From d87a68944210ad7c1ef21598ed90b807553ca722 Mon Sep 17 00:00:00 2001 From: Natalia Polina Date: Fri, 2 Aug 2024 14:47:12 -0700 Subject: [PATCH 1/4] Implement docs for ufunc. Update docs for logic element-wise functions. --- doc/conf.py | 13 +- doc/reference/ufunc.rst | 44 ++- dpnp/dpnp_algo/dpnp_elementwise_common.py | 413 ++++++++++++++++++++++ dpnp/dpnp_iface_logic.py | 94 +---- 4 files changed, 481 insertions(+), 83 deletions(-) diff --git a/doc/conf.py b/doc/conf.py index 081070a5e59b..0a7dd57a2f33 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -8,7 +8,13 @@ from sphinx.ext.autodoc import FunctionDocumenter -from dpnp.dpnp_algo.dpnp_elementwise_common import DPNPBinaryFunc, DPNPUnaryFunc +from dpnp.dpnp_algo.dpnp_elementwise_common import ( + DPNPBinaryFunc, + DPNPUnaryFunc, + binary_ufunc, + ufunc, + unary_ufunc, +) try: import comparison_generator @@ -202,7 +208,10 @@ # -- Options for todo extension ---------------------------------------------- def _can_document_member(member, *args, **kwargs): - if isinstance(member, (DPNPBinaryFunc, DPNPUnaryFunc)): + if isinstance( + member, + (DPNPBinaryFunc, DPNPUnaryFunc, ufunc, unary_ufunc, binary_ufunc), + ): return True return orig(member, *args, **kwargs) diff --git a/doc/reference/ufunc.rst b/doc/reference/ufunc.rst index bd1219117e00..9b9235a9e240 100644 --- a/doc/reference/ufunc.rst +++ b/doc/reference/ufunc.rst @@ -5,7 +5,49 @@ Universal Functions (ufunc) .. https://docs.scipy.org/doc/numpy/reference/ufuncs.html -DPNP provides universal functions (a.k.a. ufuncs) to support various element-wise operations. +A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion, \ +supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized” \ +wrapper for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs. \ +For full documentation refer to :obj:`numpy.ufunc`. + +ufuncs +------ +.. autosummary:: + :toctree: generated/ + + dpnp.ufunc + +Attributes +~~~~~~~~~~ + +There are some informational attributes that universal functions +possess. None of the attributes can be set. + +============ ================================================================= +**__doc__** A docstring for each ufunc. The first part of the docstring is + dynamically generated from the number of outputs, the name, and + the number of inputs. The second part of the docstring is + provided at creation time and stored with the ufunc. + +**__name__** The name of the ufunc. +============ ================================================================= + +.. autosummary:: + :toctree: generated/ + :nosignatures: + + dpnp.ufunc.nin + dpnp.ufunc.nout + dpnp.ufunc.nargs + dpnp.ufunc.types + dpnp.ufunc.ntypes + +Methods +~~~~~~~ +.. autosummary:: + :toctree: generated/ + + dpnp.ufunc.outer Available ufuncs ---------------- diff --git a/dpnp/dpnp_algo/dpnp_elementwise_common.py b/dpnp/dpnp_algo/dpnp_elementwise_common.py index 34a0a630bdf1..bc758292af95 100644 --- a/dpnp/dpnp_algo/dpnp_elementwise_common.py +++ b/dpnp/dpnp_algo/dpnp_elementwise_common.py @@ -25,6 +25,7 @@ # ***************************************************************************** import dpctl.tensor as dpt +import dpctl.tensor._tensor_elementwise_impl as ti import numpy from