-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentdex.py
38 lines (31 loc) · 1.07 KB
/
sentdex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from nltk.corpus import movie_reviews
from nltk import FreqDist
from random import shuffle
documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
print(documents[1])
print(len(documents))
shuffle(documents)
all_words = []
for w in movie_reviews.words():
all_words.append(w.lower())
#print(all_words[:10])
word_features = list(all_words)[:3000]
def find_features(document):
words = set(document)
features = {}
for w in word_features:
features[w] = (w in words)
return features
#print((find_features(movie_reviews.words('neg/cv000_29416.txt'))))
featuresets = [(find_features(rev), category) for (rev, category) in documents]
training_set = featuresets[:1900]
testing_set = featuresets[1900:]
print(training_set[0])
classifier = NaiveBayesClassifier.train(training_set)
print('Accuracy: ', (nltk.classify.accuracy(classifier, testing_set))*100)
classifier.show_informative_features(15)
clf = open('naivebayes.pkl', 'wb')
pickle.dump(classifier, clf)
clf.close()