From 853eaf2b6af0dc4eac425508c295677c505efb9d Mon Sep 17 00:00:00 2001 From: Jeroen Galjaard Date: Mon, 10 May 2021 15:09:38 +0200 Subject: [PATCH] Rebase to remote --- fltk/datasets/cifar10.py | 51 +++++++++++++++ fltk/datasets/cifar100.py | 45 +++++++++++++ fltk/datasets/dataset.py | 113 +++++++++++++++++++++++++++++++++ fltk/datasets/fashion_mnist.py | 33 ++++++++++ 4 files changed, 242 insertions(+) create mode 100644 fltk/datasets/cifar10.py create mode 100644 fltk/datasets/cifar100.py create mode 100644 fltk/datasets/dataset.py create mode 100644 fltk/datasets/fashion_mnist.py diff --git a/fltk/datasets/cifar10.py b/fltk/datasets/cifar10.py new file mode 100644 index 00000000..82e375e4 --- /dev/null +++ b/fltk/datasets/cifar10.py @@ -0,0 +1,51 @@ +from .dataset import Dataset +from torchvision import datasets +from torchvision import transforms +from torch.utils.data import DataLoader, DistributedSampler + + +class CIFAR10Dataset(Dataset): + + def __init__(self, args): + super(CIFAR10Dataset, self).__init__(args) + + def load_train_dataset(self): + self.get_args().get_logger().debug("Loading CIFAR10 train data") + + normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + transform = transforms.Compose([ + transforms.RandomHorizontalFlip(), + transforms.RandomCrop(32, 4), + transforms.ToTensor(), + normalize + ]) + + train_dataset = datasets.CIFAR10(root=self.get_args().get_data_path(), train=True, download=True, transform=transform) + sampler = DistributedSampler(train_dataset, rank=self.args.get_rank(), num_replicas=self.args.get_world_size()) if self.args.get_distributed() else None + train_loader = DataLoader(train_dataset, batch_size=len(train_dataset), sampler=sampler) + self.args.set_sampler(sampler) + + train_data = self.get_tuple_from_data_loader(train_loader) + + self.get_args().get_logger().debug("Finished loading CIFAR10 train data") + + return train_data + + def load_test_dataset(self): + self.get_args().get_logger().debug("Loading CIFAR10 test data") + + normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + transform = transforms.Compose([ + transforms.ToTensor(), + normalize + ]) + test_dataset = datasets.CIFAR10(root=self.get_args().get_data_path(), train=False, download=True, transform=transform) + sampler = DistributedSampler(test_dataset, rank=self.args.get_rank(), num_replicas=self.args.get_world_size()) if self.args.get_distributed() else None + test_loader = DataLoader(test_dataset, batch_size=len(test_dataset), sampler=sampler) + self.args.set_sampler(sampler) + + test_data = self.get_tuple_from_data_loader(test_loader) + + self.get_args().get_logger().debug("Finished loading CIFAR10 test data") + + return test_data diff --git a/fltk/datasets/cifar100.py b/fltk/datasets/cifar100.py new file mode 100644 index 00000000..186a98dc --- /dev/null +++ b/fltk/datasets/cifar100.py @@ -0,0 +1,45 @@ +from .dataset import Dataset +from torchvision import datasets +from torchvision import transforms +from torch.utils.data import DataLoader + +class CIFAR100Dataset(Dataset): + + def __init__(self, args): + super(CIFAR100Dataset, self).__init__(args) + + def load_train_dataset(self): + self.get_args().get_logger().debug("Loading CIFAR100 train data") + + normalize = transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276]) + transform = transforms.Compose([ + transforms.RandomHorizontalFlip(), + transforms.RandomCrop(32, 4), + transforms.ToTensor(), + normalize + ]) + train_dataset = datasets.CIFAR100(root=self.get_args().get_data_path(), train=True, download=True, transform=transform) + train_loader = DataLoader(train_dataset, batch_size=len(train_dataset)) + + train_data = self.get_tuple_from_data_loader(train_loader) + + self.get_args().get_logger().debug("Finished loading CIFAR100 train data") + + return train_data + + def load_test_dataset(self): + self.get_args().get_logger().debug("Loading CIFAR100 test data") + + normalize = transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276]) + transform = transforms.Compose([ + transforms.ToTensor(), + normalize + ]) + test_dataset = datasets.CIFAR100(root=self.get_args().get_data_path(), train=False, download=True, transform=transform) + test_loader = DataLoader(test_dataset, batch_size=len(test_dataset)) + + test_data = self.get_tuple_from_data_loader(test_loader) + + self.get_args().get_logger().debug("Finished loading CIFAR100 test data") + + return