-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_DDAD.py
252 lines (222 loc) · 11.5 KB
/
train_DDAD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch.multiprocessing as mp
import torch.optim as optim
import wandb,time
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from options_DDAD import DDAD_Options
import networks
#import datasets
from datasets.dataload_DDAD import DDAD_RAWDataset
from networks.layers import *
from utils import *
import torch.distributed as dist
from self_sup_loss import oneCamera_photometricLoss,cross_cam_photometric_loss,depth_consistency_loss
from self_sup import predict_poses,generate_images_pred_forward_back,generate_images_pred_l_r,generate_cross_camera_project_depth
from eval import val
def train(gpu,ngpus_per_node,args):
if args.ddp:
args.rank = args.rank * args.ngpus_per_node + gpu
args.gpu = gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size,rank=args.rank)
args.batch_size = int(args.batch_size/ngpus_per_node)
args.num_workers = int(args.num_workers/ngpus_per_node)
print("==>gpu:",args.gpu,",rank:",args.rank,",batch_size:",args.batch_size,",workers:",args.num_workers)
torch.cuda.set_device(args.gpu)
setup_seed(args.seed + args.rank)
args.log_path = os.path.join(args.log_dir, args.model_name)
if args.rank==0 and args.wandb:
wandb.init(name=args.model_name, project='baseline', entity="full-surround-depth-estimation",config=args,notes=args.notes)
wandb_save_code(args)
models = {}
parameters_to_train = []
args.num_scales = len(args.scales)
args.num_pose_frames = 2
#### model ####
models["encoder"] = networks.ResnetEncoder(
args.num_layers, args.weights_init == "pretrained")
models["depth"] = networks.DepthDecoder(
models["encoder"].num_ch_enc, args.scales,num_output_channels=args.code_num)
models["pose_encoder"] = networks.ResnetEncoder(args.num_layers,
args.weights_init == "pretrained", num_input_images= args.num_pose_frames)
models["pose"] = networks.PoseDecoder(models["pose_encoder"].num_ch_enc,
num_input_features=1, num_frames_to_predict_for=2)
if args.code_num > 1 and args.depth_code:
if args.GRU:
models['GRU'] = networks.Refine_GRU(models['encoder'].num_ch_enc,B=args.batch_size)
else:
for refine_time_i in range(args.refine_times):
models['refine_net_'+str(refine_time_i)] = networks.wight_net(args,models["encoder"].num_ch_enc,B=args.batch_size)
if args.ddp:
for k,v in models.items():
models[k] = nn.SyncBatchNorm.convert_sync_batchnorm(models[k])
models[k] = models[k].cuda(args.gpu)
models[k] = torch.nn.parallel.DistributedDataParallel(models[k],device_ids=[args.gpu],
output_device=args.gpu,find_unused_parameters=True)
else:
for k,v in models.items():
models[k] = v.cuda()
### optimizer ###
for k,v in models.items():
if args.ddp:
parameters_to_train = parameters_to_train + list(models[k].module.parameters())
else:
parameters_to_train = parameters_to_train + list(models[k].parameters())
model_optimizer = optim.Adam(parameters_to_train, args.learning_rate)
model_lr_scheduler = optim.lr_scheduler.StepLR(
model_optimizer, args.scheduler_step_size, 0.1)
if args.load_weights_folder is not None and False:
load_model()####### need edit but not now now error
if args.rank==0:
print("Training model named:\n ", args.model_name)
print("Models and tensorboard events files are saved to:\n ", args.log_dir)
SaveCode_Local(args)
# dataloader
'''
train_filenames = readlines_len(args,"train")
num_train_samples = len(train_filenames)
args.num_total_steps = num_train_samples // args.batch_size * args.num_epochs
if args.ddp: args.num_total_steps/=2
'''
train_dataset = DDAD_RAWDataset(args,4,is_train=True)
train_sampler = None
if args.ddp:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=(train_sampler is None),
num_workers=args.num_workers, pin_memory=True, drop_last=True,sampler=train_sampler)
args.num_total_steps = len(train_loader) * args.num_epochs
if len(args.json_file_val_list)>0:
val_loader = []
for json_file_val_i in args.json_file_val_list:
args.json_file_val = json_file_val_i
val_dataset = DDAD_RAWDataset(args,4,is_train=False)
val_loader.append(DataLoader(
val_dataset, batch_size=args.batch_size,shuffle=True,pin_memory=True, drop_last=True))
if args.depth_code and args.code_num>1:
args.depth_metric_names=["init/abs_rel", "init/sq_rel", "init/rms", "init/log_rms", "init/a1", "init/a2", "init/a3", "init/depth_con"]
for refine_time_i in range(args.refine_times if not args.GRU else 1):
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/abs_rel')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/sq_rel')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/rms')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/log_rms')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/a1')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/a2')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/a3')
args.depth_metric_names.append('refine_'+str(refine_time_i)+'/depth_con')
