-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathMann-Kandall-test.py
47 lines (38 loc) · 1.54 KB
/
Mann-Kandall-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
################################################################################
# Mann-Kendall-Test
#
# Originally from: http://www.ambhas.com/codes/statlib.py, and adapted at
# https://www.uni-goettingen.de/en/524376.html to improve speed
#
# Input x must be a 1D list/array of numbers
################################################################################
import numpy as np
from scipy import stats
def mk_test(x, alpha=0.05):
n = len(x)
# calculate S
listMa = np.matrix(x) # convert input List to 1D matrix
subMa = np.sign(listMa.T - listMa) # calculate all possible differences in matrix
# with itself and save only sign of difference (-1,0,1)
s = np.sum(subMa[np.tril_indices(n, -1)]) # sum lower left triangle of matrix
# calculate the unique data
# return_counts=True returns a second array that is equivalent to tp in old version
unique_x = np.unique(x, return_counts=True)
g = len(unique_x[0])
# calculate the var(s)
if n == g: # there is no tie
var_s = (n * (n - 1) * (2 * n + 5)) / 18
else: # there are some ties in data
tp = unique_x[1]
var_s = (n * (n - 1) * (2 * n + 5) +
np.sum(tp * (tp - 1) * (2 * tp + 5))) / 18
if s > 0:
z = (s - 1) / np.sqrt(var_s)
elif s == 0:
z = 0
elif s < 0:
z = (s + 1) / np.sqrt(var_s)
# calculate the p_value
p = 2 * (1 - stats.norm.cdf(abs(z))) # two tail test
h = abs(z) > stats.norm.ppf(1 - alpha / 2)
return h, p