test_data diff --git a/fltk/datasets/dataset.py b/fltk/datasets/dataset.py new file mode 100644 index 00000000..17e6a4c6 --- /dev/null +++ b/fltk/datasets/dataset.py @@ -0,0 +1,113 @@ +from abc import abstractmethod +from torch.utils.data import DataLoader +from torch.utils.data import TensorDataset +import torch +import numpy + +from fltk.util.arguments import Arguments + + +class Dataset: + + def __init__(self, args: Arguments): + self.args = args + self.train_dataset = self.load_train_dataset() + self.test_dataset = self.load_test_dataset() + + def get_args(self): + """ + Returns the arguments. + + :return: Arguments + """ + return self.args + + def get_train_dataset(self): + """ + Returns the train dataset. + + :return: tuple + """ + return self.train_dataset + + def get_test_dataset(self): + """ + Returns the test dataset. + + :return: tuple + """ + return self.test_dataset + + @abstractmethod + def load_train_dataset(self): + """ + Loads & returns the training dataset. + + :return: tuple + """ + raise NotImplementedError("load_train_dataset() isn't implemented") + + @abstractmethod + def load_test_dataset(self): + """ + Loads & returns the test dataset. + + :return: tuple + """ + raise NotImplementedError("load_test_dataset() isn't implemented") + + def get_train_loader(self, batch_size, **kwargs): + """ + Return the data loader for the train dataset. + + :param batch_size: batch size of data loader + :type batch_size: int + :return: torch.utils.data.DataLoader + """ + return Dataset.get_data_loader_from_data(batch_size, self.train_dataset[0], self.train_dataset[1], **kwargs) + + def get_test_loader(self, batch_size, **kwargs): + """ + Return the data loader for the test dataset. + + :param batch_size: batch size of data loader + :type batch_size: int + :return: torch.utils.data.DataLoader + """ + return Dataset.get_data_loader_from_data(batch_size, self.test_dataset[0], self.test_dataset[1], **kwargs) + + @staticmethod + def get_data_loader_from_data(batch_size, X, Y, **kwargs): + """ + Get a data loader created from a given set of data. + + :param batch_size: batch size of data loader + :type batch_size: int + :param X: data features + :type X: numpy.Array() + :param Y: data labels + :type Y: numpy.Array() + :return: torch.utils.data.DataLoader + """ + X_torch = torch.from_numpy(X).float() + + if "classification_problem" in kwargs and kwargs["classification_problem"] == False: + Y_torch = torch.from_numpy(Y).float() + else: + Y_torch = torch.from_numpy(Y).long() + dataset = TensorDataset(X_torch, Y_torch) + + kwargs.pop("classification_problem", None) + + return DataLoader(dataset, batch_size=batch_size, **kwargs) + + @staticmethod + def get_tuple_from_data_loader(data_loader): + """ + Get a tuple representation of the data stored in a data loader. + + :param data_loader: data loader to get data from + :type data_loader: torch.utils.data.DataLoader + :return: tuple + """ + return (next(iter(data_loader))[0].numpy(), next(iter(data_loader))[1].numpy()) diff --git a/fltk/datasets/fashion_mnist.py b/fltk/datasets/fashion_mnist.py new file mode 100644 index 00000000..0f851cfa --- /dev/null +++ b/fltk/datasets/fashion_mnist.py @@ -0,0 +1,33 @@ +from .dataset import Dataset +from torchvision import datasets +from torchvision import transforms +from torch.utils.data import DataLoader + +class FashionMNISTDataset(Dataset): + + def __init__(self, args): + super(FashionMNISTDataset, self).__init__(args) + + def load_train_dataset(self): + self.get_args().get_logger().debug("Loading Fashion MNIST train data") + + train_dataset = datasets.FashionMNIST(self.get_args().get_data_path(), train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) + train_loader = DataLoader(train_dataset, batch_size=len(train_dataset)) + + train_data = self.get_tuple_from_data_loader(train_loader) + + self.get_args().get_logger().debug("Finished loading Fashion MNIST train data") + + return train_data + + def load_test_dataset(self): + self.get_args().get_logger().debug("Loading Fashion MNIST test data") + + test_dataset = datasets.FashionMNIST(self.get_args().get_data_path(), train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) + test_loader = DataLoader(test_dataset, batch_size=len(test_dataset)) + + test_data = self.get_tuple_from_data_loader(test_loader) + + self.get_args().get_logger().debug("Finished loading Fashion MNIST test data") + + return test_data