-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
52 lines (39 loc) · 1.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from flask import Flask,render_template,jsonify
import pandas as pd
import pickle
from flask import Flask
app = Flask(__name__)
@app.route('/')
def api_help():
return render_template('index.html')
@app.route('/api/recommendation/<string:movie>')
def get_recommendation(movie):
df=pd.read_csv('find_index.csv')
index=df[df['movie_title'] == movie]["index"].values[0]
with open('recommendation.pkl', 'rb') as file:
LOAD_MODEL = pickle.load(file)
similar_movies = list(enumerate(LOAD_MODEL[index]))
sorted_similar_movies = sorted(similar_movies, key=lambda x:x[1], reverse=True)
def get_title_from_index(index):
return df[df.index == index]["movie_title"].values[0]
l=[]
i=0
for movie in sorted_similar_movies:
m=get_title_from_index(movie[0])
if type(m) is float:
continue
l.append(m)
i=i+1
if i>15:
break
return jsonify({'similar_movies':l[1:]})
@app.route('/api/review/<string:review>')
def get_review(review):
count_vectorizer=pickle.load(open("count_vectorizer",'rb'))
model_clf=pickle.load(open("model_clf" ,'rb'))
test=pd.Series(review)
vector=count_vectorizer.transform(test)
result=int(model_clf.predict(vector)[0])
return jsonify({'result':result})
if __name__ == "__main__":
app.run(debug=True)