-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathapply_PLSR.py
executable file
·193 lines (157 loc) · 5.87 KB
/
apply_PLSR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 19 16:25:28 2018
@author: Lopatin
"""
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
from pprint import pprint
import rasterio
from sklearn.cross_decomposition import PLSRegression
from sklearn import model_selection
from sklearn.metrics import mean_squared_error, make_scorer
### Input variaböes
#inData = "test_data.csv"
#yVariable = "BM"
#raster = "hyper_P1_5m.tif"
Boots = 500
def tune_PLSR(x, y):
""" Parameter tuning of PLS regression """
n_comp_range = range(1, int(maxComp))
param_grid = dict(n_components=n_comp_range)
scorer = make_scorer(mean_squared_error, greater_is_better=False)
# Leave-one-out cross validation
cv = model_selection.LeaveOneOut()
cv.get_n_splits(x)
# grid search
grid = model_selection.GridSearchCV(PLSRegression(), param_grid=param_grid, scoring=scorer, cv=cv)
grid.fit(x, y)
scores = grid.grid_scores_
return grid, scores
def saveRaster(img, inputRaster):
# Save TIF image to a nre directory of name MNF
img2 = np.transpose(img, [2,0,1]) # get to (band, raw, column) shape
output = str(raster[:-4])+"_PLSR_Predict.tif"
new_dataset = rasterio.open(output , 'w', driver='GTiff',
height=inputRaster.shape[0], width=inputRaster.shape[1],
count=img.shape[2], dtype=str(img.dtype),
crs=inputRaster.crs, transform=inputRaster.transform)
new_dataset.write(img2)
new_dataset.close()
def unlist(x):
""" unlist a nested list into a 1D array """
y = np.array([item for sublist in x for item in sublist])
return y
###################
if __name__ == "__main__":
# create the arguments for the algorithm
parser = argparse.ArgumentParser()
parser.add_argument('-i','--inData',
help='Input raster', type=str, required=True)
parser.add_argument('-y','--yVariable',
help='Name of response variable', type=str, default=True)
parser.add_argument('-r','--raster',
help='Input raster stack of predictors', type=str, default=True)
parser.add_argument('--version', action='version', version='%(prog)s 1.0')
args = vars(parser.parse_args())
# data inputs
inData = args["inData"]
yVariable = args["yVariable"]
raster = args["raster"]
# dataset for grid search
data = pd.read_csv(inData)
N = len(data)
maxComp = N/2
# model data
x = data.drop([yVariable], axis=1).astype('float32')
y = data[yVariable].astype('float32')
# Load raster
r = rasterio.open(raster)
r2 = r.read() # transform to array
img = np.transpose( r2, [1,2,0] ) # transpose to shape (nrow, ncol, nbands)
numBands, nrow, ncol = r2.shape
# transfor a 3D array into a 2D for to apply regressions
r_data = np.reshape(img, (nrow*ncol, numBands))
r_data = r_data.astype('float32') # 32 bits
r_data = np.nan_to_num(r_data)
# run model tuning
PLS, scores = tune_PLSR(x, y)
bestComp = PLS.best_index_ + 1
print('Scores:')
pprint(scores)
print('The best N° of components is = ', bestComp)
### Iterative validation
obs = []
pred = []
r2 = []
nRMSE = []
maps = []
for i in tqdm( range(Boots) ):
# select random number
idx = np.random.choice(N, N, replace= True)
idx2 = list(set(range(N)) - set(idx))
# select samples using idx
x_train = np.array(x.loc[idx, :])
x_val = np.array(x.loc[idx2, :])
y_train = np.array(y[idx])
y_val = np.array(y[idx2])
# PLSR model
trainPLSR = PLSRegression(n_components = bestComp)
trainPLSR.fit(x_train, y_train)
# predict
predictt = trainPLSR.predict(x_val)
predictt = unlist( predictt )
# predict to map
mapp = trainPLSR.predict(r_data)
mapp = unlist(mapp)
# backtransform maps to 3D array
mapp = mapp.reshape(img[:, :, 0].shape)
# get accuracies
R2 = (np.corrcoef(predictt, y_val)[0,1])**2
nrmse = (mean_squared_error(y_val, predictt)/(np.max(y_val)-np.min(y_val)))
# Store results
obs.append(y_val)
pred.append(predictt)
r2.append(R2)
nRMSE.append(nrmse)
maps.append(mapp)
# Get model metrics
median_r2 = np.median(r2)
median_nRMSE = np.median(nRMSE)
print("Median r2 and nRMSE values are ", median_r2, median_nRMSE)
metrics = pd.DataFrame({ 'r2' : r2,
'nRMSE' : nRMSE})
metrics.to_csv('metrics'+str(inData[:-4])+'.csv') # save
# plot metrics distribution
fig = plt.figure()
plt.boxplot( [r2, nRMSE])
plt.xticks([1, 2], ['r2', 'nRMSE'])
plt.ylim((0,1))
plt.title("Distribution of accuracies")
fig.savefig("dist_accuracies_"+str(inData[:-4])+".pdf")
# predicted maps stack
stack_maps = np.dstack(maps)
# save raster stack
saveRaster(stack_maps, r)
# median map
median_map = np.apply_along_axis(np.median, 2, stack_maps)
CV_map = np.apply_along_axis(np.std, 2, stack_maps)/np.mean(y)
# maps values in 1D
flat1 = unlist(np.reshape(median_map, (nrow*ncol, 1)))
flat2 = unlist(np.reshape(CV_map, (nrow*ncol, 1)))
# plot rasters
fig = plt.figure(figsize=(12, 5))
a = fig.add_subplot(1,2,1)
plt.imshow(median_map, clim=(np.percentile(flat1, 5), np.percentile(flat1, 95)),
cmap = 'nipy_spectral')
plt.colorbar()
plt.title("Median pixel values of " + yVariable)
a = fig.add_subplot(1,2,2)
plt.imshow(median_map, clim=(np.percentile(flat2, 5), np.percentile(flat2, 95)),
cmap="hot")
plt.colorbar()
plt.title("Coeff. variation pixel values of " + yVariable)
fig.savefig( "predictedMaps.pdf" )