栈的特点是后入先出
根据这个特点可以临时保存一些数据,之后用到依次再弹出来,常用于 DFS 深度搜索
队列一般常用于 BFS 广度搜索,类似一层一层的搜索
设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈。
- 思路:用两个栈实现或插入元组实现,保证当前最小值在栈顶即可
class MinStack:
def __init__(self):
self.stack = []
def push(self, x: int) -> None:
if len(self.stack) > 0:
self.stack.append((x, min(x, self.stack[-1][1])))
else:
self.stack.append((x, x))
def pop(self) -> int:
return self.stack.pop()[0]
def top(self) -> int:
return self.stack[-1][0]
def getMin(self) -> int:
return self.stack[-1][1]
波兰表达式计算 > 输入: ["2", "1", "+", "3", "*"] > 输出: 9 解释: ((2 + 1) * 3) = 9
- 思路:通过栈保存原来的元素,遇到表达式弹出运算,再推入结果,重复这个过程
class Solution:
def evalRPN(self, tokens: List[str]) -> int:
def comp(or1, op, or2):
if op == '+':
return or1 + or2
if op == '-':
return or1 - or2
if op == '*':
return or1 * or2
if op == '/':
abs_result = abs(or1) // abs(or2)
return abs_result if or1 * or2 > 0 else -abs_result
stack = []
for token in tokens:
if token in ['+', '-', '*', '/']:
or2 = stack.pop()
or1 = stack.pop()
stack.append(comp(or1, token, or2))
else:
stack.append(int(token))
return stack[0]
给定一个经过编码的字符串,返回它解码后的字符串。 s = "3[a]2[bc]", 返回 "aaabcbc". s = "3[a2[c]]", 返回 "accaccacc". s = "2[abc]3[cd]ef", 返回 "abcabccdcdcdef".
- 思路:通过两个栈进行操作,一个用于存数,另一个用来存字符串
class Solution:
def decodeString(self, s: str) -> str:
stack_str = ['']
stack_num = []
num = 0
for c in s:
if c >= '0' and c <= '9':
num = num * 10 + int(c)
elif c == '[':
stack_num.append(num)
stack_str.append('')
num = 0
elif c == ']':
cur_str = stack_str.pop()
stack_str[-1] += cur_str * stack_num.pop()
else:
stack_str[-1] += c
return stack_str[0]
给定一个二叉树,返回它的_中序_遍历。
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
stack, inorder = [], []
node = root
while len(stack) > 0 or node is not None:
if node is not None:
stack.append(node)
node = node.left
else:
node = stack.pop()
inorder.append(node.val)
node = node.right
return inorder
给你无向连通图中一个节点的引用,请你返回该图的深拷贝(克隆)。
- BFS
class Solution:
def cloneGraph(self, start: 'Node') -> 'Node':
if start is None:
return None
visited = {start: Node(start.val, [])}
bfs = collections.deque([start])
while len(bfs) > 0:
curr = bfs.popleft()
curr_copy = visited[curr]
for n in curr.neighbors:
if n not in visited:
visited[n] = Node(n.val, [])
bfs.append(n)
curr_copy.neighbors.append(visited[n])
return visited[start]
- DFS iterative
class Solution:
def cloneGraph(self, start: 'Node') -> 'Node':
if start is None:
return None
if not start.neighbors:
return Node(start.val)
visited = {start: Node(start.val, [])}
dfs = [start]
while len(dfs) > 0:
peek = dfs[-1]
peek_copy = visited[peek]
if len(peek_copy.neighbors) == 0:
for n in peek.neighbors:
if n not in visited:
visited[n] = Node(n.val, [])
dfs.append(n)
peek_copy.neighbors.append(visited[n])
else:
dfs.pop()
return visited[start]
给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量。一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设网格的四个边均被水包围。
