-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_run_mlpg.py
107 lines (75 loc) · 3.33 KB
/
test_run_mlpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from __future__ import print_function
from __future__ import division
import time, sys
import torch
import numpy as np
from src.mlpg import *
from src.regression_utils import *
from models.BaseNet import Net
from models.ff_probabilistic_mlpg import Nloss_GD, ff_mlpg
######
def run_mlpg_regression(x_in, statsdir, savedir='model_saves/theta_best_mlpg.dat'):
mcsize_mlpg = 181
np.random.seed(1337) # for reproducibility
## ----------------------------------------------------------------------------------------------------------------
# read data
cprint('c', '\nData:')
ds_stats = np.load(statsdir)
Xmeans = ds_stats[0]
Xstds = ds_stats[1]
Tmeans = ds_stats[3]
Tstds = ds_stats[4]
print(' x_test: %d vectors of audio of dim: %d' % (x_in.shape[0], x_in.shape[1]))
x = get_mtx_deltas(x_in, filter1, filter2)
x, _, _, in_uv = feature_mv_norm(x, [1, mcsize_mlpg + 1], Xmeans, Xstds)
## ---------------------------------------------------------------------------------------------------------------------
# net dims
input_dim = x.shape[1]
output_dim = 2 * input_dim
n_hid = int(2*input_dim)
lr = 5e-4
weight_decay = 0
use_cuda = torch.cuda.is_available()
# --------------------
net = Net('ff_mlpg', input_dim, output_dim, n_hid, lr=lr, weight_decay=weight_decay, cuda=use_cuda)
net.load(savedir)
print('net input_dim: %s' % str(input_dim))
print('net output_dim: %d' % output_dim)
## ---------------------------------------------------------------------------------------------------------------------
# test
batch_size = 64
cprint('c', '\nNet loaded,\n Evaluating:')
cost_test = 0
nb_samples_test = len(x)
result_ = np.empty((0, input_dim))
sq_Betas = np.empty((0, input_dim))
tic = time.time()
for ind in generate_ind_batch(nb_samples_test, batch_size, random=False):
out, sq_Beta = net.predict(x[ind])
result_ = np.concatenate((result_, out), axis=0)
sq_Betas = np.concatenate((sq_Betas, sq_Beta), axis=0)
# TODO un-normalize sq_betas with vars
toc = time.time()
# ----
print('output feature shape before mlpg:', result_.shape)
print('sq_Betas feature shape:', sq_Betas.shape)
cprint('r', 'net done: time: %f seconds\n' % (toc - tic))
# Un-norm features without setting null f0
# TODO: dont apply derivatives to F0
result_un = feature_mv_unnorm(result_, [1, mcsize_mlpg + 1], Tmeans, Tstds, np.zeros(result_.shape[0]).astype(int))
sq_Betas_un = feature_mv_unnorm(sq_Betas, [1, mcsize_mlpg + 1], np.zeros(sq_Betas.shape[1]), 1 / Tstds, np.zeros(sq_Betas.shape[0]).astype(int))
Betas_t = 1 / np.tile(Tstds ** 2, (result_un.shape[0], 1))
Betas_net = sq_Betas_un ** 2
W1 = get_delta_mtx(filter1, result_.shape[0])
W2 = get_delta_mtx(filter2, result_.shape[0])
result_mlpg = my_mlpg(result_un, 61, W1, W2, Betas_t)
result_mlpg[np.squeeze(in_uv) == 1, 0] = 0
print('out features: %s' % str(result_mlpg.shape))
toc1 = time.time()
cprint('r', 'mlpg done: time: %f seconds\n' % (toc1 - tic))
return result_mlpg
if __name__ == "__main__":
Nwin = 300
Nfeat = 61
x_in = np.random.randn(Nwin, Nfeat)
a = run_mlpg_regression(x_in, statsdir='model_saves/ST_STATS_mlpg.npy', savedir='model_saves/theta_best_mlpg.dat')