forked from MarkFzp/mobile-aloha
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvisualize_episodes.py
266 lines (228 loc) · 8.11 KB
/
visualize_episodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import os
from aloha.constants import (
DT,
IS_MOBILE,
JOINT_NAMES,
)
import cv2
import h5py
import matplotlib.pyplot as plt
import numpy as np
STATE_NAMES = JOINT_NAMES + ['gripper']
BASE_STATE_NAMES = ['linear_vel', 'angular_vel']
def load_hdf5(dataset_dir, dataset_name):
dataset_path = os.path.join(dataset_dir, dataset_name + '.hdf5')
if not os.path.isfile(dataset_path):
print(f'Dataset does not exist at \n{dataset_path}\n')
exit()
with h5py.File(dataset_path, 'r') as root:
compressed = root.attrs.get('compress', False)
qpos = root['/observations/qpos'][()]
qvel = root['/observations/qvel'][()]
if 'effort' in root.keys():
effort = root['/observations/effort'][()]
else:
effort = None
action = root['/action'][()]
if IS_MOBILE:
base_action = root['/base_action'][()]
else:
base_action = None
image_dict = {}
for cam_name in root['/observations/images/'].keys():
image_dict[cam_name] = root[f'/observations/images/{cam_name}'][()]
# if compressed:
# compress_len = root['/compress_len'][()]
if compressed:
for cam_id, cam_name in enumerate(image_dict.keys()):
# un-pad and uncompress
padded_compressed_image_list = image_dict[cam_name]
image_list = []
# [:1000] to save memory
for frame_id, padded_compressed_image in enumerate(padded_compressed_image_list):
# image_len = int(compress_len[cam_id, frame_id])
compressed_image = padded_compressed_image
image = cv2.imdecode(compressed_image, 1)
image_list.append(image)
image_dict[cam_name] = image_list
return qpos, qvel, effort, action, base_action, image_dict
def main(args):
dataset_dir = args['dataset_dir']
episode_idx = args['episode_idx']
ismirror = args['ismirror']
if ismirror:
dataset_name = f'mirror_episode_{episode_idx}'
else:
dataset_name = f'episode_{episode_idx}'
qpos, _, _, action, base_action, image_dict = load_hdf5(dataset_dir, dataset_name)
print('hdf5 loaded!')
save_videos(
image_dict,
DT,
video_path=os.path.join(dataset_dir, dataset_name + '_video.mp4')
)
visualize_joints(
qpos,
action,
plot_path=os.path.join(dataset_dir, dataset_name + '_qpos.png')
)
if IS_MOBILE:
visualize_base(
base_action,
plot_path=os.path.join(dataset_dir, dataset_name + '_base_action.png')
)
def save_videos(video, dt, video_path=None):
if isinstance(video, list):
cam_names = list(video[0].keys())
h, w, _ = video[0][cam_names[0]].shape
w = w * len(cam_names)
fps = int(1/dt)
out = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for ts, image_dict in enumerate(video):
images = []
for cam_name in cam_names:
image = image_dict[cam_name]
image = image[:, :, [2, 1, 0]] # swap B and R channel
images.append(image)
images = np.concatenate(images, axis=1)
out.write(images)
out.release()
print(f'Saved video to: {video_path}')
elif isinstance(video, dict):
cam_names = list(video.keys())
all_cam_videos = []
for cam_name in cam_names:
all_cam_videos.append(video[cam_name])
all_cam_videos = np.concatenate(all_cam_videos, axis=2) # width dimension
n_frames, h, w, _ = all_cam_videos.shape
fps = int(1 / dt)
out = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for t in range(n_frames):
image = all_cam_videos[t]
image = image[:, :, [2, 1, 0]] # swap B and R channel
out.write(image)
out.release()
print(f'Saved video to: {video_path}')
