forked from katetolstaya/graph_rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model_sim.py
166 lines (123 loc) · 5.04 KB
/
test_model_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import gym
import gym_flock
import copy
import timeit
import rl_comm.gnn_fwd as gnn_fwd
from stable_baselines.common.vec_env import SubprocVecEnv
from stable_baselines.common.base_class import BaseRLModel
from rl_comm.ppo2 import PPO2
import rospy
from mav_manager.srv import Vec4Request, Vec4
from geometry_msgs.msg import PoseStamped
from visualization_msgs.msg import Marker
from visualization_msgs.msg import MarkerArray
if __name__ == '__main__':
n_robots = 10
x = np.zeros((n_robots, 2))
names = ['quadrotor' + str(i + 1) for i in range(n_robots)]
altitudes = np.linspace(start=3.0, stop=8.0, num=n_robots)
rospy.init_node('gnn')
r = rospy.Rate(10.0)
def make_env():
env_name = "CoverageFull-v0"
my_env = gym.make(env_name)
my_env = gym.wrappers.FlattenDictWrapper(my_env, dict_keys=my_env.env.keys)
return my_env
vec_env = SubprocVecEnv([make_env])
# Specify pre-trained model checkpoint file.
# model_name = 'models/nl2_1_19_16/ckpt/ckpt_048.pkl'
model_name = 'models/rl_multi_421_revisit/ckpt/ckpt_004.pkl'
# model_name = 'models/imitation_test/ckpt/ckpt_036.pkl'
# load the dictionary of parameters from file
model_params, params = BaseRLModel._load_from_file(model_name)
new_model = PPO2(
policy=gnn_fwd.MultiGnnFwd,
policy_kwargs=model_params['policy_kwargs'],
env=vec_env)
# update new model's parameters
new_model.load_parameters(params)
# N = 10
model = new_model
# render_mode = 'human'
env = make_env()
env.reset()
# env.render(mode=render_mode)
arl_env = env.env.env
def state_callback(data, robot_index):
x[robot_index, 0] = data.pose.position.x
x[robot_index, 1] = data.pose.position.y
for i, name in enumerate(names):
topic_name = "/unity_ros/" + name + "/TrueState/pose"
rospy.Subscriber(name=topic_name, data_class=PoseStamped, callback=state_callback, callback_args=i)
services = [rospy.ServiceProxy("/" + name + "/mav_services/goTo", Vec4) for name in names]
marker_publisher = rospy.Publisher('/planning_map/grid', MarkerArray, queue_size=100)
def get_markers():
marker_array = MarkerArray()
for i in range(arl_env.n_agents):
marker = Marker()
marker.id = i
marker.header.frame_id = "map"
marker.type = marker.SPHERE
marker.action = marker.ADD
marker.pose.orientation.w = 1.0
if arl_env.robot_flag[i] == 1 and i < arl_env.n_robots:
marker.pose.position.x = x[i, 0]
marker.pose.position.y = x[i, 1]
marker.pose.position.z = altitudes[i]
rad = 6.0
marker.color.a = 0.75
marker.color.r = 0.0
marker.color.g = 1.0
marker.color.b = 0.0
else:
marker.pose.position.x = arl_env.x[i, 0]
marker.pose.position.y = arl_env.x[i, 1]
marker.pose.position.z = 1.0
marker.color.a = 1.0
if arl_env.visited[i]:
rad = 2.0
marker.color.r = 0.0
marker.color.g = 0.0
marker.color.b = 1.0
else:
rad = 3.0
marker.color.r = 1.0
marker.color.g = 0.0
marker.color.b = 0.0
marker.scale.x = rad
marker.scale.y = rad
marker.scale.z = rad
marker_array.markers.append(marker)
return marker_array
obs = env.reset()
total_reward = 0
start_time = timeit.default_timer()
while True:
marker_publisher.publish(get_markers())
# update state and get new observation
arl_env.update_state(x)
obs, reward, _, _ = env.step(None)
total_reward += reward
elapsed = timeit.default_timer() - start_time
print('Time: ' + str(elapsed) + ' , Cum. Reward: ' + str(total_reward))
action, states = model.predict(obs, deterministic=True)
# env.render(mode=render_mode)
next_loc = copy.copy(action.reshape((-1, 1)))
# convert to next waypoint
for i in range(arl_env.n_robots):
next_loc[i] = arl_env.mov_edges[1][np.where(arl_env.mov_edges[0] == i)][action[i]]
loc_commands = np.reshape(arl_env.x[next_loc, 0:2], (arl_env.n_robots, 2))
# update last loc
old_last_loc = arl_env.last_loc
arl_env.last_loc = arl_env.closest_targets
# send new waypoints
for i, service in enumerate(services):
goal_position = [loc_commands[i, 0], loc_commands[i, 1], altitudes[i], -1.57]
goal_position = Vec4Request(goal_position)
try:
service(goal_position)
except rospy.ServiceException:
print("Service call failed")
arl_env.last_loc = np.where(arl_env.last_loc == arl_env.closest_targets, old_last_loc, arl_env.last_loc)
r.sleep()