-
Notifications
You must be signed in to change notification settings - Fork 196
/
predict.py
107 lines (85 loc) · 3.57 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from copy import deepcopy
import random
import numpy as np
import pandas as pd
import os
import torch
from torch import optim
from torch.optim.lr_scheduler import StepLR
from tqdm import tqdm
from transformers import AdamW
from nltk.tokenize import TweetTokenizer
from utils.functions import load_eval_model, WordSplitTokenizer
from utils.args_helper import get_eval_parser, print_opts, append_dataset_args
from utils.metrics import absa_metrics_fn
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
###
# modelling functions
###
def get_lr(args, optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def metrics_to_string(metric_dict):
string_list = []
for key, value in metric_dict.items():
string_list.append('{}:{:.2f}'.format(key, value))
return ' '.join(string_list)
###
# Testing Function
###
def predict(model, data_loader, forward_fn, metrics_fn, i2w, is_test=False):
model.eval()
total_loss, total_correct, total_labels = 0, 0, 0
list_hyp, list_label, list_seq = [], [], []
pbar = tqdm(iter(data_loader), leave=True, total=len(data_loader))
for i, batch_data in enumerate(pbar):
batch_seq = batch_data[-1]
loss, batch_hyp, batch_label = forward_fn(model, batch_data[:-1], i2w=i2w, device=args['device'])
# Calculate total loss
test_loss = loss.item()
total_loss = total_loss + test_loss
# Calculate evaluation metrics
list_hyp += batch_hyp
list_label += batch_label
list_seq += batch_seq
metrics = metrics_fn(list_hyp, list_label)
pbar.set_description("TEST LOSS:{:.4f} {}".format(total_loss/(i+1), metrics_to_string(metrics)))
return total_loss, metrics, list_hyp, list_label, list_seq
if __name__ == "__main__":
# Make sure cuda is deterministic
torch.backends.cudnn.deterministic = True
# Parse args
args = get_eval_parser()
args = append_dataset_args(args)
model_dir = '{}/{}/{}'.format(args["model_dir"],args["dataset"],args['experiment_name'])
# Set random seed
set_seed(args['seed']) # Added here for reproductibility
# w2i & i2w
w2i, i2w = args['dataset_class'].LABEL2INDEX, args['dataset_class'].INDEX2LABEL
if os.path.exists(model_dir + "/best_model_0.th"):
# load model
model, tokenizer = load_eval_model(args)
optimizer = optim.Adam(model.parameters())
if args['fp16']:
from apex import amp # Apex is only required if we use fp16 training
model, optimizer = amp.initialize(model, optimizer, opt_level=args['fp16'])
if args['device'] == "cuda":
model = model.cuda()
print("=========== PREDICTION ===========")
test_dataset_path = args['test_set_path']
test_dataset = args['dataset_class'](test_dataset_path, tokenizer, lowercase=args["lower"], no_special_token=args['no_special_token'])
test_loader = args['dataloader_class'](dataset=test_dataset, max_seq_len=args['max_seq_len'], batch_size=args['batch_size'], num_workers=16, shuffle=False)
_, _, test_hyp, test_label, test_seq = predict(model, test_loader, forward_fn=args['forward_fn'], metrics_fn=args['metrics_fn'], i2w=i2w)
result_df = pd.DataFrame({
'seq':test_seq,
'hyp': test_hyp,
'label': test_label
})
print(result_df.head())
result_df.to_csv(model_dir + "/prediction_result.csv")
else:
print(f'Model doesn\'t exist in {model_dir}')