forked from Unity-Technologies/ml-agents
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_env.py
433 lines (385 loc) · 16.2 KB
/
base_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""
Python Environment API for the ML-Agents toolkit
The aim of this API is to expose Agents evolving in a simulation
to perform reinforcement learning on.
This API supports multi-agent scenarios and groups similar Agents (same
observations, actions spaces and behavior) together. These groups of Agents are
identified by their BehaviorName.
For performance reasons, the data of each group of agents is processed in a
batched manner. Agents are identified by a unique AgentId identifier that
allows tracking of Agents across simulation steps. Note that there is no
guarantee that the number or order of the Agents in the state will be
consistent across simulation steps.
A simulation steps corresponds to moving the simulation forward until at least
one agent in the simulation sends its observations to Python again. Since
Agents can request decisions at different frequencies, a simulation step does
not necessarily correspond to a fixed simulation time increment.
"""
from abc import ABC, abstractmethod
from collections.abc import Mapping
from typing import (
List,
NamedTuple,
Tuple,
Optional,
Union,
Dict,
Iterator,
Any,
Mapping as MappingType,
)
import numpy as np
from enum import Enum
AgentId = int
BehaviorName = str
class DecisionStep(NamedTuple):
"""
Contains the data a single Agent collected since the last
simulation step.
- obs is a list of numpy arrays observations collected by the agent.
- reward is a float. Corresponds to the rewards collected by the agent
since the last simulation step.
- agent_id is an int and an unique identifier for the corresponding Agent.
- action_mask is an optional list of one dimensional array of booleans.
Only available in multi-discrete action space type.
Each array corresponds to an action branch. Each array contains a mask
for each action of the branch. If true, the action is not available for
the agent during this simulation step.
"""
obs: List[np.ndarray]
reward: float
agent_id: AgentId
action_mask: Optional[List[np.ndarray]]
class DecisionSteps(Mapping):
"""
Contains the data a batch of similar Agents collected since the last
simulation step. Note that all Agents do not necessarily have new
information to send at each simulation step. Therefore, the ordering of
agents and the batch size of the DecisionSteps are not fixed across
simulation steps.
- obs is a list of numpy arrays observations collected by the batch of
agent. Each obs has one extra dimension compared to DecisionStep: the
first dimension of the array corresponds to the batch size of the batch.
- reward is a float vector of length batch size. Corresponds to the
rewards collected by each agent since the last simulation step.
- agent_id is an int vector of length batch size containing unique
identifier for the corresponding Agent. This is used to track Agents
across simulation steps.
- action_mask is an optional list of two dimensional array of booleans.
Only available in multi-discrete action space type.
Each array corresponds to an action branch. The first dimension of each
array is the batch size and the second contains a mask for each action of
the branch. If true, the action is not available for the agent during
this simulation step.
"""
def __init__(self, obs, reward, agent_id, action_mask):
self.obs: List[np.ndarray] = obs
self.reward: np.ndarray = reward
self.agent_id: np.ndarray = agent_id
self.action_mask: Optional[List[np.ndarray]] = action_mask
self._agent_id_to_index: Optional[Dict[AgentId, int]] = None
@property
def agent_id_to_index(self) -> Dict[AgentId, int]:
"""
:returns: A Dict that maps agent_id to the index of those agents in
this DecisionSteps.
"""
if self._agent_id_to_index is None:
self._agent_id_to_index = {}
for a_idx, a_id in enumerate(self.agent_id):
self._agent_id_to_index[a_id] = a_idx
return self._agent_id_to_index
def __len__(self) -> int:
return len(self.agent_id)
def __getitem__(self, agent_id: AgentId) -> DecisionStep:
"""
returns the DecisionStep for a specific agent.
:param agent_id: The id of the agent
:returns: The DecisionStep
"""
if agent_id not in self.agent_id_to_index:
raise KeyError(f"agent_id {agent_id} is not present in the DecisionSteps")
agent_index = self._agent_id_to_index[agent_id] # type: ignore
agent_obs = []
for batched_obs in self.obs:
agent_obs.append(batched_obs[agent_index])
agent_mask = None
if self.action_mask is not None:
agent_mask = []
for mask in self.action_mask:
agent_mask.append(mask[agent_index])
return DecisionStep(
obs=agent_obs,
reward=self.reward[agent_index],
agent_id=agent_id,
action_mask=agent_mask,
)
def __iter__(self) -> Iterator[Any]:
yield from self.agent_id
@staticmethod
def empty(spec: "BehaviorSpec") -> "DecisionSteps":
"""
Returns an empty DecisionSteps.
