-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_oil.R
138 lines (133 loc) · 3.29 KB
/
run_oil.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#' Pipeline for OIL challenge
#'
#' This pipeline executes five different models (Reg-Arima, DFM, XGBoost, ETS,
#' LSTM) that were utilized in the ESA Nowcasting Challenge.
#' If the `SAVE_TO_S3` variable is set to TRUE, the submission can be saved in
#' a S3 bucket.
library(targets)
# Set target options:
tar_option_set(
packages = c(
"xts", "lubridate", "dplyr", "tidyr", "data.table",
"dfms", "jsonlite", "styler", "visNetwork"
),
memory = "transient",
garbage_collection = TRUE
)
options(dplyr.summarise.inform = FALSE)
# Execute files stored in R/
tar_source(files = "R")
# Saving flag to S3 (TOKEN NEEDED)
SAVE_TO_S3 <- TRUE
# Pipeline
list(
tar_target(
name = challenge,
command = "OIL"
),
tar_target(
name = data_info_file,
command = "data.yaml",
format = "file"
),
tar_target(
name = challenges_file,
command = "challenges.yaml",
format = "file"
),
tar_target(
name = models_file,
command = "models.yaml",
format = "file"
),
tar_target(
name = data_info,
command = yaml::read_yaml(data_info_file),
),
tar_target(
name = challenges,
command = yaml::read_yaml(challenges_file),
),
tar_target(
name = models,
command = yaml::read_yaml(models_file),
),
tar_target(
name = data,
command = read_data_from_s3(challenges, data_info),
),
tar_target(
name = regarima_oil, # Entry 1
command = run_regarima(challenge, challenges, data, models)
),
tar_target(
name = dfms_oil, # Entry 2
command = run_DFMs(challenge, challenges, data, models)
),
tar_target(
name = ets_oil, # Entry 3
command = run_ETS(challenge, challenges, data, models)
),
tar_target(
name = large_data_xgboost_oil,
command = build_data_ml(
data, models, challenges, challenge, "XGBOOST"
)
),
tar_target(
name = xgboost_oil, # Entry 4
command = train_pred_xgboost_per_country(
large_data = large_data_xgboost_oil,
config_models = models,
config_env = challenges,
challenge = challenge
)
),
tar_target(
name = large_data_oil_saved,
command = save_large_data(large_data_xgboost_oil, challenges, challenge),
format = "file"
),
# tar_target(
# name = xgboost_oil, # Entry 4
# command = run_xgboost_per_country(
# data = data,
# config_models = models,
# config_env = challenges,
# challenge = challenge
# )
# ),
tar_target(
name = lstm_oil, # Entry 5
command = run_lstm_per_country(
data = data,
config_models = models,
config_env = challenges,
challenge = challenge
)
),
tar_target(
name = predictions_oil,
command = bind_rows(list(
"entry_1" = regarima_oil$preds %>% mutate(Entries = "REG-ARIMA"),
"entry_2" = dfms_oil$preds %>% mutate(Entries = "DFM"),
"entry_3" = ets_oil$preds %>% mutate(Entries = "ETS"),
"entry_4" = xgboost_oil$preds %>% mutate(Entries = "XGBOOST"),
"entry_5" = lstm_oil$preds %>% mutate(Entries = "LSTM")
))
),
tar_target(
name = save_oil,
command = save_entries(
"OIL", list(
"entry_1" = regarima_oil,
"entry_2" = dfms_oil,
"entry_3" = ets_oil,
"entry_4" = xgboost_oil,
"entry_5" = lstm_oil
),
challenges,
SAVE_TO_S3
)
)
)