High-level problem: number of connected component of graph
- 思路:通过深度搜索遍历可能性(注意标记已访问元素)
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
if not grid or not grid[0]:
return 0
m, n = len(grid), len(grid[0])
def dfs_iter(i, j):
dfs = []
dfs.append((i, j))
while len(dfs) > 0:
i, j = dfs.pop()
if grid[i][j] == '1':
grid[i][j] = '0'
if i - 1 >= 0:
dfs.append((i - 1, j))
if j - 1 >= 0:
dfs.append((i, j - 1))
if i + 1 < m:
dfs.append((i + 1, j))
if j + 1 < n:
dfs.append((i, j + 1))
return
num_island = 0
for i in range(m):
for j in range(n):
if grid[i][j] == '1':
num_island += 1
dfs_iter(i, j)
return num_island
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。
- 思路 1:蛮力法,比较每个以 i 开始 j 结束的最大矩形,A(i, j) = (j - i + 1) * min_height(i, j),时间复杂度 O(n^2) 无法 AC。
class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
max_area = 0
n = len(heights)
for i in range(n):
min_height = heights[i]
for j in range(i, n):
min_height = min(min_height, heights[j])
max_area = max(max_area, min_height * (j - i + 1))
return max_area
- 思路 2: 设 A(i, j) 为区间 [i, j) 内最大矩形的面积,k 为 [i, j) 内最矮 bar 的坐标,则 A(i, j) = max((j - i) * heights[k], A(i, k), A(k+1, j)), 使用分治法进行求解。时间复杂度 O(nlogn),其中使用简单遍历求最小值无法 AC (最坏情况退化到 O(n^2)),使用线段树优化后勉强 AC。
class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
n = len(heights)
seg_tree = [None] * n
seg_tree.extend(list(zip(heights, range(n))))
for i in range(n - 1, 0, -1):
seg_tree[i] = min(seg_tree[2 * i], seg_tree[2 * i + 1], key=lambda x: x[0])
def _min(i, j):
min_ = (heights[i], i)
i += n
j += n
while i < j:
if i % 2 == 1:
min_ = min(min_, seg_tree[i], key=lambda x: x[0])
i += 1
if j % 2 == 1:
j -= 1
min_ = min(min_, seg_tree[j], key=lambda x: x[0])
i //= 2
j //= 2
return min_
def LRA(i, j):
if i == j:
return 0
min_k, k = _min(i, j)
return max(min_k * (j - i), LRA(k + 1, j), LRA(i, k))
return LRA(0, n)
- 思路 3:包含当前 bar 最大矩形的边界为左边第一个高度小于当前高度的 bar 和右边第一个高度小于当前高度的 bar。
class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
n = len(heights)
stack = [-1]
max_area = 0
for i in range(n):
while len(stack) > 1 and heights[stack[-1]] > heights[i]:
h = stack.pop()
max_area = max(max_area, heights[h] * (i - stack[-1] - 1))
stack.append(i)
while len(stack) > 1:
h = stack.pop()
max_area = max(max_area, heights[h] * (n - stack[-1] - 1))
return max_area
常用于 BFS 宽度优先搜索
使用栈实现队列
class MyQueue:
def __init__(self):
self.cache = []
self.out = []
def push(self, x: int) -> None:
"""
Push element x to the back of queue.
"""
self.cache.append(x)
def pop(self) -> int:
"""
Removes the element from in front of queue and returns that element.
"""
if len(self.out) == 0:
while len(self.cache) > 0:
self.out.append(self.cache.pop())
return self.out.pop()
def peek(self) -> int:
"""
Get the front element.
"""
if len(self.out) > 0:
return self.out[-1]
else:
return self.cache[0]
def empty(self) -> bool:
"""
Returns whether the queue is empty.
