-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy path184sum.py
92 lines (82 loc) · 2.95 KB
/
184sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class Solution:
def fourSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[List[int]]
"""
nums = sorted(nums)
res = []
if not nums or len(nums) < 4:
return res
if nums[0] + nums[1] + nums[2] + nums[3] > target:
return res
if nums[-1] + nums[-2] + nums[-3] + nums[-4] < target:
return res
for i in range(0, len(nums)):
# if nums[i] == nums[i - 1] and i > 0:
# continue
if nums[i] + nums[-1] + nums[-2] + nums[-3] < target:
continue
for j in range(i + 1, len(nums) - 2):
# if nums[j] == nums[j-1] and j > 1:
# continue
if nums[i] + nums[j] + nums[-2] + nums[-1] < target:
continue
x = j + 1
y = len(nums) - 1
while x < y:
if nums[i] + nums[j] + nums[x] + nums[y] == target:
res.append([nums[i], nums[j], nums[x], nums[y]])
x = x + 1
while x < y and nums[x] == nums[x - 1]:
x = x + 1
elif nums[i] + nums[j] + nums[x] + nums[y] < target:
x = x + 1
else:
y = y - 1
sl = []
for r in res:
if r not in sl:
sl.append(r)
return sl
class Solution1:
def fourSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[List[int]]
"""
nums.sort()
results = []
self.findNsum(nums, target, 4, [], results)
return results
def findNsum(self, nums, target, N, result, results):
if len(nums) < N or N < 2:
return
# solve 2-sum
if N == 2:
l, r = 0, len(nums) - 1
while l < r:
if nums[l] + nums[r] == target:
results.append(result + [nums[l], nums[r]])
l += 1
r -= 1
while l < r and nums[l] == nums[l - 1]:
l += 1
while r > l and nums[r] == nums[r + 1]:
r -= 1
elif nums[l] + nums[r] < target:
l += 1
else:
r -= 1
else:
for i in range(0, len(nums) - N + 1): # careful about range
if target < nums[i] * N or target > nums[-1] * N: # take advantages of sorted list
break
if i == 0 or i > 0 and nums[i - 1] != nums[i]: # recursively reduce N
self.findNsum(nums[i + 1:], target - nums[i], N - 1,
result + [nums[i]], results)
return
s = Solution1()
print(s.fourSum([-3, -2, -1, 0, 0, 1, 2, 3], 0))