forked from gbrlfaria/rune-breaker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
317 lines (216 loc) · 8.36 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import argparse
import os
import re
import uuid
import sys
sys.path.insert(0, os.path.abspath('.'))
import colorful as cf
import cv2
import numpy as np
import pandas as pd
from skimage import morphology
import common
OUTPUT_WIDTH = common.INPUT_SHAPE[0]
ARROW_BOX_DIST = 100
SEARCH_REGION_WIDTH = 120
SEARCH_REGION_HEIGHT = 100
EXIT_KEY = 113 # q
APPROVE_KEY = 32 # space
def main(inspection, mode, automatic):
common.create_directories()
print(" SPACE = approve")
print("OTHER KEYS = skip")
print(" Q = quit\n")
labeled_imgs = common.get_files(common.LABELED_DIR)
approved = 0
for path, filename in labeled_imgs:
print("Processing " + cf.skyBlue(path))
arrows = []
display = cv2.imread(path)
height, width, _ = display.shape
# manually tuned values
search_x, search_y = width // 5 + 35, height // 4
search_width, search_height = SEARCH_REGION_WIDTH, height // 2 - search_y
for _ in range(4):
x0 = search_x
x1 = x0 + search_width
y0 = search_y
y1 = y0 + search_height
img = display[y0:y1, x0:x1]
(cx, cy), arrow_box = process_arrow(img, mode)
search_x += int(cx + ARROW_BOX_DIST - SEARCH_REGION_WIDTH / 2)
search_y += int(cy - SEARCH_REGION_HEIGHT / 2)
search_width = SEARCH_REGION_WIDTH
search_height = SEARCH_REGION_HEIGHT
arrows.append(arrow_box)
if not automatic:
arrow_type, directions, _ = re.split('_', filename)
reference = get_reference_arrows(directions, arrows[0].shape)
cv2.imshow(arrow_type, np.vstack([np.hstack(arrows), reference]))
key = cv2.waitKey()
cv2.destroyAllWindows()
else:
key = APPROVE_KEY
if key == APPROVE_KEY:
if not inspection:
save_arrow_imgs(arrows, filename)
approved += 1
elif key == EXIT_KEY:
break
else:
print("Skipped!")
if len(labeled_imgs) > 0:
print("\nApproved {} out of {} images ({}%).\n".format(
approved, len(labeled_imgs), 100 * approved // len(labeled_imgs)))
else:
print("There are no images to preprocess.\n")
show_summary()
print("Finished!")
def process_arrow(img, mode):
# gaussian blur
img = cv2.GaussianBlur(img, (3, 3), 0)
# color transform
img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
coefficients = (0.0445, 0.6568, 0.2987) # (h, s, v)
img = cv2.transform(img, np.array(coefficients).reshape((1, 3)))
if mode == 'gray':
output = img.copy()
# binarization
img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, -1)
# noise removal
denoise(img, threshold=8, conn=2)
if mode == 'binarized':
output = img.copy()
# processing
cx, cy = compute_arrow_centroid(img)
# result cropping
max_height, max_width = img.shape
x0 = max(int(cx - OUTPUT_WIDTH / 2), 0)
y0 = max(int(cy - OUTPUT_WIDTH / 2), 0)
x1 = int(x0 + OUTPUT_WIDTH)
if x1 >= max_width:
x0 -= x1 - max_width
x1 = max_width
y1 = int(y0 + OUTPUT_WIDTH)
if y1 >= max_height:
y0 -= y1 - max_height
y1 = max_height
box = output[y0:y1, x0:x1]
return (cx, cy), box
def denoise(img, threshold=64, conn=2):
processed = img > 0
processed = morphology.remove_small_objects(
processed, min_size=threshold, connectivity=conn)
processed = morphology.remove_small_holes(
processed, area_threshold=threshold, connectivity=conn)
mask_x, mask_y = np.where(processed == True)
img[mask_x, mask_y] = 255
mask_x, mask_y = np.where(processed == False)
img[mask_x, mask_y] = 0
def compute_arrow_centroid(img):
contours, _ = cv2.findContours(
img, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# filter contours by area
candidates = []
for contour in contours:
score, (cx, cy), area = circle_features(contour)
if area > 784 and area < 3600:
candidates.append(((cx, cy), score))
if candidates:
match = max(candidates, key=lambda x: x[1])
(cx, cy), score = match
if score > 0.8:
return (int(cx), int(cy))
print("Centroid not found! Returning the center point...")