"""
return len(self.cache) == 0 and len(self.out) == 0
二叉树的层序遍历
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
levels = []
if root is None:
return levels
bfs = collections.deque([root])
while len(bfs) > 0:
levels.append([])
level_size = len(bfs)
for _ in range(level_size):
node = bfs.popleft()
levels[-1].append(node.val)
if node.left is not None:
bfs.append(node.left)
if node.right is not None:
bfs.append(node.right)
return levels
给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离。 两个相邻元素间的距离为 1
- 思路 1: 从 0 开始 BFS, 遇到距离最小值需要更新的则更新后重新入队更新后续结点
class Solution:
def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
if len(matrix) == 0 or len(matrix[0]) == 0:
return matrix
m, n = len(matrix), len(matrix[0])
dist = [[float('inf')] * n for _ in range(m)]
bfs = collections.deque([])
for i in range(m):
for j in range(n):
if matrix[i][j] == 0:
dist[i][j] = 0
bfs.append((i, j))
neighbors = [(-1, 0), (1, 0), (0, -1), (0, 1)]
while len(bfs) > 0:
i, j = bfs.popleft()
for dn_i, dn_j in neighbors:
n_i, n_j = i + dn_i, j + dn_j
if n_i >= 0 and n_i < m and n_j >= 0 and n_j < n:
if dist[n_i][n_j] > dist[i][j] + 1:
dist[n_i][n_j] = dist[i][j] + 1
bfs.append((n_i, n_j))
return dist
- 思路 2: 2-pass DP,dist(i, j) = max{dist(i - 1, j), dist(i + 1, j), dist(i, j - 1), dist(i, j + 1)} + 1
class Solution:
def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
if len(matrix) == 0 or len(matrix[0]) == 0:
return matrix
m, n = len(matrix), len(matrix[0])
dist = [[float('inf')] * n for _ in range(m)]
for i in range(m):
for j in range(n):
if matrix[i][j] == 1:
if i - 1 >= 0:
dist[i][j] = min(dist[i - 1][j] + 1, dist[i][j])
if j - 1 >= 0:
dist[i][j] = min(dist[i][j - 1] + 1, dist[i][j])
else:
dist[i][j] = 0
for i in range(-1, -m - 1, -1):
for j in range(-1, -n - 1, -1):
if matrix[i][j] == 1:
if i + 1 < 0:
dist[i][j] = min(dist[i + 1][j] + 1, dist[i][j])
if j + 1 < 0:
dist[i][j] = min(dist[i][j + 1] + 1, dist[i][j])
return dist
顾名思义,单调栈即是栈中元素有单调性的栈,典型应用为用线性的时间复杂度找左右两侧第一个大于/小于当前元素的位置。
class Solution:
def largestRectangleArea(self, heights) -> int:
heights.append(0)
stack = [-1]
result = 0
for i in range(len(heights)):
while stack and heights[i] < heights[stack[-1]]:
cur = stack.pop()
result = max(result, heights[cur] * (i - stack[-1] - 1))
stack.append(i)
return result
class Solution:
def trap(self, height: List[int]) -> int:
stack = []
result = 0
for i in range(len(height)):
while stack and height[i] > height[stack[-1]]:
cur = stack.pop()
if not stack:
break
result += (min(height[stack[-1]], height[i]) - height[cur]) * (i - stack[-1] - 1)
stack.append(i)
return result
单调栈的拓展,可以从数组头 pop 出旧元素,典型应用是以线性时间获得区间最大/最小值。
求滑动窗口中的最大元素
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
N = len(nums)
if N * k == 0:
return []
if k == 1:
return nums[:]
# define a max queue
maxQ = collections.deque()
result = []
for i in range(N):
if maxQ and maxQ[0] == i - k:
maxQ.popleft()
while maxQ and nums[maxQ[-1]] < nums[i]:
maxQ.pop()
maxQ.append(i)
if i >= k - 1:
result.append(nums[maxQ[0]])
return result
class Solution:
def shortestSubarray(self, A: List[int], K: int) -> int:
N = len(A)
cdf = [0]
for num in A:
cdf.append(cdf[-1] + num)
result = N + 1
minQ = collections.deque()
for i, csum in enumerate(cdf):
while minQ and csum <= cdf[minQ[-1]]:
minQ.pop()
while minQ and csum - cdf[minQ[0]] >= K:
result = min(result, i - minQ.popleft())
minQ.append(i)
return result if result < N + 1 else -1
- 熟悉栈的使用场景
- 后入先出,保存临时值
- 利用栈 DFS 深度搜索
- 熟悉队列的使用场景
- 利用队列 BFS 广度搜索