本DEMO只使用部分数据,使用全部数据预训练的词向量地址:
链接: https://pan.baidu.com/s/1ewlck3zwXVQuAzraZ26Euw 提取码: qbpr
word2vec最早是由斯坦福的mikolov提出来的,具体请参考他的两篇论文
- Distributed Representations of Sentences and Documents
- 贡献:在前人基础上提出更精简的语言模型(language model)框架并用于生成词向量,这个框架就是 Word2vec
- Efficient estimation of word representations in vector space
- 贡献:专门讲训练 Word2vec 中的两个trick:hierarchical softmax 和 negative sampling
优点:Word2vec 开山之作,两篇论文均值得一读 缺点:只见树木,不见森林和树叶,读完不得要义。 这里『森林』指 word2vec 模型的理论基础——即 以神经网络形式表示的语言模型 树叶』指具体的神经网络形式、理论推导、hierarchical softmax 的实现细节等等
具体可以参考https://zhuanlan.zhihu.com/p/26306795 这篇文章
import logging
import random
import numpy as np
import torch
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')
# set seed
seed = 666
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
# split data to 10 fold
import pandas as pd
data_file = 'datalab/73157/train_set.csv'
将数据划分为10折,其实sklearn中含有数据划分的函数KFold(K折交叉验证)和StratifiedKFold(分层K折交叉验证)。这里下面要实现的,是将所有不同标签类型分别划分到10折中,并且对10折中的标签类型排序进行打散。
#划分为10折
fold_num = 10
# num表示划分的数据总数
def all_data2fold(fold_num, num=10000):
fold_data = []
f = pd.read_csv(data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()[:num]
labels = f['label'].tolist()[:num]
total = len(labels)
index = list(range(total))
np.random.shuffle(index)
all_texts = []
all_labels = []
for i in index:
all_texts.append(texts[i])
all_labels.append(labels[i])
# 请注意label2id得用法,将label对应的index列表关联起来
# 最后用这个index去同步找出text和label的统一数据划分
label2id = {}
for i in range(total):
label = str(all_labels[i])
if label not in label2id:
label2id[label] = [i]
else:
label2id[label].append(i)
all_index = [[] for _ in range(fold_num)]
for label, data in label2id.items():
# print(label, len(data))
batch_size = int(len(data) / fold_num)
other = len(data) - batch_size * fold_num
for i in range(fold_num):
cur_batch_size = batch_size + 1 if i < other else batch_size
# print(cur_batch_size)
batch_data = [data[i * cur_batch_size + b] for b in range(cur_batch_size)]
all_index[i].extend(batch_data)
batch_size = int(total / fold_num)
other_texts = []
other_labels = []
other_num = 0
start = 0
for fold in range(fold_num):
num = len(all_index[fold])
texts = [all_texts[i] for i in all_index[fold]]
labels = [all_labels[i] for i in all_index[fold]]
if num > batch_size:
fold_texts = texts[:batch_size]
other_texts.extend(texts[batch_size:])
fold_labels = labels[:batch_size]
other_labels.extend(labels[batch_size:])
other_num += num - batch_size
elif num < batch_size:
end = start + batch_size - num
fold_texts = texts + other_texts[start: end]
fold_labels = labels + other_labels[start: end]
start = end
else:
fold_texts = texts
fold_labels = labels
assert batch_size == len(fold_labels)
# shuffle
# 随机化text和labels,但是保持数据一致
index = list(range(batch_size))
np.random.shuffle(index)
shuffle_fold_texts = []
shuffle_fold_labels = []
for i in index:
shuffle_fold_texts.append(fold_texts[i])
shuffle_fold_labels.append(fold_labels[i])
data = {'label': shuffle_fold_labels, 'text': shuffle_fold_texts}
fold_data.append(data)
logging.info("Fold lens %s", str([len(data['label']) for data in fold_data]))
return fold_data
fold_data = all_data2fold(10)
fold_id = 9
train_texts = []
for i in range(0, fold_id):
data = fold_data[i]
train_texts.extend(data['text'])
logging.info('Total %d docs.' % len(train_texts))
logging.info('Start training...')
from gensim.models.word2vec import Word2Vec
num_features = 100 # Word vector dimensionality
num_workers = 8 # Number of threads to run in parallel
train_texts = list(map(lambda x: list(x.split()), train_texts))
model = Word2Vec(train_texts, workers=num_workers, size=num_features)
model.init_sims(replace=True)
# save model
model.save("/home/tianchi/myspace/nlptask/word2vec.bin")
# load model
model = Word2Vec.load("/home/tianchi/myspace/nlptask/word2vec.bin")
# convert format
model.wv.save_word2vec_format('/home/tianchi/myspace/nlptask/word2vec.txt', binary=False)