### log ###
if args.rank==0 and args.tensorboardX:
writers = SummaryWriter(os.path.join(args.log_path, 'tensorboard'))
else: writers = None
if args.rank==0:
print("There are {:d} training items and {:d} validation items\n".format(len(train_dataset), len(val_dataset)))
#train
train_net(args,models,train_loader,val_loader,train_sampler,model_optimizer,model_lr_scheduler,writers)
def train_net(args,models,train_loader,val_loader,train_sampler,model_optimizer,model_lr_scheduler,writers):
args.epoch, args.step = -1, 0
args.start_time = time.time()
step_time = time.time()
if args.rank==0 and True:
val(args, models, writers, val_loader, val_whole=False)
#torch.autograd.set_detect_anomaly(True)
for epoch in range(args.num_epochs):
models = set_train(models)
args.epoch += 1
model_lr_scheduler.step()
if args.ddp:
train_sampler.set_epoch(epoch)
for batch_idx, inputs in enumerate(train_loader):
losses = {}
losses['loss'] = torch.zeros(1).cuda()
outputs = {}
for k,v in inputs.items():
inputs[k]=v.cuda()
cameras = ['l','f']
for camera_i in cameras:
features = models["encoder"](inputs["color_aug", camera_i,0,0])
outputs.update( models["depth"](features,camera_i))
#predict pose
outputs = predict_poses(args, inputs, models, outputs, camera='f')
###depth code, refine
if args.code_num > 1 and args.depth_code:
if args.GRU:
outputs,losses = models['GRU'](args,inputs,outputs, losses,is_train=True)
else:
for refine_time_i in range(args.refine_times):
outputs = models['refine_net_'+str(refine_time_i)](args, inputs, outputs,refine_time_i)
#init photometric loss
outputs = generate_images_pred_forward_back(args, inputs, outputs, 'f',disp_type='init')
losses = oneCamera_photometricLoss(args, inputs, outputs, losses, 'f', disp_type='init')
if args.code_num > 1 and args.depth_code:
if not args.GRU:
for refine_time_i in range(args.refine_times):
outputs = generate_images_pred_forward_back(args, inputs, outputs, 'f','refine',refine_time_i)
losses.update(oneCamera_photometricLoss(args, inputs, outputs, losses, 'f', 'refine',refine_time_i))
if args.cross_cam_photometric_loss:
outputs = generate_images_pred_l_r(args,inputs,outputs)
losses, outputs = cross_cam_photometric_loss(args,inputs,outputs,losses)
if args.depth_consistency_loss :
outputs = generate_cross_camera_project_depth(args,inputs,outputs,'init')
losses = depth_consistency_loss(args,inputs,outputs,losses,'init')
if args.code_num > 1 and args.depth_code:
if args.GRU:
refine_time_i = 0
outputs = generate_cross_camera_project_depth(args, inputs, outputs, 'refine',refine_time_i)
losses = depth_consistency_loss(args, inputs, outputs, losses, 'refine',refine_time_i)
else:
for refine_time_i in range(args.refine_times):
outputs = generate_cross_camera_project_depth(args, inputs, outputs, 'refine',refine_time_i)
losses = depth_consistency_loss(args, inputs, outputs, losses, 'refine',refine_time_i)
model_optimizer.zero_grad()
losses["loss"].backward()
model_optimizer.step()
# log
if args.step%10==0 and args.rank==0:
step_time = log_time(args, writers, time.time() - step_time)
run_val = args.step % args.log_frequency == 0 and args.step!=0 and args.step > args.val_step
if args.rank==0 and run_val:
log_train(args,losses,writers)
val(args,models,writers,val_loader,val_whole=False)
models = set_train(models)
args.step += 1
def save_opts():
"""Save options to disk so we know what we ran this experiment with
"""
models_dir = os.path.join(self.log_path, "models")
if not os.path.exists(models_dir):
os.makedirs(models_dir)
to_save = self.opt.__dict__.copy()
with open(os.path.join(models_dir, 'opt.json'), 'w') as f:
json.dump(to_save, f, indent=2)
def save_model(self):
"""Save model weights to disk
"""
save_folder = os.path.join(self.log_path, "models", "weights_{}".format(self.epoch))
if not os.path.exists(save_folder):
os.makedirs(save_folder)
for model_name, model in self.models.items():
save_path = os.path.join(save_folder, "{}.pth".format(model_name))
to_save = model.state_dict()
if model_name == 'encoder':
# save the sizes - these are needed at prediction time
to_save['height'] = self.opt.height
to_save['width'] = self.opt.width
to_save['use_stereo'] = self.opt.use_stereo
torch.save(to_save, save_path)
save_path = os.path.join(save_folder, "{}.pth".format("adam"))
torch.save(self.model_optimizer.state_dict(), save_path)
if __name__=='__main__':
options = DDAD_Options()
args = options.parse()
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
if args.ddp:
print("==>",'DDP')
mp.set_start_method('forkserver')
port = np.random.randint(10000,10300)
nodes="127.0.0.1"
args.dist_url = 'tcp://{}:{}'.format(nodes,port)
args.dist_backend='nccl'
args.ngpus_per_node = torch.cuda.device_count()
args.world_size = args.ngpus_per_node * args.world_size
mp.spawn(train,nprocs=args.ngpus_per_node,args=(args.ngpus_per_node,args))
else:
train(0,1,args)