Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

command error: ''Adafactor is already registered in optimizer at torch.optim'' #957

Open
monteir03 opened this issue Oct 28, 2024 · 4 comments

Comments

@monteir03
Copy link

monteir03 commented Oct 28, 2024

xtuner train cfg-gamma7b/gemma_7b_it_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2
10/28 18:19:05 - mmengine - WARNING - WARNING: command error: ''Adafactor is already registered in optimizer at torch.optim''!
10/28 18:19:05 - mmengine - WARNING -
Arguments received: ['xtuner', 'train', 'cfg-gamma7b/gemma_7b_it_qlora_alpaca_e3_copy.py', '--deepspeed', 'deepspeed_zero2']. xtuner commands use the following syntax:

    xtuner MODE MODE_ARGS ARGS

    Where   MODE (required) is one of ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset', 'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench', 'eval_refcoco')
            MODE_ARG (optional) is the argument for specific mode
            ARGS (optional) are the arguments for specific command

Some usages for xtuner commands: (See more by using -h for specific command!)

    1. List all predefined configs:
        xtuner list-cfg
    2. Copy a predefined config to a given path:
        xtuner copy-cfg $CONFIG $SAVE_FILE
    3-1. Fine-tune LLMs by a single GPU:
        xtuner train $CONFIG
    3-2. Fine-tune LLMs by multiple GPUs:
        NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS
    4-1. Convert the pth model to HuggingFace's model:
        xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
    4-2. Merge the HuggingFace's adapter to the pretrained base model:
        xtuner convert merge $LLM $ADAPTER $SAVE_PATH
        xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip
    4-3. Split HuggingFace's LLM to the smallest sharded one:
        xtuner convert split $LLM $SAVE_PATH
    5-1. Chat with LLMs with HuggingFace's model and adapter:
        xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    5-2. Chat with VLMs with HuggingFace's model and LLaVA:
        xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    6-1. Preprocess arxiv dataset:
        xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
    6-2. Preprocess refcoco dataset:
        xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH
    7-1. Log processed dataset:
        xtuner log-dataset $CONFIG
    7-2. Verify the correctness of the config file for the custom dataset:
        xtuner check-custom-dataset $CONFIG
    8. MMBench evaluation:
        xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH
    9. Refcoco evaluation:
        xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH
    10. List all dataset formats which are supported in XTuner

Run special commands:

    xtuner help
    xtuner version

GitHub: https://github.com/InternLM/xtuner

libs used:

datasets 3.0.2
torch 2.5.0
torchvision 0.20.0
transformers 4.46.0
xtuner 0.1.23
peft 0.13.2
numpy 2.1.2
nvidia-cublas-cu12 12.4.5.8
nvidia-cuda-cupti-cu12 12.4.127
nvidia-cuda-nvrtc-cu12 12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.2.1.3
nvidia-curand-cu12 10.3.5.147
nvidia-cusolver-cu12 11.6.1.9
nvidia-cusparse-cu12 12.3.1.170
nvidia-ml-py 12.560.30
nvidia-nccl-cu12 2.21.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.4.127

@Cy6er7um
Copy link

Same.

@eliasyin
Copy link

downgrage pytorch version to 2.4.1

pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1

reference:
#952 (comment)

@monteir03
Copy link
Author

downgrage pytorch version to 2.4.1

pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1

reference: #952 (comment)

Fixed! Thx

@minimum-generated-pig
Copy link

按照 pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 修改后还是一样的报错怎么回事

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants