-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_darcy_flow_d3_m21.py
397 lines (323 loc) · 17.8 KB
/
main_darcy_flow_d3_m21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import os
import dgl
import shutil
import logging
import time
import argparse
import json
import random
import glob
import numpy as np
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR, OneCycleLR
from torch.utils.data import DataLoader
from einops import rearrange
from tensorboardX import SummaryWriter
from tqdm import tqdm
from nets.load_net import load_net
from data_pde.load_data import load_data
from train.train_darcy_flow_d3_m21 import train_epoch, evaluate_epoch
from utils.util_common import *
import wandb
"""
GPU SETUP
"""
def peripheral_setup(gpu_list, seed):
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
assert isinstance(gpu_list, list), ValueError('gpu_list should be a list.')
device = 'cuda' if gpu_list else 'cpu'
# if torch.cuda.is_available() and device == 'cuda':
if device == 'cuda':
gpu_list = ','.join(str(x) for x in gpu_list)
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
torch.cuda.empty_cache()
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = True # type:ignore
torch.backends.cudnn.deterministic = True # type:ignore
torch.multiprocessing.set_sharing_strategy('file_system')
torch.autograd.set_detect_anomaly(True)
print("Using CUDA...")
print("GPU number: {}".format(torch.cuda.device_count()))
for i in range(torch.cuda.device_count()):
print("GPU {}: {}".format(i, torch.cuda.get_device_name(i)))
else:
print("Using CPU, GPU not available..")
device = torch.device(device)
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
return device
"""
Viewing model config and params
"""
def view_model_param(MODEL_NAME, model_params):
encoder, decoder = load_net(MODEL_NAME, model_params)
total_params = 0
total_params += sum(p.numel() for p in encoder.parameters() if p.requires_grad)
total_params += sum(p.numel() for p in decoder.parameters() if p.requires_grad)
print('Total parameters: {:.3f} B'.format(total_params))
print('Total parameters: {:.3f} KiB'.format(total_params / 1024))
print('Total parameters: {:.3f} MiB'.format(total_params / 1024 / 1024))
return total_params
def build_model(MODEL_NAME, model_params, device):
encoder, decoder = load_net(MODEL_NAME, model_params)
encoder.to(device)
decoder.to(device)
return encoder, decoder
def train_val_pipeline(MODEL_NAME, dataset, params, out_dir):
initial_start_time = time.time()
per_epoch_time = []
# parameter
train_params = params['train_params']
dataset_params = params['dataset_params']
net_params = params['net_params']
# device
device = net_params['device']
# dataset
DATASET_NAME = dataset.name
# dataset
trainset, valset = dataset.train, dataset.val
# trainset, valset, testset = dataset.train, dataset.val, dataset.test
print("Training: ", len(trainset))
print("Validation: ", len(valset))
# path
log_dir = os.path.join(out_dir, 'log')
ckpt_dir = os.path.join(out_dir, 'checkpoint')
eval_dir = os.path.join(out_dir, 'eval')
mkdir(log_dir)
mkdir(ckpt_dir)
mkdir(eval_dir)
# logger
writer = SummaryWriter(log_dir=os.path.join(log_dir))
# wandb logger
wandb.define_metric("Epoch")
wandb.define_metric('Learning Rate/Encoder', step_metric="Epoch")
wandb.define_metric('Learning Rate/Decoder', step_metric="Epoch")
wandb.define_metric('TRAIN LOSS/Loss_MSE', step_metric="Epoch")
wandb.define_metric('VAL LOSS/Loss_MSE', step_metric="Epoch")
for metric_name in dataset_params['train']['metrics_list']:
wandb.define_metric(f'TRAIN METRICS/{metric_name}', step_metric="Epoch")
for metric_name in dataset_params['val']['metrics_list']:
wandb.define_metric(f'VAL METRICS/{metric_name}', step_metric="Epoch")
# load model
encoder, decoder = build_model(MODEL_NAME, net_params, device)
# record model
wandb.watch(encoder)
wandb.watch(decoder)
# optimiser
enc_optim = torch.optim.Adam(list(encoder.parameters()), lr=train_params['init_lr'], weight_decay=train_params['weight_decay'])
dec_optim = torch.optim.Adam(list(decoder.parameters()), lr=train_params['init_lr'], weight_decay=train_params['weight_decay'])
if params['checkpoint_path']:
pretrained_checkpoint = torch.load(params['checkpoint_path'])
encoder.load_state_dict(pretrained_checkpoint['encoder'], strict=True)
decoder.load_state_dict(pretrained_checkpoint['decoder'], strict=True)
enc_optim.load_state_dict(pretrained_checkpoint['enc_optim'])
dec_optim.load_state_dict(pretrained_checkpoint['dec_optim'])
start_n_epochs = pretrained_checkpoint['epoch']
print('Loading pretrain model... Training from epoch {}'.format(start_n_epochs))
else:
start_n_epochs = 0
print('Training from scratch...')
# learning rate schedule
lr_schedule = 'ReduceLROnPlateau' if 'lr_schedule' not in train_params.keys() else train_params['lr_schedule']
if lr_schedule == 'ReduceLROnPlateau':
enc_scheduler = optim.lr_scheduler.ReduceLROnPlateau(enc_optim,
mode='min',
factor=train_params['lr_reduce_factor'],
patience=train_params['lr_schedule_patience'],
min_lr=train_params['min_lr'],
verbose=True)
dec_scheduler = optim.lr_scheduler.ReduceLROnPlateau(dec_optim,
mode='min',
factor=train_params['lr_reduce_factor'],
patience=train_params['lr_schedule_patience'],
min_lr=train_params['min_lr'],
verbose=True)
elif lr_schedule == 'OneCycleLR':
enc_scheduler = OneCycleLR(enc_optim,
max_lr=train_params['init_lr'],
total_steps=train_params['epochs'], # epoch --> step in the schedule
**{k: train_params[k] for k in ['div_factor', 'pct_start', 'final_div_factor'] if k in train_params}
)
dec_scheduler = OneCycleLR(dec_optim,
max_lr=train_params['init_lr'],
total_steps=train_params['epochs'], # epoch --> step in the schedule
**{k: train_params[k] for k in ['div_factor', 'pct_start', 'final_div_factor'] if k in train_params}
)
if start_n_epochs > 0:
enc_scheduler.step(start_n_epochs - 1)
dec_scheduler.step(start_n_epochs - 1)
# record loss and accuracy
epoch_train_eval_dict = {}
for metric_name in dataset_params['train']['metrics_list']:
epoch_train_eval_dict[metric_name] = []
epoch_val_eval_dict = {}
for metric_name in dataset_params['val']['metrics_list']:
epoch_val_eval_dict[metric_name] = []
# data loader
train_loader = DataLoader(trainset,
batch_size=dataset_params['train']['batch_size'],
shuffle=True,
num_workers=dataset_params['train']['batch_size'],
drop_last=True,
pin_memory=False,
collate_fn=dataset.collate)
val_loader = DataLoader(valset,
batch_size=dataset_params['val']['batch_size'],
shuffle=False,
num_workers=dataset_params['val']['batch_size'],
drop_last=False,
pin_memory=False,
collate_fn=dataset.collate)
for epoch in range(train_params['epochs']):
current_epoch = epoch + start_n_epochs
epoch_start_time = time.time()
epoch_train_loss_ave_dict, epoch_train_metric_ave_dict, enc_optim, dec_optim = train_epoch(encoder=encoder,
decoder=decoder,
enc_optim=enc_optim,
dec_optim=dec_optim,
device=device,
train_loader=train_loader,
train_params=train_params,
dataset_params=dataset_params['train'],
net_params=net_params,
epoch=current_epoch,
time_forward=None,
)
epoch_val_loss_ave_dict, epoch_val_metric_ave_dict = evaluate_epoch(encoder=encoder,
decoder=decoder,
device=device,
eval_loader=val_loader,
train_params=train_params,
dataset_params=dataset_params['val'],
net_params=net_params,
epoch=current_epoch,
eval_dir=eval_dir,
time_forward=None,
)
current_enc_lr = enc_optim.param_groups[0]['lr']
current_dec_lr = dec_optim.param_groups[0]['lr']
enc_scheduler.step(current_epoch)
dec_scheduler.step(current_epoch)
# record loss and accuracy
log_wandb = {'Epoch': current_epoch}
writer.add_scalar('Learning Rate/Encoder', current_enc_lr, current_epoch)
writer.add_scalar('Learning Rate/Decoder', current_dec_lr, current_epoch)
log_wandb['Learning Rate/Encoder'] = current_enc_lr
log_wandb['Learning Rate/Decoder'] = current_dec_lr
for loss_name in epoch_train_loss_ave_dict.keys():
writer.add_scalar(f'TRAIN LOSS/{loss_name}', epoch_train_loss_ave_dict[loss_name], current_epoch)
log_wandb[f'TRAIN LOSS/{loss_name}'] = epoch_train_loss_ave_dict[loss_name]
for loss_name in epoch_val_loss_ave_dict.keys():
writer.add_scalar(f'VAL LOSS/{loss_name}', epoch_val_loss_ave_dict[loss_name], current_epoch)
log_wandb[f'VAL LOSS/{loss_name}'] = epoch_val_loss_ave_dict[loss_name]
for metric_name in dataset_params['train']['metrics_list']:
epoch_train_eval_dict[metric_name].append(epoch_train_metric_ave_dict[metric_name])
writer.add_scalar(f'TRAIN METRICS/{metric_name}', epoch_train_metric_ave_dict[metric_name], current_epoch)
log_wandb[f'TRAIN METRICS/{metric_name}'] = epoch_train_metric_ave_dict[metric_name]
for metric_name in dataset_params['val']['metrics_list']:
epoch_val_eval_dict[metric_name].append(epoch_val_metric_ave_dict[metric_name])
writer.add_scalar(f'VAL METRICS/{metric_name}', epoch_val_metric_ave_dict[metric_name], current_epoch)
log_wandb[f'VAL METRICS/{metric_name}'] = epoch_val_metric_ave_dict[metric_name]
wandb.log(log_wandb)
# record time
epoch_end_time = time.time()
epoch_time_used = epoch_end_time - epoch_start_time
total_time_used = epoch_end_time - initial_start_time
per_epoch_time.append(epoch_time_used)
# print log
print('Epoch {:03d}/{:03d} - Epoch Time Used: {:.3f}s; Total Time Used: {:.3f}s; Train Loss: {:.3f}; Val Loss: {:.3f}; '
.format(current_epoch, train_params['epochs'], epoch_time_used, total_time_used, epoch_train_loss_ave_dict['Loss_Total'], epoch_val_loss_ave_dict['Loss_Total']))
# metric_log = 'Epoch {:03d}/{:03d} - '.format(current_epoch, train_params['epochs'])
# for metric_name in dataset_params['train']['metrics_list']:
# metric_log += 'Train {}: {:.3f}; '.format(metric_name, epoch_train_metric_ave_dict[metric_name])
# for metric_name in dataset_params['val']['metrics_list']:
# metric_log += 'Val {}: {:.3f}; '.format(metric_name, epoch_val_metric_ave_dict[metric_name])
# print(metric_log)
metric_log = 'Epoch {:03d}/{:03d} - '.format(current_epoch, train_params['epochs'])
for metric_name in dataset_params['train']['metrics_list']:
metric_log += 'Train {}: {}; '.format(metric_name, epoch_train_metric_ave_dict[metric_name])
for metric_name in dataset_params['val']['metrics_list']:
metric_log += 'Val {}: {}; '.format(metric_name, epoch_val_metric_ave_dict[metric_name])
print(metric_log)
if params["is_save_model"] and not (current_epoch % params["save_model_every"]):
# save checkpoint
checkpoint = {
'epoch': current_epoch,
'encoder': encoder.state_dict(),
'decoder': decoder.state_dict(),
'enc_optim': enc_optim.state_dict(),
'dec_optim': dec_optim.state_dict(),
}
torch.save(checkpoint, os.path.join(ckpt_dir, 'checkpoint_epoch_{}.pth'.format(current_epoch)))