height, width = img.shape
return (width // 2, height // 2)
def circle_features(contour):
hull = cv2.convexHull(contour)
if len(hull) < 5:
return 0, (-1, -1), -1
hull_area = cv2.contourArea(hull)
(ex, ey), (d1, d2), angle = cv2.fitEllipse(hull)
ellipse_area = np.pi * (d1 / 2) * (d2 / 2)
(cx, cy), r = cv2.minEnclosingCircle(hull)
circle_area = np.pi * r ** 2
s1 = abs(ellipse_area - hull_area) / max(ellipse_area, hull_area)
s2 = abs(ellipse_area - circle_area) / max(ellipse_area, circle_area)
score = 1 - np.mean([s1, s2])
return score, (ex, ey), ellipse_area
def get_reference_arrows(directions, shape):
reference = []
for d in directions:
arrow = np.zeros(shape, dtype=np.uint8)
w, h = shape[1], shape[0]
cx, cy = w // 2, h // 3
# upward arrow
points = np.array([(cx - w // 5, cy + h // 8),
(cx + w // 5, cy + h // 8),
(cx, cy - h // 8)])
cv2.fillConvexPoly(arrow, points, (255, 255, 255))
cv2.line(arrow, (cx, cy), (cx, 3 * h // 5), (255, 255, 255), 10)
rotations = 0
if d == 'r':
rotations = 1
elif d == 'd':
rotations = 2
elif d == 'l':
rotations = 3
for _ in range(rotations):
arrow = cv2.rotate(arrow, cv2.ROTATE_90_CLOCKWISE)
reference.append(arrow)
return np.hstack(reference)
def save_arrow_imgs(arrows, labeled_filename):
words = re.split('_', labeled_filename)
arrow_type = words[0]
directions = words[1]
# save individual arrows + their rotated and flipped versions
for x, arrow_img in enumerate(arrows):
for rotation in range(4):
if rotation > 0:
arrow_img = cv2.rotate(arrow_img, cv2.ROTATE_90_CLOCKWISE)
direction = get_direction(directions[x], rotation)
arrow_path = "{}{}_{}_{}".format(common.SAMPLES_DIR, arrow_type, direction, uuid.uuid4())
cv2.imwrite(arrow_path + ".png", arrow_img)
if direction in ['down', 'up']:
flipped_img = cv2.flip(arrow_img, 1)
else:
flipped_img = cv2.flip(arrow_img, 0)
cv2.imwrite(arrow_path + "F.png", flipped_img)
os.rename(common.LABELED_DIR + labeled_filename,
common.PREPROCESSED_DIR + labeled_filename)
def get_direction(direction, rotation):
direction_dict = {
'l': 'left',
'u': 'up',
'r': 'right',
'd': 'down'
}
rotation_list = ['l', 'u', 'r', 'd']
new_index = (rotation_list.index(direction) +
rotation) % len(rotation_list)
new_direction = rotation_list[new_index]
return direction_dict[new_direction]
def show_summary():
matrix = pd.DataFrame(np.zeros((4, 5), dtype=np.int32), index=(
'round', 'wide', 'narrow', 'total'), columns=('down', 'left', 'right', 'up', 'total'))
images = common.get_files(common.SAMPLES_DIR)
for _, filename in images:
arrow_direction, arrow_type = common.arrow_labels(filename)
matrix[arrow_direction][arrow_type] += 1
matrix['total'][arrow_type] += 1
matrix[arrow_direction]['total'] += 1
matrix['total']['total'] += 1
print(cf.salmon("Samples summary"))
print(matrix, "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--inspection', action='store_true',
help="Toggles the inspection mode, which disables the output")
parser.add_argument('-m', '--mode', default='binarized', type=str,
choices=['binarized', 'gray'],
help="Sets the output mode to binarized or grayscale")
parser.add_argument('-a', '--automatic', action='store_true',
help="Toggles the automatic mode, which approves all screenshots")
args = parser.parse_args()
main(args.inspection, args.mode, args.automatic)