forked from anibali/docker-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
images.yml
125 lines (118 loc) · 3.58 KB
/
images.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
1.8.1-cuda11.1-ubuntu20.04:
extra_tags:
- 1.8.1-cuda11.1
- latest
template:
path: templates/ubuntu20.04.dockerfile.jinja2
vars:
base_image: nvidia/cuda:11.1.1-base-ubuntu20.04
additional_steps: |-
# CUDA 11.1-specific steps
RUN conda install -y -c conda-forge cudatoolkit=11.1.1 \
&& conda install -y -c pytorch \
"pytorch=1.8.1=py3.8_cuda11.1_cudnn8.0.5_0" \
"torchvision=0.9.1=py38_cu111" \
&& conda clean -ya
1.7.0-cuda11.0-ubuntu20.04:
extra_tags:
- 1.7.0-cuda11.0
template:
path: templates/ubuntu20.04.dockerfile.jinja2
vars:
base_image: nvidia/cuda:11.0-base-ubuntu20.04
additional_steps: |-
# CUDA 11.0-specific steps
RUN conda install -y -c pytorch \
cudatoolkit=11.0.221 \
"pytorch=1.7.0=py3.8_cuda11.0.221_cudnn8.0.3_0" \
"torchvision=0.8.1=py38_cu110" \
&& conda clean -ya
1.5.0-cuda10.2-ubuntu18.04:
extra_tags:
- 1.5.0-cuda10.2
template:
path: templates/ubuntu18.04.dockerfile.jinja2
vars:
base_image: nvidia/cuda:10.2-base-ubuntu18.04
additional_steps: |-
# CUDA 10.2-specific steps
RUN conda install -y -c pytorch \
cudatoolkit=10.2 \
"pytorch=1.5.0=py3.8_cuda10.2.89_cudnn7.6.5_0" \
"torchvision=0.6.0=py38_cu102" \
&& conda clean -ya
1.5.0-cuda9.2-ubuntu18.04:
extra_tags:
- 1.5.0-cuda9.2
template:
path: templates/ubuntu18.04.dockerfile.jinja2
vars:
base_image: nvidia/cuda:9.2-base-ubuntu18.04
additional_steps: |-
# CUDA 9.2-specific steps
RUN conda install -y -c pytorch \
cudatoolkit=9.2 \
"pytorch=1.5.0=py3.8_cuda9.2.148_cudnn7.6.3_0" \
"torchvision=0.6.0=py38_cu92" \
&& conda clean -ya
1.5.0-nocuda-ubuntu18.04:
extra_tags:
- 1.5.0-nocuda
template:
path: templates/ubuntu18.04.dockerfile.jinja2
vars:
base_image: ubuntu:18.04
additional_steps: |-
# No CUDA-specific steps
ENV NO_CUDA=1
RUN conda install -y -c pytorch \
cpuonly \
"pytorch=1.5.0=py3.8_cpu_0" \
"torchvision=0.6.0=py38_cpu" \
&& conda clean -ya
1.4.0-cuda10.1-ubuntu16.04:
deprecated: true
extra_tags:
- 1.4.0-cuda10.1
template:
path: templates/ubuntu16.04.dockerfile.jinja2
vars:
base_image: nvidia/cuda:10.1-base-ubuntu16.04
additional_steps: |-
# CUDA 10.1-specific steps
RUN conda install -y -c pytorch \
cudatoolkit=10.1 \
"pytorch=1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0" \
"torchvision=0.5.0=py36_cu101" \
&& conda clean -ya
1.4.0-cuda9.2-ubuntu16.04:
deprecated: true
extra_tags:
- 1.4.0-cuda9.2
template:
path: templates/ubuntu16.04.dockerfile.jinja2
vars:
base_image: nvidia/cuda:9.2-base-ubuntu16.04
additional_steps: |-
# CUDA 9.2-specific steps
RUN conda install -y -c pytorch \
cudatoolkit=9.2 \
"pytorch=1.4.0=py3.6_cuda9.2.148_cudnn7.6.3_0" \
"torchvision=0.5.0=py36_cu92" \
&& conda clean -ya
1.4.0-nocuda-ubuntu16.04:
deprecated: true
extra_tags:
- 1.4.0-nocuda
template:
path: templates/ubuntu16.04.dockerfile.jinja2
vars:
base_image: ubuntu:16.04
additional_steps: |-
# No CUDA-specific steps
ENV NO_CUDA=1
RUN conda install -y -c pytorch \
cpuonly \
"pytorch=1.4.0=py3.6_cpu_0" \
"torchvision=0.5.0=py36_cpu" \
&& conda clean -ya