-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhill-algorithm.cxx
290 lines (263 loc) · 7.95 KB
/
hill-algorithm.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//*********************************************************
//
// hill-algorithm.cxx - the implement of hill algorithm
//
// Author: Jeff Wen
//*********************************************************
#include <iostream>
#include <stdexcept>
#include "hill-algorithm.h"
//*********************************************************
// Constructor of Matrix class
//*********************************************************
Matrix::Matrix(std::array<std::array<int, matrSize>, matrSize> m) {
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++)
matrix[i][j] = m[i][j];
}
}
//*********************************************************
// Copy constructor of Matrix class
//*********************************************************
Matrix::Matrix(const Matrix &m)
{
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++)
matrix[i][j] = m[i][j];
}
}
//*********************************************************
// Print the matrix
//*********************************************************
void Matrix::print(void)
{
for (auto low:matrix) {
for (auto n:low)
std::cout << n << "\t";
std::cout << std::endl;
}
}
std::string Matrix::toString(void) {
std::string str;
for (auto low:matrix)
for (auto n:low)
str.push_back(char(n + int('a')));
return str;
}
//*********************************************************
// Parse string to set matrix values
// String must be low cased and 'a' is treated as 0
// Return 0 if succeed.
//*********************************************************
int Matrix::parseString(std::string str) {
if (int(str.length()) != matrSize * matrSize) return -1;
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++) {
if (str[i * matrSize + j] >= 'a' && str[i * matrSize + j] <= 'z')
matrix[i][j] = int(str[i * matrSize + j] - 'a');
else
return 1;
}
}
return 0;
}
//*********************************************************
// Overload the "+" operator
//*********************************************************
Matrix Matrix::operator+(const Matrix& b)
{
Matrix rtv;
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++)
rtv[i][j] += matrix[i][j];
}
return rtv;
}
//*********************************************************
// this * b
//*********************************************************
Matrix Matrix::leftMulti(Matrix b) {
Matrix rtv;
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++) {
rtv[i][j] = 0;
for (int ct = 0; ct < matrSize; ct++) {
rtv[i][j] += matrix[i][ct] * b[ct][j];
}
rtv[i][j] = (rtv[i][j] % 26 + 26) % 26;
//std::cout << std::endl; //debug
}
}
return rtv;
}
//*********************************************************
// Overload the "[]" operator
//*********************************************************
const std::array<int, matrSize>
Matrix::operator[](const unsigned index) const {
if (index < matrSize)
return matrix[index];
throw std::out_of_range("Out of bound");
}
std::array<int, matrSize>&
Matrix::operator[](const unsigned index) {
if (index < matrSize)
return matrix[index];
throw std::out_of_range("Out of bound");
}
//*********************************************************
// Calc cofactor matrix
//*********************************************************
// Temporary function to get sub-matrix
// m and r should be located before invoking
void cutMatrix(int **m, int **r, int order, int row, int column) {
int row_offset, col_offset;
for (int i = 0; i < order - 1; i++) {
for (int j = 0; j < order - 1; j++) {
if (i >= row)
row_offset = 1;
else
row_offset = 0;
if (j >= column)
col_offset = 1;
else
col_offset = 0;
r[i][j] = m[i + row_offset][j + col_offset];
//std::cout << r[i][j] << " ";//debug
}
//std::cout << std::endl; //debug
}
}
// Calculate determinante of a matrix
int calcDet(int **m, int order) {
if (order <= 2) {
return m[0][0] * m[1][1] - m[1][0] * m[0][1];
}
order--;
int sum = 0;
bool flag = true;
int **nm = new int*[order];
for (int i = 0; i < order; i++)
nm[i] = new int[order];
for (int i = 0; i < order + 1; i++) {
//std::cout << "*********************" << std::endl;//debug
cutMatrix(m, nm, order + 1, 0, i);
if (flag)
sum += m[0][i] * calcDet(nm, order);
else
sum -= m[0][i] * calcDet(nm, order);
flag = !flag;
//std::cout << "*********************" << std::endl;//debug
}
for (int i = 0; i < order; i++)
delete[] nm[i];
delete[] nm;
return sum;
}
// Cofactor matrix
Matrix Matrix::cofactor(void) {
// Init arrays
Matrix result;
int **m = new int*[matrSize];
for (int i = 0; i < matrSize; i++)
m[i] = new int[matrSize];
for (int i = 0; i < matrSize; i++)
for (int j = 0; j < matrSize; j++)
m[i][j] = matrix[i][j];
int **fdet = new int*[matrSize - 1];
for (int i = 0; i < matrSize - 1; i++)
fdet[i] = new int[matrSize - 1];
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++) {
int flag = 1;
for (int ct = 0; ct < i + j; ct++)
flag = flag * (-1);
cutMatrix(m, fdet, matrSize, i, j);
result[i][j] = flag * calcDet(fdet, matrSize - 1);
}
}
// Delete arrays
for (int i = 0; i < matrSize - 1; i++) {
delete[] m[i];
delete[] fdet[i];
}
delete[] m[matrSize - 1];
delete[] fdet;
delete[] m;
//std::cout << "debug" << std::endl;//debug
return result;
}
//*********************************************************
//*********************************************************
int Matrix::det() {
int **m = new int*[matrSize];
for (int i = 0; i < matrSize; i++)
m[i] = new int[matrSize];
for (int i = 0; i < matrSize; i++)
for (int j = 0; j < matrSize; j++)
m[i][j] = matrix[i][j];
return calcDet(m, matrSize);
}
//*********************************************************
// Transpose matrix
//*********************************************************
Matrix Matrix::transpose(void)
{
std::array<std::array<int, matrSize>, matrSize> m;
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++) {
m[i][j] = matrix[j][i];
}
}
return Matrix(m);
}
//*********************************************************
// Inverse matrix in specific mod
//*********************************************************
// Calculate a number's inverse in specific mod
int calcModInverse(int num, int mod) {
num = num % mod;
if (num < 0) num += mod;
int rtv = 0;
do {
rtv++;
} while ((num * rtv % mod) != 1 && rtv < mod);
if (rtv == mod)
return -1;
else
return rtv;
}
//*********************************************************
// Inverse a matrix in a specific mod
// Will throw a integer if the operation cannot be done
//*********************************************************
Matrix Matrix::inverse(int mod) {
Matrix c = this->cofactor();
Matrix rtv;
int det = this->det();
//std::cout << "Det: " << det << std::endl; //debug
int reversedDet = calcModInverse(det, mod);
//std::cout << "Reversed det: " << reversedDet << std::endl; //debug
if (reversedDet == -1) throw 0;
for (int i = 0; i < matrSize; i++) {
for (int j = 0; j < matrSize; j++) {
rtv[i][j] = c[i][j] * reversedDet;
rtv[i][j] = (rtv[i][j] % mod + mod) % mod;
}
}
return rtv.transpose();
}
//*********************************************************
// Hill cipher
//*********************************************************
Matrix Matrix::hillCipher(Matrix plainText) {
return plainText.leftMulti(this->transpose());
//return this->leftMulti(plainText.transpose()).transpose();
}
//*********************************************************
// Hill decryption
//*********************************************************
Matrix Matrix::hillDecrypt(Matrix c) {
return c.leftMulti(this->transpose().inverse(26));
//return this->inverse(26).leftMulti(c.transpose()).transpose();
}