dpctl.tensor._elementwise_common import ( BinaryElementwiseFunc, @@ -44,9 +45,421 @@ "DPNPReal", "DPNPRound", "DPNPUnaryFunc", + "ufunc", + "unary_ufunc", + "binary_ufunc", ] +class ufunc: + """ + ufunc() + + Functions that operate element by element on whole arrays. + + Calling ufuncs + -------------- + op(*x[, out], **kwargs) + + Apply `op` to the arguments `*x` elementwise, broadcasting the arguments. + + Parameters + ---------- + *x : {dpnp.ndarray, usm_ndarray} + Input arrays. + out : {None, dpnp.ndarray, usm_ndarray}, optional + Output array to populate. + Array must have the correct shape and the expected data type. + order : {None, "C", "F", "A", "K"}, optional + Memory layout of the newly output array, Cannot be provided + together with `out`. Default: ``"K"``. + dtype : {None, dtype}, optional + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. Default: ``None``. + casting : {"no", "equiv", "safe", "same_kind", "unsafe"}, optional + Controls what kind of data casting may occur. Cannot be provided + together with `out`. Default: ``"safe"``. + + Limitations + ----------- + Keyword arguments `where` and `subok` are supported with their default values. + Other keyword arguments is currently unsupported. + Otherwise ``NotImplementedError`` exception will be raised. + + """ + + def __init__( + self, + name, + nin, + nout=1, + func=None, + docs=None, + to_usm_astype=None, + ): + self.nin_ = nin + self.nout_ = nout + self.__name__ = name + self.func = func + self.__doc__ = docs + self.to_usm_astype = to_usm_astype + + def __call__( + self, + *args, + out=None, + where=True, + casting="same_kind", + order="K", + dtype=None, + subok=True, + **kwargs, + ): + dpnp.check_supported_arrays_type( + *args, scalar_type=True, all_scalars=False + ) + if kwargs: + raise NotImplementedError( + f"Requested function={self.__name__} with kwargs={kwargs} " + "isn't currently supported." + ) + if where is not True: + raise NotImplementedError( + f"Requested function={self.__name__} with where={where} " + "isn't currently supported." + ) + if subok is not True: + raise NotImplementedError( + f"Requested function={self.__name__} with subok={subok} " + "isn't currently supported." + ) + if (dtype is not None or casting != "same_kind") and out is not None: + raise TypeError( + f"Requested function={self.__name__} only takes `out` or " + "`dtype` as an argument, but both were provided." + ) + if order is None: + order = "K" + elif order in "afkcAFKC": + order = order.upper() + else: + raise ValueError( + f"order must be one of 'C', 'F', 'A', or 'K' (got '{order}')" + ) + + astype_usm_args = self.to_usm_astype(*args, dtype, casting) + + out_usm = None if out is None else dpnp.get_usm_ndarray(out) + + res_usm = self.func.