def visualize_joints(qpos_list, command_list, plot_path=None, ylim=None, label_overwrite=None):
if label_overwrite:
label1, label2 = label_overwrite
else:
label1, label2 = 'State', 'Command'
qpos = np.array(qpos_list) # ts, dim
command = np.array(command_list)
num_ts, num_dim = qpos.shape
# h, w = 2, num_dim
num_figs = num_dim
fig, axs = plt.subplots(num_figs, 1, figsize=(8, 2 * num_dim))
# plot joint state
all_names = (
[f'{name}_left' for name in STATE_NAMES] + [f'{name}_right' for name in STATE_NAMES]
)
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.plot(qpos[:, dim_idx], label=label1)
ax.set_title(f'Joint {dim_idx}: {all_names[dim_idx]}')
ax.legend()
# plot arm command
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.plot(command[:, dim_idx], label=label2)
ax.legend()
if ylim:
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.set_ylim(ylim)
plt.tight_layout()
plt.savefig(plot_path)
print(f'Saved qpos plot to: {plot_path}')
plt.close()
def visualize_single(efforts_list, label, plot_path=None, ylim=None, label_overwrite=None):
efforts = np.array(efforts_list) # ts, dim
num_ts, num_dim = efforts.shape
h, w = 2, num_dim
num_figs = num_dim
fig, axs = plt.subplots(num_figs, 1, figsize=(w, h * num_figs))
# plot joint state
all_names = (
[name + '_left' for name in STATE_NAMES] + [name + '_right' for name in STATE_NAMES]
)
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.plot(efforts[:, dim_idx], label=label)
ax.set_title(f'Joint {dim_idx}: {all_names[dim_idx]}')
ax.legend()
if ylim:
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.set_ylim(ylim)
plt.tight_layout()
plt.savefig(plot_path)
print(f'Saved effort plot to: {plot_path}')
plt.close()
def visualize_base(readings, plot_path=None):
readings = np.array(readings) # ts, dim
num_ts, num_dim = readings.shape
num_figs = num_dim
fig, axs = plt.subplots(num_figs, 1, figsize=(8, 2 * num_dim))
# plot joint state
all_names = BASE_STATE_NAMES
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.plot(readings[:, dim_idx], label='raw')
ax.plot(
np.convolve(readings[:, dim_idx], np.ones(20)/20, mode='same'), label='smoothed_20'
)
ax.plot(
np.convolve(readings[:, dim_idx], np.ones(10)/10, mode='same'), label='smoothed_10'
)
ax.plot(
np.convolve(readings[:, dim_idx], np.ones(5)/5, mode='same'), label='smoothed_5'
)
ax.set_title(f'Joint {dim_idx}: {all_names[dim_idx]}')
ax.legend()
plt.tight_layout()
plt.savefig(plot_path)
print(f'Saved effort plot to: {plot_path}')
plt.close()
def visualize_timestamp(t_list, dataset_path):
plot_path = dataset_path.replace('.pkl', '_timestamp.png')
h, w = 4, 10
fig, axs = plt.subplots(2, 1, figsize=(w, h*2))
# process t_list
t_float = []
for secs, nsecs in t_list:
t_float.append(secs + nsecs * 10E-10)
t_float = np.array(t_float)
ax = axs[0]
ax.plot(np.arange(len(t_float)), t_float)
ax.set_title('Camera frame timestamps')
ax.set_xlabel('timestep')
ax.set_ylabel('time (sec)')
ax = axs[1]
ax.plot(np.arange(len(t_float)-1), t_float[:-1] - t_float[1:])
ax.set_title('dt')
ax.set_xlabel('timestep')
ax.set_ylabel('time (sec)')
plt.tight_layout()
plt.savefig(plot_path)
print(f'Saved timestamp plot to: {plot_path}')
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset_dir',
action='store',
type=str,
help='Dataset dir.',
required=True,
)
parser.add_argument(
'--episode_idx',
action='store',
type=int,
help='Episode index.',
required=False,
)
parser.add_argument('--ismirror', action='store_true')
main(vars(parser.parse_args()))