oc = Core.OpaqueClosure(ir)
@test (Base.show_method(IOBuffer(), oc.source::Method); true)
end
let ir = first(only(Base.code_ircode(sin, (Int,))))
ir.argtypes[1] = Tuple{}
oc = Core.OpaqueClosure(ir; do_compile=false)
@test oc(1) == sin(1)
end