__call__(*astype_usm_args, out=out_usm, order=order) + + if out is not None and isinstance(out, dpnp_array): + return out + return dpnp_array._create_from_usm_ndarray(res_usm) + + @property + def nin(self): + """ + Returns the number of arguments treated as inputs. + + Examples + -------- + >>> import dpnp as np + >>> np.add.nin + 2 + >>> np.multiply.nin + 2 + >>> np.power.nin + 2 + >>> np.exp.nin + 1 + + """ + + return self.nin_ + + @property + def nout(self): + """ + Returns the number of arguments treated as outputs. + + Examples + -------- + >>> import dpnp as np + >>> np.add.nin + 1 + >>> np.multiply.nin + 1 + >>> np.power.nin + 1 + >>> np.exp.nin + 1 + + """ + + return self.nout_ + + @property + def nargs(self): + """ + Returns the number of arguments treated. + + Examples + -------- + >>> import dpnp as np + >>> np.add.nin + 3 + >>> np.multiply.nin + 3 + >>> np.power.nin + 3 + >>> np.exp.nin + 2 + + """ + + return self.nin_ + self.nout_ + + @property + def types(self): + """ + Returns information about types supported by implementation function, + using NumPy's character encoding for data types, e.g. + + Examples + -------- + >>> import dpnp as np + >>> np.add.types + ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', + 'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D'] + + >>> np.multiply.types + ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', + 'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D'] + + >>> np.power.types + ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', + 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D'] + + >>> np.exp.types + ['e->e', 'f->f', 'd->d', 'F->F', 'D->D'] + + >>> np.remainder.types + ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', + 'LL->L', 'ee->e', 'ff->f', 'dd->d'] + + """ + + return self.func.types + + @property + def ntypes(self): + """ + The number of types. + + Examples + -------- + >>> import dpnp as np + >>> np.add.ntypes + 14 + >>> np.multiply.ntypes + 14 + >>> np.power.ntypes + 13 + >>> np.exp.ntypes + 5 + >>> np.remainder.ntypes + 11 + + """ + + return len(self.func.types) + + def outer( + self, + x1, + x2, + out=None, + where=True, + order="K", + dtype=None, + subok=True, + **kwargs, + ): + """ + Apply the ufunc op to all pairs (a, b) with a in A and b in B. + + Parameters + ---------- + x1 : {dpnp.ndarray, usm_ndarray} + First input array. + x2 : {dpnp.ndarray, usm_ndarray} + Second input array. + out : {None, dpnp.ndarray, usm_ndarray}, optional + Output array to populate. + Array must have the correct shape and the expected data type. + **kwargs + For other keyword-only arguments, see the :obj:`dpnp.ufunc`. + + Returns + ------- + out : dpnp.ndarray + Output array. The data type of the returned array is determined by + the Type Promotion Rules. + + Limitations + ----------- + Parameters `where` and `subok` are supported with their default values. + Keyword argument `kwargs` is currently unsupported. + Otherwise ``NotImplementedError`` exception will be raised. + + See also + -------- + :obj:`dpnp.outer` : A less powerful version of dpnp.multiply.outer + that ravels all inputs to 1D. This exists primarily + for compatibility with old code. + + :obj:`dpnp.tensordot` : dpnp.tensordot(a, b, axes=((), ())) and + dpnp.multiply.outer(a, b) behave same for all + dimensions of a and b. + + Examples + -------- + >>> import dpnp as np + >>> A = np.array([1, 2, 3]) + >>> B = np.array([4, 5, 6]) + >>> np.multiply.outer(A, B) + array([[ 4, 5, 6], + [ 8, 10, 12], + [12, 15, 18]]) + + A multi-dimensional example: + + >>> A = np.array([[1, 2, 3], [4, 5, 6]]) + >>> A.shape + (2, 3) + >>> B = np.array([[1, 2, 3, 4]]) + >>> B.shape + (1, 4) + >>> C = np.multiply.outer(A, B) + >>> C.shape; C + (2, 3, 1, 4) + array([[[[ 1, 2, 3, 4]], + [[ 2, 4, 6, 8]], + [[ 3, 6, 9, 12]]], + [[[ 4, 8, 12, 16]], + [[ 5, 10, 15, 20]], + [[ 6, 12, 18, 24]]]]) + + """ + + dpnp.check_supported_arrays_type( + x1, x2, scalar_type=True, all_scalars=False + ) + if dpnp.isscalar(x1) or dpnp.isscalar(x2): + _x1 = x1 + _x2 = x2 + else: + _x1 = x1[(Ellipsis,) + (None,) * x2.ndim] + _x2 = x2[(None,) * x1.ndim + (Ellipsis,)] + return self.