You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
xtuner train cfg-gamma7b/gemma_7b_it_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2
10/28 18:19:05 - mmengine - WARNING - WARNING: command error: ''Adafactor is already registered in optimizer at torch.optim''!
10/28 18:19:05 - mmengine - WARNING -
Arguments received: ['xtuner', 'train', 'cfg-gamma7b/gemma_7b_it_qlora_alpaca_e3_copy.py', '--deepspeed', 'deepspeed_zero2']. xtuner commands use the following syntax:
xtuner MODE MODE_ARGS ARGS
Where MODE (required) is one of ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset', 'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench', 'eval_refcoco')
MODE_ARG (optional) is the argument for specific mode
ARGS (optional) are the arguments for specific command
Some usages for xtuner commands: (See more by using -h for specific command!)
1. List all predefined configs:
xtuner list-cfg
2. Copy a predefined config to a given path:
xtuner copy-cfg $CONFIG $SAVE_FILE
3-1. Fine-tune LLMs by a single GPU:
xtuner train $CONFIG
3-2. Fine-tune LLMs by multiple GPUs:
NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS
4-1. Convert the pth model to HuggingFace's model:
xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
4-2. Merge the HuggingFace's adapter to the pretrained base model:
xtuner convert merge $LLM $ADAPTER $SAVE_PATH
xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip
4-3. Split HuggingFace's LLM to the smallest sharded one:
xtuner convert split $LLM $SAVE_PATH
5-1. Chat with LLMs with HuggingFace's model and adapter:
xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
5-2. Chat with VLMs with HuggingFace's model and LLaVA:
xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
6-1. Preprocess arxiv dataset:
xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
6-2. Preprocess refcoco dataset:
xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH
7-1. Log processed dataset:
xtuner log-dataset $CONFIG
7-2. Verify the correctness of the config file for the custom dataset:
xtuner check-custom-dataset $CONFIG
8. MMBench evaluation:
xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH
9. Refcoco evaluation:
xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH
10. List all dataset formats which are supported in XTuner
Run special commands:
xtuner help
xtuner version
GitHub: https://github.com/InternLM/xtuner
xtuner train cfg-gamma7b/gemma_7b_it_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2
10/28 18:19:05 - mmengine - WARNING - WARNING: command error: ''Adafactor is already registered in optimizer at torch.optim''!
10/28 18:19:05 - mmengine - WARNING -
Arguments received: ['xtuner', 'train', 'cfg-gamma7b/gemma_7b_it_qlora_alpaca_e3_copy.py', '--deepspeed', 'deepspeed_zero2']. xtuner commands use the following syntax:
libs used:
datasets 3.0.2
torch 2.5.0
torchvision 0.20.0
transformers 4.46.0
xtuner 0.1.23
peft 0.13.2
numpy 2.1.2
nvidia-cublas-cu12 12.4.5.8
nvidia-cuda-cupti-cu12 12.4.127
nvidia-cuda-nvrtc-cu12 12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.2.1.3
nvidia-curand-cu12 10.3.5.147
nvidia-cusolver-cu12 11.6.1.9
nvidia-cusparse-cu12 12.3.1.170
nvidia-ml-py 12.560.30
nvidia-nccl-cu12 2.21.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.4.127
The text was updated successfully, but these errors were encountered: