forked from circstat/circstat-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
circ_vtest.m
77 lines (67 loc) · 2.02 KB
/
circ_vtest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
function [pval v] = circ_vtest(alpha, dir, w, d)
%
% [pval, v] = circ_vtest(alpha, dir, w, d)
% Computes V test for non-uniformity of circular data with a specified
% mean direction dir.
% H0: the population is uniformly distributed around the circle
% HA: the population is not distributed uniformly around the circle but
% has a mean of dir.
%
% Note: Not rejecting H0 may mean that the population is uniformly
% distributed around the circle OR that it has a mode but that this mode
% is not centered at dir.
%
% The V test has more power than the Rayleigh test and is preferred if
% there is reason to believe in a specific mean direction.
%
% Input:
% alpha sample of angles in radians
% dir suspected mean direction
% [w number of incidences in case of binned angle data]
% [d spacing of bin centers for binned data, if supplied
% correction factor is used to correct for bias in
% estimation of r, in radians (!)]
%
% Output:
% pval p-value of V test
% v value of the V statistic
%
% PHB 7/6/2008
%
% References:
% Biostatistical Analysis, J. H. Zar
%
% Circular Statistics Toolbox for Matlab
% By Philipp Berens, 2009
% [email protected] - www.kyb.mpg.de/~berens/circStat.html
if size(alpha,2) > size(alpha,1)
alpha = alpha';
end
if nargin<3
% if no specific weighting has been specified
% assume no binning has taken place
w = ones(size(alpha));
else
if size(w,2) > size(w,1)
w = w';
end
if length(alpha)~=length(w)
error('Input dimensions do not match.')
end
end
if nargin<4
% per default do not apply correct for binned data
d = 0;
end
% compute some ingredients
r = circ_r(alpha,w,d);
mu = circ_mean(alpha,w);
n = sum(w);
% compute Rayleigh's R (equ. 27.1)
R = n * r;
% compute the V statistic (equ. 27.5)
v = R * cos(mu-dir);
% compute u (equ. 27.6)
u = v * sqrt(2/n);
% compute p-value from one tailed normal approximation
pval = 1 - normcdf(u);