From e98fd6a8198d7e76638ee3db153ae0b535669593 Mon Sep 17 00:00:00 2001 From: Lyu Han Date: Mon, 10 Feb 2025 13:59:34 +0800 Subject: [PATCH] bump version to v0.7.0.post3 (#3115) --- README.md | 11 ++--------- README_ja.md | 10 ++-------- README_zh-CN.md | 10 ++-------- docs/en/get_started/installation.md | 2 +- docs/zh_cn/get_started/installation.md | 2 +- lmdeploy/version.py | 2 +- 6 files changed, 9 insertions(+), 28 deletions(-) diff --git a/README.md b/README.md index 16e31c216..2e7b703b7 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,7 @@ ______________________________________________________________________ ## Latest News 🎉 -
+
2024 - \[2024/11\] Support Mono-InternVL with PyTorch engine @@ -91,14 +91,6 @@ LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by ![v0 1 0-benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/8e455cf1-a792-4fa8-91a2-75df96a2a5ba) -For detailed inference benchmarks in more devices and more settings, please refer to the following link: - -- [A100](./docs/en/benchmark/a100_fp16.md) -- V100 -- 4090 -- 3090 -- 2080 - # Supported Models @@ -160,6 +152,7 @@ For detailed inference benchmarks in more devices and more settings, please refe
  • DeepSeek-VL (7B)
  • InternVL-Chat (v1.1-v1.5)
  • InternVL2 (1B-76B)
  • +
  • InternVL2.5(MPO) (1B-78B)
  • Mono-InternVL (2B)
  • ChemVLM (8B-26B)
  • MiniGeminiLlama (7B)
  • diff --git a/README_ja.md b/README_ja.md index 1d82ff30d..621a6f07c 100644 --- a/README_ja.md +++ b/README_ja.md @@ -23,7 +23,7 @@ ______________________________________________________________________ ## 最新ニュース 🎉 -
    +
    2024 - \[2024/08\] 🔥🔥 LMDeployは[modelscope/swift](https://github.com/modelscope/swift)に統合され、VLMs推論のデフォルトアクセラレータとなりました @@ -89,13 +89,6 @@ LMDeploy TurboMindエンジンは卓越した推論能力を持ち、さまざ ![v0 1 0-benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/8e455cf1-a792-4fa8-91a2-75df96a2a5ba) -詳細な推論ベンチマークについては、以下のリンクを参照してください: - -- [A100](./docs/en/benchmark/a100_fp16.md) -- 4090 -- 3090 -- 2080 - # サポートされているモデル
    @@ -156,6 +149,7 @@ LMDeploy TurboMindエンジンは卓越した推論能力を持ち、さまざ
  • DeepSeek-VL (7B)
  • InternVL-Chat (v1.1-v1.5)
  • InternVL2 (1B-76B)
  • +
  • InternVL2.5(MPO) (1B-78B)
  • Mono-InternVL (2B)
  • ChemVLM (8B-26B)
  • MiniGeminiLlama (7B)
  • diff --git a/README_zh-CN.md b/README_zh-CN.md index 5281e222d..0a9280811 100644 --- a/README_zh-CN.md +++ b/README_zh-CN.md @@ -23,7 +23,7 @@ ______________________________________________________________________ ## 最新进展 🎉 -
    +
    2024 - \[2024/11\] PyTorch engine 支持 Mono-InternVL 模型 @@ -93,13 +93,6 @@ LMDeploy TurboMind 引擎拥有卓越的推理能力,在各种规模的模型 ![v0 1 0-benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/8e455cf1-a792-4fa8-91a2-75df96a2a5ba) -更多设备、更多计算精度、更多setting下的的推理 benchmark,请参考以下链接: - -- [A100](./docs/en/benchmark/a100_fp16.md) -- 4090 -- 3090 -- 2080 - # 支持的模型
    @@ -161,6 +154,7 @@ LMDeploy TurboMind 引擎拥有卓越的推理能力,在各种规模的模型
  • DeepSeek-VL (7B)
  • InternVL-Chat (v1.1-v1.5)
  • InternVL2 (1B-76B)
  • +
  • InternVL2.5(MPO) (1B-78B)
  • Mono-InternVL (2B)
  • ChemVLM (8B-26B)
  • MiniGeminiLlama (7B)
  • diff --git a/docs/en/get_started/installation.md b/docs/en/get_started/installation.md index 072244968..74cd0210a 100644 --- a/docs/en/get_started/installation.md +++ b/docs/en/get_started/installation.md @@ -23,7 +23,7 @@ pip install lmdeploy The default prebuilt package is compiled on **CUDA 12**. If CUDA 11+ (>=11.3) is required, you can install lmdeploy by: ```shell -export LMDEPLOY_VERSION=0.7.0.post2 +export LMDEPLOY_VERSION=0.7.0.post3 export PYTHON_VERSION=38 pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118 ``` diff --git a/docs/zh_cn/get_started/installation.md b/docs/zh_cn/get_started/installation.md index 2555d116b..395eacb0d 100644 --- a/docs/zh_cn/get_started/installation.md +++ b/docs/zh_cn/get_started/installation.md @@ -23,7 +23,7 @@ pip install lmdeploy 默认的预构建包是在 **CUDA 12** 上编译的。如果需要 CUDA 11+ (>=11.3),你可以使用以下命令安装 lmdeploy: ```shell -export LMDEPLOY_VERSION=0.7.0.post2 +export LMDEPLOY_VERSION=0.7.0.post3 export PYTHON_VERSION=38 pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118 ``` diff --git a/lmdeploy/version.py b/lmdeploy/version.py index e8ccea43f..9e62f7445 100644 --- a/lmdeploy/version.py +++ b/lmdeploy/version.py @@ -1,7 +1,7 @@ # Copyright (c) OpenMMLab. All rights reserved. from typing import Tuple -__version__ = '0.7.0.post2' +__version__ = '0.7.0.post3' short_version = __version__