-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_pvi.R
115 lines (110 loc) · 2.72 KB
/
run_pvi.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#' Pipeline for PVI challenge
#'
#' This pipeline executes five different models (Reg-Arima, DFM, XGBoost, ETS,
#' LSTM) that were utilized in the ESA Nowcasting Challenge. The purpose is to
#' perform nowcasting of the Production Volume in Industry based on these models.
#' If the `SAVE_TO_S3` variable is set to TRUE, the submission can be saved in
#' a S3 bucket.
library(targets)
# Set target options:
tar_option_set(
packages = c(
"xts", "lubridate", "dplyr", "tidyr", "data.table",
"dfms", "jsonlite", "styler", "visNetwork"
),
memory = "transient",
garbage_collection = TRUE
)
options(dplyr.summarise.inform = FALSE)
# Execute files stored in R/
tar_source(files = "R")
# Saving flag to S3 (TOKEN NEEDED)
SAVE_TO_S3 <- TRUE
# Pipeline
list(
tar_target(
name = data_info_file,
command = "data.yaml",
format = "file"
),
tar_target(
name = challenges_file,
command = "challenges.yaml",
format = "file"
),
tar_target(
name = models_file,
command = "models.yaml",
format = "file"
),
tar_target(
name = data_info,
command = yaml::read_yaml(data_info_file),
),
tar_target(
name = challenges,
command = yaml::read_yaml(challenges_file),
),
tar_target(
name = models,
command = yaml::read_yaml(models_file),
),
tar_target(
name = data,
command = read_data_from_s3(challenges, data_info),
),
tar_target(
name = ets_pvi,
command = run_ETS("PVI", challenges, data, models)
),
tar_target(
name = regarima_pvi,
command = run_regarima("PVI", challenges, data, models)
),
tar_target(
name = dfms_pvi,
command = run_DFMs("PVI", challenges, data, models)
),
tar_target(
name = xgboost_pvi,
command = run_xgboost_per_country(
data = data,
config_models = models,
config_env = challenges,
challenge = "PVI"
)
),
tar_target(
name = lstm_pvi,
command = run_lstm_per_country(
data = data,
config_models = models,
config_env = challenges,
challenge = "PVI"
)
),
tar_target(
name = predictions_pvi,
command = bind_rows(list(
"entry_1" = regarima_pvi$preds %>% mutate(Entries = "REG-ARIMA"),
"entry_2" = dfms_pvi$preds %>% mutate(Entries = "DFM"),
"entry_3" = ets_pvi$preds %>% mutate(Entries = "ETS"),
"entry_4" = xgboost_pvi$preds %>% mutate(Entries = "XGBOOST"),
"entry_5" = lstm_pvi$preds %>% mutate(Entries = "LSTM")
))
),
tar_target(
name = save_pvi,
command = save_entries(
"PVI", list(
"entry_1" = regarima_pvi,
"entry_2" = dfms_pvi,
"entry_3" = ets_pvi,
"entry_4" = xgboost_pvi,
"entry_5" = lstm_pvi
),
challenges,
SAVE_TO_S3
)
)
)