__call__( + _x1, + _x2, + out=out, + where=where, + order=order, + dtype=dtype, + subok=subok, + **kwargs, + ) + + +class unary_ufunc(ufunc): + def __init__( + self, + name, + docs, + acceptance_fn=False, + ): + def _to_usm_astype(x, dtype, casting): + if dtype is not None: + x = dpnp.astype(x, dtype=dtype, casting=casting, copy=False) + x_usm = dpnp.get_usm_ndarray(x) + return (x_usm,) + + _name = "_" + name + + dpt_result_type = getattr(ti, _name + "_result_type") + dpt_impl_fn = getattr(ti, _name) + + func = UnaryElementwiseFunc( + name, + dpt_result_type, + dpt_impl_fn, + self.__doc__, + acceptance_fn=acceptance_fn, + ) + + super().__init__( + name, nin=1, func=func, docs=docs, to_usm_astype=_to_usm_astype + ) + + +class binary_ufunc(ufunc): + def __init__( + self, + name, + docs, + inplace=False, + acceptance_fn=False, + ): + def _to_usm_astype(x1, x2, dtype, casting): + if dtype is not None: + if dpnp.isscalar(x1): + x1 = dpnp.asarray(x1, dtype=dtype) + x2 = dpnp.astype( + x2, dtype=dtype, casting=casting, copy=False + ) + elif dpnp.isscalar(x2): + x1 = dpnp.astype( + x1, dtype=dtype, casting=casting, copy=False + ) + x2 = dpnp.asarray(x2, dtype=dtype) + else: + x1 = dpnp.astype( + x1, dtype=dtype, casting=casting, copy=False + ) + x2 = dpnp.astype( + x2, dtype=dtype, casting=casting, copy=False + ) + x1_usm = dpnp.get_usm_ndarray_or_scalar(x1) + x2_usm = dpnp.get_usm_ndarray_or_scalar(x2) + return x1_usm, x2_usm + + _name = "_" + name + + dpt_result_type = getattr(ti, _name + "_result_type") + dpt_impl_fn = getattr(ti, _name) + + if inplace is True: + binary_inplace_fn = getattr(ti, _name + "_inplace") + else: + binary_inplace_fn = None + + func = BinaryElementwiseFunc( + name, + dpt_result_type, + dpt_impl_fn, + self.__doc__, + binary_inplace_fn, + acceptance_fn=acceptance_fn, + ) + + super().__init__( + name, nin=2, func=func, docs=docs, to_usm_astype=_to_usm_astype + ) + + class DPNPUnaryFunc(UnaryElementwiseFunc): """ Class that implements unary element-wise functions. diff --git a/dpnp/dpnp_iface_logic.py b/dpnp/dpnp_iface_logic.py index 2f28b3635ecd..afd6f2f3f34c 100644 --- a/dpnp/dpnp_iface_logic.py +++ b/dpnp/dpnp_iface_logic.py @@ -46,11 +46,10 @@ import dpctl.tensor as dpt -import dpctl.tensor._tensor_elementwise_impl as tei import numpy import dpnp -from dpnp.dpnp_algo.dpnp_elementwise_common import DPNPBinaryFunc, DPNPUnaryFunc +from dpnp.dpnp_algo.dpnp_elementwise_common import binary_ufunc, unary_ufunc from dpnp.dpnp_array import dpnp_array __all__ = [ @@ -405,12 +404,7 @@ def any(a, /, axis=None, out=None, keepdims=False, *, where=True): array([ True, True, False]) """ -equal = DPNPBinaryFunc( - "equal", - tei._equal_result_type, - tei._equal, - _EQUAL_DOCSTRING, -) +equal = binary_ufunc("equal", _EQUAL_DOCSTRING) _GREATER_DOCSTRING = """ @@ -471,12 +465,7 @@ def any(a, /, axis=None, out=None, keepdims=False, *, where=True): array([ True, False]) """ -greater = DPNPBinaryFunc( - "greater", - tei._greater_result_type, - tei._greater, - _GREATER_DOCSTRING, -) +greater = binary_ufunc("greater", _GREATER_DOCSTRING) _GREATER_EQUAL_DOCSTRING = """ @@ -538,12 +527,7 @@ def any(a, /, axis=None, out=None, keepdims=False, *, where=True): array([ True, True, False]) """ -greater_equal = DPNPBinaryFunc( - "greater", - tei._greater_equal_result_type, - tei._greater_equal, - _GREATER_EQUAL_DOCSTRING, -) +greater_equal = binary_ufunc("greater_equal", _GREATER_EQUAL_DOCSTRING) def isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False): @@ -802,12 +786,7 @@ def iscomplexobj(x): array([False, True, False]) """ -isfinite = DPNPUnaryFunc( - "isfinite", - tei._isfinite_result_type, - tei._isfinite, - _ISFINITE_DOCSTRING, -) +isfinite = unary_ufunc("isfinite", _ISFINITE_DOCSTRING) _ISINF_DOCSTRING = """ @@ -856,12 +835,7 @@ def iscomplexobj(x): array([ True, False, True]) """ -isinf = DPNPUnaryFunc( - "isinf", - tei._isinf_result_type, - tei._isinf, - _ISINF_DOCSTRING, -) +isinf = unary_ufunc("isinf", _ISINF_DOCSTRING) _ISNAN_DOCSTRING = """ @@ -911,12 +885,7 @@ def iscomplexobj(x): array([False, False, True]) """ -isnan = DPNPUnaryFunc( - "isnan", - tei._isnan_result_type, - tei._isnan, - _ISNAN_DOCSTRING, -) +isnan = unary_ufunc("isnan", _ISNAN_DOCSTRING) def isneginf(x, out=None): @@ -1238,12 +1207,7 @@ def isscalar(element): array([ True, False]) """ -less = DPNPBinaryFunc( - "less", - tei._less_result_type, - tei._less, - _LESS_DOCSTRING, -) +less = binary_ufunc("less", _LESS_DOCSTRING) _LESS_EQUAL_DOCSTRING = """ @@ -1304,12 +1268,7 @@ def isscalar(element): array([False, True, True]) """ -less_equal = DPNPBinaryFunc( - "less_equal", - tei._less_equal_result_type, - tei._less_equal, - _LESS_EQUAL_DOCSTRING, -) +less_equal = binary_ufunc("less_equal", _LESS_EQUAL_DOCSTRING) _LOGICAL_AND_DOCSTRING = """ @@ -1372,12 +1331,7 @@ def isscalar(element): array([False, False]) """ -logical_and = DPNPBinaryFunc( - "logical_and", - tei._logical_and_result_type, - tei._logical_and, - _LOGICAL_AND_DOCSTRING, -) +logical_and = binary_ufunc("logical_and", _LOGICAL_AND_DOCSTRING) _LOGICAL_NOT_DOCSTRING = """ @@ -1425,12 +1379,7 @@ def isscalar(element): array([False, False, False, True, True]) """ -logical_not = DPNPUnaryFunc( - "logical_not", - tei._logical_not_result_type, - tei._logical_not, - _LOGICAL_NOT_DOCSTRING, -) +logical_not = unary_ufunc("logical_not", _LOGICAL_NOT_DOCSTRING) _LOGICAL_OR_DOCSTRING = """ @@ -1493,12 +1442,7 @@ def isscalar(element): array([ True, False]) """ -logical_or = DPNPBinaryFunc( - "logical_or", - tei._logical_or_result_type, - tei._logical_or, - _LOGICAL_OR_DOCSTRING, -) +logical_or = binary_ufunc("logical_or", _LOGICAL_OR_DOCSTRING) _LOGICAL_XOR_DOCSTRING = """ @@ -1559,12 +1503,7 @@ def isscalar(element): [False, True]]) """ -logical_xor = DPNPBinaryFunc( - "logical_xor", - tei._logical_xor_result_type, - tei._logical_xor, - _LOGICAL_XOR_DOCSTRING, -) +logical_xor = binary_ufunc("logical_xor", _LOGICAL_XOR_DOCSTRING) _NOT_EQUAL_DOCSTRING = """ @@ -1625,9 +1564,4 @@ def isscalar(element): array([False, True]) """ -not_equal = DPNPBinaryFunc( - "not_equal", - tei._not_equal_result_type, - tei._not_equal, - _NOT_EQUAL_DOCSTRING, -) +not_equal = binary_ufunc("not_equal", _NOT_EQUAL_DOCSTRING) From 71262dac2cd2cef467e09b14dc08b149dba788fe Mon Sep 17 00:00:00 2001 From: Natalia Polina Date: Wed, 7 Aug 2024 08:24:01 -0700 Subject: [PATCH 2/4] Added short namespace for Universal Functions --- dpnp/dpnp_iface.py | 5 +++++ pyproject.toml | 1 + 2 files changed, 6 insertions(+) diff --git a/dpnp/dpnp_iface.py b/dpnp/dpnp_iface.py index bc005c21e0ec..85426d385c3b 100644 --- a/dpnp/dpnp_iface.py +++ b/dpnp/dpnp_iface.py @@ -74,6 +74,7 @@ "is_supported_array_or_scalar", "is_supported_array_type", "synchronize_array_data", + "ufunc", ] from dpnp import float64 @@ -798,3 +799,7 @@ def synchronize_array_data(a): check_supported_arrays_type(a) dpu.SequentialOrderManager[a.sycl_queue].wait() + + +# short namespace for Universal Functions +ufunc = dpnp.dpnp_algo.dpnp_elementwise_common.ufunc diff --git a/pyproject.toml b/pyproject.toml index 528ba40a4119..676392ee67be 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -10,6 +10,7 @@ quiet-level = 3 [tool.pylint.basic] include-naming-hint = true +class-naming-style = "snake_case" [tool.pylint.classes] exclude-protected = ["_create_from_usm_ndarray"] From 023cd531fd0325c5f21ccc792969607bd9bb2b90 Mon Sep 17 00:00:00 2001 From: Natalia Polina Date: Thu, 8 Aug 2024 11:02:38 -0700 Subject: [PATCH 3/4] fix docs --- dpnp/dpnp_algo/dpnp_elementwise_common.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/dpnp/dpnp_algo/dpnp_elementwise_common.py b/dpnp/dpnp_algo/dpnp_elementwise_common.py index bc758292af95..9c77dfdafbd9 100644 --- a/dpnp/dpnp_algo/dpnp_elementwise_common.py +++ b/dpnp/dpnp_algo/dpnp_elementwise_common.py @@ -65,8 +65,8 @@ class ufunc: Parameters ---------- - *x : {dpnp.ndarray, usm_ndarray} - Input arrays. + x : {dpnp.ndarray, usm_ndarray} + One or two input arrays. out : {None, dpnp.ndarray, usm_ndarray}, optional Output array to populate. Array must have the correct shape and the expected data type. @@ -78,7 +78,7 @@ class ufunc: provided together with `out`. Default: ``None``. casting : {"no", "equiv", "safe", "same_kind", "unsafe"}, optional Controls what kind of data casting may occur. Cannot be provided - together with `out`. Default: ``"safe"``. + together with `out`. Default: ``"same_kind"``. Limitations ----------- From 048ef8ece6c484f2da9dccab54f11a752c1fc20b Mon Sep 17 00:00:00 2001 From: Natalia Polina Date: Thu, 8 Aug 2024 15:30:04 -0700 Subject: [PATCH 4/4] Update dpnp_elementwise_common.py --- dpnp/dpnp_algo/dpnp_elementwise_common.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/dpnp/dpnp_algo/dpnp_elementwise_common.py b/dpnp/dpnp_algo/dpnp_elementwise_common.py index 9c77dfdafbd9..fd239b876146 100644 --- a/dpnp/dpnp_algo/dpnp_elementwise_common.py +++ b/dpnp/dpnp_algo/dpnp_elementwise_common.py @@ -57,9 +57,7 @@ class ufunc: Functions that operate element by element on whole arrays. - Calling ufuncs - -------------- - op(*x[, out], **kwargs) + Calling ufuncs: `op(*x[, out], **kwargs)` Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.