# # delete previous weight
# files = glob.glob(ckpt_dir + '/*.pth')
# for file in files:
# epoch_nb = file.split('_')[-1]
# epoch_nb = int(epoch_nb.split('.')[0])
# if epoch_nb < current_epoch - 1:
# os.remove(file)
# early stopping
# # TODO: More early stopping condition
# if enc_optim.param_groups[0]['lr'] < train_params['min_lr']:
# # print("\n!! LR SMALLER OR EQUAL TO MIN LR THRESHOLD.")
# # break
# enc_optim.param_groups[0]['lr'] = train_params['min_lr']
# if dec_optim.param_groups[0]['lr'] < train_params['min_lr']:
# # print("\n!! LR SMALLER OR EQUAL TO MIN LR THRESHOLD.")
# # break
# dec_optim.param_groups[0]['lr'] = train_params['min_lr']
writer.close()
if __name__ == '__main__':
# os.environ["CUDA_VISIBLE_DEVICES"] = "3"
# load configuration from json
parser = argparse.ArgumentParser("TRAIN THE PDE GRAPH TRANSFORMER")
parser.add_argument('--config', type=str, default="config/DarcyFlow/PDEBench/config_DarcyFlow_PDEBench_M21a_D3_beta1.0_Stanx2_Stanx2_K101_RelPE_InitO_BN_MSE_OCLR1.json", help="json configuration file")
args = parser.parse_args()
with open(args.config) as f:
config = json.load(f)
# set device and random seed
device = peripheral_setup(gpu_list=config['device'], seed=config['seed'],)
# set wandb logger
os.environ['WANDB_MODE'] = config['wandb']['mode']
wandb.init(project=config['wandb']['project_name'], entity="x")
if config['wandb']['is_sweep']:
for key in wandb.config.keys():
print(f'SWEEP PARA -- {key}: {wandb.config[key]}')
# config['dataset_params']['train'] = wandb.config['batch_size']
# config['dataset_params']['val'] = wandb.config['batch_size']
# config['train_params']['init_lr'] = wandb.config['init_lr']
# config['train_params']['init_type'] = wandb.config['init_type']
# parameter
PROJECT_NAME = config['project_name']
MODEL_NAME = config['model_name']
DATASET_NAME = config['dataset_name']
out_dir = config['out_dir']
config['train_params']['model'] = MODEL_NAME
config['train_params']['dataset'] = DATASET_NAME
config['dataset_params']['model'] = MODEL_NAME
config['dataset_params']['dataset'] = DATASET_NAME
config['net_params']['model'] = MODEL_NAME
config['net_params']['dataset'] = DATASET_NAME
config['net_params']['device'] = device
config['net_params']['gpu_id'] = config['device']
config['net_params']['total_param'] = view_model_param(MODEL_NAME, config['net_params'])
# set timestamp
time_stamp = time.strftime('%Y%m%d%H%M%S')
if config['wandb']['is_sweep']:
time_stamp = 'SWEEP'
if 'DEBUG' in config['model_name']:
time_stamp = 'DEBUG'
config['time_stamp'] = time_stamp
# wandb record config
wandb.config.update(config)
# load dataset
dataset = load_data(DATASET_NAME, config['dataset_params'])
# set dir
out_dir = os.path.join(out_dir, '{}'.format(PROJECT_NAME), 'RUN_{}'.format(time_stamp),)
mkdir(out_dir)
# train & val
train_val_pipeline(MODEL_NAME, dataset, config, out_dir)