-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_checkpoint_nuScenes.py
185 lines (167 loc) · 9.54 KB
/
eval_checkpoint_nuScenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import numpy as np
import torch.nn
from dataload_nuScenes import nuScenes_RAWDataset
from torch.utils.data import DataLoader
from utils import *
from layers import disp_to_depth
import networks,argparse
import copy
def val(args,eval_models,writers,val_loader,val_whole):
"""Validate the model on a single minibatch
"""
models = eval_models
error = AverageMeter(i=len(args.depth_metric_names))
models = set_eval(models)
len_val = len(val_loader)
for batch_i,inputs in enumerate(val_loader):
if batch_i==1:break
print(batch_i)
if writers!=None:
print('epoch%d val %d/%d'%(args.epoch,batch_i,len_val))
for key, ipt in inputs.items():
inputs[key] = ipt.cuda()
cameras = ['l', 'f'] if args.error_depth_con else ['f']
outputs = {}
for camera_i in cameras:
with torch.no_grad():
features = models["encoder"](inputs["color", camera_i, 0, 0])
outputs.update(models["depth"](features,camera_i))
if args.code_num > 1 and args.depth_code:
if args.GRU:
with torch.no_grad():
outputs,losses = models['GRU'](args,inputs,outputs, None, is_train=False)
else:
for refine_time_i in range(args.refine_times):
with torch.no_grad():
outputs = models['refine_net_'+str(refine_time_i)](args,inputs,outputs,refine_time_i)
losses = []
losses = compute_depth_losses(args, inputs, outputs, losses, 'init')
if args.depth_code and args.code_num > 1:
if args.GRU:
losses = compute_depth_losses(args, inputs, outputs,losses, 'refine',refine_time=0)
else:
for refine_time_i in range(args.refine_times):
losses = compute_depth_losses(args, inputs, outputs,losses, 'refine',refine_time_i)
error.update(losses,n=inputs['color','f',0,0].shape[0])
if (not val_whole) and batch_i==0: break
return error
class val_Options:
def __init__(self):
self.parser = argparse.ArgumentParser(description="Monodepthv2 options")
self.parser.add_argument('--GRU', type=bool, default=False)
self.parser.add_argument('--ddp', type=bool, default=True)
self.parser.add_argument('--code_num',type=int,default=32)
self.parser.add_argument('--depth_code',type=bool,default=True)
self.parser.add_argument('--json_file', type=str,
default='./datasets/new_mask_data_Cam_01.json')
self.parser.add_argument('--json_file_val', type=str,
default='./datasets/new_mask_data_Cam_01.json')
self.parser.add_argument('--self_mask', type=list,
default=['./mask/1_mask_black.png',
'./mask/5_mask_black.png',
'./mask/6_mask_black3.png',
'./mask/7_mask_black.png',
'./mask/8_mask_black2.png',
'./mask/9_mask_black2.png'])
self.parser.add_argument('--refine_times',type=int,default=2)
self.parser.add_argument('--train_forward_back_l_r_pc', type=list,
default=[True, True, True, False, False])
self.parser.add_argument('--val_forward_back_l_r_pc', type=list,
default=[False, False, True, False, False])
self.parser.add_argument('--rank', type=int, default=0)
self.parser.add_argument('--depth_metric_names', type=list,
default=["de/abs_rel", "de/sq_rel", "de/rms", "de/log_rms", "da/a1", "da/a2", "da/a3",
"de/depth_con"])
self.parser.add_argument('--error_depth_con', type=bool, default=True)
# PATHS
self.parser.add_argument("--data_path",
type=str,
help="path to the training data",
default = '/data/disk_a/xujl/Datasets/nuScenes/resize/'
)
self.parser.add_argument("--log_dir", type=str, help="log directory", default=os.path.join("./logs"))
# TRAINING options
self.parser.add_argument("--num_layers",type=int,help="number of resnet layers",default=18,choices=[18, 34, 50, 101, 152])
self.parser.add_argument('--origin_size', type=list, default=[900,1600])
self.parser.add_argument("--height",type=int,help="input image height",default=448)
self.parser.add_argument("--width",type=int,help="input image width",default=768)
self.parser.add_argument("--scales",nargs="+",type=int,help="scales used in the loss",default=[0, 1, 2, 3])
self.parser.add_argument("--min_depth",type=float,help="minimum depth",default=0.1)
self.parser.add_argument("--max_depth",type=float,help="maximum depth",default=80.0)
self.parser.add_argument("--frame_ids",nargs="+",type=int,help="frames to load",default=[0, -1, 1])
self.parser.add_argument("--weights_init", type=str, default="pretrained", choices=["pretrained", "scratch"])
# OPTIMIZATION optionsF
self.parser.add_argument("--batch_size", type=int, help="batch size", default=4)
self.parser.add_argument("--num_workers", type=int, help="number of dataloader workers", default=6)
# LOADING options
self.parser.add_argument("--load_weights_folder",type=str,help="name of model to load",
)
self.parser.add_argument("--models_to_load__",nargs="+",type=str,help="models to load",default=["encoder", "depth", "pose_encoder", "pose"])
def parse(self):
self.options = self.parser.parse_args()
return self.options
if __name__=='__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
options = val_Options()
args = options.parse()
json_file_list = ['./datasets/nuScenes/sweep/sweeps_F.json',
'./datasets/nuScenes/sweep/sweeps_FL.json',
'./datasets/nuScenes/sweep/sweeps_FR.json',
'./datasets/nuScenes/sweep/sweeps_BL.json',
'./datasets/nuScenes/sweep/sweeps_BR.json',
'./datasets/nuScenes/sweep/sweeps_B.json',
]
if args.depth_code and args.code_num>1:
args.depth_metric_names=["init/abs_rel", "init/sq_rel", "init/rms", "init/log_rms", "init/a1", "init/a2", "init/a3", "init/depth_con"]
for refine_time_i in range(args.refine_times if not args.GRU else 1):
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/abs_rel')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/sq_rel')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/rms')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/log_rms')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/a1')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/a2')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/a3')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/depth_con')
tmp_result = open('./tmp/tmp_result.txt','w')
tmp_result.write(args.load_weights_folder+'\n')
real_refine_times = args.refine_times
total_abs_rel = [0.] * (real_refine_times+1)
total_depth_con = [0.] * (real_refine_times+1)
for json_file_i in json_file_list:
args.json_file_val = json_file_i
train_dataset = nuScenes_RAWDataset(args, 4, is_train=True)
val_dataset = nuScenes_RAWDataset(args, 4, is_train=False)
val_loader = DataLoader(
val_dataset, batch_size=args.batch_size, num_workers=10,drop_last=True,shuffle=True)
models = {}
models["encoder"] = networks.ResnetEncoder(
args.num_layers, args.weights_init == "pretrained")
models["encoder"] = models["encoder"].cuda()
models["depth"] = networks.DepthDecoder(
models["encoder"].num_ch_enc, args.scales,num_output_channels=args.code_num)
models["depth"] = models["depth"].cuda()
if args.code_num > 1 and args.depth_code:
if args.GRU:
models['GRU'] = networks.Refine_GRU(models['encoder'].num_ch_enc,B=args.batch_size).cuda()
else:
for refine_time_i in range(args.refine_times):
models['refine_net_'+str(refine_time_i)] = networks.wight_net(args,models["encoder"].num_ch_enc,B=args.batch_size).cuda()
if args.ddp:
for k,v in models.items():
pass
models = load_model(args, models)
tmp_result.write(json_file_i+'\n')
print('json_file=', json_file_i)
error = val(args, models, None, val_loader,val_whole=False)
for i in range(len(args.depth_metric_names)):
print(args.depth_metric_names[i],error.avg[i])
tmp_result.write(args.depth_metric_names[i]+' '+str(error.avg[i])+'\n')
for i in range(real_refine_times+1):
total_abs_rel[i] += error.avg[i*8]
total_depth_con[i] += error.avg[i*8+7]
tmp_result.write('\n')
#break
for i in range(real_refine_times+1):
tmp_result.write('total '+args.depth_metric_names[i*8]+'='+str(total_abs_rel[i]/6.)+'\n')
for i in range(real_refine_times + 1):
tmp_result.write('total '+args.depth_metric_names[i*8+7]+'='+str(total_depth_con[i]/6.)+'\n')