forked from facebookresearch/esm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_alphabet.py
64 lines (51 loc) · 1.63 KB
/
test_alphabet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
def _test_esm1b(alphabet):
import torch
batch_converter = alphabet.get_batch_converter()
data = [
("protein1", "MKTVRQG"),
("protein2 with mask", "KALTA<mask>ISQP"),
("protein3", "K A <mask> I S Q"),
]
_, _, batch_tokens = batch_converter(data)
expected_tokens = torch.tensor(
[
[0, 20, 15, 11, 7, 10, 16, 6, 2, 1, 1, 1],
[0, 15, 5, 4, 11, 5, 32, 12, 8, 16, 14, 2],
[0, 15, 5, 32, 12, 8, 16, 2, 1, 1, 1, 1],
]
)
assert torch.allclose(batch_tokens, expected_tokens)
def test_esm1b_alphabet():
import esm
_, alphabet = esm.pretrained.esm1b_t33_650M_UR50S()
_test_esm1b(alphabet)
def test_esm1v_alphabet():
import esm
_, alphabet = esm.pretrained.esm1v_t33_650M_UR90S_1()
_test_esm1b(alphabet)
def test_esm1_msa1b_alphabet():
import torch
import esm
# Load ESM-1b model
_, alphabet = esm.pretrained.esm_msa1b_t12_100M_UR50S()
batch_converter = alphabet.get_batch_converter()
data = [
("protein1", "MKTVRQG"),
("protein2", "KALTRAI"),
("protein3", "KAAISQQ"),
]
_, _, batch_tokens = batch_converter(data)
expected_tokens = torch.tensor(
[
[
[0, 20, 15, 11, 7, 10, 16, 6],
[0, 15, 5, 4, 11, 10, 5, 12],
[0, 15, 5, 5, 12, 8, 16, 16],
]
]
)
assert torch.allclose(batch_tokens, expected_tokens)