:param spec: The BehaviorSpec for the DecisionSteps
"""
obs: List[np.ndarray] = []
for shape in spec.observation_shapes:
obs += [np.zeros((0,) + shape, dtype=np.float32)]
return DecisionSteps(
obs=obs,
reward=np.zeros(0, dtype=np.float32),
agent_id=np.zeros(0, dtype=np.int32),
action_mask=None,
)
class TerminalStep(NamedTuple):
"""
Contains the data a single Agent collected when its episode ended.
- obs is a list of numpy arrays observations collected by the agent.
- reward is a float. Corresponds to the rewards collected by the agent
since the last simulation step.
- interrupted is a bool. Is true if the Agent was interrupted since the last
decision step. For example, if the Agent reached the maximum number of steps for
the episode.
- agent_id is an int and an unique identifier for the corresponding Agent.
"""
obs: List[np.ndarray]
reward: float
interrupted: bool
agent_id: AgentId
class TerminalSteps(Mapping):
"""
Contains the data a batch of Agents collected when their episode
terminated. All Agents present in the TerminalSteps have ended their
episode.
- obs is a list of numpy arrays observations collected by the batch of
agent. Each obs has one extra dimension compared to DecisionStep: the
first dimension of the array corresponds to the batch size of the batch.
- reward is a float vector of length batch size. Corresponds to the
rewards collected by each agent since the last simulation step.
- interrupted is an array of booleans of length batch size. Is true if the
associated Agent was interrupted since the last decision step. For example, if the
Agent reached the maximum number of steps for the episode.
- agent_id is an int vector of length batch size containing unique
identifier for the corresponding Agent. This is used to track Agents
across simulation steps.
"""
def __init__(self, obs, reward, interrupted, agent_id):
self.obs: List[np.ndarray] = obs
self.reward: np.ndarray = reward
self.interrupted: np.ndarray = interrupted
self.agent_id: np.ndarray = agent_id
self._agent_id_to_index: Optional[Dict[AgentId, int]] = None
@property
def agent_id_to_index(self) -> Dict[AgentId, int]:
"""
:returns: A Dict that maps agent_id to the index of those agents in
this TerminalSteps.
"""
if self._agent_id_to_index is None:
self._agent_id_to_index = {}
for a_idx, a_id in enumerate(self.agent_id):
self._agent_id_to_index[a_id] = a_idx
return self._agent_id_to_index
def __len__(self) -> int:
return len(self.agent_id)
def __getitem__(self, agent_id: AgentId) -> TerminalStep:
"""
returns the TerminalStep for a specific agent.
:param agent_id: The id of the agent
:returns: obs, reward, done, agent_id and optional action mask for a
specific agent
"""
if agent_id not in self.agent_id_to_index:
raise KeyError(f"agent_id {agent_id} is not present in the TerminalSteps")
agent_index = self._agent_id_to_index[agent_id] # type: ignore
agent_obs = []
for batched_obs in self.obs:
agent_obs.append(batched_obs[agent_index])
return TerminalStep(
obs=agent_obs,
reward=self.reward[agent_index],
interrupted=self.interrupted[agent_index],
agent_id=agent_id,
)
def __iter__(self) -> Iterator[Any]:
yield from self.agent_id
@staticmethod
def empty(spec: "BehaviorSpec") -> "TerminalSteps":
"""
Returns an empty TerminalSteps.
:param spec: The BehaviorSpec for the TerminalSteps
"""
obs: List[np.ndarray] = []
for shape in spec.observation_shapes:
obs += [np.zeros((0,) + shape, dtype=np.float32)]
return TerminalSteps(
obs=obs,
reward=np.zeros(0, dtype=np.float32),
interrupted=np.zeros(0, dtype=np.bool),
agent_id=np.zeros(0, dtype=np.int32),
)
class ActionType(Enum):
DISCRETE = 0
CONTINUOUS = 1
class BehaviorSpec(NamedTuple):
"""
A NamedTuple to containing information about the observations and actions
spaces for a group of Agents under the same behavior.
- observation_shapes is a List of Tuples of int : Each Tuple corresponds
to an observation's dimensions. The shape tuples have the same ordering as
the ordering of the DecisionSteps and TerminalSteps.
- action_type is the type of data of the action. it can be discrete or
continuous. If discrete, the action tensors are expected to be int32. If
continuous, the actions are expected to be float32.
- action_shape is:
- An int in continuous action space corresponding to the number of
floats that constitute the action.
- A Tuple of int in discrete action space where each int corresponds to
the number of discrete actions available to the agent.
