forked from facebookresearch/esm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_inverse_folding.py
66 lines (59 loc) · 2.48 KB
/
test_inverse_folding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def test_esm_if1():
import json
import numpy as np
from pathlib import Path
from scipy.stats import special_ortho_group
from tqdm import tqdm
import torch
import esm
import esm.inverse_folding
example_file = Path(__file__).absolute().parent / "inverse_folding_test_example.json"
with open(example_file) as f:
examples = json.load(f)
model, alphabet = esm.pretrained.esm_if1_gvp4_t16_142M_UR50()
model = model.eval()
batch_converter = esm.inverse_folding.util.CoordBatchConverter(alphabet)
with torch.no_grad():
print('Testing batch inference on 3 examples...')
# Test batch with multiple examples
batch = [(e["coords"], None, e["seq"]) for e in examples[:3]]
coords, confidence, strs, tokens, padding_mask = (
batch_converter(batch)
)
prev_output_tokens = tokens[:, :-1]
target = tokens[:, 1:]
logits, _ = model.forward(coords, padding_mask, confidence,
prev_output_tokens)
loss = torch.nn.functional.cross_entropy(logits, target, reduction='none')
coord_mask = torch.all(torch.all(torch.isfinite(coords), dim=-1), dim=-1)
coord_mask = coord_mask[:, 1:-1]
avgloss = torch.sum(loss * coord_mask) / torch.sum(coord_mask)
expected_ppl = 4.40
np.testing.assert_allclose(
expected_ppl,
torch.exp(avgloss).item(),
atol=1e-02,
)
print('Testing on 10 examples from validation set...')
# Test batch with single example
for example in tqdm(examples):
batch = [(example["coords"], None, example["seq"])]
coords, confidence, strs, tokens, padding_mask = (
batch_converter(batch)
)
prev_output_tokens = tokens[:, :-1]
target = tokens[:, 1:]
logits, _ = model.forward(coords, padding_mask, confidence,
prev_output_tokens)
assert torch.any(torch.isnan(logits)) == False
# Test equivariance
R = special_ortho_group.rvs(3)
R = torch.tensor(R, dtype=torch.float32)
coords = torch.matmul(coords, R)
logits_rotated, _ = model.forward(coords, padding_mask,
confidence, prev_output_tokens)
np.testing.assert_allclose(
logits.detach().numpy(),
logits_rotated.detach().numpy(),
atol=1e-01
)