forked from CrunchyData/postgres-operator-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
encrypt_password.py
211 lines (180 loc) · 8.12 KB
/
encrypt_password.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Generate the password hashes / verifiers for use in PostgreSQL
How to use this:
pw = EncryptPassword(
user="username",
password="securepassword",
algorithm="scram-sha-256",
)
print(pw.encrypt())
The output of the ``encrypt`` function can be stored in PostgreSQL in the
password clause, e.g.
ALTER ROLE username PASSWORD {pw.encrypt()};
where you safely interpolate it in with a quoted literal, of course :)
"""
import base64
import hashlib
import hmac
import secrets
import stringprep
import unicodedata
class EncryptPassword:
ALGORITHMS = {
'md5': {
'encryptor': '_encrypt_md5',
'digest': hashlib.md5,
'defaults': {},
},
'scram-sha-256': {
'encryptor': '_encrypt_scram_sha_256',
'digest': hashlib.sha256,
'defaults': {
'salt_length': 16,
'iterations': 4096,
},
}
}
# List of characters that are prohibited to be used per PostgreSQL-SASLprep
SASLPREP_STEP3 = (
stringprep.in_table_a1, # PostgreSQL treats this as prohibited
stringprep.in_table_c12,
stringprep.in_table_c21_c22,
stringprep.in_table_c3,
stringprep.in_table_c4,
stringprep.in_table_c5,
stringprep.in_table_c6,
stringprep.in_table_c7,
stringprep.in_table_c8,
stringprep.in_table_c9,
)
def __init__(self, user, password, algorithm='scram-sha-256', **kwargs):
self.user = user
self.password = password
self.algorithm = algorithm
self.salt = None
self.encrypted_password = None
self.kwargs = kwargs
def encrypt(self):
try:
algorithm = self.ALGORITHMS[self.algorithm]
except KeyError:
raise Exception('algorithm "{}" not supported'.format(self.algorithm))
kwargs = algorithm['defaults'].copy()
kwargs.update(self.kwargs)
return getattr(self, algorithm['encryptor'])(algorithm['digest'], **kwargs)
def _bytes_xor(self, a, b):
"""XOR two bytestrings together"""
return bytes(a_i ^ b_i for a_i, b_i in zip(a, b))
def _encrypt_md5(self, digest, **kwargs):
self.encrypted_password = b"md5" + digest(
self.password.encode('utf-8') + self.user.encode('utf-8')).hexdigest().encode('utf-8')
return self.encrypted_password
def _encrypt_scram_sha_256(self, digest, **kwargs):
# requires SASL prep
# password = SASLprep
iterations = kwargs['iterations']
salt_length = kwargs['salt_length']
salted_password = self._scram_sha_256_generate_salted_password(self.password, salt_length, iterations, digest)
client_key = hmac.HMAC(salted_password, b"Client Key", digest)
stored_key = digest(client_key.digest()).digest()
server_key = hmac.HMAC(salted_password, b"Server Key", digest)
self.encrypted_password = self.algorithm.upper().encode("utf-8") + b"$" + \
("{}".format(iterations)).encode("utf-8") + b":" + \
base64.b64encode(self.salt) + b"$" + \
base64.b64encode(stored_key) + b":" + base64.b64encode(server_key.digest())
return self.encrypted_password
def _normalize_password(self, password):
"""Normalize the password using PostgreSQL-flavored SASLprep. For reference:
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/common/saslprep.c
using the `pg_saslprep` function
Implementation borrowed from asyncpg implementation:
https://github.com/MagicStack/asyncpg/blob/master/asyncpg/protocol/scram.pyx#L263
"""
normalized_password = password
# if the password is an ASCII string or fails to encode as an UTF8
# string, we can return
try:
normalized_password.encode("ascii")
except UnicodeEncodeError:
pass
else:
return normalized_password
# Step 1 of SASLPrep: Map. Per the algorithm, we map non-ascii space
# characters to ASCII spaces (\x20 or \u0020, but we will use ' ') and
# commonly mapped to nothing characters are removed
# Table C.1.2 -- non-ASCII spaces
# Table B.1 -- "Commonly mapped to nothing"
normalized_password = u"".join(
[' ' if stringprep.in_table_c12(c) else c
for c in normalized_password if not stringprep.in_table_b1(c)])
# If at this point the password is empty, PostgreSQL uses the original
# password
if not normalized_password:
return password
# Step 2 of SASLPrep: Normalize. Normalize the password using the
# Unicode normalization algorithm to NFKC form
normalized_password = unicodedata.normalize('NFKC', normalized_password)
# If the password is not empty, PostgreSQL uses the original password
if not normalized_password:
return password
# Step 3 of SASLPrep: Prohobited characters. If PostgreSQL detects any
# of the prohibited characters in SASLPrep, it will use the original
# password
# We also include "unassigned code points" in the prohibited character
# category as PostgreSQL does the same
for c in normalized_password:
if any([in_prohibited_table(c) for in_prohibited_table in
self.SASLPREP_STEP3]):
return password
# Step 4 of SASLPrep: Bi-directional characters. PostgreSQL follows the
# rules for bi-directional characters laid on in RFC3454 Sec. 6 which
# are:
# 1. Characters in RFC 3454 Sec 5.8 are prohibited (C.8)
# 2. If a string contains a RandALCat character, it cannot containy any
# LCat character
# 3. If the string contains any RandALCat character, an RandALCat
# character must be the first and last character of the string
# RandALCat characters are found in table D.1, whereas LCat are in D.2
if any([stringprep.in_table_d1(c) for c in normalized_password]):
# if the first character or the last character are not in D.1,
# return the original password
if not (stringprep.in_table_d1(normalized_password[0]) and
stringprep.in_table_d1(normalized_password[-1])):
return password
# if any characters are in D.2, use the original password
if any([stringprep.in_table_d2(c) for c in normalized_password]):
return password
# return the normalized password
return normalized_password
def _scram_sha_256_generate_salted_password(self, password, salt_length, iterations, digest):
"""This follows the "Hi" algorithm specified in RFC5802"""
# first, need to normalize the password using PostgreSQL-flavored SASLprep
normalized_password = self._normalize_password(password)
# convert the password to a binary string - UTF8 is safe for SASL (though there are SASLPrep rules)
p = normalized_password.encode("utf8")
# generate a salt
self.salt = secrets.token_bytes(salt_length)
# the initial signature is the salt with a terminator of a 32-bit string ending in 1
ui = hmac.new(p, self.salt + b'\x00\x00\x00\x01', digest)
# grab the initial digest
u = ui.digest()
# for X number of iterations, recompute the HMAC signature against the password
# and the latest iteration of the hash, and XOR it with the previous version
for x in range(iterations - 1):
ui = hmac.new(p, ui.digest(), hashlib.sha256)
# this is a fancy way of XORing two byte strings together
u = self._bytes_xor(u, ui.digest())
return u
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Generates a SCRAM-SHA-256 password.')
parser.add_argument('--username','-u')
parser.add_argument('--password','-p')
args = parser.parse_args()
pw = EncryptPassword(
user=args.username,
password=args.password,
algorithm="scram-sha-256"
)
print(pw.encrypt().decode('utf-8'))
print(pw.encrypt())