"""
observation_shapes: List[Tuple]
action_type: ActionType
action_shape: Union[int, Tuple[int, ...]]
def is_action_discrete(self) -> bool:
"""
Returns true if this Behavior uses discrete actions
"""
return self.action_type == ActionType.DISCRETE
def is_action_continuous(self) -> bool:
"""
Returns true if this Behavior uses continuous actions
"""
return self.action_type == ActionType.CONTINUOUS
@property
def action_size(self) -> int:
"""
Returns the dimension of the action.
- In the continuous case, will return the number of continuous actions.
- In the (multi-)discrete case, will return the number of action.
branches.
"""
if self.action_type == ActionType.DISCRETE:
return len(self.action_shape) # type: ignore
else:
return self.action_shape # type: ignore
@property
def discrete_action_branches(self) -> Optional[Tuple[int, ...]]:
"""
Returns a Tuple of int corresponding to the number of possible actions
for each branch (only for discrete actions). Will return None in
for continuous actions.
"""
if self.action_type == ActionType.DISCRETE:
return self.action_shape # type: ignore
else:
return None
def create_empty_action(self, n_agents: int) -> np.ndarray:
"""
Generates a numpy array corresponding to an empty action (all zeros)
for a number of agents.
:param n_agents: The number of agents that will have actions generated
"""
if self.action_type == ActionType.DISCRETE:
return np.zeros((n_agents, self.action_size), dtype=np.int32)
else:
return np.zeros((n_agents, self.action_size), dtype=np.float32)
def create_random_action(self, n_agents: int) -> np.ndarray:
"""
Generates a numpy array corresponding to a random action (either discrete
or continuous) for a number of agents.
:param n_agents: The number of agents that will have actions generated
:param generator: The random number generator used for creating random action
"""
if self.is_action_continuous():
action = np.random.uniform(
low=-1.0, high=1.0, size=(n_agents, self.action_size)
).astype(np.float32)
return action
elif self.is_action_discrete():
branch_size = self.discrete_action_branches
action = np.column_stack(
[
np.random.randint(
0,
branch_size[i], # type: ignore
size=(n_agents),
dtype=np.int32,
)
for i in range(self.action_size)
]
)
return action
class BehaviorMapping(Mapping):
def __init__(self, specs: Dict[BehaviorName, BehaviorSpec]):
self._dict = specs
def __len__(self) -> int:
return len(self._dict)
def __getitem__(self, behavior: BehaviorName) -> BehaviorSpec:
return self._dict[behavior]
def __iter__(self) -> Iterator[Any]:
yield from self._dict
class BaseEnv(ABC):
@abstractmethod
def step(self) -> None:
"""
Signals the environment that it must move the simulation forward
by one step.
"""
@abstractmethod
def reset(self) -> None:
"""
Signals the environment that it must reset the simulation.
"""
@abstractmethod
def close(self) -> None:
"""
Signals the environment that it must close.
"""
@property
@abstractmethod
def behavior_specs(self) -> MappingType[str, BehaviorSpec]:
"""
Returns a Mapping from behavior names to behavior specs.
Agents grouped under the same behavior name have the same action and
observation specs, and are expected to behave similarly in the
environment.
Note that new keys can be added to this mapping as new policies are instantiated.
"""
@abstractmethod
def set_actions(self, behavior_name: BehaviorName, action: np.ndarray) -> None:
"""
Sets the action for all of the agents in the simulation for the next
step. The Actions must be in the same order as the order received in
the DecisionSteps.
:param behavior_name: The name of the behavior the agents are part of
:param action: A two dimensional np.ndarray corresponding to the action
(either int or float)
"""
@abstractmethod
def set_action_for_agent(
self, behavior_name: BehaviorName, agent_id: AgentId, action: np.ndarray
) -> None:
"""
Sets the action for one of the agents in the simulation for the next
step.
:param behavior_name: The name of the behavior the agent is part of
:param agent_id: The id of the agent the action is set for
:param action: A one dimensional np.ndarray corresponding to the action
(either int or float)
"""
@abstractmethod
def get_steps(
self, behavior_name: BehaviorName
) -> Tuple[DecisionSteps, TerminalSteps]:
"""
Retrieves the steps of the agents that requested a step in the
simulation.
:param behavior_name: The name of the behavior the agents are part of
:return: A tuple containing :
- A DecisionSteps NamedTuple containing the observations,
the rewards, the agent ids and the action masks for the Agents
of the specified behavior. These Agents need an action this step.
- A TerminalSteps NamedTuple containing the observations,
rewards, agent ids and interrupted flags of the agents that had their
episode terminated last step.
"""