-
Notifications
You must be signed in to change notification settings - Fork 33
/
unsupervised_sparse.py
214 lines (189 loc) · 6.81 KB
/
unsupervised_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
'''
Galileo EstimatorTrainer训练unsupervised graphsage sparse模型
'''
import os
import argparse
import tensorflow as tf
import galileo as g
import galileo.tf as gt
class SAGEEncode(tf.keras.layers.Layer):
def __init__(self,
hidden_dim,
dense_feature_dims,
fanouts,
aggregator_name='mean',
dropout_rate=0.0,
**kwargs):
super().__init__(**kwargs)
self.hidden_dim = hidden_dim
self.dense_feature_dims = dense_feature_dims
self.fanouts = fanouts
self.aggregator_name = aggregator_name
self.dropout_rate = dropout_rate
self.feature_combiner = gt.FeatureCombiner(
dense_feature_dims=dense_feature_dims)
self.num_layers = len(fanouts)
self.layers = [
gt.SAGESparseLayer(hidden_dim,
aggregator_name,
activation='relu',
dropout_rate=dropout_rate)
for _ in range(self.num_layers - 1)
]
self.layers.append(
gt.SAGESparseLayer(hidden_dim,
aggregator_name,
dropout_rate=dropout_rate))
self.relation = gt.RelationTransform(fanouts).transform
def call(self, inputs):
feature = self.feature_combiner(inputs)
relation_graph = self.relation(inputs)
for layer in self.layers:
relation_graph['feature'] = feature
feature = layer(relation_graph)
output = tf.gather(feature, relation_graph['target_indices'])
return output
def get_config(self):
config = super().get_config()
config.update(
dict(
hidden_dim=self.hidden_dim,
dense_feature_dims=self.dense_feature_dims,
fanouts=self.fanouts,
aggregator_name=self.aggregator_name,
dropout_rate=self.dropout_rate,
))
return config
class UnsupSAGE(gt.Unsupervised):
def __init__(
self,
hidden_dim,
dense_feature_dims,
fanouts,
aggregator_name='mean',
dropout_rate=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.encoder = SAGEEncode(
hidden_dim,
dense_feature_dims,
fanouts,
aggregator_name,
dropout_rate,
)
def target_encoder(self, inputs):
return self.encoder(inputs)
def context_encoder(self, inputs):
return self.encoder(inputs)
def get_config(self):
config = super().get_config()
config.update(
dict(
hidden_dim=self.hidden_dim,
dense_feature_dims=self.dense_feature_dims,
fanouts=self.fanouts,
aggregator_name=self.aggregator_name,
dropout_rate=self.dropout_rate,
))
return config
class Inputs(g.BaseInputs):
def __init__(self, **kwargs):
super().__init__(config=kwargs)
self.transform = gt.MultiHopFeatureNegSparseTransform(
**self.config).transform
def train_data(self):
return gt.dataset_pipeline(gt.VertexDataset, self.transform,
**self.config)
def evaluate_data(self):
test_ids = g.get_test_vertex_ids(
data_source_name=self.config['data_source_name'])
return gt.dataset_pipeline(
lambda **kwargs: gt.TensorDataset(test_ids, **kwargs),
self.transform, **self.config)
def predict_data(self):
def predict_transform(inputs):
outputs = self.transform(inputs)
outputs['target_ids'] = inputs
return outputs
return gt.dataset_pipeline(
lambda **kwargs: gt.RangeDataset(
start=0, end=kwargs['max_id'], **kwargs), predict_transform,
**self.config)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--max_id', default=2708, type=int, help='max node id')
parser.add_argument('--gpu', default='0', type=str, help='gpu devices')
parser.add_argument('--ds',
default=None,
type=str,
help='distribution strategy '
'(mirrored, multi_worker_mirrored, parameter_server)')
parser.add_argument('--dense_feature_dim',
default=1433,
type=int,
help='dense feature dimemsion')
parser.add_argument('--model_dir',
default='.models/unsup_sage_tf_sparse',
type=str,
help='model dir')
parser = g.define_service_args(parser)
args, _ = parser.parse_known_args()
if args.data_source_name is None:
args.data_source_name = 'cora'
g.start_service_from_args(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
fanouts = [5, 5]
model_args = dict(
hidden_dim=64,
dense_feature_dims=[args.dense_feature_dim],
fanouts=fanouts,
metric_names='mrr',
name='UnsupSAGE',
)
inputs = Inputs(vertex_type=[0],
metapath=[[0], [0]],
fanouts=fanouts,
negative_num=5,
dense_feature_names=['feature'],
dense_feature_dims=[args.dense_feature_dim],
data_source_name=args.data_source_name)
trainer = gt.EstimatorTrainer(
UnsupSAGE,
inputs,
model_args=model_args,
distribution_strategy=args.ds,
zk_server=args.zk_server,
zk_path=args.zk_path,
)
model_config = dict(
batch_size=32,
num_epochs=10,
max_id=args.max_id,
model_dir=args.model_dir,
save_checkpoint_epochs=5,
log_steps=100,
optimizer='adam',
learning_rate=0.01,
train_verbose=2,
gpu_status=True,
)
trainer.train(**model_config)
trainer.evaluate(**model_config)
trainer.predict(**model_config)
if __name__ == "__main__":
main()