-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmulti_ps.py
134 lines (114 loc) · 4.34 KB
/
multi_ps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
'''
使用Galileo EstimatorTrainer的ps模式训练Node2vec模型,使用多ps,PartitionedEmbedding
'''
import os
import argparse
import galileo as g
import galileo.tf as gt
class Node2vec(gt.Unsupervised):
def __init__(self, embedding_size, embedding_dim, num_of_ps, **kwargs):
super().__init__(**kwargs)
self.embedding_size = embedding_size
self.embedding_dim = embedding_dim
self.num_of_ps = num_of_ps
self._target_encoder = gt.PartitionedEmbedding(embedding_size,
embedding_dim,
num_of_ps)
self._context_encoder = self._target_encoder
def target_encoder(self, inputs):
return self._target_encoder(inputs)
def context_encoder(self, inputs):
return self._context_encoder(inputs)
def get_config(self):
config = super().get_config()
config.update(
dict(embedding_size=self.embedding_size,
embedding_dim=self.embedding_dim,
num_of_ps=self.num_of_ps))
return config
class Inputs(g.BaseInputs):
def __init__(self, **kwargs):
super().__init__(config=kwargs)
self.transform = gt.RandomWalkNegTransform(**self.config).transform
def train_data(self):
return gt.dataset_pipeline(gt.VertexDataset, self.transform,
**self.config)
def evaluate_data(self):
test_ids = g.get_test_vertex_ids(
data_source_name=self.config['data_source_name'])
return gt.dataset_pipeline(
lambda **kwargs: gt.TensorDataset(test_ids, **kwargs),
self.transform, **self.config)
def predict_data(self):
return gt.dataset_pipeline(
lambda **kwargs: gt.RangeDataset(
start=0, end=kwargs['max_id'] + 1, **kwargs),
lambda inputs: {'target': inputs}, **self.config)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--max_id', default=2708, type=int, help='max node id')
parser.add_argument('--gpu', default='0', type=str, help='gpu devices')
parser.add_argument('--model_dir',
default='.models/node2vec_tf',
type=str,
help='model dir')
parser = g.define_service_args(parser)
args, _ = parser.parse_known_args()
if args.data_source_name is None:
args.data_source_name = 'cora'
g.start_service_from_args(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
inputs = Inputs(vertex_type=[0],
edge_types=[0],
walk_length=3,
repetition=5,
walk_p=1.,
walk_q=1.,
context_size=2,
negative_num=5,
data_source_name=args.data_source_name)
model_args = dict(
embedding_size=args.max_id + 1,
embedding_dim=64,
num_of_ps=2,
metric_names='mrr',
name='Node2vec',
)
trainer = gt.EstimatorTrainer(
Node2vec,
inputs,
distribution_strategy='parameter_server',
zk_server=args.zk_server,
zk_path=args.zk_path,
model_args=model_args,
)
model_config = dict(
batch_size=32,
max_id=args.max_id,
model_dir=args.model_dir,
num_epochs=10,
save_checkpoint_epochs=5,
log_steps=100,
optimizer='adam',
learning_rate=0.01,
train_verbose=2,
)
trainer.train(**model_config)
trainer.evaluate(**model_config)
trainer.predict(**model_config)
if __name__ == "__main__":
main()